
Unembedding Domain-Specific Languages

Robert Atkey Sam Lindley Jeremy Yallop
LFCS, School of Informatics, The University of Edinburgh
{bob.atkey,sam.lindley,jeremy.yallop}@ed.ac.uk

Abstract
Higher-order abstract syntax provides a convenient way of embed-
ding domain-specific languages, but is awkward to analyse and ma-
nipulate directly.

We explore the boundaries of higher-order abstract syntax. Our
key tool is the unembedding of embedded terms as de Bruijn terms,
enabling intensional analysis. As part of our solution we present
techniques for separating the definition of an embedded program
from its interpretation, giving modular extensions of the embedded
language, and different ways to encode the types of the embedded
language.

Categories and Subject Descriptors D.1.1 [Programming tech-
niques]: Applicative (functional) programming

General Terms Languages, Theory

Keywords domain-specific languages, higher-order abstract syn-
tax, type classes, unembedding

1. Introduction
Embedding a domain-specific language (DSL) within a host lan-
guage involves writing a set of combinators in the host language
that define the syntax and semantics of the embedded language.
Haskell plays host to a wide range of embedded DSLs, including
languages for database queries [Leijen and Meijer 1999], finan-
cial contracts [Peyton Jones et al. 2000], parsing [Leijen and Mei-
jer 2001], web programming [Thiemann 2002], production of dia-
grams [Kuhlmann 2001] and spreadsheets [Augustsson et al. 2008].

An embedded language has two principal advantages over a
stand-alone implementation. First, using the syntax and semantics
of the host language to define those of the embedded language
reduces the burden on both the implementor (who does not need to
write a parser and interpreter from scratch) and the user (who does
not need to learn an entirely new language and toolchain). Second,
integration of the embedded language — with the host language,
and with other DSLs — becomes almost trivial. It is easy to see why
one might wish to use, say, languages for web programming and
database queries within a single program; if both are implemented
as embeddings into Haskell then integration is as straightforward
as combining any other two libraries.

Perhaps the most familiar example of an embedded DSL is the
monadic language for imperative programming that is part of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’09, September 3, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-508-6/09/09. . . $5.00

Haskell standard library. A notable feature of the monadic language
is the separation between the definition of the symbols of the
language, which are introduced as the methods of the Monad type
class, and the interpretation of those symbols, given as instances
of the class. This approach enables a range of interpretations to be
associated with a single language — a contrast to the embedded
languages enumerated earlier, which generally each admit a single
interpretation.

If the embedded language supports binding a number of diffi-
culties may arise. The interface to the embedded language must
ensure that there are no mismatches between bindings and uses
of variables (such as attempts to use unbound or incorrectly-typed
variables); issues such as substitution and alpha-equivalence intro-
duce further subtleties. Higher-order abstract syntax [Pfenning and
Elliott 1988] (HOAS) provides an elegant solution to these diffi-
culties. HOAS uses the binding constructs of the host language to
provide binding in the embedded language, resulting in embedded
language binders that are easy both to use and to interpret.

However, while HOAS provides a convenient interface to an
embedded language, it is a less convenient representation for en-
coding certain analyses. In particular, it is difficult to perform in-
tensional analyses such as closure conversion or the shrinking re-
ductions optimisation outlined in Section 2.4, as the representation
is constructed from functions, which cannot be directly manipu-
lated.

It is clear that higher-order abstract syntax and inductive term
representations each have distinct advantages for embedded lan-
guages. Elsewhere, the first author provides a proof that the higher-
order abstract syntax representation of terms is isomorphic to an
inductive representation [Atkey 2009a]. Here we apply Atkey’s re-
sult, showing how to convert between the two representations, and
so reap the benefits of both.

We summarise the contents and contributions of this paper as
follows:

• We start in Section 2 with an embedding of the untyped λ-
calculus, using the parametric polymorphic representation of
higher-order abstract syntax terms. This representation was ad-
vocated by Washburn and Weirich [2008], but dates back to at
least Coquand and Huet [1985]. We show how to convert this
representation to a concrete de Bruijn one, using the mapping
defined in Atkey [2009a]. This allows more straightforward ex-
pression of intensional analyses, such as the shrinking reduc-
tions optimisation.
We then examine the proof of the isomorphism between the
HOAS and de Bruijn representations in more detail to pro-
duce an almost fully well-typed conversion between the Haskell
HOAS type and a GADT representing well-formed de Bruijn
terms. Interestingly, well-typing of this conversion relies on the
parametricity of Haskell’s polymorphism, and so even complex
extensions to Haskell’s type system, such as dependent types,
would not be able to successfully type this translation. Our first

main contribution is the explanation and translation of the proof
into Haskell.
• Our representation of embedded languages as type classes is put

to use in Section 3, where we show how to modularly construct
embedded language definitions. For example, we can indepen-
dently define language components such as the λ-calculus,
booleans and arithmetic. Our second main contribution is to
show how to extend an embedded language with flexible pattern
matching and how to translate back-and-forth to well-formed
de Bruijn terms.
• Having explored the case for untyped languages we turn to

typed languages in Section 4. We carefully examine the issue of
how embedded language types are represented, and work to en-
sure that type variables used in the representation of embedded
language terms do not leak into the embedded language itself.
Thus we prevent exotically typed terms as well as exotic terms
in our HOAS representation. As far as we are aware, this dis-
tinction has not been noted before by other authors using typed
HOAS, e.g. [Carette et al. 2009]. Our third main contribution
is the extension of the well-typed conversion from HOAS to de
Bruijn to the typed case, identifying where we had to circum-
vent the Haskell typechecker. Another contribution is the iden-
tification and explanation of exotically typed terms in Church
encodings, a subject we feel deserves further study.
• Our final contributions are two larger examples in Section 5:

unembedding of mobile code from a convenient higher-order
abstract syntax representation, and an embedding of the Nested
Relational Calculus via higher-order abstract syntax.
• Section 6 surveys related work.

The source file for this paper is a literate Haskell program. The
extracted code and further examples are available at the following
URL:
http://homepages.inf.ed.ac.uk/ratkey/unembedding/.

2. Unembedding untyped languages
We first explore the case for untyped embedded languages. Even
without types at the embedded language level, an embedding of this
form is not straightforward, due to the presence of variable binding
and α-equivalence in the embedded language. We start by showing
how to handle the prototypical language with binding.

2.1 Representing the λ-calculus
Traditionally, the λ-calculus is presented with three term formers:
variables, λ-abstractions and applications. Since we are using the
host-language to represent embedded language variables, we re-
duce the term formers to two, and place them in a type class:

class UntypedLambda exp where

lam :: (exp → exp) → exp
app :: exp → exp → exp

To represent closed terms, we abstract over the type variable exp,
where exp is an instance of UntypedLambda:

type Hoas = ∀exp. UntypedLambda exp ⇒ exp

Encoding a given untyped λ-calculus term in this representation
becomes a matter of taking the term you first thought of, inserting
lams and apps into the correct places, and using Haskell’s own
binding and variables for binding and variables in the embedded-
language. For example, to represent the λ-calculus term λx.λy.xy,
we use:

example1 :: Hoas
example1 = lam (λx → lam (λy → x ‘app‘ y))

Our host language, Haskell, becomes a macro language for our
embedded language. As an example, this function creates Church
numerals for any given integer:

numeral :: Integer → Hoas
numeral n = lam (λs → (lam (λz → body s z n)))
where body s z 0 = z

body s z n = s ‘app‘ (body s z (n-1))

Following the work of Pfenning and Elliott [1988], the use of
host language binding to represent embedded language binding has
also been attempted by the use of algebraic datatypes. For example,
Fegaras and Sheard [1996] start from the following datatype:

data Term = Lam (Term → Term)
| App Term Term

One can use this datatype to write down representations of terms,
but Fegaras and Sheard are forced to extend this in order to define
folds over the abstract syntax trees:

data Term a = Lam (Term a → Term a)
| App (Term a) (Term a)
| Var a

The additional constructor and type argument are used in the imple-
mentation of the fold function to pass accumulated values through.
It is not intended that the Var constructor be used in user programs.

