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Task-based Constraints

We define a Task-based Constraint as

Φ(q) = x(t), (1)

where t is time, x ∈ R
m the task position, and q ∈ R

n the
configuration position. Differentiating Eq. (1) twice leads to

Aq̈ = ẍ − Ȧq̇, (2)

where ẍ and q̈ are the task and configuration accelerations, and
A ∈ R

m×n is the constraint Jacobian. Fig. 1 illustrates various
Task-based Constraints and Fig. 2 categorizes it.
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Fig. 1: Illustration of various Task-based Constraints, such as: physical constraints,

motion tasks, and behaviours. Examples include: (a) using contacts for bipedal

locomotion; (b) keeping the balance while holding a jar of water; (c) having a compliant

behaviour while following a given trajectory; (d) and robots with closed kinematic loops.

rheonomic constraint
Φr(q, t) = 0

Task-based Constraint
Φ(q) = x(t)

scleronomic constraint
Φs(q) = 0 Projection-based

Dynamics [1]

Operational Space
Formulation [3]

Fig. 2: Categorization regarding underlying equality constraint. Where a rheonomic

constraing is a time dependent constraint, a scleronomic constraint is a time independent

constraint, and a Task-based Constraint is a time dependent constraint with decoupled

dependence on the configuration q and time t.
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Operational Space

Formulation

The Dynamically Consistent Inverse of a Jacobian
A is the matrix G that satisfies the condition

AM−1


In − A⊤G⊤


 τ⋆ = 0, (3)

valid for G = A , M−1A⊤(AM−1A⊤)†, where
A† is the pseudo-inverse of A.

Control Decomposition

τ = A⊤f
︸ ︷︷ ︸

τt

+ P
⊤

τ⋆
︸ ︷︷ ︸

τN

, (4)

where P = In − AA.

Equivalence

Analytical dynamics solution equivalence:

q̈ = M−1A⊤( Mxẍ + hx − f ) + M−1(τ − h)

= A(ẍ − Ȧq̇)
︸ ︷︷ ︸

q̈t

+ PM−1(τ − h)
︸ ︷︷ ︸

q̈N

Multiple Task-based

Constraints

By stacking two constraints as A =

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with
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and the dynamically consistent inverse
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, (6)

where we define A#
1

⊤
and A#

2
⊤

as the partial
dynamically consistent inverses. By partitioning

f =


f⊤
1 f⊤

2





⊤
, and making λ2 = 0, ẍ1 = 0, and

R = In, we get

f2 = M2(ẍ2 − Ȧ2q̇) + A2A
⊤
1 M1Ȧ1q̇ + A#

2
⊤

h

= M2[ẍ2 + A2M
−1
c1 P1h

− (Ȧ2 − A2M
−1
c1 A†

1Ȧ1)q̇]

which correspond to the operational space con-
trollers with rigid constraints proposed by [2, 4].

Task Space Dynamics

Mxẍ + hx − λ = f, (7)

where
Mx ,



AM−1A⊤




†
= A

⊤
MA (8)

is the task space inertia matrix, and with hx , A
⊤
h − MxȦq̇ and f , A

⊤
τ⋆.

Unconstrained Dynamics

The equation of motion of an unconstrained system in the configuration space
is

M(q⋆)q̈⋆ + h(q⋆, q̇⋆) = τ⋆ (9)

where h ∈ R
n contains the Coriolis, centrifugal, and gravitational contribu-

tions, M(q⋆) is the unconstrained inertia matrix, τ⋆ ∈ R
n is the generalized

force vector in the configuration space, and q⋆, q̇⋆, q̈⋆ ∈ R
n are, respectively,

the unconstrained generalized position, velocity, and acceleration. We can
compute the forward dynamics by simply inverting M as

q̈⋆ = M−1(τ⋆ − h). (10)

Projection-based Dynamics

Reformulation

By pre-multiplying the configuration dynamics with P , obtain-
ing

PMq̈ = P (τ − h), (11)

and Eq. (2) with A†, obtaining

(In − P )q̈ = A†(ẍ − Ȧq̇), (12)

and combining them both in different ways, we get

Mc q̈ = P (τ − h) + Cc (ẍ − Ȧq̇) (13)

M (1)
c = PM + (I − P ) C(1)

c = −A†

M (2)
c = M + PM + (PM)⊤ C(2)

c = −MA†

M (3)
c = PMP + (I − P )M(I − P ) C(3)

c = −(I − 2P )MA†

Mc , PM + R(I − P ) Cc , −RA†

Equivalence

Analytical dynamics solution equivalence:

q̈ = M−1
c RA† (ẍ − Ȧq̇) + M−1

c P (τ − h)

= A (ẍ − Ȧq̇) + PM−1 (τ − h)

⇔ ⇔

Condition Number Minimization

The R(∗) that minimizes κ(Mc), where κ(.) represents the con-
dition number, is given by

R(∗) = µIn − PM, (14)

for some µ ∈ R such that {σmin(PMP ) 6= 0} ≤ µ ≤
σmax(PMP ), where σ(.) represents singular values.
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(a) Five configuration samples.
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(b) Time evolution of the condition number.

Fig. 3: Free fall (i.e. τ = 0) simulation of a two dimensional serial robot arm with three

links and with the end-effector constrained to a vertical slider.
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