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Session types statically guarantee that communication complies with a protocol. However, most accounts of

session typing do not account for failure, which means they are of limited use in real applications—especially

distributed applications—where failure is pervasive.

We present the first formal integration of asynchronous session types with exception handling in a functional

programming language. We define a core calculus which satisfies preservation and progress properties, is

deadlock free, confluent, and terminating.

We provide the first implementation of session types with exception handling for a fully-fledged functional

programming language, by extending the Links web programming language; our implementation draws

on existing work on effect handlers. We illustrate our approach through a running example of two-factor

authentication, and a larger example of a session-based chat application where communication occurs over

session-typed channels and disconnections are handled gracefully.
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1 INTRODUCTION
With the growth of the internet and mobile devices, as well as the failure of Moore’s law, concur-

rency and distribution have become central to many applications. Writing correct concurrent and

distributed code requires effective tools for reasoning about communication protocols. While data

types provide an effective tool for reasoning about the shape of data communicated, protocols also

require us to reason about the order in which messages are transmitted.

Session types [Honda 1993; Honda et al. 1998] are types for protocols. They describe both

the shape and order of messages. If a program type-checks according to its session type, then

it is statically guaranteed to comply with the corresponding protocol. Alas, most accounts of

session types do not handle failure, which means they are of limited use in distributed settings

where failure is pervasive. Inspired by work of Mostrous and Vasconcelos [2014], we present
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28:2 S. Fowler et al.

TwoFactorServer ≜
?(Username,Password).⊕{
Authenticated : ServerBody,
Challenge : !ChallengeKey.?Response.

⊕{Authenticated : ServerBody,
AccessDenied : End},

AccessDenied : End}

(a) Server Session Type

TwoFactorClient ≜
!(Username,Password).&{
Authenticated : ClientBody,
Challenge : ?ChallengeKey.!Response.
&{Authenticated : ClientBody,

AccessDenied : End},
AccessDenied : End}

(b) Client Session Type

Fig. 1. Two-factor Authentication Session Types

the first account of asynchronous session types in a functional programming language, which

smoothly handles both distribution and failure. We present both a core calculus enjoying strong

metatheoretical correctness properties and a practical implementation as an extension of the Links

web programming language [Cooper et al. 2007].

1.1 Session Types
We illustrate session types with a basic example of two-factor authentication. A user inputs their

credentials. If the login attempt is from a known device, then they are authenticated and may

proceed to perform privileged actions. If the login attempt is from an unrecognised device, then

the user is sent a challenge code. They enter the challenge code into a hardware key which yields a

response code. If the user responds with the correct response code, then they are authenticated.

A session type specifies the communication behaviour of one endpoint of a communication

channel participating in a dialogue (or session) with the other endpoint of the channel. Fig. 1 shows

the session types of two channel endpoints connecting a client and a server. Fig. 1a shows the

session type for the server which first receives (?) a pair of a username and password from the

client. Next, the server selects (⊕) whether to authenticate the client, issue a challenge, or reject the

credentials. If the server decides to issue a challenge, then it sends (!) the challenge string, awaits

the response, and either authenticates or rejects the client. The ServerBody type abstracts over the

remainder of the interactions, for example making a deposit or withdrawal.

Duality. The client implements the dual session type, shown in Fig. 1b. Whenever the server

receives a value, the client sends a value, and vice versa. Whenever the server makes a selection,

the client offers a choice (&), and vice versa. This duality between client and server ensures that

each communication is matched by the other party. We denote duality with an overbar; thus

TwoFactorClient = TwoFactorServer and TwoFactorServer = TwoFactorClient.

Implementing Two-factor Authentication. Let us suppose we have constructs for sending and

receiving along, and for closing, an endpoint.

sendM N : S whereM has type A, and N is an endpoint with session type !A.S
receiveM : (A × S) whereM is an endpoint with session type ?A.S
closeM : 1 whereM is an endpoint with session type End

Let us also suppose we have constructs for selecting and offering a choice:

select ℓj M : S j whereM is an endpoint with session type ⊕{ℓi : Si }i ∈I , and j ∈ I
offerM {ℓi (xi ) 7→ Ni }i ∈I : A whereM is an endpoint with session type &{ℓi : Si }i ∈I , each xi

binds an endpoint with session type Si , and each Ni has type A
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Exceptional Asynchronous Session Types 28:3

We can now write a client implementation.

twoFactorClient : (Username × Password × TwoFactorClient) ⊸ 1
twoFactorClient(username, password, s) ≜

let s = send (username, password) s in
offer s {Authenticated(s) 7→ clientBody(s)

Challenge(s) 7→ let (key, s) = receive s in
let s = send (generateResponse(key)) s in
offer s {Authenticated(s) 7→ clientBody(s)

AccessDenied(s) 7→ close s; loginFailed}
AccessDenied(s) 7→ close s; loginFailed}

The twoFactorClient function takes the credentials and an endpoint of type TwoFactorClient as its
arguments. The credentials are sent along the endpoint, then three choices are offered depending on

whether the server authenticates the user, sends a two-factor challenge, or rejects the authentication

attempt. If the server authenticates the user, then the program progresses to the main application

(clientBody(s)). If the server sends a challenge, then the client receives the challenge key, and sends

the response, calculated by generateResponse. Two choices are then offered according to whether

the challenge response was successful. The rejection of an authentication attempt is part of the

protocol and not exceptional behaviour. We can also write a server implementation.

twoFactorServer : TwoFactorServer ⊸ 1
twoFactorServer(s) ≜ let ((username, password), s) = receive s in

if checkDetails(username, password) then
let s = select Authenticated s in serverBody(s)

else
let s = select AccessDenied s in close s

The twoFactorServer function takes an endpoint of type TwoFactorServer along which it receives

the credentials, which are checked using checkDetails. If the check passes, then the server proceeds

to the application body (serverBody(s)); if not, then the server notifies the client by selecting the

AccessDenied branch. This particular server implementation opts to never send a challenge request.

Statically checking session types demands a substructural type system. We discuss three options:

linear types, affine types, and linear types with explicit cancellation.

1.2 Linear Types
Simply providing constructs for sending and receiving values, and for selecting and offering choices,

is insufficient for safely implementing session types. Consider the following client:

wrongClient : TwoFactorClient ⊸ 1
wrongClient(s) ≜ let t = send ("Alice", "hunter2") s in

let t = send ("Bob", "letmein") s in . . .

Reuse of s allows a (username, password) pair to be sent along the same endpoint twice, violating

the fundamental property of session fidelity, which states that in a well-typed program, communi-

cation over an endpoint matches its session type. To maintain session fidelity and ensure that all

communication actions in a session type occur, session type systems typically require that each

endpoint is used linearly—exactly once.

Exceptions. In practice, linear session types are unrealistic. Thus far, we have assumed

checkDetails always succeeds, which may be plausible if checking against an in-memory store, but

not if connecting to a remote database. One option would be for checkDetails to return false on
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28:4 S. Fowler et al.

failure, but that would lose information. Instead, suppose we have an exception handling construct.

As a first attempt, we might try to write:

exnServer1 : TwoFactorClient ⊸ 1
exnServer1(s) ≜ let ((username, password), s) = receive s in

try if checkDetails(username, password) then
let s = select Authenticated s in serverBody(s)

else
let s = select AccessDenied s in close s

catch log("Database Error")

However, the above code does not type-check and is unsafe. Linear endpoint s is not used in the

catch block and yet is still open if an exception is raised by checkDetails.
As a second attempt, we may decide to localise exception handling to the call to checkDetails.

We introduce checkDetailsOpt, which returns Some(result) if the call is successful and None if not.

checkDetailsOpt : (Username × Password) ⊸ Option(Bool)
checkDetailsOpt(username, password) ≜ try Some(checkDetails(username, password))

catch None

exnServer2 : TwoFactorServer ⊸ 1
exnServer2(s) ≜ let ((username, password), s) = receive s in

case checkDetailsOpt(username, password) of
Some(res) 7→ if res then let s = select Authenticated s in serverBody(s)

else let s = select AccessDenied s in close s
None 7→ log("Database Error")

Still the code is unsafe as it does not use s in the None branch of the case-split. However, we

do now have more precise information about the type of s , since it is unused in the try block in

checkDetailsOpt. One solution could be to adapt the protocol by adding an InternalError branch:

TwoFactorServerExn ≜ ?(Username,Password).⊕{
Authenticated : ServerBody,
Challenge : !ChallengeKey.Response.⊕{Authenticated : ServerBody,AccessDenied : End},
AccessDenied : End,
InternalError : End}

We could use select InternalError s in the None branch to yield a type-correct program, but doing

so would be unsatisfactory as it clutters the protocol and the implementation with failure points.

Disconnection. The problem of failure is compounded by the possibility of disconnection. On a

single machine it may be plausible to assume that communication always succeeds. In a distributed

setting this assumption is unrealistic as parties may disconnect without warning. The problem is

particularly acute in web applications as a client may close the browser at any point. In order to

adequately handle failure we must incorporate some mechanism for detecting disconnection.

1.3 Affine Types
We began by assuming linear types—each endpoint must be used exactly once. One might consider

relaxing linear types to affine types—each endpoint must be used at most once. Statically checked

affine types form the basis of the existing Rust implementation of session types [Jespersen et al.

2015] and dynamically checked affine types form the basis of the OCaml FuSe [Padovani 2017]

and Scala lchannels [Scalas and Yoshida 2016] session type libraries. Affine types present two
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quandaries arising from endpoints being silently discarded. First, a developer receives no feedback

if they accidentally forget to finish a protocol implementation. Second, if an exception is raised in

an evaluation context that captures an open endpoint then the peer may be left waiting forever.