The problem with this representation is that it permits so-called
exotic terms, members of the type that are not representatives of
λ-calculus terms. For example:

Lam (λx → case x of Lam _ → x
| App _ _ → Lam (λx → x))

The body of the λ-abstraction in this “term” is either x or λx.x, de-
pending on whether the passed in term is itself a λ-abstraction or an
application. Fegaras and Sheard mitigate this problem by defining
an ad-hoc type system that distinguishes between datatypes that
may be analysed by cases and those that may be folded over as
HOAS. The type system ensures that the Var constructor is never
used by the programmer.

The advantage of the HOAS representation that we use, which
was originally proposed by Coquand and Huet [1985], is that exotic
terms are prohibited [Atkey 2009a] (with the proviso that infinite
terms are allowed when we embed inside Haskell). In our opinion,
it is better to define types that tightly represent the data we wish to
compute with, and not to rely on the discipline of failible program-
mers or ad-hoc extensions to the type system.

2.2 Folding over Syntax
Our representation of closed λ-terms amounts to a Church encod-
ing of the syntax of the calculus, similar to the Church encodings
of inductive datatypes such as the natural numbers. Unfolding the
type Hoas, we can read it as the System F type:

Cλ = ∀α.((α→ α)→ α)→ (α→ α→ α)→ α

Compare this to the Church encoding of natural numbers:

Cnat = ∀α.α→ (α→ α)→ α

For Cnat, we represent natural numbers by their fold operators. A
value of type Cnat, given some type α and two constructors, one of
type α and one of type α→ α (which we can think of as zero and
successor), must construct a value of type α. Since the type α is
unknown when the value of type Cnat is constructed, we can only
use these two constructors to produce a value of type α. It is this
property that ensures that we only represent natural numbers.

Likewise, for the Cλ type, we have an abstract type α, and two
constructors, one for λ-abstraction and one for application. The
construction for λ-abstraction is special in that there is a negative

http://homepages.inf.ed.ac.uk/ratkey/unembedding/

occurence of α in its arguments. This does not fit into the classical
theory of polymorphic Church encodings, but is crucial to the
HOAS representation of binding. We sketch how parametricity is
used below, in Section 2.6.

As for the Church encoded natural numbers, we can treat the
type Cλ as a fold operator over terms represented using HOAS. We
can use this to compute over terms, as demonstrated by Washburn
and Weirich [2008]. Returning to Haskell, folds over terms are
expressed by giving instances of the UntypedLambda type class.
For example, to compute the size of a term:

newtype Size = Size { size :: Integer }

instance UntypedLambda Size where

lam f = Size $ 1 + size (f (Size 1))
x ‘app‘ y = Size $ 1 + size x + size y

getSize :: Hoas → Integer
getSize term = size term

The case for app is straightforward; the size of an application is
one plus the sizes of its subterms. For a λ-abstraction, we first add
one for the λ itself, then we compute the size of the body. As we
represent bodies by host-language λ-abstractions we must apply
them to something to get an answer. In this case the body f will
have type Size → Size, so we pass in what we think the size
of a variable will be, and we will get back the size of the whole
subterm.

A more exotic instance of a fold over the syntax of a λ-term
is the denotational semantics of a term, i.e. an evaluator. We first
define a “domain” for the semantics of the call-by-name λ-calculus:

data Value = VFunc (Value → Value)

Now the definitions for lam and app are straightforward:

instance UntypedLambda Value where

lam f = VFunc f
(VFunc f) ‘app‘ y = f y

eval :: Hoas → Value
eval term = term

2.3 Unembedding the λ-calculus
Writing computations over the syntax of our embedded language is
all well and good, but there are many functions that we may wish
to express that are awkward, inefficient, or maybe impossible to ex-
press as folds. However, the HOAS representation is certainly con-
venient for embedding embedded language terms inside Haskell,
so we seek a conversion from HOAS to a form that is amenable to
intensional analysis.

A popular choice for representing languages with binding is
de Bruijn indices, where each bound variable is represented as
a pointer to the binder that binds it [de Bruijn 1972]. We can
represent de Bruijn terms by the following type:

data DBTerm = Var Int
| Lam DBTerm
| App DBTerm DBTerm
deriving (Show,Eq)

To convert from Hoas to DBTerm, we abstract over the number
of binders that surround the term we are currently constructing.

newtype DB = DB { unDB :: Int → DBTerm }

The intention is that unDB x n will return a de Bruijn term, closed
in a context of depth n. To define a fold over the HOAS representa-
tion, we give an instance of UntypedLambda for DB:

instance UntypedLambda DB where

lam f = DB $ λi → let v = λj → Var (j-(i+1)) in

Lam (unDB (f (DB v)) (i+1))
app x y = DB $ λi → App (unDB x i) (unDB y i)

toTerm :: Hoas → DBTerm
toTerm v = unDB v 0

Converting a HOAS application to a de Bruijn application is
straightforward; we simply pass through the current depth of the
context to the subterms. Converting a λ-abstraction is more com-
plicated. Clearly, we must use the Lam constructor to generate a de
Bruijn λ-abstraction, and, since we are going under a binder, we
must up the depth of the context by one. As with the size example
above, we must also pass in a representation of the bound vari-
able to the host-language λ-abstraction representing the body of
the embedded language λ-abstraction. This representation will be
instantiated at some depth j, which will always be greater than i.
We then compute the difference between the depth of the variable
and the depth of the binder as j−(i+1), which is the correct de
Bruijn index for the bound variable.

We can represent an open HOAS term as a function from an
environment, represented as a list of HOAS terms, to a HOAS term.

type Hoas’ = ∀exp.UntypedLambda exp ⇒ [exp] → exp

It is worth pointing out that this encoding is technically incorrect
as such functions can inspect the length of the list and so need not
represent real terms. We could rectify the problem by making en-
vironments total, that is, restricting them to be infinite lists (where
cofinitely many entries map variables to themselves). Rather than
worrying about this issue now we resolve it later when we consider
well-formed de Bruijn terms in Section 2.6.

Now we can convert an open HOAS term to a de Bruijn term by
first supplying it with a total environment mapping every variable to
itself, interpreting everything in the DB instance of UntypedLambda
as we do for closed terms.

toTerm’ :: Hoas’ → DBTerm
toTerm’ v = unDB w 0
where w = v (env 0)

env j = DB (λi → Var (i+j)) : env (j+1)

Conversion from HOAS to de Bruijn representations have al-
ready been presented by other workers; see, for example, some
slides of Olivier Danvy1. In his formulation, the HOAS terms are
represented by the algebraic datatype we saw in Section 2.1. Hence
exotic terms are permitted by the type, and it seems unlikely that
his conversion to de Bruijn could be extended to a well-typed one
in the way that we do below in Section 2.6.

2.4 Intensional analysis
The big advantage of converting HOAS terms to de Bruijn terms
is that this allows us to perform intensional analyses. As a sim-
ple example of an analysis that is difficult to perform directly on
HOAS terms we consider shrinking reductions [Appel and Jim
1997]. Shrinking reductions arise as the restriction of β-reduction
(i.e. inlining) to cases where the bound variable is used zero (dead-
code elimination) or one (linear inlining) times. As well as reducing
function call overhead, shrinking reductions expose opportunities
for further optimisations such as common sub-expression elimina-
tion and more aggressive inlining.

