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Abstract

Correspondence algorithms typically struggle with shdpasdisplay part-based
variation. We present a probabilistic approach that matshapes using indepen-
dent part transformations, where the parts themselvegaretlduring matching.
Ideas from semi-supervised learning are used to bias tloeiton towards find-
ing ‘perceptually valid’ part structures. Shapes are regméed by unlabeled point
sets of arbitrary size and a background component is usedrtdlén occlusion,
local dissimilarity and clutter. Thus, unlike many shapechang techniques, our
approach can be applied to shapes extracted from real im&gedel parame-
ters are estimated using an EM algorithm that alternatesdest finding a soft
correspondence and computing the optimal part transfaomatising Procrustes
analysis.

1 Introduction

Shape-based object recognition is a key problem in machsienvand content-based image re-
trieval (CBIR). Over the last decade, numerous shape magaigorithms have been proposed that
perform well on benchmark shape retrieval tests. Howevanynof these techniques share the same
limitations: Firstly, they operate on contiguous shaperttauies {.e. the ordering of the boundary
points matters) and assume that every point on one boundarg kounterpart on the boundary it
is being matched tac(f. Fig. 1¢). Secondly, they have no principled mechanism fadhiag occlu-
sion, non-boundary points and clutter. Finally, they sgjledo handle shapes that display significant
part-based variation. The first two limitations mean that many algorithms are utasle for match-

ing shapes extracted from real images; the latter is impbsiace many common objects (hatural
and man made) display part-based variation.

Techniques that match unordered point sets [1]) are appealing since they do not require ordered
boundary information and can work with non-boundary poiftse methods described in [2, 3, 4]
can handle outliers, occlusions and clutter, but are nagded to handle shapes whose parts are in-
dependently transformed. In this paper, we introduce agitibtic model that retains the desirable
properties of these techniques but handles parts expligjtllearning the most likely part struc-
ture and correspondence simultaneously. In this frameveguért is defined as a set of points that
undergo a common transformation. Learning theseation-based parts from scratch is an under-
constrained problem. To address this, we incorporate griowledge about valid part assignments
using two different mechanisms. Firstly, the distribusaf our hierarchical mixture model are cho-
sen so that the learnt parts are spatially localized. Ségdddas from semi-supervised learning [5]
are used to encourage a perceptually meaningful part dezsitigm. The algorithm is introduced in
Sec. 2 and described in detail in Sec. 3. Examples are givBadn4 and a sequential approach for
tackling model selection (the number of parts) and parani@telization is introduced in Sec. 5.
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Figure 1: Examples of probabilistic point matching (PPMihgghe technique described in [4]. In
each case, the initial alignment and the final match are shown

2 Part-based Point Matching (PBPM): Motivation and Overview

The PBPM algorithm combines three key ideas:

Probabilistic point matching (PPM): Probabilistic methods that find soft correspondence
betweenunlabeled point sets [2, 3, 4] are well suited to problems involving occlusion,sabt
features and clutter (Fig. 1).

Natural Part Decomposition (NPD): Most shapes haveratural part decomposition (NPD) (Fig.

2) and there are several algorithms available for finding BIRLY. [6]). We note that in tasks such
as object recognition and CBIR, tlqeery image is frequently a template shaped. a binary image

or line drawing) or a high quality image with no occlusion tutter. In such cases, one can apply
an NPD algorithm prior to matching. Throughout this papeis assumed that we have obtained
a sensible NPOor the query shape only! — it is not reasonable to assume that an NPD can be
computed for each database shape/image.

Variation-based Part Decomposition (VPD): A different notion of parts has been used in computer
vision [7], where a part is defined as a set of pixels that upaléne same transformations across
images. We refer to this type of part decomposition (PD) war&ation-based part decomposition
(VPD).

Given two shaped.g. point sets), PBPM matches them by applying a different faansation to
each variation-based part of tigenerating shape. These variation-based parts are learnt during
matching, where the known NPD of tidata shape is used to bias the algorithm towards choosing
a ‘perceptually valid’ VPD. This is achieved using tagpiivalence constraint

Constraint 1 (C1): Points that belong to the same natural part should belong to the same
variation-based part.

As we shall see in Sec. 3, this influences the learnt VPD by gihgnthe generative model
from one that generates individual data points to one thaéges natural parts (subsets of data
points). To further increase the perceptual validity ofldent VPD, we assume that variation-based
parts are composed of spatially localized points of the gaimgy shape.