1.4 Linear Types with Explicit Cancellation
Mostrous and Vasconcelos [2014] address the difficulties outlined above through an explicit discard
(or cancellation) operator. (They characterise their sessions as affine, but it is important not to

confuse their system with affine type systems, as in §1.3, which allow variables to be discarded

implicitly.) Their approach boils down to three key principles: endpoints can be explicitly discarded;

an exception is thrown if a communication cannot succeed because a peer endpoint has been

cancelled; and endpoint cancellations are propagated when endpoints become inaccessible due to

an exception being thrown. They introduce a process calculus including the term a (“cancel a”),
which indicates that endpoint a may no longer be used to perform communications. They provide

an exception handling construct which attempts a communication action, running an exception

handler if the action fails, and show that explicit cancellation is well-behaved: their calculus satisfies

preservation and global progress (well-typed processes never get stuck), and is confluent.

Explicit cancellation neatly handles failure while ruling out accidentally incomplete implementa-

tions and providing a mechanism for notifying peers when an exception is raised. In this paper we

take advantage of explicit cancellation to formalise and implement asynchronous session types

with failure handling in a distributed functional programming language; this is not merely a routine

adaptation of the ideas of Mostrous and Vasconcelos for the following reasons:

• They present a process calculus, but we work in a functional programming language.
• Communication in their system is synchronous, depending on a rendezvous between sender

and receiver. We require asynchronous communication, which is more amenable to imple-

mentation in a distributed setting.

• Their exception handling construct is over a single communication action and does not allow

nested exception handling. This design is difficult to reconcile with a functional language, as

it is inherently non-compositional. Our exception handling construct is compositional.

We define a core concurrent λ-calculus, Exceptional GV (EGV), with asynchronous session-typed

communication and exception handling. As with the calculus of Mostrous and Vasconcelos, an

exception is raised when a communication action fails. But our compositional exception handling

construct can be arbitrarily nested, and allows exception handling over multiple communication

actions. Using EGV, we may implement the two factor authentication server as follows:

exnServer3 : TwoFactorServer ⊸ 1
exnServer3(s) ≜ let ((username, password), s) = receive s in

try checkDetails(username, password) as res in
if res then let s = select Authenticated s in serverBody(s)
else let s = select AccessDenied s in close s

otherwise
cancel s; log("Database Error")

Following Benton and Kennedy [2001], an exception handler tryL asx inM otherwiseN takes an

explicit success continuation M as well as the usual failure continuation N . If checkDetails fails
with an exception, then s is safely discarded using cancel, which takes an endpoint and returns

the unit value. Disconnection is handled by cancelling all endpoints associated with a client. If a

peer tries to read along a cancelled endpoint then an exception is thrown.
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try
let s = fork (λt .cancel t) in
let (res, s) = receive s in
close s; res

as res in
print ("Result: " + res)

otherwise print "Error!"

(a) Cancellation and Exceptions

let s =
fork (λt .
let (res, t) = receive t in
close t ; res) in

let u = fork (λv .cancelv) in
let u = send s u in
close u

(b) Delegation

let f = (λx .send x s) in
raise;
f (5)

(c) Closures

Fig. 2. Failure Examples

We implement the constructs described by EGV as an extension to Links [Cooper et al. 2007],

a functional programming language for the web. Our implementation is based on a minimal

translation to effect handlers [Plotkin and Pretnar 2013].

1.5 Contributions
This paper makes five main contributions:

(1) Exceptional GV (§2), a core linear lambda calculus extended with asynchronous session-typed

channels and exception handling. We prove (§3) that the core calculus enjoys preservation,

progress, a strong form of confluence called the diamond property, and termination.

(2) Extensions to EGV (§4) supporting exception payloads, unrestricted types, and access points

(which provide a more flexible means of session initiation).

(3) The design and implementation of an extension of the Links web programming language to

support tierless web applications which can communicate using session-typed channels (§5).

(4) Client and server backends for Links implementing session typing with exception handling

(§5.4), drawing on connections with effect handlers [Plotkin and Pretnar 2013].

(5) Example applications using the infrastructure (§6). In addition to our two-factor authentica-

tion workflow we outline the implementation of a chat server.

Links is open-source and freely-available. The website can be found at http://www.links-lang.org

and the source at http://www.github.com/links-lang/links. Users of the opam tool can install Links

by invoking opam install links.
The rest of the paper is structured as follows: §2 presents Exceptional GV and §3 its metatheory;

§4 discusses extensions to Exceptional GV; §5 describes the implementation; §6 presents a chat

application written in Links; §7 discusses related work; and §8 concludes.

2 EXCEPTIONAL GV
In this section, we introduce Exceptional GV (henceforth EGV). GV is a core session-typed linear

λ-calculus that has a tight correspondence with classical linear logic [Lindley and Morris 2015;

Wadler 2014]. EGV is an asynchronous variant of GV with support for failure handling.

Due to GV’s close correspondence with classical linear logic, EGV has a strong metatheory,

enjoying preservation, global progress, the diamond property, and termination. Much like the

simply-typed λ-calculus, this well-behaved core must be extended to be expressive enough to

write larger applications. Nonetheless, the core calculus alone is expressive enough to support our

two-factor authentication example, and to support server applications which gracefully handle

disconnection. In §3, we show that cancellation is well-behaved, and does not violate any of the
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Exceptional Asynchronous Session Types 28:7

Types A,B,C ::= 1 | A ⊸ B | A + B | A × B | S
Session Types S,T ::= !A.S | ?A.S | End
Variables x ,y
Terms L,M,N ::= x | λx .M | M N | () | let () = M in N | (M,N ) | let (x ,y) = M in N

| inlM | inrM | case L of {inl x 7→ M ; inr y 7→ N }

| forkM | sendM N | receiveM | closeM
| cancelM | raise | try L as x inM otherwise N

Type Environments Γ ::= · | Γ,x : A

Fig. 3. Syntax

core properties of GV. In §4, following Lindley and Morris [2015, 2017], we extend EGV modularly

with standard features of our implementation, some of which provide weaker guarantees. Channel

cancellation and exceptions are orthogonal to these features.

2.1 Integrating Sessions with Exceptions, by Example
Integrating session types with failure handling into a higher-order functional language requires

care. Fig. 2 illustrates three important cases: cancellation and exceptions, delegation, and closures.

In order to initiate a session, we adopt the fork primitive of Lindley and Morris [2015]. Given a

termM of type S ⊸ 1, the term forkM of type S creates a fresh channel with endpoints a of type

S and b of type S , forks a child thread that executesM a, and returns endpoint b.

Cancellation and Exceptions. Fig. 2a forks a thread which immediately cancels its endpoint. The

parent attempts to receive, but the message can never arrive so an exception is raised and the

otherwise clause is invoked.

Delegation. A central feature of π -calculus is mobility of names. In session calculi sending an

endpoint is known as session delegation. The code in Fig. 2b begins by forking a thread and returning
endpoint s . The child is passed endpoint t on which it blocks receiving. Next, the parent forks a

second child, yielding endpoint u. The second child is passed endpoint v , which is immediately

discarded using cancel. Now the parent thread sends endpoint s along u. Endpoint s will never be
received as the peer endpoint v of u has been cancelled. In turn, this renders s irretrievable and an

exception is thrown in the first child thread, as it can never receive a value.

Closures. It is crucial that cancellation plays nicely with closures. The code in Fig. 2c defines a

function f which sends its argument x along s . The parent thread then raises an exception. As s
appears in the closure bound to f , which appears in the continuation and is thus discarded, s must

be cancelled.

2.2 Syntax and Typing Rules for Terms
Fig. 3 gives the syntax of EGV. Types include unit (1), linear functions (A ⊸ B), linear sums (A+B),
linear tensor products (A × B), and session types (S).

Terms include variables (x ) and the usual introduction and elimination forms for linear functions,

unit, products, and sums. We writeM ;N as syntactic sugar for let () = M in N and let x = M in N
for (λx .N )M . The standard session typing primitives [Lindley and Morris 2015] are as follows:

forkM creates a fresh channel with endpoints a of type S and b of type S , forks a child thread that

executesM a, and returns endpoint b; sendM N sendsM along endpoint N ; receiveM receives

along endpointM ; and closeM closes an endpoint when a session is complete.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 28. Publication date: January 2019.
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Term Typing Γ ⊢ M :A

T-Var

x :A ⊢ x :A

T-Abs

Γ,x :A ⊢ M :B

Γ ⊢ λx .M :A ⊸ B

T-App

Γ1 ⊢ M :A ⊸ B Γ2 ⊢ N :A

Γ1, Γ2 ⊢ M N :B

T-Unit

· ⊢ () : 1

T-LetUnit

Γ1 ⊢ M : 1
Γ2 ⊢ N :A

Γ1, Γ2 ⊢ let () = M in N :A

T-Pair

Γ1 ⊢ M :A
Γ2 ⊢ N :B

Γ1, Γ2 ⊢ (M,N ) :A × B

T-LetPair

Γ1 ⊢ M :A × B
Γ2,x :A,y :B ⊢ N :C

Γ1, Γ2 ⊢ let (x ,y) = M in N :C

T-Inl

Γ ⊢ M :A

Γ ⊢ inlM :A + B

T-Inr

Γ ⊢ M :B

Γ ⊢ inrM :A + B

T-Case

Γ1 ⊢ L :A + B Γ2,x :A ⊢ M :C Γ2,y :B ⊢ N :C

Γ1, Γ2 ⊢ case L of {inl x 7→ M ; inr y 7→ N } :C

T-Fork

Γ ⊢ M : S ⊸ 1

Γ ⊢ forkM : S

T-Send

Γ1 ⊢ M :A Γ2 ⊢ N : !A.S

Γ1, Γ2 ⊢ sendM N : S

T-Recv

Γ ⊢ M : ?A.S

Γ ⊢ receiveM : (A × S)

T-Close

Γ ⊢ M : End

Γ ⊢ closeM : 1

T-Cancel

Γ ⊢ M : S

Γ ⊢ cancelM : 1

T-Try

Γ1 ⊢ L :A Γ2,x :A ⊢ M :B Γ2 ⊢ N :B

Γ1, Γ2 ⊢ try L as x inM otherwise N :B

T-Raise

· ⊢ raise :A

Duality S

!A.S = ?A.S ?A.S = !A.S End = End

Fig. 4. Term Typing and Duality

We introduce three new term constructs to support session typingwith failure handling: cancelM
explicitly discards session endpointM ; raise raises an exception; and try L as x inM otherwiseN
evaluates L, on success binding the result to x inM and on failure evaluating N .