The difficulty with implementing shrinking reductions is that
dead-code elimination at one redex can expose further shrinking re-
ductions at a completely different position in the term, so attempts
at writing a straightforward compositional algorithm fail. We give

1 http://www.brics.dk/~danvy/Slides/mfps98-up2.ps. Thanks to
an anonymous reviewer for this link.

http://www.brics.dk/~danvy/Slides/mfps98-up2.ps

a naive algorithm that re-traverses the whole reduct whenever a re-
dex is reduced. The only interesting case in the shrink function
is that of a β-redex where the number of uses is less than or equal
to one. This uses the standard de Bruijn machinery to perform the
substitution [Pierce 2002]. More efficient imperative algorithms ex-
ist [Appel and Jim 1997, Benton et al. 2004, Kennedy 2007]. The
key point is that these algorithms are intensional. It seems unlikely
that shrinking reductions can be expressed easily as a fold.

usesOf n (Var m) = if n==m then 1 else 0
usesOf n (Lam t) = usesOf (n+1) t
usesOf n (App s t) = usesOf n s + usesOf n t

lift m p (Var n) | n < p = Var n
| otherwise = Var (n+m)

lift m p (Lam body) = Lam (lift m (p+1) body)
lift m p (App s t) = App (lift m p s) (lift m p t)

subst m t (Var n) | n==m = t
| n > m = Var (n-1)
| otherwise = Var n

subst m t (Lam s) = Lam (subst (m+1) (lift 1 0 t) s)
subst m t (App s s’) = App (subst m t s) (subst m t s’)

shrink (Var n) = Var n
shrink (Lam t) = Lam (shrink t)
shrink (App s t) =
case s’ of

Lam u | usesOf 0 u ≤ 1 → shrink (subst 0 t’ u)
_ → App s’ t’

where s’ = shrink s
t’ = shrink t

2.5 Embedding again
Before we explain why the unembedding process works, we note
that going from closed de Bruijn terms back to the HOAS represen-
tation is straightforward.

fromTerm’ :: DBTerm → Hoas’
fromTerm’ (Var i) env = env !! i
fromTerm’ (Lam t) env = lam (λx → fromTerm’ t (x:env))
fromTerm’ (App x y) env =

fromTerm’ x env ‘app‘ fromTerm’ y env

fromTerm :: DBTerm → Hoas
fromTerm term = fromTerm’ term []

We maintain an environment storing all the representations of
bound variables that have been acquired down each branch of the
term. When we go under a binder, we extend the environment by
the newly abstracted variable. This definition is unfortunately par-
tial (due to the indexing function (!!)) since we have not yet
guaranteed that the input will be a closed de Bruijn term. In the
next sub-section we resolve this problem.

2.6 Well-formed de Bruijn terms
We can guarantee that we only deal with closed de Bruijn terms by
using the well-known encoding of de Bruijn terms into GADTs
[Sheard et al. 2005]. In this representation, we explicitly record
the depth of the context in a type parameter. We first define two
vacuous type constructors to represent natural numbers at the type
level.

data Zero
data Succ a

To represent variables we make use of the Fin GADT, where
the type Fin n represents the type of natural numbers less than n.
The Zero and Succ type constructors are used as phantom types.

data Fin :: ? → ? where

FinZ :: Fin (Succ a)
FinS :: Fin a → Fin (Succ a)

The type of well-formed de Bruijn terms for a given context is
captured by the following GADT. The type WFTerm Zero will then
represent all closed de Bruijn terms.

data WFTerm :: ? → ? where

WFVar :: Fin a → WFTerm a
WFLam :: WFTerm (Succ a) → WFTerm a
WFApp :: WFTerm a → WFTerm a → WFTerm a

Writing down terms in this representation is tedious due to the
use of FinS (FinS FinZ) etc. to represent variables. The HOAS
approach has a definite advantage over de Bruijn terms in this
respect.

The toTerm function we defined above always generates closed
terms, and we now have a datatype that can be used to represent
closed terms. It is possible to give a version of toTerm that has
the correct type, but we will have to work around the Haskell type
system for it to work. To see why, we sketch the key part of the
proof of adequacy of the Church encoding of λ-calculus syntax—
the type Cλ—given by the first author [Atkey 2009a].

As alluded to above, the correctness of the Church encoding
method relies on the parametric polymorphism provided by the ∀α
quantifier. Given a value of type α, the only action we can perform
with this value is to use it as a variable; we cannot analyse values of
type α, for if we could, then our function would not be parametric
in the choice of α. The standard way to make such arguments rig-
orous is to use Reynolds’ formalisation of parametricity [Reynolds
1974] that states that for any choices τ1 and τ2 for α, and any bi-
nary relation between τ1 and τ2, this relation is preserved by the
implementation of the body of the type abstraction.

To prove that the toTerm function always produces well-formed
de Bruijn terms, we apply Reynolds’ technique with two minor
modifications: we restrict to unary relations and we index our rela-
tions by natural numbers. The indexing must satisfy the constraint
that if Ri(x) and j ≥ i, then Rj(x). This means that we require
Kripke relations over the usual ordering on the natural numbers.

In the toTerm function, we instantiate the type α with the type
Int → DBTerm. The Kripke relation we require on this type is
Ri(t) ⇔ ∀j ≥ i. j ` (t j), where j ` t means that the de Bruijn
term t is well-formed in contexts of depth j. If we know R0(t),
then t 0 will be a closed de Bruijn term. Following usual proofs
by parametricity, we prove this property for toTerm by showing
that our implementations of lam and app preserve R. For app this
is straightforward. For lam, it boils down to showing that for a
context of depth i the de Bruijn representation of variables we pass
in always gives a well-formed variable in some context of depth
j, where j ≥ i + 1, and in particular j > 0. The machinery
of Kripke relations always ensures that we know that the context
depths always increase as we proceed under binders in the term
(see [Atkey 2009a] for more details).

We give a more strongly typed conversion from HOAS to de
Bruijn, using the insight from this proof. First we simulate part
of the refinement of the type Int → DBTerm by the relation R,
using a GADT to reflect type-level natural numbers down to the
term level:

data Nat :: ? → ? where

NatZ :: Nat Zero
NatS :: Nat a → Nat (Succ a)

newtype WFDB = WFDB { unWFDB :: ∀j. Nat j → WFTerm j }

We do not include the part of the refinement that states that j is
greater than some i (although this is possible with GADTs) because
the additional type variable this would entail does not appear in

the definition of the class UntypedLambda. The advantage of the
HOAS representation over the well-formed de Bruijn is that we do
not have to explicitly keep track of contexts; the Kripke indexing of
our refining relation keeps track of the context for us in the proof.

The little piece of arithmetic j− (i+ 1) in the toTerm function
above must now be represented in a way that demonstrates to the
type checker that we have correctly accounted for the indices. The
functions natToFin and weaken handle conversion from naturals
to inhabitants of the Fin type and injection of members of Fin
types into larger ones. The shift function does the actual arith-
metic.

natToFin :: Nat a → Fin (Succ a)
natToFin NatZ = FinZ
natToFin (NatS n) = FinS (natToFin n)

weaken :: Fin a → Fin (Succ a)
weaken FinZ = FinZ
weaken (FinS n) = FinS (weaken n)

shift :: Nat j → Nat i → Fin j
shift NatZ _ =⊥
shift (NatS x) NatZ = natToFin x
shift (NatS x) (NatS y) = weaken $ shift x y

By the argument above, the case when the first argument of shift
is NatZ will never occur when we invoke it from within the fold
over the the HOAS representation, so it is safe to return ⊥ (i.e.
undefined). In any case, there is no non-⊥ inhabitant of the type
Fin Zero to give here.