PBPM aims to find the correct correspondence at the leveldivitiual points,i.e. each point of

the generating shape should be mapped to the correct positithe data shape despite the lack
of an exact point wise correspondenegy(Fig. 1b). Soft correspondence techniques that achieve
this using asingle nonlinear transformation [2, 3] perform well on some challenging problems.
However, the smoothness constraints used to control thineanity of the transformation will pre-
vent these techniques from selecting thscontinuous transformations associated with part-based
movements. PBPM learns an independent linear transfawmédr each part and hence, can find
the correct global match.

In relation to the point matching literature, PBPM is moted by the success of the techniques
described in [8, 2, 3, 4] on non-part-based problems. It ihges most similar to the work of
Hancock and colleagues.g. [8]) in that we use ‘structural information’ about the posdts to
constrain the matching problem. In addition to learningtipld parts and transformations, our work
differs in the type of structural information used (the NRidher then the Delauney triangulation)
and the way in which this information is incorporated.

With respect to the shape-matching literature, PBPM careba 8s a novel correspondence tech-
nigue for use with established NPD algorithms. Despitedingd number of NPD algorithms, there

1The NPDs used in the examples were constructed manually.
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Figure 2: The natural part decomposition (NPD) (b-d) fofedi#nt representations of a shape (a).

are relatively few NPD-based correspondence techniquigkligtand Kimia show that the parts
used in their NPD algorithm [6] correspond to specific typéstmcks when shock graph repre-
sentations are used. Consequently, shock graphs implezipture ideas about natural parts. The
Inner-Distance method of Ling and Jacobs [9] handles pactdation without explicitly identifying
the parts.

3 Part-based Point Matching (PBPM): Algorithm

3.1 Shape Representation

Shapes are represented by point sets of arbitrary size.dihtssmeed not belong to the shape bound-
ary and the ordering of the points is irrelevant. Givegeaerating shape X = (x1, X, ...,Xa)! €
RM*2 and adatashape Y = (y1,y2,...,yn)T € RV*2 (generallyM # N), our task is to com-
pute the correspondence betwé@erandY. We assume that an NPD % is available, expressed as

a partition ofY into subsets (partsY = Ule Y.

3.2 TheProbabilistic Model

We assume that a data pojnts generated by the mixture model

14
p(y) =Y _ p(ylv)m, (1)

v=0

wherev indexes the variation-based parts. A unifdsackground componenty|(v=0) ~ Uniform,
ensures that all data points are explained to some exterthemee, robustifies the model against
outliers. The distribution of given aforeground component is itself a mixture model :

M
pylv) = > plylm,v)p(mlv), v=1,2,....V, @)
m=1
with
yl(m,v) ~ N(Tyxpm, o). (3)
Here,T,, is the transformation used to match points of paoh X to points of party onY. Finally,
we definep(m|v) in such a way that the variation-based partae forced to bepatially coherent:

eXp{—(Xm — sz)TZ;l(XW — I‘I”u)/2} (4)
> exp{—(xm — p1,)TE0 " (xm — p,,)/2}

wherep, € R? is a mean vector anil, € R?**? is a covariance matrix. In words, we identify
m € {1,..., M} with the pointx,, that it indexes and assume that thg follow a bivariate
Gaussian distribution. Since must take a value if1,..., M}, the distribution is normalized
using the pointx;, ..., x,; only. This assumption means that thg themselves are essentially
generated by a GMM with components. However, this GMM is embedded in the larger mode
and maximizing the data likelihood will balance this GMM'edire for coherent parts against the
need for the parts and transformations to explain the actatal (they,,). Having defined all the
distributions, the next step is to estimate the parameteilstimaking use of the known NPD &f.

p(mlv) =

3.3 Parameter Estimation

With respect to the model defined in the previous sect@hstates that aly,, that belong to the
same subseY; were generated by the same mixture componenthis requirement can be en-
forced using the technique introduced by Sheetadl. [5] for incorporating equivalence constraints



between data points in mixture models. The basic idea isttmate the model parameters using
the EM algorithm. However, when taking the expectation kef tomplete log-likelihood) we now
only sum over assignments of data points to components vérielvalid with respect to the con-
straints. Assuming that subsets and points within subsetsaampled i.i.d., it can be shown that the
expectation is given by:

poy

v=01

Mb‘

p(v|Y) logm;—!—ZZ > p(v] Y1) logp(yalv). ®)

1 v=01=1yn,€EY,;

Note that eq.(5) involves(v|Y;) — the responsibility of a componenfor a subsely;, rather than
the termp(v]y.,,) that would be present in an unconstrained mixture modelndJgie expression
for p(y.|v) in eq.(2) and rearranging slightly, we have

L

vV oL
ZZ v|Y,) logmj—t-Zp (v=0Y;) log{u'Y!}

v=0[=1 =1

\% L M
DI 1og{zp<yn|m,v>p<m|v>}, ©

I=1yn€Y; m=1

whereuw is the constant associated with the uniform distribuigp,, |v=0). The parameters to be
estimated arer, (eq.(1)),u,, X (€9.(4)) and the transformatiofi$ (eq.(3)). With the exception
of m,, these are found by maximizing the final term in eq.(6). Forxadiv, this term is the
log-likelihood of data pointgy, . .., yn under a mixture model, with the modification that there is
a weight,pﬁv|Yl), associated with each data point. Thus, we can treat thigrshlem as a standard
maximum likelihood problem and derive the EM updates as lustiee resulting EM algorithm is
given below.