Explicit success continuations. Benton and Kennedy [2001] argue that:

From the points of view of programming pragmatics, rewriting and operational se-

mantics, the syntactic construct used for exception handling in ML-like programming

languages, and in much theoretical work on exceptions, has subtly undesirable features.

Benton and Kennedy show that explicit success continuations avoid the subtly undesirable features

they identify; correspondingly, we adopt their construct. Moreover, explicit success continuations

align with the definition of handlers for algebraic effects [Plotkin and Pretnar 2013] that we use in

our implementation (§5.4).

Branching and selection. Though our implementation supports select and offer directly, and we

use them in examples, we omit them from the core calculus (following Lindley and Morris [2015,

2017]) as they can be encoded using sums and delegation [Dardha et al. 2017; Kobayashi 2002].

Typing. Fig. 4 gives the typing rules for EGV. As usual, linearity is enforced by splitting environ-

ments when typing subterms, ensuring T-Var takes a singleton environment, and leaf rules T-Unit

and T-Raise take an empty environment. We write Γ1, Γ2 to mean the disjoint union of Γ1 and Γ2.
The bulk of the rules are standard for a linear λ-calculus. Session types are related by duality. The
T-Fork rule forks a thread connected by dual endpoints of a channel. The rules T-Send, T-Recv,

and T-Close capture session-typed communication.
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Runtime Types R ::= S | S♯

Names a,b, c
Terms M ::= · · · | a

Values U ,V ,W ::= a | λx .M | () | (V ,W ) | inlV | inrV
Configurations C,D, E ::= (νa)C | C ∥ D | ϕM | halt |  a | a(

−→
V )↭b(

−→
W )

Thread Flags ϕ ::= • | ◦

Top-level threads T ::= •M | halt
Auxiliary threads A ::= ◦M |  a | a(

−→
V )↭b(

−→
W )

Type Environments Γ ::= · · · | Γ,a : S
Runtime Type Environments ∆ ::= · | ∆,a : R
Evaluation Contexts E ::= [ ] | E M | V E

| let () = E inM | (E,M) | (V ,E) | let (x ,y) = E inM
| inl E | inr E | case E of {inl x 7→ M ; inr x 7→ N }

| forkE | send E M | sendV E | receive E | close E
| cancel E | try E as x inM otherwise N

Pure Contexts P ::= [ ] | P M | V P
| let () = P inM | (P ,M) | (V , P) | let (x ,y) = P inM
| inl P | inr P | case P of {inl x 7→ M ; inr x 7→ N }

| fork P | send P M | sendV P | receive P | close P
| cancel P

Thread Contexts F ::= ϕE
Configuration Contexts G ::= [ ] | (νa)G | G ∥ C

Syntactic Sugar

 V ≜  a1 ∥ · · · ∥  an where fn(V ) = {ai }i
 P ≜  a1 ∥ · · · ∥  an where fn(P) = {ai }i
 E ≜  a1 ∥ · · · ∥  an where fn(E) = {ai }i

Fig. 5. Runtime Syntax

As exceptions do not return values, the rule T-Raise allows an exception to be given any type A.
Rule T-Try embraces explicit success continuations as advocated by Benton and Kennedy [2001],

binding a result inM if L evaluates successfully. The T-Cancel rule explicitly discards an endpoint.

Naïvely implemented, cancellation violates progress: a thread could discard an endpoint, leaving a

peer waiting forever. We avoid this pitfall by raising an exception when a communication action

would wait forever due to cancellation.

2.3 Operational Semantics
We now give a small-step operational semantics for EGV.

Runtime Syntax. Fig. 5 shows the runtime syntax of EGV. We write S ♯ for the type of a channel

which can be split into two endpoints of types S and S . Runtime types R are either session types or

channel types. We extend the syntax of terms to include names ranged over by a,b, c . Depending
on context, a name a is variously used to identify a channel of type S ♯ and each of its endpoints of

type S and S . Values are standard. The semantics makes use of configurations, which are similar to

π -calculus processes: (νa)C binds name a in configuration C, and C ∥ D is the parallel composition

of configurations C and D. Program threads take the form ϕM , where ϕ is a thread flag identifying

whether the term is themain thread (•), which returns a top-level result, or a child thread (◦), which
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28:10 S. Fowler et al.

Term Reduction M −→M N

E-Lam (λx .M)V −→M M{V /x}
E-Unit let () = () inM −→M M
E-Pair let (x ,y) = (V ,W ) inM −→M M{V /x ,W /y}
E-Inl case inlV of {inl x 7→ M ; inr y 7→ N } −→M M{V /x}
E-Inr case inrV of {inl x 7→ M ; inr y 7→ N } −→M N {V /y}
E-Val tryV as x inM otherwise N −→M M{V /x}
E-Lift E[M] −→M E[M ′], ifM −→M M ′

Configuration Equivalence C ≡ D

C ∥ (D ∥ E) ≡ (C ∥ D) ∥ E C ∥ D ≡ D ∥ C (νa)(νb)C ≡ (νb)(νa)C

C ∥ (νa)D ≡ (νa)(C ∥ D), if a < fn(C)

a(
−→
V )↭b(

−→
W ) ≡ b(

−→
W )↭a(

−→
V ) ◦ () ∥ C ≡ C (νa)(νb)( a ∥  b ∥ a(ϵ)↭b(ϵ)) ∥ C ≡ C

Configuration Reduction C −→ D

E-Fork F [fork (λx .M)] −→ (νa)(νb)(F [a] ∥ ◦M{b/x} ∥ a(ϵ)↭b(ϵ)), where a,b are fresh

E-Send F [sendU a] ∥ a(
−→
V )↭b(

−→
W ) −→ F [a] ∥ a(

−→
V )↭b(

−→
W ·U )

E-Receive F [receive a] ∥ a(U ·
−→
V )↭b(

−→
W ) −→ F [(U ,a)] ∥ a(

−→
V )↭b(

−→
W )

E-Close (νa)(νb)(F [close a] ∥ F ′[close b] ∥ a(ϵ)↭b(ϵ)) −→ F [()] ∥ F ′[()]

E-Cancel F [cancel a] −→ F [()] ∥  a
E-Zap  a ∥ a(U ·

−→
V )↭b(

−→
W ) −→  a ∥  U ∥ a(

−→
V )↭b(

−→
W )

E-CloseZap F [close a] ∥  b ∥ a(ϵ)↭b(ϵ) −→ F [raise] ∥  a ∥  b ∥ a(ϵ)↭b(ϵ)

E-ReceiveZap F [receive a] ∥  b ∥ a(ϵ)↭b(
−→
W ) −→ F [raise] ∥  a ∥  b ∥ a(ϵ)↭b(

−→
W )

E-Raise F [try P[raise] as x inM otherwise N ] −→ F [N ] ∥  P
E-RaiseChild ◦P[raise] −→  P
E-RaiseMain •P[raise] −→ halt ∥  P
E-LiftC G[C] −→ G[D], if C −→ D

E-LiftM ϕM −→ ϕM ′, ifM −→M M ′

Fig. 6. Reduction and Equivalence for Terms and Configurations

does not, and must return the unit value. A configuration has at most one main thread. As well

as program threads, configurations include three special forms of thread. A zapper thread ( a)
manages an endpoint a that has been cancelled, and is used to propagate failure. A halted thread
(halt) arises when the main thread has crashed due to an uncaught exception. A buffer thread
(a(

−→
V )↭b(

−→
W )) models asynchrony:

−→
V and

−→
W are sequences of values ready to be received along

endpoints a and b respectively. We find it useful to distinguish top-level threads T (main threads

and halted threads) from auxiliary threads A (child threads, zapper threads, and buffer threads).

Environments. We extend type environments Γ to include runtime names of session type and

introduce runtime type environments ∆, which type both buffer endpoints of session type and

channels of type S ♯ for some S , but not object variables.

Contexts. Evaluation contexts E are set up for standard left-to-right call-by-value evaluation.

Pure contexts P are those evaluation contexts that include no exception handling frames. Thread

contexts F support reduction in program threads. Configuration contexts G support reduction

under ν-binders and parallel composition.
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Free Names. We let the meta operation fn(−) denote the set of free names in a term, type

environment, buffer environment, value, configuration, pure context, or evaluation context.

Syntactic Sugar. We follow the standard convention that parallel composition of configurations

associates to the right. We write  V ,  P , and  E, as shorthand for the parallel composition of zapper

threads for each free name in values V , pure contexts P , and evaluation contexts E, respectively.

Following prior work on linear functional languages with session types [Gay and Vasconcelos

2010; Lindley and Morris 2015, 2016, 2017], we present the semantics of EGV via a deterministic

reduction relation on terms (−→M), an equivalence relation on configurations (≡), and a nondeter-

ministic reduction relation on configurations (−→). We write =⇒ for the relation ≡−→≡. Fig. 6

presents reduction and equivalence rules for terms and configurations.

Term Reduction. Reduction on terms is standard call-by-value β-reduction.

Configuration Equivalence. A running program canmake use of the standard structural π -calculus
equivalence rules [Milner 1999] of associativity and commutativity of parallel composition, name

restriction reordering, and scope extrusion. Formally, equivalence is defined as the smallest con-

gruence relation satisfying the equivalence axioms in Figure 6. We incorporate a further rule to

allow buffers to be treated symmetrically and two garbage collection rules, allowing completed

child threads and cancelled empty buffers to be discarded.

Communication and Concurrency. The E-Fork rule creates two fresh names for each endpoint of

a channel, returning one name and substituting the other in the body of the spawned thread, as

well as creating a channel with two empty buffers. The E-Send and E-Receive rules send to and

receive from a buffer. The E-Close rule discards an empty buffer once a session is complete.