The actual code to carry out the conversion is exactly the same
as before, except with the arithmetic replaced by the more strongly-
typed versions.

instance UntypedLambda WFDB where

lam f = WFDB $
λi → let v = λj → WFVar (shift j i)

in

WFLam (unWFDB (f (WFDB v)) (NatS i))
x ‘app‘ y = WFDB $

λi → WFApp (unWFDB x i) (unWFDB y i)

toWFTerm :: Hoas → WFTerm Zero
toWFTerm v = unWFDB v NatZ

The point where Haskell’s type system does not provide us with
enough information is in the call to shift, where we know from
the parametricity proof that j ≥ i + 1 and hence j > 0. Moving
to a more powerful type system with better support for reasoning
about arithmetic, such as Coq [The Coq development team 2009]
or Agda [The Agda2 development team 2009], would not help us
here. One could easily write a version of the shift function that
takes a proof that j ≥ i + 1 as an argument, but we have no
way of obtaining a proof of this property without appeal to the
parametricity of the HOAS representation. We see two options here
for a completely well-typed solution: we could alter the HOAS
interface to include information about the current depth of binders
in terms, but this would abrogate the advantage of HOAS, which
is that contexts are handled by the meta-language; or, we could
incorporate parametricity principles into the type system, as has
been done previously in Plotkin-Abadi Logic [Plotkin and Abadi
1993] and System R [Abadi et al. 1993]. The second option is
complicated by our requirement here for Kripke relations and to use
parametricity to prove well-typedness rather than only equalities
between terms.

In order to handle open terms we introduce a type of environ-
ments WFEnv which takes two type arguments: the type of values
and the size of the environment.

data WFEnv :: ? → ? → ? where

WFEmpty :: WFEnv exp Zero
WFExtend :: WFEnv exp n → exp → WFEnv exp (Succ n)

lookWF :: WFEnv exp n → Fin n → exp
lookWF (WFExtend _ v) FinZ = v
lookWF (WFExtend env _) (FinS n) = lookWF env n

Open well-formed HOAS terms with n free variables are de-
fined as functions from well-formed term environments of size n to
terms.

type WFHoas’ n =
∀exp.UntypedLambda exp ⇒ WFEnv exp n → exp

Now we can define the translation from well-formed open
higher-order abstract syntax terms to well-formed open de Bruijn
terms. Whereas toTerm’ had to build an infinite environment map-
ping free variables to themselves, because the number of free vari-
ables did not appear in the type, we now build a finite environment
whose length is equal to the number of free variables. We also
need to supply the length at the term level using the natural number
GADT.

toWFTerm’ :: Nat n → WFHoas’ n → WFTerm n
toWFTerm’ n v = unWFDB (v (makeEnv n)) n
where

makeEnv :: Nat n → WFEnv WFDB n
makeEnv NatZ = WFEmpty
makeEnv (NatS i) =

WFExtend
(makeEnv i)
(WFDB (λj → WFVar (shift j i)))

Conversion back from WFTerm to Hoas is straightforward.

toWFHoas’ :: WFTerm n → WFHoas’ n
toWFHoas’ (WFVar n) = λenv → lookWF env n
toWFHoas’ (WFLam t) =
λenv → lam (λx → toWFHoas’ t (WFExtend env x))

toWFHoas’ (WFApp f p) =
λenv → toWFHoas’ f env ‘app‘ toWFHoas’ p env

toWFHoas :: WFTerm Zero → Hoas
toWFHoas t = toWFHoas’ t WFEmpty

The functions toWFTerm and toWFHoas are in fact mutually in-
verse, and hence the two representations are isomorphic. See Atkey
[2009a] for the proof.

3. Language extensions
Having established the main techniques for moving between induc-
tive and higher-order encodings of embedded languages, we now
consider a number of extensions.

3.1 More term constructors
We begin by adding boolean terms. As before, we create a type
class containing the term formers of our language: constants for
true and false, and a construct for conditional branching.

class Booleans exp where

true :: exp
false :: exp
cond :: exp → exp → exp → exp

We do not need to combine this explicitly with UntypedLambda:
terms formed from true, false, cond, lam and app may be
mingled freely. For example, we can define a function not as
follows:

not = lam (λx → cond x false true)

This receives the following type:

not :: (Booleans exp, UntypedLambda exp) ⇒ exp

However, for convenience we may wish to give a name to the
embedded language that includes both functions and booleans,
and we can do so by defining a new class that is a subclass of
UntypedLambda and Booleans.

class (Booleans exp, UntypedLambda exp) ⇒
BooleanLambda exp

We can now give our definition of not the following more concise
type:

not :: BooleanLambda exp ⇒ exp

In Section 2 we defined a number of functions on untyped λ ex-
pressions. We can extend these straightforwardly to our augmented
language by defining instances of Booleans. For example, we can
extend the size function by defining the following instance:

instance Booleans Size where

true = Size $ 1
false = Size $ 1
cond c t e = Size $ size c + size t + size e

In order to extend the functions for evaluation and conversion to
de Bruijn terms we must modify the datatypes used as the domains
of those functions. For evaluation we must add constructors for
true and false to the Value type.

data Value = VFunc (Value → Value) | VTrue | VFalse

Then we can extend the evaluation function to booleans by writing
an instance of Booleans at type Value.

instance Booleans Value where

true = VTrue
false = VFalse
cond VTrue t _ = t
cond VFalse _ e = e

Note that the definitions for both cond and app are now partial,
since the embedded language is untyped: there is nothing to prevent
programs which attempt to apply a boolean, or use a function as the
first argument to cond. In Section 4 we investigate the embedding
of typed languages, with total interpreters.

For conversion to well-formed de Bruijn terms we must modify
the WFTerm datatype to add constructors for true, false and
cond.

data WFTerm :: ? → ? where

WFVar :: Fin a → WFTerm a
WFLam :: WFTerm (Succ a) → WFTerm a
WFApp :: WFTerm a → WFTerm a → WFTerm a
WFTrue :: WFTerm a
WFFalse :: WFTerm a
WFCond :: WFTerm a → WFTerm a → WFTerm a

→ WFTerm a

Extending the conversion function to booleans is then a simple
matter of writing an instance of Booleans at the type WFDB.

instance Booleans WFDB where

true = WFDB (λi → WFTrue)
false = WFDB (λi → WFFalse)
cond c t e = WFDB (λi → WFCond (unWFDB c i)

(unWFDB t i)
(unWFDB e i))

Term formers for integers, pairs, sums, and so on, can be added
straightforwardly in the same fashion.

Adding integers is of additional interest in that it allows inte-
gration with the standard Num type class. We can extend the Value
datatype with an additional constructor for integers, and then use

the arithmetic operations of the Num class within terms of the em-
bedded language. For example, the following term defines a binary
addition function in the embedded language:

lam (λx → lam (λy → x + y))
:: (UntypedLambda exp, Num exp) ⇒ exp

We can, of course, extend evaluation to such terms by defining in-
stances of Num at the Value type; the other functions, such as con-
version to the de Bruijn representation, can be extended similarly.

3.2 Conflating levels
The embedded languages we have looked at so far have all main-
tained a strict separation between the host and embedded levels.
A simple example where we mix the levels, which was also used
in Atkey [2009a], is a language of arithmetic expressions with a
“let” construct and with host language functions contained within
terms.

class ArithExpr exp where

let_ :: exp → (exp → exp) → exp
integer :: Int → exp
binop :: (Int → Int → Int) → exp → exp → exp

type AExpr = ∀exp. ArithExpr exp ⇒ exp

An example term in this representation is:

example8 :: AExpr
example8 = let_ (integer 8) $ λx →

let_ (integer 9) $ λy →
binop (+) x y

Using the techniques described in Section 2.6, it is clear to see how
we can translate this representation to a type of well-formed de
Bruijn terms.