E-step. Compute theesponsibilities using the current parameters:

__ plynlm,v)p(m|v) _
p(m|yn,v) = S plynlm, o)p(mlo)’ v=12,...,V @)

Ty HYnEYz p(ynlv)

2 ™ 1y, ev, P(¥nlv)
M-step. Update theparameters using the responsibilities:

L
o = ZZ oY) ©)
Ennn ( |Yl,n)p(m|ynyv)xm
>

p(v[Y71) (8)

= 10
o oo POTY )P (I, 0) (10)
n,m p(v|Yl’n)p(m|yn7 'U)(Xm - I‘L”U)(Xm - II‘U)T
Moo = (11)
> POIY 1 0)p(m|yn, v)
T, = arg mzin Z:p(v|Yl,n)p(m|yn7 ) |lyn — Tuxm||2 (12)

whereY, ,, is the subseY; containingy,,. Here, we definé€,x = s,I',x + ¢,,, wheres,, is a scale
parameterg, € R? is a translation vector anid, is a 2D rotation matrix. Thus, eq.(12) becomes a
weighted Procrustes matching problem between two points sets, each of si¥ex M — the extent

to whichx,,, corresponds tg,, in the context of part is given byp(v|Y; »,)p(m|yn,v). This least
squares problem for the optimal transformation paramateis, andc, can be solved analytically
[8]. The weights associated with the updates in egs.(1Gafd@)imilar top(v|y,)p(m|yn,v) =
p(m,v|y,), the responsibility of the hidden variables (v) for the observed dats;,. The differ-
ence is thap(v|y,,) is replaced by(v|Y; ), and hence, the impact of the equivalence constraints
is propagated throughout the model.

The same fixed variance? (eq.(3)) is used in all experiments. For the examples in 8gwe
initialize =, n,, andX, by fitting a standard GMM to the,,,. In Sec. 5, we describe a sequential
algorithm that can be used to select the number of pads well as provide initial estimates for all
parameters.
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Figure 3: An example of applying PBPM with=3.
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Figure 4: Results for the problem in Fig. 3 using PPM [4] andPRBwith V' = 2,4, 5 and 6.

4 Examples

As discussed in Secs. 1 and 2, unsupervised matching of skdffemoving parts is a relatively
unexplored area — particularly for shapes not composedgiesiclosed boundaries. This makes
it difficult to quantitatively assess the performance of algorithm. Here, we provide illustrative
examples which demonstrate the various properties of PBRiMtzen consider more challenging
problems involving shapes extracted from real images. Tumber of parts)/, is fixed prior to
matching in these examples; a technique for estimakinig described in Sec. 5. To visualize
the matches found by PBPM, each poynt is assigned to a patt usingmax, p(v|y,). Points
assigned ta=0 are removed from the figure. For eagh assigned to some < {1,...,V}, we
find m,, = argmax,, p(m|y,,v) and assigrk,,, to v. Thosex,, not assigned to any parts are
removed from the figure. The means and the ellipses of carstabability density associated with
the distributions\(u,,, 3,,) are plotted on the original shapé. We also assign the,,, to natural
parts using the known natural part label of ghethat they are assigned to.

Fig. 3 shows an example of matching two human body shapeg @8/PM withV'=3. The learnt
VPD is intuitive and the match is better than that found ugtidM (Fig. 4). The results obtained
using different values oV are shown in Fig. 4. Predictably, the match improved’aiscreases,
but the improvement is negligible beyold-4. WhenV'=5, one of the parts is effectively repeated,
suggesting that four parts is sufficient to cover all therigging variation. However, whéi=6 all
parts are used and the VPD looks very similar to the NPD — drdydwer leg and foot on each side
are grouped together.