Cancellation. The E-Cancel rule cancels an endpoint by creating a zapper thread. The E-Zap rule

ensures that when an endpoint is cancelled, all endpoints in the buffer of the cancelled endpoint are

also cancelled: it dequeues a value from the head of the buffer and cancels any endpoints contained

within the dequeued value ( U ). It is applied repeatedly until the buffer is empty.

Raising Exceptions. Following Mostrous and Vasconcelos [2014], an exception is raised when it

would be otherwise impossible for a communication action to succeed. The E-ReceiveZap rule

raises an exception if an attempt is made to receive along an endpoint whose buffer is empty and

whose peer endpoint has been cancelled. Similarly, E-CloseZap raises an exception if an attempt is

made to close a channel where the peer endpoint has been cancelled. There is no rule for the case

where a thread tries to send a value along a cancelled endpoint; the free names in the communicated

value must eventually be cancelled, but this is achieved through E-Zap. We choose not to raise an

exception in this case since to do so would violate confluence, which we discuss in more detail

in §3.4. Not raising exceptions on sends to dead peers is standard in languages such as Erlang.

Handling Exceptions. The E-Raise rule invokes the otherwise clause if an exception is raised,

while also cancelling all endpoints in the enclosing pure context. If an unhandled exception occurs

in a child thread, then all free endpoints in the evaluation context are cancelled and the thread

is terminated (E-RaiseChild). If the exception is in the main thread then all free endpoints are

cancelled and the main thread reduces to halt (E-RaiseMain).

2.4 Synchrony
As we are interested in writing distributed applications, we consider asynchronous session types.

However, our semantics adapts straightforwardly to the synchronous setting, where a send to a
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cancelled peer must also raise an exception:

E-SyncComm F [sendV a] ∥ F ′[receive a] −→ F [a] ∥ F ′[(V ,a)]
E-SyncSendZap F [sendV a] ∥  a −→ F [raise] ∥  V ∥  a ∥  a
E-SyncRecvZap F [receive a] ∥  a −→ F [raise] ∥  a ∥  a

(νa)( a ∥  a) ∥ C ≡ C

3 METATHEORY
Even in the presence of channel cancellation and exceptions, EGV retains GV’s strong metathe-

ory [Lindley and Morris 2015]. The central property of session-typed systems is session fidelity:

all communication follows the prescribed session types. Session fidelity follows as a corollary of

preservation of configuration typing under reduction.

Session calculi with roots in linear logic are deadlock-free as interpreting the logical cut rule as a

combination of name restriction and parallel composition necessarily ensures acyclicity [Caires

and Pfenning 2010]. It is also possible to use deadlock-freedom to derive a global progress result.

We prove that global progress holds even in the presence of channel cancellation. (Our proof is

direct, not requiring catalyser processes [Carbone et al. 2014; Mostrous and Vasconcelos 2014].) We

also prove that EGV is confluent and terminating. Full proofs of the results can be found in the

online appendix [Fowler et al. 2018].

3.1 Runtime Typing
To state our main results we require typing rules for names and configurations. These are given

in Fig. 7. As names a must be substituted for variables at runtime, we extend the term typing

rules with T-Name. The configuration typing judgement has the shape Γ;∆ ⊢ϕ C, which states

that under type environment Γ, runtime environment ∆, and thread flag ϕ, configuration C is

well-typed. We additionally require that fn(Γ) ∩ fn(∆) = ∅. Thread flags ensure that there can be

at most one top-level thread which can return a value: • denotes a configuration with a top-level

thread and ◦ denotes a configuration without. The main thread returns the result of running a

program. Any configuration C such that Γ;∆ ⊢• C has exactly one main thread or halted thread

as a subconfiguration. We write Γ;∆ ⊢• C : A whenever the derivation of Γ;∆ ⊢• C contains a

subderivation of the form

Γ′ ⊢ M : A

Γ′; . ⊢• •M
or

·; · ⊢• halt
We say that a C is a ground configuration if there exists A such that ·; · ⊢• C : A and A contains no

session types or function types.

The T-Nu rule introduces a channel name; T-Connect1 and T-Connect2 connect two config-

urations over a channel; and T-Mix composes two configurations that share no channels. The

latter three rules use the + operator to combine the flags from subconfigurations. The T-Main

and T-Child rules introduce main and child threads. Child threads always return the unit value.

The T-Halt rule types the halt configuration, which signifies that an unhandled exception has

occurred in the main thread. The T-Zap rule types a zapper thread, given a single name in the type

environment. The T-Buffer rule ensures that buffers contain values corresponding to the session

types of their endpoints. This is the only rule that consumes names from the runtime environment.

Buffers rely on two auxiliary judgements. The queue typing judgement Γ ⊢
−→
V :

−→
A states that under

type environment Γ, the sequence of values
−→
V have types

−→
A . The session slicing operator S/

−→
A

captures reasoning about session types discounting values contained in the buffer. The session
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Term Typing Γ ⊢ M : A

T-Name

a : S ⊢ a : S

Session Slicing S/
−→
A

S/ϵ = S

!A.S/A ·
−→
A = S/

−→
A

Queue Typing Γ ⊢
−→
V :

−→
A

· ⊢ ϵ : ϵ

Γ1 ⊢ V : A Γ2 ⊢
−→
V :

−→
A

Γ1, Γ2 ⊢ V ·
−→
V : A ·

−→
A

Configuration Typing Γ;∆ ⊢ϕ C

T-Nu

Γ;∆,a : S♯ ⊢ϕ C

Γ;∆ ⊢ϕ (νa)C

T-Mix

Γ1;∆1 ⊢
ϕ1 C Γ2;∆2 ⊢

ϕ2 D

Γ1, Γ2;∆1,∆2 ⊢
ϕ1+ϕ2 C ∥ D

T-Connect1

Γ1,a : S ;∆1 ⊢
ϕ1 C Γ2;∆2,a : S ⊢ϕ2 D

Γ1, Γ2;∆1,∆2,a : S♯ ⊢ϕ1+ϕ2 C ∥ D

T-Connect2

Γ1;∆1,a : S ⊢ϕ1 C Γ2,a : S ;∆2 ⊢
ϕ2 D

Γ1, Γ2;∆1,∆2,a : S♯ ⊢ϕ1+ϕ2 C ∥ D

T-Main

Γ ⊢ M : A

Γ; · ⊢• •M

T-Child

Γ ⊢ M : 1

Γ; · ⊢◦ ◦M

T-Halt

·; · ⊢• halt

T-Zap

a : S ; · ⊢◦  a

T-Buffer

S/
−→
A = S ′/

−→
B

Γ1 ⊢
−→
V :

−→
A Γ2 ⊢

−→
W :

−→
B

Γ1, Γ2;a : S,b : S ′ ⊢◦ a(
−→
V )↭b(

−→
W )

Flag Combination ϕ1 + ϕ2 = ϕ3

• + ◦ = • ◦ + • = •

◦ + ◦ = ◦ • + • undefined

Session Type Reduction S −→ S ′

?A.S −→ S !A.S −→ S

Environment Reduction Γ;∆ −→ Γ′;∆′

S −→ S ′

Γ,a : S ;∆ −→ Γ,a : S ′;∆

S −→ S ′

Γ;∆,a : S −→ Γ;∆,a : S ′
S −→ S ′

Γ;∆,a : S♯ −→ Γ;∆,a : S ′♯

Fig. 7. Runtime Typing

types of two buffer endpoints are compatible if they are dual up to values contained in the buffer.

The partiality of the slicing operator coupled with the duality constraint ensures that at least one

queue in a buffer is always empty.

3.2 Preservation
Preservation for the functional fragment of EGV is standard.

Lemma 3.1 (Preservation (Terms)). If Γ ⊢ M : A andM −→M M ′, then Γ ⊢ M ′
: A.

Given a relation R, we write R?
for its reflexive closure. We write Ψ for the restriction of type

environments Γ to contain runtime names but no variables:

Ψ ::= · | Ψ,a : S

Preservation of typing by configuration reduction holds only for closed configurations.

Theorem 3.2 (Preservation). If Ψ;∆ ⊢ϕ C and C −→ C′, then there exist Ψ′,∆′ such that
Ψ;∆ −→? Ψ′

;∆′ and Ψ′
;∆′ ⊢ϕ C′.

Proof. By induction on the derivation of C −→ C′
, making use of Lemma 3.1, and lemmas for

subconfiguration typeability and replacement. □
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Typing and Configuration Equivalence. As is common in logically-inspired session-typed func-

tional languages [Lindley and Morris 2015, 2017], typeability of configurations is not preserved
by equivalence. Consider Γ;∆ ⊢ϕ (νa)(νb)(C ∥ (D ∥ E)) with a ∈ fn(C), b ∈ fn(D), and

a,b ∈ fn(E). But Γ;∆ ⊬ϕ (νa)(νb)((C ∥ D) ∥ E). Fortunately this looseness of the equivalence

relation is unproblematic: we may always safely re-associate parallel composition (for example,

Γ;∆ ⊢ϕ (νa)(νb)((C ∥ E) ∥ D); see the online appendix), and any reduction sequence which uses

ill-typed equivalences may be replaced by one that does not.

Theorem 3.3 (Preservation Modulo Eqivalence). If Ψ;∆ ⊢ϕ C, C ≡ D, andD −→ D ′, then:
(1) There exists some E ≡ D and some E ′ such that Ψ;∆ ⊢ϕ E and E −→ E ′

(2) There exist Ψ′,∆′ such that Ψ;∆ −→? Ψ′
;∆′ and Ψ′

;∆′ ⊢ϕ E ′

(3) D ′ ≡ E ′

Proof. The only non-trivial reductions are those involving a synchronisation with a buffer

(E-Send, E-Receive, E-Close, E-Zap, E-CloseZap, E-ReceiveZap). The only equivalence rule that

can lead to an ill-typed configuration is associativity of parallel composition

C ∥ (D ∥ E) ≡ (C ∥ D) ∥ E

where both compositions arise from the T-Connect1 and T-Connect2 rules. The only reason to

apply the associativity rule from left-to-right is to enable threads inside C and D to synchronise.

But for synchronisation to be possible there must exist a name a such that a ∈ fn(C) and a ∈ fn(D).