The point of this example is to show how function types can
be used in two different ways in the HOAS representation. In the
let operation, functions are used to represent embedded language
binding. In the binop operation we use the function type compu-
tationally as a host language function. Licata et al. [2008] define a
new logical system based on a proof theoretic analysis of focussing
to mix the computational and representation function spaces. Using
parametric polymorphism, we get the same functionality for free.

3.3 Pattern matching
To this point, we have only considered languages where variables
are bound individually. Realistic programming languages feature
pattern matching that allows binding of multiple variables at once.
It is possible to simulate this by the use of functions as cases in
pattern matches, but this gets untidy due to the additional lam
constructors required. Also, we may not want to have λ-abstraction
in our embedded language. To see how to include pattern matching,
we start by considering a language extension with sums and pairs.

We define a type class for introduction forms for pairs and sums:

class PairsAndSums exp where

pair :: exp → exp → exp
inl :: exp → exp
inr :: exp → exp

A simple language extension that allows pattern matching on pairs
and sums can be captured with the following type class:

class BasicPatternMatch exp where

pair_match :: exp → ((exp,exp) → exp) → exp
sum_match :: exp → (exp → exp) → (exp → exp)

→ exp

These operations are certainly complete for matching against pairs
and sums, but we do not have the flexibility in matching patterns

that exists in our host language. To get this flexibility we must
abstract over patterns. We represent patterns as containers of kind
?→ ?:

data Id a = V a
data Pair f1 f2 a = f1 a × f2 a
data Inl f a = Inl (f a)
data Inr f a = Inr (f a)

The HOAS representation of a pattern matching case will take
a function of type f exp → exp, where we require that f is a
container constructed from the above constructors. For example, to
match against the left-hand component of a sum, which contains a
pair, we would use a function like:

λ(Inl (V x × V y)) → pair x y)
:: (Inl (Pair Id Id) exp → exp)

Note that when f is Pair, this will give the same type as the
pair match combinator above.

We must be able to restrict to containers generated by the above
constructors. We do so by employing the following GADT:

data Pattern :: (? → ?) → ? → ? where

PVar :: Pattern Id (Succ Zero)
PPair :: Nat x → Pattern f1 x → Pattern f2 y →

Pattern (Pair f1 f2) (x :+: y)
PInl :: Pattern f x → Pattern (Inl f) x
PInr :: Pattern f x → Pattern (Inr f) x

The second argument in this GADT records the number of vari-
ables in the pattern. This numeric argument will be used to account
for the extra context used by the pattern in the de Bruijn represen-
tation. The spare-looking Nat x argument in PPair is used as a
witness for constructing proofs of type equalities in the conversion
between HOAS and de Bruijn. We define type-level addition by the
following type family:

type family n :+: m :: ?
type instance Zero :+: n = n
type instance (Succ n) :+: m = Succ (n :+: m)

A HOAS pattern matching case consists of a pattern representa-
tion and a function to represent the variables bound in the pattern:

data Case exp = ∀f n. Case (Pattern f n) (f exp → exp)

A type class defines our pattern matching language extension:

class PatternMatch exp where

match :: exp → [Case exp] → exp

This representation is hampered by the need to explicitly describe
each pattern before use:

matcher0 x = match x
[Case (PPair (NatS NatZ) PVar PVar) $

λ(V x × V y) → pair x y
, Case (PInl PVar) $ λ(Inl (V x)) → x]

We get the compiler to do the work for us by using an existential
type and a type class:

data IPat f = ∀n. IPat (Nat n) (Pattern f n)

class ImplicitPattern f where

patRep :: IPat f

We define instances for each f that interests us. The additional Nat
n argument in IPat is used to fill in the Nat x argument in the
PPair constructor. We can now define a combinator that allows
convenient expression of pattern matching cases:

clause :: ∀f exp.
ImplicitPattern f ⇒ (f exp → exp) → Case exp

clause body = case patRep of

IPat _ pattern → Case pattern body

This combinator gives a slicker syntax for pattern matching:

matcher x = match x
[clause $ λ(V x × V y) → pair x y
, clause $ λ(Inl (V x)) → x]

We can unembed this HOAS representation to guaranteed well-
formed de Bruijn terms by a process similar to the one we used
above. The de Bruijn representation of pattern match cases consists
of a pair of a pattern and a term. In this representation we must
explicitly keep track of the context, something that the HOAS
representation handles for us.

data WFCase a =
∀f b. WFCase (Pattern f b) (WFTerm (a :+: b))

data WFTerm :: ? → ? where

WFVar :: Fin a → WFTerm a
WFMatch :: WFTerm a → [WFCase a] → WFTerm a
WFPair :: WFTerm a → WFTerm a → WFTerm a
WFInl :: WFTerm a → WFTerm a
WFInr :: WFTerm a → WFTerm a
WFLam :: WFTerm (Succ a) → WFTerm a
WFApp :: WFTerm a → WFTerm a → WFTerm a

As above, we translate from HOAS to de Bruijn representation by
defining a fold over the HOAS term. The case for match is:

instance PatternMatch WFDB where

match e cases = WFDB $
λi → WFMatch (unWFDB e i) (map (doCase i) cases)
where

doCase :: ∀i. Nat i → Case WFDB → WFCase i
doCase i (Case pattern f) =
let (x, j) = mkPat pattern i
in WFCase pattern (unWFDB (f x) j)

The helper function used here is mkPat, which has type

mkPat :: Pattern f n → Nat i → (f WFDB, Nat (i :+: n))

This function takes a pattern representation, the current size of the
context and returns the appropriate container full of variable rep-
resentations and the new size of the context. We omit the imple-
mentation of this function for want of space. The core of the imple-
mentation relies on an idiomatic traversal [McBride and Paterson
2008] of the shape of the pattern, generating the correct variable
representations as we go and incrementing the size of the context.
To keep track of the size of the context in the types, we use a pa-
rameterised applicative functor [Cooper et al. 2008], the idiomatic
analogue of a parameterised monad [Atkey 2009b]. The term-level
representations of natural numbers used in patterns are used to con-
struct witnesses for the proofs of associativity and commutativity of
plus, which are required to type this function.

Conversion back again from de Bruijn to HOAS relies on a
helper function of the following type:

mkEnv :: ∀i exp f j.
Nat i → WFEnv exp i → Pattern f j →

f exp → WFEnv exp (i :+: j)

This function takes the current size of the context (which can al-
ways be deduced from the environment argument), a conversion
environment and a pattern representation, and returns a function
that maps pattern instances to extended environments. By compos-
ing mkEnv with the main conversion function from de Bruijn terms,
we obtain a conversion function for the de Bruijn representation of
pattern matching cases.

4. Unembedding typed languages
We now turn to the representation and unembedding of typed lan-
guages, at least when the types of our embedded language is a sub-
set of the types of Haskell. This is mostly an exercise in decorating

the constructions of the previous sections with type information,
but there is a subtlety involved in representing the types of the em-
bedded language, which we relate in our first subsection.