In Fig. 5, there are two genuine variation-based partsX¥rabntains additional features. PBPM
effectively ignores the extra points & and finds the correct parts and matches. In Fig. 6, the left
leg is correctly identified and rotated, whereas the righto€Y is ‘deleted’. We find that deletion
from the generating shape tends to be very pre@sgKig. 5), whereas PBPM is less inclined to
delete points from the data shape when it involves breakngatural parts€g. Fig. 6). This is
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Figure 5: Some features & are not present ol; the main building ofX is smaller and the tower
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Figure 6: The left legs do not match and most of the right leg{a$ missing.

largely due to the equivalence constraints trying to keeprafparts intact, though the value of the
uniform densityu, and the way in which points are assigned to parts is alsoritapb

In Figs. 7 and 8, a template shape is matched to the edge aledetput from two real images. We
have not focused on optimizing the parameters of the edgetdetsince the aim is to demonstrate
the ability of PBPM to handle suboptimal shape represantati The correct correspondence and
PDs is estimated in all cases, though the results are lesser®r these difficult problems. Six
parts are used in Fig. 8, but two of these are initially assibto clutter and end up playing no role
in the final match. The object of interestX is well matched to the template using the other four
parts. Note that the left shoulder is not assigned to the samation-based part as the other points
of the torso,.e. the soft equivalence constraint has been broken in theestteof finding the best
match.

We have not yet considered the choicé/ofFigs. 4 (with=5) and 8 indicate that it may be possible
to start with more parts than are required and either alldnaerous parts to go unused or perhaps
prune parts during matching. Alternatively, one could r&8PM for a range ol and use a model
selection technique based on a penalized log-likelihoodtian .g. BIC) to select a/. Finally,
one could attempt to learn the parts in a sequential fasHibis is the approach considered in the
next section.

5 Sequential Algorithm for Initialization

When part variation is present, one would expect PBPM Withl to find the most significant
part and allow the background to explain the remaining pdiés suggests a sequential approach
whereby a single part is learnt and removed from further icenation at each stage. Each new
part/component should focus on data points that are clyrerplained by the background. This

is achieved by modifying the technique described in [7] ftinfy mixture models sequentially.
Specifically, assume that the first part({) has been learnt and now learn the second part using the
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Figure 7: Matching a template shape to an object in a clutscene.
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Figure 8: Matching a template shape to a real image.

weighted log-likelihood

L
=" 2l log{p(Yi[v=2)m2 + ul ¥ (1 — m1 — m5)}. (13)

=1

Here,n; is known and
1 u‘Yl‘(l—TM)
p(Yi|v=1)m1 + ulil(1 — m)

z] =
is the responsibility of the background component for thiesstiY; after learning the first part
— the superscript of indicates the number of components that have already beentleUsing
the modified log-likelihood in eq.(13) has the desired dftédorcing the new component£2) to
explain the data currently explained by the uniform commonidote that we use the responsibilities
for the subset¥ rather than the individuat,, [7], in line with the assumption that complete subsets
belong to the same part. Also, note that eq.(13) is a weigbted of log-likelihoods over the
subsets, it cannot be written as a sum over data points diese tire not sampled i.i.d. due to the
equivalence constraints. Maximizing eq.(13) leads tolginktM updates to those given in egs.(7)-
(12). Having learnt the second part, additional componenrts3, 4, ... are learnt in the same way
except for minor adjustments to eqs.(13) and (14) to incateaall previously learnt components.
The sequential algorithm terminates when the uniform camepbis not significantly responsible
for any data or the most recently learnt component is notifsigntly responsible for any data.

(14)

As discussed in [7], the sequential algorithm is expecteldatee fewer problems with local min-
ima since the objective function will be smoother (a singlemponent competes against a uniform
component at each stage) and the search space smaller ffaxaeneters are learnt at each stage).
Preliminary experiments suggest that the sequential ihgois capable of solving the model selec-
tion problem (choosing the number of parts) and providingdjioitial parameter values for the full
model described in Sec. 3. Some examples are given in Figed 9@~ the initial transformations
for each part are not shown. The outcome of the sequentiafidig is highly dependent on the
value of the uniform density,. We are currently investigating how the model can be madeemor
robust to this value and also how the usgg should be subtracted (in a probabilistic sense) at each
step.
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Figure 9: Results for PBPM; and initial parameters were found using the sequentialcsupr.
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Figure 10: Results for PBPM; and initial parameters were found using the sequentialcgmbr.

6 Summary and Discussion

Despite the prevalence of part-based objects/shape® Ittaar been relatively little work on the
associated correspondence problem. In the absence ofraladsls and training data.¢. the
unsupervised case), this is a particularly difficult taskthis paper, we have presented a probabilistic
correspondence algorithm that handles part-based \ariayilearning the parts and correspondence
simultaneously. Ideas from semi-supervised learning see to bias the algorithm towards finding
a ‘perceptually valid’ part decomposition. Future workidcus on robustifying the sequential
approach described in Sec. 5.
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