Because the left-hand-side of the equation is well-typed, we know that C and E have no names in

common, that D and E share a name, and that the right-hand-side must be well-typed as there is

still exactly one channel connecting each of the parallel compositions. The argument for applying

the rule from right-to-left is symmetric. In summary, any ill-typed use of equivalence is useless. □

3.3 Progress
To prove that EGV enjoys a strong notion of progress we identify a canonical form for configura-

tions. We prove that every well-typed configuration is equivalent to a well-typed configuration

in canonical form, and that ground configurations can always either reduce, or are equivalent to

either a value or halt.
The functional fragment of EGV enjoys progress.

Lemma 3.4 (Progress: Open Terms). If Ψ ⊢ M : A, then either:
• M is a value;
• there exists someM ′ such thatM −→M M ′; or
• M has the form E[M ′], whereM ′ is a session typing primitive of the form: forkV , sendV W ,
receiveV , closeV , or cancelV .

Proof. By induction on the derivation of Ψ ⊢ M : A. □

To reason about progress of configurations, we characterise canonical forms, which make explicit

the property that at most one name is shared between threads. Recall that A ranges over auxiliary

threads and T over top-level threads (Fig. 5). Let M range over configurations of the form:

A1 ∥ · · · ∥ Am ∥ T

Definition 3.5 (Canonical Form). A configuration C is in canonical form if there is a sequence of

names a1, . . . ,an , a sequence of configurations A1, . . . ,An , and a configuration M, such that:

C = (νa1)(A1 ∥ (νa2)(A2 ∥ · · · ∥ (νan)(An ∥ M) . . .))

where ai ∈ fn(Ai ) for each i ∈ 1..n.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 28. Publication date: January 2019.



Exceptional Asynchronous Session Types 28:15

The following lemma implies that communication topologies are always acyclic.

Lemma 3.6. If Γ;∆ ⊢ϕ C and C = G[D ∥ E], then fn(D) ∩ fn(E) is either ∅ or {a} for some a.

Proof. By induction on the derivation of Γ;∆ ⊢ϕ C; the only interesting rules are those for

parallel composition. As the environments are well-formed, fn(Γ) ∩ fn(∆) = ∅. Thus, T-Connect1
and T-Connect2 allow exactly one name to be shared, whereas T-Mix forbids sharing of names. □

All well-typed configurations can be written in canonical form.

Theorem 3.7 (Canonical Forms). Given C such that Γ;∆ ⊢• C, there exists some D ≡ C such
that Γ;∆ ⊢• D and D is in canonical form.

Proof. By induction on the count of ν -bound variables, following Lindley and Morris [2015] and

making use of Lemma 3.6. The additional features of EGV do not change the essential argument.

The full proof can be found in the online appendix. □

Next, we characterise threads which are ready to perform a communication action on an endpoint.

Definition 3.8. We say that termM is ready to perform an action on name a ifM is about to send

on, receive on, close, or cancel a. Formally:

ready(a,M) ≜ ∃E.(M = E[sendV a]) ∨ (M = E[receive a]) ∨ (M = E[close a]) ∨ (M = E[cancel a])

Using the notion of a ready thread, we may classify a notion of progress for open configurations.

Theorem 3.9 (Progress: Open). Suppose Ψ;∆ ⊢• C, where C is in canonical form.
Let C = (νa1)(A1 ∥ (νa2)(A2 ∥ · · · ∥ (νan)(An ∥ M) . . .)).
Either there exists some C′ such that C =⇒ C′, or:
(1) For 1 ≤ i ≤ n, each auxiliary thread Ai is either:

(a) a child thread ◦M for which there exists a ∈ {aj | 1 ≤ j ≤ i} ∪ fn(Ψ) such that ready(a,M);
(b) a zapper thread  ai ; or
(c) a buffer.

(2) M = A ′
1
∥ · · · ∥ A ′

m ∥ T such that for 1 ≤ j ≤ m:
(a) A ′

j is either:
(i) a child thread ◦N withN = () or ready(a,N ) for some a ∈ {ai | 1 ≤ i ≤ n}∪fn(Ψ)∪fn(∆);
(ii) a zapper thread  a for some a ∈ {ai | 1 ≤ i ≤ n} ∪ fn(Ψ) ∪ fn(∆); or
(iii) a buffer.

(b) Either T = •N , where N is either a value or ready(a,N ) for some a ∈ {ai | 1 ≤ i ≤

n} ∪ fn(Ψ) ∪ fn(∆); or T= halt.

Proof. The result follows from a more verbose, but finer-grained, property which we prove by

induction on the derivation of Ψ;∆ ⊢• C. Full details are in the online appendix. □

This theorem tells us that open reduction cannot “go wrong”. A progress theorem states that

either reduction is possible or the configuration is a value. Conditions 1(a)(b)(c) and 2(a)(b) constitute

a suitable generalisation of ‘value’.

By restricting attention to closed environments, we obtain a tighter progress property.

Theorem 3.10 (Progress: Closed). Suppose ·; · ⊢• C where C is in canonical form.
Let C = (νa1)(A1 ∥ (νa2)(A2 ∥ · · · ∥ (νan)(An ∥ M) . . .)).
Either there exists some C′ such that C =⇒ C′, or:
(1) For 1 ≤ i ≤ n, each auxiliary thread Ai is either:

(a) a child thread ◦M for someM such that ready(ai ,M); or
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(b) a zapper thread  ai ; or
(c) a buffer.

(2) Either M = •W for some valueW , orM = halt.

The above progress results do not specifically mention deadlock. However, Lemma 3.6 ensures

deadlock-freedom. Nevertheless, communication can still be blocked if an endpoint appears in the

value returned by the main thread. A conservative way of disallowing endpoints in the result is to

insist that the return type of the program be free of session types and function types (closures may

capture endpoints). All configurations of such a programs are ground configurations.

Theorem 3.11 (Global Progress). Suppose C is a ground configuration. Either there exists some
C′ such that C =⇒ C′; or C ≡ •V ; or C ≡ halt.

Proof. As a consequence of Theorem 3.10, either there exists some C′
such that C =⇒ C′

, or

C Y=⇒ and each thread Ai must be a zapper, a buffer, or ready to perform an action. If C Y=⇒,

since C is ground, by Lemma 3.6, we have that no thread can be ready to perform an action. Thus,

each Ai must be either ◦(), a zapper, or an empty buffer. The result then follows by the garbage

collection congruences of Fig. 6. □

3.4 Confluence
EGV enjoys a strong form of confluence known as the diamond property [Barendregt 1984].

Theorem 3.12 (Diamond Property). If Ψ;∆ ⊢ϕ C, and C =⇒ D1, and C =⇒ D2, then either
D1 ≡ D2, or there exists some D3 such that D2 =⇒ D3 and D2 =⇒ D3.

Proof. First, note that −→M is entirely deterministic and hence confluent due to the call-by-

value, left-to-right ordering imposed by evaluation contexts. By linearity, we know that endpoints to

different buffers may not be shared, so it follows that communication actions on different channels

may be performed in any order. Asynchrony and cancellation introduce two critical pairs which

may be resolved in a single step; full details can be found in the online appendix. □

Remark. The system becomes non-confluent if we choose to raise an exception when sending to

a cancelled buffer. Suppose that instead of the current semantics, we were to replace E-Send with

the following two rules:

(νb)(F [sendU a] ∥ a(
−→
V )↭b(

−→
W ) ∥ ϕM) −→ (νb)(F [a] ∥ a(

−→
V )↭b(

−→
W ·U ) ∥ ϕM)

F [sendU a] ∥  b ∥ a(
−→
V )↭b(

−→
W ) −→ F [raise] ∥  b ∥  U ∥ a(

−→
V )↭b(

−→
W )

Then, sending and cancelling peer endpoints of a buffer results in a non-convergent critical pair:

(νb)(F [sendU a] ∥ F ′[cancel b] ∥ a(
−→
V )↭b(

−→
W ))

(νb)(F [a] ∥ F ′[cancel b] ∥ a(
−→
V )↭b(

−→
W ·U )) (νb)(F [sendU a] ∥ F ′[()] ∥  b ∥ a(

−→
V )↭b(

−→
W ))

(νb)(F [a] ∥ F ′[()] ∥  b ∥ a(
−→
V )↭b(

−→
W ·U )) (νb)(F [raise] ∥ F ′[()] ∥  b ∥  U ∥ a(

−→
V )↭b(

−→
W ))

In either case, the endpoints contained in U will still eventually be cancelled, thus preservation

and global progress still hold. However, the lack of confluence affects exactly when the exception

is raised in context F . This decision has practical significance, in that it characterises the race

between sending a message and propagating a cancellation notification.
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3.5 Termination
As EGV is linear, it has an elementary strong normalisation proof.

Theorem 3.13 (Strong Normalisation). If Ψ;∆ ⊢ϕ C, then there are no infinite =⇒ reduction
sequences from C.

Proof. Let the size of a configuration be the sum of the sizes of the abstract syntax trees of all of

the terms contained in its main threads, child threads, and buffers, modulo exhaustively applying

the garbage collection equivalences from left-to-right. The size of a configuration is invariant under

≡ and strictly decreases under −→, hence =⇒ reduction must always terminate. □

We conjecture that the strong normalisation result continues to hold in the presence of unrestricted

types or shared channels for session initiation, but the proof technique is necessarily more involved.

We believe that a logical relations argument along the lines of Pérez et al. [2012] or a CPS translation

along the lines of Lindley and Morris [2016] would suffice.

4 EXTENSIONS
4.1 User-defined Exceptions with Payloads
In order to focus on the interplay between exceptions and session types we have thus far considered

handling a single kind of exception. In practice it can be useful to distinguish between multiple

kinds of user-defined exception, each of which may carry a payload.