4.1 Simply-typed λ-calculus, naively
Given the representation of the untyped λ-calculus above, an obvi-
ous way to represent a typed language in the manner we have used
above is by the following type class, where we decorate all the oc-
curences of exp with type variables. This is the representation of
typed embedded languages used by Carette et al. [2009].

class TypedLambda0 exp where

tlam0 :: (exp a → exp b) → exp (a → b)
tapp0 :: exp (a → b) → exp a → exp b

Closed simply-typed terms would now be represented by the type:

type THoas0 a = ∀exp. TypedLambda0 exp ⇒ exp a

and we can apparently go ahead and represent terms in the simply-
typed λ-calculus:

example3 :: THoas0 (Bool → (Bool → Bool) → Bool)
example3 = tlam0 (λx → tlam0 (λy → y ‘tapp0‘ x))

However, there is a hidden problem lurking in this representa-
tion. The type machinery that we use to ensure that bound variables
are represented correctly may leak into the types that are used in the
represented term. We can see this more clearly by writing out the
type TypedLambda0 explicitly as an Fω type, where the polymor-
phism is completely explicit:

λτ.∀α : ?→ ?. (∀σ1σ2. (ασ1 → ασ2)→ α (σ1 → σ2))→
(∀σ1σ2. α (σ1 → σ2)→ ασ1 → ασ2)→
α τ

Now consider a typical term which starts with Λα.λtlam.tapp....
and goes on to apply tlam and tapp to construct a representation
of a simply-typed λ-calculus term. The problem arises because
we have a type constructor α available for use in constructing the
represented term. We can instantiate the types σ1 and σ2 in the two
constructors using α. This will lead to representations of simply-
typed λ-calculus terms that contain subterms whose types depend
on the result type of the specific fold operation that we perform
over terms. Hence, while this representation does not allow “exotic
terms”, it does allow exotically typed terms.

An example of an exotically typed term in this representation is
the following:

exotic :: ∀exp. TypedLambda0 exp ⇒ exp (Bool → Bool)
exotic = tlam0 (λx → tlam0 (λy → y))

‘tapp0‘ (tlam0 (λ(z :: exp (exp Int)) → z))

This “represents” the simply typed term:

(λxexp(Int)→exp(Int).λyBool .y)(λzexp(Int).z)

When we write a fold over the representation exotic, we will in-
stantiate the type exp with the type we are using for accumulation.
Thus the term exotic will technically represent different simply-
typed terms for different folds.

This confusion between host and embedded language types
manifests itself in the failure of the proof of an isomorphism be-
tween this church encoding of typed HOAS and the de Bruijn rep-
resentation. After the conversion of exotic to de Bruijn, we will
have a representation of the simply typed term:

(λxTDB(Int)→TDB(Int).λyBool .y)(λzTDB(Int).z)

where the placeholder exp has been replaced by the type construc-
tor TDB used in the conversion to de Bruijn. Converting this term
back to typed HOAS preserves this constructor, giving a term that
differs in its types to the original term.

An interesting question to ask is: exactly what is being repre-
sented by the type THoas0, if it is not just the simply-typed terms?
We currently have no answer to this. Maybe we are representing
terms with the term syntax of the simply-typed λ-calculus, but the
types of Haskell. On the other hand, the fact that the quantified con-
structor exp used in the representation will change according to the
type of the fold that we perform over represented terms is troubling.

Note that, due to the fact that the type variable a, which repre-
sents the type of the whole term, appears outside the scope of exp
in the type THoas0, we can never get terms that are exotically typed
at the top level; only subterms with types that do not contribute to
the top-level type may be exotically typed, as in the exotic exam-
ple above.

Aside from the theoretical problem, there is a point about which
type system our embedded language should be able to have. If we
are going to unembed an embedded language effectively, then we
should be able to get our hands on representations of object-level
types. Moreover, many intensional analyses that we may wish to
perform are type-directed, so explicit knowledge of the embedded
language types involved is required. To do this we cannot straight-
forwardly piggy-back off Haskell’s type system (though we are
forced to rely on it to represent object-level types, by the stratifica-
tion between types and terms in Haskell’s type theory). To fix this
problem, we define explicit representations for embedded language
types in the next subsection.

4.2 The closed kind of simple types
We define a GADT Rep for representing simple types and hence
precluding exotic types. This connects a term-level representation
of simple types with a type-level representation of types (in which
the underlying types are Haskell types). Explicitly writing type
representations everywhere would be tedious, so we follow Cheney
and Hinze [2002] and define the type class Representable of
simple types. This allows the compiler to infer and propagate many
type representations for us.

data Rep :: ? → ? where

Bool :: Rep Bool
(:→) :: (Representable a, Representable b) ⇒

Rep a → Rep b → Rep (a→b)

class Representable a where rep :: Rep a

instance Representable Bool where rep = Bool

instance (Representable a, Representable b) ⇒
Representable (a→b) where

rep = rep :→ rep

Note that the leaves of a Rep must be Bool constructors, and
so it is only possible to build representations of simple types.
The restriction to simple types is made more explicit with the
Representable type class. In effect Representable is the closed
kind of simple types.

A key function that we can define against values of type Rep is
the conditional cast operator, which has type:

cast :: Rep a → Rep b → Maybe (∀f. f a → f b)

We omit the implementation of this function to save space. The
basic implementation idea is given by Weirich [2004].

4.3 Simply-typed λ-calculus, wisely
The type class for simply-typed lambda terms is just like the naive
one we gave above, except that the constructors are now augmented
with type representations.

class TypedLambda exp where

tlam :: (Representable a, Representable b) ⇒

(exp a → exp b) → exp (a → b)
tapp :: (Representable a, Representable b) ⇒

exp (a → b) → exp a → exp b

type THoas a = ∀exp. TypedLambda exp ⇒ exp a

Although the Representable type class restricts THoas terms
to simple types, we can still assign a THoas term a polymorphic
type.

example4 :: (Representable a, Representable b) ⇒
THoas ((a → b) → a → b)

example4 = tlam (λx → tlam (λy → x ‘tapp‘ y))

Of course, this polymorphism is only at the meta level; we are in
fact defining a family of typing derivations of simply-typed terms.
We can instantiate example4 many times with different simple
types for a and b. However, if we wish to unembed it (using
the function toTTerm that we define below) then we must pick a
specific type by supplying an explicit type annotation.

example5 =
toTTerm (example4 :: THoas ((Bool→Bool)→Bool→Bool))

Sometimes the compiler will not be able to infer the types that
we need in terms. This happens when a subterm contains a type that
does not contribute to the top-level type of the term. These are also
the situations in which exotically typed terms arise. For example,
the declaration

example6 :: (Representable a) ⇒ THoas (a → a)
example6 = tlam (λx → tlam (λy → y))

‘tapp‘ tlam (λz→ z)

causes GHC to complain that there is an ambiguous type variable
arising from the third use of tlam. We must fix the type of z to some
concrete simple type in order for this to be a proper representation.
It is possible to do this by using type ascriptions at the Haskell
level, but it is simpler to do so by defining a combinator that takes
an explicit type representation as an argument:

tlam’ ::
(Representable a, Representable b, TypedLambda exp) ⇒

Rep a → (exp a → exp b) → exp (a → b)
tlam’ _ = tlam

The term can now be accepted by the Haskell type checker by fixing
the embedded language type of z:

example7 :: (Representable a) ⇒ THoas (a → a)
example7 = tlam (λx → tlam (λy → y))

‘tapp‘ (tlam’ Bool (λz → z))

Defining an evaluator for these terms is now straightforward.
We can simply interpret each embedded language type by its host
language counterpart:

newtype TEval a = TEval { unTEval :: a }

The instance of TypedLambda for TEval is straightforward:

instance TypedLambda TEval where

tlam f = TEval (unTEval ◦ f ◦ TEval)
TEval f ‘tapp‘ TEval a = TEval (f a)

teval :: THoas a → a
teval t = unTEval t

We note that the HOAS representation is usually very convenient
for defining evaluators. In particular, this representation frees us
from keeping track of environments. Also, note that exotically
typed terms do not prevent us from writing an evaluator. If eval-
uation is all one wants to do with embedded terms, then restricting
terms to a subset of types is not required.

