
Multi-Fidelity Receding Horizon Planning for Multi-Contact Locomotion

Jiayi Wang¹ Sanghyun Kim² Sethu Vijayakumar^{1,3} Steve Tonneau¹ ¹ IPAB, The University of Edinburgh, UK ² Korea Institute of Machinery & Materials, South Korea ³ The Alan Turing Institute, UK

- Planning uneven terrain locomotion requires multiple steps lookahead. But do we need accurate modeling for the entire horizon (computationally expensive)?
- We find the first step (to be executed) requires accurate modeling, while the rest can use **convex approximations**.
- However, **angular dynamics** should be incorporated.
- Result: **Multi-fidelity** Receding Horizon Planning, avg. 2.4x faster than the single-fidelity counterparts for planning centroidal trajectories.