Consider again handling the exception in checkDetails. An exception may arise if the database

is corrupt, or if there are too many connections. We might like to handle each case separately:

exnServer4(s) ≜
let ((username, password), s) = receive s in
try checkDetails(username, password) as res in

if res then let s = select Authenticated s in serverBody(s)
else let s = select AccessDenied s in close s

unless
DBCorrupt(y) 7→ cancel s; log("Database Corrupt: " + y)
TooManyConnections(y) 7→ cancel s; log("Too many connections: " + y)

An exception in checkDetails might be raised by the term raise DatabaseCorrupt(filename), for
example. Our approach generalises straightforwardly to handle this example.

Syntax. Figure 8 shows extensions to EGV for exceptions with payloads. We introduce a type of

exceptions, Exn. We assume a countably infinite set X ∈ E of exception names, and a type schema

function Σ(X ) = Amapping exception names to payload types. We extend raise to take a term of

type Exn as its argument. Finally, we generalise tryLasx inMotherwiseN to tryLasx inMunlessH ,

where H is an exception handler with clauses {Xi (yi ) 7→ Ni }i , such that Xi is an exception name;

yi binds the payload; and Ni is the clause to be evaluated when the exception is raised.

Typing Rules. The TP-Exn rule ensures that an exception’s payload matches its expected type.

The TP-Raise and TP-Try rules are the natural extensions of T-Raise and T-Try.

Semantics. Our presentation is similar to operational accounts of effect handlers; the formulation

here is inspired by that of Hillerström et al. [2017]. To define the semantics of the generalised

exception handling construct, we first introduce the auxiliary function handled(E), which defines

the exceptions handled in a given evaluation context:

handled(P) = ∅ handled(try E as x inM unless H ) = handled(E) ∪ dom(H )

handled(E) = handled(E ′), if E is not a try and E ′ is the immediate subcontext of E
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Syntax

Types A,B ::= · · · | Exn
Terms L,M,N ::= · · · | X (M) | raiseM | try L as x inM unless H
Exception Handlers H ::= {Xi (xi ) 7→ Ni }i

Runtime Syntax

Evaluation Contexts E ::= · · · | raise E | try E as x inM unless H

Term typing Σ(X ) = A Γ ⊢ M :A

TP-Exn

Σ(X ) = A Γ ⊢ M :A

Γ ⊢ X (M) : Exn

TP-Raise

Γ ⊢ M : Exn

Γ ⊢ raiseM :A

TP-Try

Γ1 ⊢ L :A
Γ2,x :A ⊢ M :B (Γ2,yi : Σ(Xi ) ⊢ Ni :B)i

Γ1, Γ2 ⊢ try L as x inM unless {Xi (yi ) 7→ Ni }i :B

Term and Configuration Reduction M −→M N C −→ D

EP-Val tryV as x inM unless H −→M M{V /x}
EP-Raise

F [try E[raise X (V )] as x inM unless H ] −→ F [N {V /y}] ∥  E where X < handled(E)
(X (y) 7→ N ) ∈ H

EP-RaiseChild ◦ E[raise X (V )] −→  E ∥  V where X < handled(E)
EP-RaiseMain • E[raise X (V )] −→ halt ∥  E ∥  V where X < handled(E)

Fig. 8. User-defined Exceptions with Payloads

The EP-Raise rule handles an exception. The side conditions ensure that the exception is caught by

the nearest matching handler and is handled by the appropriate clause. As with plain EGV, all free

names are safely discarded. The EP-RaiseChild and EP-RaiseMain rules cover the cases where an

exception is unhandled. Due to the use of the handled function we no longer require pure contexts.

All of EGV’s metatheoretic properties (preservation, global progress, confluence, and termination)

adapt straightforwardly to this extension.

4.2 Unrestricted Types and Access Points
Unrestricted (intuitionistic) types allow some values to be used in a non-linear fashion. Access

points [Gay and Vasconcelos 2010] provide a more flexible method of session initiation than

fork, allowing two threads to dynamically establish a session. Both features are useful in practice:

unrestricted types because some data is naturally multi-use, and access points because they admit

cyclic communication topologies supporting racey stateful servers such as chat servers. Access
points decouple spawning a thread from establishing a session. An access point has the unrestricted

type AP(S); we write un(A) to mean that A is unrestricted and un(Γ) if un(Ai ) for all xi : Ai ∈ Γ.
Figure 9 shows the syntax, typing rules, and reduction rules for EGV extended with access points.

Unrestricted Types. To support unrestricted types, we introduce a splitting judgement (Γ = Γ1+Γ2),
which allows variables of unrestricted type to be shared across sub-environments, but requires

linear variables to be used only in a single sub-environment. We relax rule T-Var to allow the

use of unrestricted environments, and adapt all rules containing multiple subterms to use the

splitting judgement. We detail T-App in the figure; the adaptations of other rules are similar. While

unrestricted types are useful in general, we show the specific case of unrestricted access points.
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Syntax

Types A ::= · · · | AP(S)
Access Point Names z
Terms M ::= · · · | z | spawnM | newS | requestM | acceptM
Configurations C ::= · · · | (νz)C | z(X,Y)

Type Environments Γ ::= · · · | Γ, z : AP(S)
Runtime Type Environments ∆ ::= · · · | ∆, z : S

Splitting Γ = Γ1 + Γ2

· = · + ·

un(A)

Γ,x : A = (Γ1,x : A) + (Γ2,x : A)

Γ = Γ1 + Γ2

Γ,x : A = (Γ1,x : A) + Γ2

Γ = Γ1 + Γ2

Γ,x : A = Γ1 + (Γ2,x : A)

Typing Γ ⊢ M : A

T-Var

x : A ∈ Γ un(Γ)

Γ ⊢ x : A

T-App

Γ = Γ1 + Γ2 Γ1 ⊢ M : A ⊸ B Γ2 ⊢ N : A

Γ ⊢ M N : B
...

TA-Spawn

Γ ⊢ M : 1

Γ ⊢ spawnM : 1

TA-New

Γ ⊢ newS : AP(S)

TA-Reqest

Γ ⊢ M : AP(S)

Γ ⊢ requestM : S

TA-Accept

Γ ⊢ M : AP(S)

Γ ⊢ acceptM : S

Reduction C −→ D

E-Spawn F [spawnM] −→ F [()] ∥ ◦M
E-New F [newS ] −→ (νz)(F [z] ∥ z(ϵ, ϵ)) z is fresh
E-Accept F [accept z] ∥ z(X,Y) −→ (νa)(F [a] ∥ z({a} ∪ X,Y)) a is fresh

E-Reqest F [request z] ∥ z(X,Y) −→ (νa)(F [a] ∥ z(X, {a} ∪ Y)) a is fresh

E-Match z({a} ∪ X, {b} ∪ Y) −→ z(X,Y) ∥ a(ϵ)↭b(ϵ)

Configuration Typing Γ;∆ ⊢ϕ C

TA-ApName

Γ, z :AP(S);∆, z : S ⊢ϕ C

Γ;∆ ⊢ϕ (νz)C

TA-Ap

un(Γ)

Γ, z :AP(S);X : S,Y : S, z : S ⊢◦ z(X,Y)

TA-ConnectN

Γ = Γ1 + Γ2

Γ1,
−−→
a : S ;∆1,

−−→
b :T ⊢ϕ1 C

Γ2,
−−→
b :T ;∆2,

−−→
a : S ⊢ϕ2 D

Γ;∆1,∆2,
−−−→
a : S♯ ,

−−−−→
b :T ♯ ⊢ϕ1+ϕ2 C ∥D

Fig. 9. Access Points

Access points. The spawnM construct spawnsM as a new thread, newS creates a fresh access

point, and requestM and acceptM generate fresh endpoints that are matched up nondeterminis-

tically to form channels. With access points we can macro-express fork:

forkM ≜ let ap = newS in spawn (M (accept ap)); request ap

Reduction rules. We let z range over access point names. Configuration (νz)C denotes binding

access point name z in C, and z(X,Y) is an access point with name z and two sets X and Y

containing endpoints to be matched.

Rule E-Spawn creates a new child thread but, unlike fork, returns the unit value instead of

creating a channel and returning an endpoint. Rule E-New creates a new access point with fresh

name z. Rules E-Accept and E-Reqest create a fresh name a, returning the newly-created name
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to the thread, and adding the name to sets X and Y respectively. Rule E-Match matches two

endpoints a and b contained in X and Y, and creates an empty buffer a(ϵ)↭b(ϵ).

Configuration typing. Configuration typing judgements again have the shape Γ;∆ ⊢ϕ C. Whereas

Γ may contain unrestricted variables, ∆ remains entirely linear.

Read bottom-up, rule TA-ApName adds an unrestricted reference z : AP(S) to Γ, and a linear entry
z : S to ∆. Rule TA-Ap types an access point configuration. We write X : S for a1 : S, . . . ,an : S ,
where X = {a1, . . . ,an}. For an access point z(X,Y) to be well-typed, ∆ must contain z : S , along

with the names inX having type S and the names inY having type S . Rule T-ConnectN generalises

T-Connect1 and T-Connect2 to allow any number of channels to communicate across a buffer;

this therefore introduces the possibility of deadlock.

Interaction with cancellation. We need no additional reduction rules to account for interaction

between access points and channel cancellation. Should an endpoint waiting to be matched be

cancelled, it is paired as usual, and interaction with its associated buffer raises an exception:

 a ∥ F [receive b] ∥ z({a}, {b}) =⇒  a ∥ F [receive b] ∥ z(ϵ, ϵ) ∥ a(ϵ)↭b(ϵ)
=⇒  a ∥ F [raise] ∥  b ∥ z(ϵ, ϵ) ∥ a(ϵ)↭b(ϵ)

Metatheory. By decoupling process and channel creation we lose the guarantee that the com-

munication topology is acyclic, and therefore introduce the possibility of deadlock. Preservation

continues to hold—in fact, we gain a stronger preservation result since the use of TA-ConnectN

allows typeability to be preserved by equivalences.

Theorem 4.1 (Preservation Modulo Eqivalence (Access Points)).

If Ψ;∆ ⊢ϕ C and C =⇒ D, then there exist Ψ′,∆′ such that Ψ;∆ −→ Ψ′
;∆′ and Ψ′

;∆′ ⊢ϕ D.