4.4 Translating to de Bruijn and back
Where we used the natural numbers GADT to record the depth
of a context in the representation of well-formed de Bruijn terms,
we now need to include the list of types of the variables in that
context. At the type level, we use the unit type to represent the
empty context, and pair types to represent a context extended by an
additional type. At the term level, we maintain a list of (implicit)
type representations:

data Ctx :: ? → ? where

CtxZ :: Ctx ()
CtxS :: Representable a ⇒ Ctx ctx → Ctx (a, ctx)

The simply-typed analogue of the Fin GADT is the GADT
Index. At the type level this encodes a pair of a type list and
the type of a distinguished element in that list; at the term level
it encodes the index of that element.

data Index :: ? → ? → ? where

IndexZ :: Index (a, ctx) a
IndexS :: Index ctx a → Index (b, ctx) a

The type constructor TTerm for simply-typed de Bruijn terms
takes two parameters: the first is a type list encoding the types of
the free variables, and the second is the type of the term itself.

data TTerm :: ? → ? → ? where

TVar :: Representable a ⇒ Index ctx a → TTerm ctx a
TLam :: (Representable a, Representable b) ⇒

TTerm (a, ctx) b → TTerm ctx (a → b)
TApp :: (Representable a, Representable b) ⇒

TTerm ctx (a→b) → TTerm ctx a → TTerm ctx b

The translation to de Bruijn terms is similar to that for well-
formed untyped terms. We again give the basic fold over the HOAS
term representation as an instance of the TypedLambda class:

newtype TDB a =
TDB { unTDB :: ∀ctx. Ctx ctx → TTerm ctx a }

instance TypedLambda TDB where

tlam (f::TDB a → TDB b) =
TDB$ λi→ let v = λj → TVar (tshift j (CtxS i))

in TLam (unTDB (f (TDB v)) (CtxS i))
(TDB x) ‘tapp‘ (TDB y) = TDB$ λi → TApp (x i) (y i)

The key difference is in the replacement of the shift function
that computes the de Bruijn index for the bound variable by the
type-aware version tshift. To explain the tshift function, we
re-examine the proof that this fold always produces well-formed
de Bruijn terms. In the untyped case, the proof relies on Kripke
relations indexed by natural numbers, where the natural number
records the depth of the context. Now that we also have types
to worry about, we use relations indexed by lists of embedded
language types, ordered by the standard prefix ordering; we define
RΓ
σ(t) ⇔ ∀Γ′ ≥ Γ.Γ′ ` (t Γ′) : σ, where Γ ` t : σ is the typing

judgement of the simply-typed λ-calculus.
In the case for tlam, we again have two contexts i and j, where

i is the context surrounding the λ-abstraction, and j is the con-
text surrounding the bound variable occurence. By a parametricity
argument, and the way in which we have defined our Kripke re-
lation, we know that (a, i) will always be a prefix of j, and so
we obtain a well-formed de Bruijn index by computing the differ-
ence between the depths of the contexts. We implement this by the
following functions:

len :: Ctx n → Int
len CtxZ = 0
len (CtxS ctx) = 1 + len ctx

tshift’ :: Int → Ctx j → Ctx (a, i) → Index j a

tshift’ _ CtxZ _ =⊥
tshift’ 0 (CtxS _) (CtxS _) =

fromJust (cast rep rep) IndexZ
tshift’ n (CtxS c1) c2 =

IndexS (tshift’ (n-1) c1 c2)

tshift :: Ctx j → Ctx (a, i) → Index j a
tshift c1 c2 = tshift’ (len c1 - len c2) c1 c2

As with the untyped case, we have had to feed the Haskell type
checker with bottoms to represent cases that can never occur.
Firstly, the case when j is shorter than (a,i) can never happen,
as with the untyped version. Secondly, we use a well-typed cast to
show that the type a does occur in j at the point we think it should.
Given that we know the cast will succeed, it would likely be more
efficient to simply replace the cast with a call to unsafeCoerce.
We chose not to here because we wanted to see how far we could
push the type system.

Were we to use the representation given by the type THoas0,
which allows exotically typed terms, it would still be possible to
write a conversion to de Bruijn representation, but it would be nec-
essary to replace the use of cast in tshift’ with unsafeCoerce,
since we do not have any type representations to check. Also,
the de Bruijn representation would not be able to contain any
Representable typeclass constraints, meaning that we could not
write intensional analyses that depend on the types of embedded-
language terms.

In order to be able to define the type of open simply-typed
HOAS we need to define a GADT for environments.

data TEnv :: (? → ?) → ? → ? where

TEmpty :: TEnv exp ()
TExtend :: TEnv exp ctx → exp a → TEnv exp (a, ctx)

lookT :: TEnv exp ctx → Index ctx a → exp a
lookT (TExtend _ v) IndexZ = v
lookT (TExtend env _) (IndexS n) = lookT env n

Now we can define a type for open simply-typed HOAS terms.

type THoas’ ctx a = ∀(exp :: ? → ?).
TypedLambda exp ⇒ TEnv exp ctx → exp a

The translations between HOAS and de Bruijn representations and
vice-versa fall out naturally.

toTHoas’ :: TTerm ctx a → THoas’ ctx a
toTHoas’ (TVar n) = λenv → lookT env n
toTHoas’ (TLam t) =
λenv → tlam (λx → toTHoas’ t (TExtend env x))

toTHoas’ (TApp f p) =
λenv → toTHoas’ f env ‘tapp‘ toTHoas’ p env

toTHoas :: TTerm () a → THoas a
toTHoas t = toTHoas’ t TEmpty

toTTerm’ :: Ctx ctx → THoas’ ctx a → TTerm ctx a
toTTerm’ ctx v = unTDB w ctx
where w = v (makeEnv ctx)

makeEnv :: Ctx ctx → TEnv TDB ctx
makeEnv CtxZ = TEmpty
makeEnv (CtxS j) =

TExtend (makeEnv j)
(TDB (λi → TVar (tshift i (CtxS j))))

toTTerm :: THoas a → TTerm () a
toTTerm v = unTDB v CtxZ

5. Examples
We give two examples where unembedding plays an essential role.

5.1 Mobile code
Our first example involves sending programs of an embedded lan-
guage over a network to be executed at some remote location. In
order to make the programs a little more useful than pure lambda
terms we extend the embedding of typed λ calculus given in Sec-
tion 4.3 to include constructors and destructors for booleans. We
define the TypedBooleans class independently of TypedLambda,
and define a new class, Mobile, for the language formed by com-
bining the two.

class TypedBooleans exp where

ttrue :: exp Bool
tfalse :: exp Bool
tcond ::

Representable a ⇒
exp Bool → exp a → exp a → exp a

class (TypedBooleans exp, TypedLambda exp) ⇒ Mobile exp

Next, we define concrete representations for types and terms, to-
gether with automatically-derived parsers and printers.

data URep = UBool | URep
u→ URep deriving (Show, Read)

data MTerm = MVar Int
| MLam URep MTerm | MApp MTerm MTerm
| MTrue | MFalse | MCond MTerm MTerm MTerm

deriving (Show, Read)

Section 2 showed how to unembed untyped HOAS terms to
untyped de Bruijn terms; obtaining untyped de Bruijn terms from
typed terms is broadly similar. The type MDB is analogous to DB
(Section 2.3), but the phantom parameter discards type information.