Proof. By induction on the derivation of C −→ D and preservation by ≡. Full details can be

found in the online appendix. □

Alas, the introduction of cyclic topologies and therefore the loss of deadlock-freedom necessarily

violates global progress. Nevertheless, a weaker form of progress still holds: if a configuration does

not reduce, then it is due to deadlock rather than cancellation.

Theorem 4.2 (Progress (Access Points)). Suppose ·; · ⊢ϕ C and C Y=⇒. Then each thread in C is
either a value; a buffer; a zapper thread; an access point; requesting or accepting on an access point; or
ready to perform a communication action.
If C contains a thread ϕM and ready(a,M) for some name a, then C contains some buffer

a(ϵ)↭b(
−→
W ), and C does not contain a zapper thread  b.

Proof. We can prove a similar property for open configurations by induction on the derivation

of Ψ;∆ ⊢ϕ C; the above result arises as a corollary and by inspection of the reduction rules. □

In the presence of access points confluence and termination no longer hold: access points are

nondeterministic and can encode higher-order state and hence fixpoints via Landin’s knot.

4.3 Recursive Session Types
Recursive session types support repeating protocols. The extension of EGV with recursive session

types is standard [Lindley and Morris 2016, 2017] and orthogonal to the main ideas of this paper, so

we do not spell out the details here. The implementation (§5) does provide recursive session types.
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5 SESSION TYPES WITHOUT TIERS
In this section we describe our extensions to Links to support exception handling, as well as

extensions to the Links concurrency runtimes to support distribution. Links [Cooper et al. 2007] is

a statically-typed, ML-inspired, impure functional programming language designed for the web.

Links is designed to allow code for all “tiers” of a web application—client, server, and database—to

be written in a single language. Lindley and Morris [2017] extend Links with first-class session

types, relying on lightweight linear typing [Mazurak et al. 2010] and row polymorphism [Rémy

1994]. We extend their work to account for distributed web applications, which amongst other

things necessitates handling failure.

5.1 The Links Model
Links provides a uniform language for web applications. Client code is compiled to JavaScript, server

code is interpreted, and database queries are compiled to SQL. Each client and server has its own

concurrency runtime, providing lightweight processes and message passing communication. Earlier

versions of Links [Cooper et al. 2007] invoked a fresh copy of the server per server request and

communication between client and server was via RPC calls. Advances such as WebSockets allow

socket-like bidirectional asynchronous communication between client and server, in turn allowing

richer applications where data (for example, comments on a GitHub pull request) flows more freely

between client and server. Moving to a model based on lightweight threads and session-typed

channels avoids the inversion of control inherent in RPC-style systems, and allows development to

be driven by the communication protocol.

Links now adopts a persistent application server model, incorporating client-server communica-

tion using session-typed channels. Since channels are a location-transparent abstraction, we also

optionally allow the abstraction of client-to-client communication, routed through the server.

5.2 Concurrency
Links provides typed actor-style concurrency where processes have a single incoming message

queue and can send asynchronous messages. Lindley and Morris [2017] extend Links with session-

typed channels, using Links’ process-based model but replacing actor mailboxes with session-typed

channels. We extend their implementation to support distribution and failure handling.

The client relies on continuation-passing style (CPS), trampolining, and co-operative threading.

Client code is compiled to CPS, and explicit yield instructions are inserted at every function

application. When a process has yielded a given number of times, the continuation is pushed to the

back of a queue, and the next process is pulled from the front of the queue. While modern browsers

are beginning to integrate tail-recursion, and we have updated the Links library to support it,

adoption is not yet widespread. Thus, we periodically discard the call stack using a trampoline.

Cooper [2009] discusses the Links client concurrency model in depth. The server implements

concurrency on top of the OCaml lwt library [Vouillon 2008], which provides lightweight co-

operative threading. At runtime, a channel is represented as a pair of endpoint identifiers:

(Peer endpoint, Local endpoint)

Endpoint identifiers are unique. If a channel (a,b) exists at a given location, then that location

should contain a buffer for b.

5.3 Distributed Communication
To support bidirectional communication between client and server we use WebSockets [Fette and

Melnikov 2011]. A WebSocket connection is initiated by a client request to the server. The server

generates a web page and a unique identifier for the connection. Messages sent by the server prior
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to the connection being established are buffered and delivered once it has been established. A JSON

protocol is used to encode messages such as access point operations, remote session messages, and

endpoint cancellation notifications.

It is possible that one client will hold one endpoint of a channel, and another client will hold the

other endpoint. In order to provide the illusion of client-to-client communication, we route the

communication between the two clients via the server. The server maintains a map

Endpoint ID 7→ Location

where Location is either Server or Client(ID), where ID identifies a particular client. The map

is updated if a new connection is established; an endpoint is sent as part of a message; or a client

disconnects. The server also maintains a map

Client ID 7→ [Channel]

associating each client with the publicly-facing channels residing on that client, where Channel is a
pair of endpoints (a,b) such that b is the endpoint residing on the client. Much like TCP connections,

WebSocket connections raise an event when a connection is disconnected. Upon receiving such an

event, all channels associated with the client are cancelled, and exceptions are invoked as per the

exception handling mechanism described in §2 and §5.4.

Distributed Delegation. It is possible to send endpoints as part of a message. Session delegation in

the presence of distributed communication requires some care to ensure that messages are delivered

to the correct participant; our implementation adapts the algorithms of Hu et al. [2008]. Further

details can be found in the online appendix.

5.4 Session Typing with Failure Handling
Effect Handlers. Effect handlers [Plotkin and Pretnar 2013] provide a modular approach to

programming with user-defined effects. Exception handlers are a special case of effect handlers.

Consequently, we leverage the existing implementation of effect handlers in Links [Hillerström

and Lindley 2016; Hillerström et al. 2017]. In §4 we generalise try − as − in − otherwise− to

accommodate user defined exceptions. Effect handlers generalise further to support what amounts

to resumable exceptions in which the handler has access not only to a payload, but also the delimited

continuation (i.e. evaluation context) from the point at which the exception was raised up to

the handler, allowing effect handlers to implement arbitrary side-effects; not just exceptions. We

translate exception handling as follows.

JraiseK = do raise Jtry L as x inM otherwise N K = handle JLKwith
return x 7→ JMK
raise r 7→ cancel r ; JN K

The introduction form do op invokes an operation op (which may represent raising an exception or

some other effect). The elimination form handleM withH runs effect handler H on the computa-

tionM . In general an effect handler H consists of a return clause of the form return x 7→ N , which

behaves just like the success continuation (x in N ) of an exception handler, and a collection of

operation clauses, each of the form op ®p r 7→ N , specifying how to handle an operation analogously

to how exception handler clauses specify how to handle an exception, except that as well as binding

payload parameters ®p, an operation clause also binds a resumption parameter r . The resumption r
binds a closure representing the continuation up to the nearest enclosing effect handler, allowing

control to pass back to the program after handling the effect. In the case of our translation, the

raise operation has no payload, and rather than invoking the resumption r we cancel it, assuming

the natural extension of cancellation to arbitrary linear values, whereby all free names in the value
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are cancelled (r being bound to the current evaluation context reified as a value). A formalisation

of linear effect handlers for session typing is outside the scope of this paper and left as future work.

Raising exceptions. An exception may be raised either explicitly through raise (desugared to

do raise), or a blocked receive where the peer endpoint has been cancelled. Thus, we know

statically where exceptions may be raised. To support cancellation of closures on the client, we

adorn closures with an explicit environment field that can be directly inspected. Currently, Links

does not closure-convert continuations on the client, so we use a workaround to simulate cancelling

a resumption (as required by the translation J−K). When compiling client code, for each occurrence

of do raise, we compile a function that inspects all affected variables and cancels any affected

endpoints in the continuation. For each occurrence of receive, we compile a continuation to cancel

affected endpoints to be invoked by the runtime system if the receive operation fails.

5.5 Distributed Exceptions
Our implementation fully supports the semantics described in §2. The concurrency runtime at each

location maintains a set of cancelled endpoints.

Cancellation. Suppose endpoint a is connected to peer endpoint b. If a is cancelled, then all

endpoints in the queue for a are also cancelled according to the E-Zap rule. If a and b are at the

same location, then a is added to the set of cancelled endpoints. If they are at different locations,

then a cancellation notification for a is routed to b’s location. Zapper threads are modelled in the

implementation by recording sets of cancelled endpoints and propagating cancellation messages.

Failed communications. Again, suppose endpoint a is connected to peer endpoint b. Should a

process attempt to read from a when the buffer for a is empty, then the runtime will check to see

whether b is in the set of cancelled endpoints. If so, then a is cancelled and an exception is raised in

the blocked process; if not, the process is suspended until a message is ready. Should the runtime

later add b to the set of cancelled endpoints, then again a is cancelled and an exception raised.

These actions implement the E-ReceiveZap rule.

Disconnection. To handle disconnection, the server maintains a map from client IDs to the list of

endpoints at the associated client. WebSockets—much like TCP sockets—raise a closed event on

disconnection. Consequently, when a connection is closed, the runtime looks up the endpoints

owned by the terminated client and notifies all other clients containing the peer endpoints.

6 EXAMPLE: A CHAT APPLICATION
In this section we outline the design and implementation of a web-based chat application in Links

making use of distributed session-typed channels. We write the following informal specification:

• To initialise, a client must:

– connect to the chat server; then

– send a nickname; then

– receive the current topic and list of nicknames.

• After initialisation the client is connected and can:

– send a chat message to the room; or

– change the room’s topic; or

– receive messages from other users; or

– receive changes of topic from other users.

• Clients cannot connect with a nickname that is already in use in the room.

• All participants should be notified whenever a participant joins or leaves the room.
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typename ChatClient = !Nickname.

[&| Join:

?(Topic, [Nickname], ClientReceive).ClientSend,

Nope:End |&];

typename ClientReceive =

[&| Join : ?Nickname .ClientReceive,

Chat : ?(Nickname, Message).ClientReceive,

NewTopic : ?Topic .ClientReceive,

Leave : ?Nickname .ClientReceive

|&];

typename ClientSend =

[+| Chat : ?Message.ClientSend,

Topic : ?Topic .ClientSend |+];

typename ChatServer = ~ChatClient;

typename WorkerSend = ~ClientReceive;

typename WorkerReceive = ~ClientSend;

Fig. 10. Chat Application Session Types

Session Types. We can encode much of the specification more precisely as a session type, as shown

in Figure 10. The client begins by sending a nickname, and then offers the server a choice of a Join

message or a Nopemessage. In the former case, the client then receives a triple containing the current

topic, a list of existing nicknames, and an endpoint (of type ClientReceive) for receiving further

updates from the server; and may then continue to send messages to the server as a connected

client endpoint (of type ClientSend). (Observe the essential use of session delegation.) In the latter

case, communication is terminated. The intention is that the server will respond with Nope if a client

with the supplied nickname is already in the chat room (the details of this check are part of the

implementation, not part of the communication protocol).

The ClientReceive endpoint allows the client to offer a choice of four different messages: Join,

Chat, NewTopic, or Leave. In each case the client then receives a payload (depending on the choice, a

nickname, pair of nickname and chat message, or topic change) before offering another choice. The

ClientSend endpoint allows the client to select between two different messages: Chat and NewTopic. In

each case the client subsequently sends a payload (a chat message or a new topic) before selecting

another choice. The chat server communicates with the client along endpoints with dual types.

How can session types help? The connect function (Fig. 11a) is run when a client enters a nick-

name. First, the client requests a fresh channel of type ChatClient from access point wap of type

AP(ChatServer). Next, the client obtains the content of the DOM input box for the nickname by

calling getInputContents(nameBoxId), where nameBoxId is the DOM ID for the nickname entry box.

Next, the client sends the nickname to the server and waits for a response; in the case of a Join

message, the client receives the room data and an incoming message channel, and calls the beginChat

function. In the case of a Nope message, an error is printed and the session ends.

Now, suppose the developer forgets to write code to check the server response (Fig. 11b). This

implementation is incorrect since there is a communication mismatch: the server is expecting to
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fun connect() {

var s = request(wap);

var nick = getInputContents(nameBoxId);

var s = send(nick, s);

offer(s) {

case Join(s) ->

var ((topic, nicks, incoming), s) =

receive(s);

beginChat(topic, nicks, incoming, s)

case Nope(s) ->

print("Nickname '" ^^ nick ^^ "' already taken")

}

}

(a) Correct connect function

fun connect() {

var s = request(wap);

var nick = getInputContents(nameBoxId);

var s = send(nick, s);

var ((topic, nicks, incoming), s) =

receive(s);

beginChat(topic, nicks, incoming, s)

}

(b) Incorrect connect function

Fig. 11. Implementations of connect function

accept or reject the request to join the room, whereas the client is expecting to receive data about

the room. However, since s has type ChatClient but does not follow the protocol, Links catches the

communication mismatch statically. Similarly, Links will statically detect an unused endpoint (e.g.

the developer forgets to finish a protocol) or an endpoint being used more than once, as in §1.2.

Architecture. Figure 12a depicts the architecture of the chat application. Each client has a process

which sends messages over a distributed session channel of type ClientSend to its own worker

process on the server, which in turn sends internal messages to a supervisor process containing the

state of the chat room. These messages trigger the supervisor process to broadcast a message to all

chat clients over a channel of type ~ClientReceive. As is evident from the figure, the communication

topology is cyclic; in order to construct this topology the code makes essential use of access points.

Disconnection. Figure 12b shows the implementation of a worker process which receives messages

from a client. The worker takes the nickname of the client, as well as a channel endpoint of type

WorkerReceive (which is the dual of ClientSend). The server offers the client a choice of sending a

message (Chat), or changing topic (NewTopic); in each case, the associated data is received and a

message dispatched to the supervisor process by calling chat or newTopic. When a client closes its

connection to the server, all associated endpoints are cancelled. Consequently, an exception will

be raised when evaluating the offer or receive expressions. To handle disconnection, we wrap the

function in an exception handler, which recursively calls worker if the interaction is successful, and

notifies the supervisor that the user has left via a call to leave if an exception is raised.

Additional examples. We have concentrated on the chat server example for exposition, but

have also implemented an extended chat server and a multiplayer game. These can be found

at http://www.github.com/SimonJF/distributed-links-examples.

7 RELATEDWORK
7.1 Session Types with Failure Handling
Carbone et al. [2008] provide the first formal basis for exceptions in a session-typed process calculus.

Our approach provides significant simplifications: zapper threads provide a simpler semantics and

remove the need for their queue levels, meta-reduction relation, and liveness protocol.
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Client 1

Client 2

Worker 1

Worker 2

Supervisor

Client 1

Client 2

Server

CC

S

CS

CC CS

CR

CR

S

CC = ChatClient     CS = ChatServer     CR = ClientReceive     S = Supervisor

(a) Architecture

sig worker : (Nickname, WorkerReceive) ~> ()

fun worker(nick, c) {

try {

offer(c) {

case Chat(c) ->

var (msg, c) = receive(c);

chat(nick, msg); c

case NewTopic(c) ->

var (topic, c) = receive(c);

newTopic(topic); c

}

} as (c) in {

worker(nick, c)

} otherwise { leave(nick) }

}

(b) Worker Implementation

Fig. 12. Chat Application Architecture and Worker Implementation

Our work draws on that of Mostrous and Vasconcelos [2014], who introduce the idea of cancella-

tion. Our work differs from theirs in several key ways. Their system is a process calculus; ours is

a λ-calculus. Their channels are synchronous; ours are asynchronous. Their exception handling

construct scopes over a single action; ours scopes over an arbitrary computation.

Caires and Pérez [2017] describe a core, logically-inspired process calculus supporting non-

determinism and abortable behaviours encoded via a nondeterminism modality. Processes may

either provide or not provide a prescribed behaviour; if a process attempts to consume a behaviour

that is not provided, then its linear continuation is safely discarded by propagating the failure of

sessions contained within the continuation. Their approach is similar in spirit to our zapper threads.

Additionally, they give a core λ-calculus with abortable behaviours and exception handling, and

define a type-preserving translation into their core process calculus.

Our approach differs in several important ways. First, our semantics is asynchronous, handling

the intricacies involved with cancelling values contained in message queues. Second, we give a

direct semantics to EGV, whereas Caires and Pérez rely on a translation into their underlying

process calculus. Third, to handle the possibility of disconnection, our calculus allows any channel

to be discarded, whereas they opt for an approach more closely resembling checked exceptions,

aided by a monadic presentation.

The above works are all theoretical. Backed by our theoretical development, our implementation

integrates session types and exceptions, extending Links.

Multiparty Session Types. Fowler [2016] describes an Erlang implementation of the Multiparty

Session Actor framework proposed by Neykova and Yoshida [2014, 2017b] with a limited form of

failure recovery; Neykova and Yoshida [2017a] present a more comprehensive approach, based on

refining existing Erlang supervision strategies. Chen et al. [2016] introduce a formalism based on

multiparty session types [Honda et al. 2016] that handles partial failures by transforming programs

to detect possible failures at a set of statically determined synchronisation points. These approaches

rely on a fixed communication topology. Delegation implies location transparency, thus we must

consider dynamic topologies. Adameit et al. [2017] describe a synchronous multiparty session

calculus to handle link failures in distributed systems. They introduce optional blocks, inspired by
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subsessions [Demangeon and Honda 2012]; progress is maintained by specifying a set of default

values to use should the subsession fail.

7.2 Session Types and Distribution
Hu et al. [2008] introduce Session Java (SJ), which allows distributed session-based communication

in the Java programming language. Hu et al. are the first to present the challenges of distributed

delegation along with distributed algorithms which address those challenges. We adapt their

algorithms to web applications. SJ provides statically scoped exception handling, propagating

exceptions to ensure liveness, but this feature is not formalised.

Scalas and Yoshida [2016] introduce lchannels, a library implementation of session types in

Scala; their approach detects duplicate endpoint use at runtime. By virtue of the translation into

the linear π -calculus introduced by Kobayashi [2002] and later expanded on by Dardha et al. [2017],

lchannels is particularly amenable to distribution. Scalas et al. [2017] build upon this approach to

translate a multiparty session calculus into the linear π -calculus, providing the first distributed

implementation of multiparty session types to support delegation.

7.3 Session Types via Affine Types
Rust [Matsakis and Klock II 2014] provides ownership types [Clarke 2003], ensuring that an object has
at most one owner. Jespersen et al. [2015] use Rust’s ownership types to encode affine session types,

but since affine endpoints can be discarded implicitly, their library does not guarantee progress.

Although it is not possible to distinguish between dynamic failure and a developer forgetting to

finish an implementation, our semantics can be implemented using Rust’s destructor mechanism,

enabling a progress property [Kokke 2018].

8 CONCLUSION AND FUTUREWORK
Session types allow protocol conformance to be checked statically. The prevailing consensus has

hitherto been to require that endpoints be used linearly to enforce session fidelity and prevent

premature discarding of open channels. We have argued that in order to write realistic applications

in the presence of distribution and failure, linearity should be supplemented with an explicit
cancellation operation. We show that, even in the presence of channel cancellation, our core

calculus is well-behaved, being deadlock-free, type sound, confluent, and terminating.

In tandem with the formal development, we have developed an extension of the Links pro-

gramming language to support distributed session-based communication for web applications,

thus providing the first implementation of asynchronous session types with failure handling in a

functional programming language. Our implementation leverages recent work on effect handlers.

Future work. Our implementation combines linearity and effect handlers. Linear effect handlers

are new, and a ripe area of study in their own right; we plan to formalise session-typed concurrency

and failure handling directly in terms of linear effect handlers. Multiparty session types [Honda

et al. 2016] are yet to be included as a first-class construct of a core functional language. A natural

starting point is to identify a λ-calculus into which we can translate the MCP calculus of Carbone

et al. [2016] and then investigate how our approach adapts to the multiparty setting.
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