newtype MDB a = MDB { unMDB :: Int → MTerm }

Defining instances of Mobile and its superclasses for MDB gives a
translation to MTerm; composing this translation with show gives
us a marshalling function for Mobile. (In an actual program it
would, of course, be preferable to use a more efficient marshalling
scheme.) We omit the details of the translation, which follow the
pattern seen in Section 2.3.

marshal :: (∀exp. Mobile exp ⇒ exp a) → String
marshal t = show (unMDB t 0)

Erasing types during marshalling is comparatively straightfor-
ward; reconstructing types is more involved. We begin with a def-
inition, Typed, that pairs a term with a representation of its type,
hiding the type variable that carries the type information.

data Typed :: (? → ?) → ? where

(:::) :: Representable a ⇒ exp a → Rep a → Typed exp

We use Typed to write a function that re-embeds MTerm values as
typed HOAS terms. The function toHoas takes an untyped term
and an environment of typed terms for the free variables; it returns
a typed term. Since type checking may fail — the term may refer to
variables not present in the environment, or may be untypeable —
the function is partial, as indicated by the Maybe in the return type.

toHoas :: (TypedLambda exp, TypedBooleans exp) ⇒
MTerm → [Typed exp] → Maybe (Typed exp)

We omit the implementation, but the general techniques for re-
constructing typed terms from untyped representations are well-
known: see, for example, work by Baars and Swierstra [2002].
Composing toHoas with the parser for MTerm gives an unmar-
shalling function for closed terms.

unmarshal :: String →
(∀exp. Mobile exp ⇒ Maybe (Typed exp))

unmarshal s = toHoas (read s) []

Combined with an evaluator for terms as defined in Section 4.3,
marshal and unmarshal allow us to construct HOAS terms, send
them over a network, and evaluate them on another host.

5.2 Nested relational calculus
Our second example is based on the Nested Relational Calculus
(NRC) [Tannen et al. 1992]. NRC is a query language based on
comprehensions, with terms for functions, pairs, unit, booleans and
sets. As the name suggests, NRC permits nested queries, unlike
SQL, which restricts the type of queries to a collection of records
of base type. However, there are translations from suitably-typed
NRC terms to flat queries [Cooper 2009, Grust et al. 2009]. The
specification of these translations involves intensional analysis; it
is therefore easier to define them on a concrete representation of
terms than as a mapping from higher-order abstract syntax.

Once again we can reuse the embeddings presented in earlier
sections. We combine the TypedLambda and TypedBoolean lan-
guages of Sections 4.3 and 5.1 with embeddings of term formers
for pairs, units and sets; these are straightforward, so we give only
the case for sets as an example. There are four term formers, for
empty and singleton sets, set union, and comprehension; this last
uses Haskell’s binding to bind the variable, in standard HOAS style.

class TypedSets exp where

empty :: Representable a ⇒
exp (Set a)

single :: Representable a ⇒
exp a → exp (Set a)

union :: Representable a ⇒
exp (Set a) → exp (Set a) → exp (Set a)

for :: (Representable a, Representable b) ⇒
exp (Set a) → (exp a→exp (Set b)) → exp (Set b)

class (TypedLambda exp, TypedBooleans exp,
TypedUnit exp, TypedPairs exp,

TypedSets exp) ⇒ NRC exp

We must also extend the Rep datatype and Representable
class to include the new types.

data Rep :: ? → ? where

. . .
Set :: Representable a ⇒ Rep a → Rep (Set a)

instance Representable a ⇒ Representable (Set a) where

rep = Set rep

Using the techniques presented in earlier sections, we can unembed
terms of NRC to obtain a concrete representation on which trans-
lations to a flat calculus can be defined. The term formers of the
language ensure that embedded terms are correctly typed; we can
also assign a type to the translation function that restricts its input
to queries that can be translated to a flat query language such as
SQL. Given these guarantees, we are free to dispense with types
in the concrete representation used internally, making it easier to
write the translation of interest.

The combination of a carefully-typed external interface and an
untyped core is used in a number of embedded languages; for ex-
ample, by Leijen and Meijer [1999] for SQL queries and by Lindley
[2008] for statically-typed XHTML contexts. Our presentation here
has the additional property that the external language (based on
HOAS) is more convenient for the user than the internal language
(de Bruijn terms), while the internal language is more convenient
for analysis.

6. Related work
The idea of encoding syntax with binding using the host language’s
binding constructs goes back to Church [1940]. As far as we are

aware Coquand and Huet [1985] were the first to remark that
the syntax of untyped lambda-calculus can be encoded using the
universally quantified type:

∀α.((α→ α)→ α)→ (α→ α→ α)→ α

Pfenning and Elliott [1988] proposed higher-order abstract syntax
as a general means for encoding name binding using the meta
language. Washburn and Weirich [2008] also present essentially
this type and show how functions can be defined over the syntax
by means of folds.

Programming with explicit folds is awkward. Carette et al.
[2009] give a comprehensive account of how to achieve the same
effect using Haskell type classes or ML modules. Our work is in
the same vein. Where Carette et al concentrate on implementing
different compositional interpretations of HOAS our main focus is
on unembedding to a first-order syntax in order to allow intensional
analyses. Hofer et al. [2008] apply Carette et al’s techniques in the
context of Scala. As they remark, many standard optimisations one
wants to perform in a compiler are difficult to define composition-
ally. Our unembedding provides a solution to this problem. Hofer
et al also discuss composing languages in a similar way to us. Their
setting is somewhat complicated by the object-oriented features of
Scala.

Meijer and Hutton [1995] and Fegaras and Sheard [1996] show
how to define folds or catamorphisms for data types with embed-
ded functions. As we discussed in Section 2.1, the data type that
Fegaras and Sheard use to represent terms does not use parametric-
ity to disallow exotic terms, and so does not allow an unembedding
function to be defined. Fegaras and Sheard also use HOAS to rep-
resent cyclic data structures and graphs, essentially by encoding
then using explicit sharing via a let construct and recursion using
a fix construct. Ghani et al. [2006] represent cyclic data structures
using a de Bruijn representation in nested datatypes. Our unemeb-
dding process gives a translation from Fegaras and Sheard’s HOAS
representation to the Ghani et al.’s de Bruijn representation.

Pientka [2008] introduces a sophisticated type system that pro-
vides direct support for recursion over HOAS datatypes. In con-
trast, our approach supports recursion over HOAS datatypes within
the standard Haskell type system. There is a similarity between our
representation of open simply-typed terms using HOAS and hers,
but we must leave a detailed comparison to future work.

Elliott et al. [2003] give an in-depth account of how to compile
domain-specific embedded languages, but they do not treat HOAS.

Rhiger [2003] details an interpretation of simply-typed HOAS
as an inductive datatype. His work differs from ours in that he only
considers a single interpretation and he relies on a single global
abstract type to disallow exotic terms and to ensure that the target
terms are well-typed.

In their work on implementing type-preserving compilers in
Haskell, Guillemette and Monnier [2007, 2008] mention conver-
sion of HOAS to a de Bruijn representation. Their implementation
sounds similar to ours, but they do not spell out the details. They do
not mention the need to restrict the type representations in the em-
bedded language. Their work does provide a good example of an
intensional analysis—closure conversion—that would be difficult
to express as a fold over the HOAS representation.

Pfenning and Lee [1991] examine the question of embedding a
polymorphic language within Fω , with a view to defining a well-
typed evaluator function. They use a nearly-HOAS representation
with parametricity, where λ-abstraction case is represented by a
constructor with type ∀αβ.(α→ exp β)→ exp (α→ β). Hence
they do not disallow exotic terms. They are slightly more ambitious
in that they attempt to embed a polymorphic language, something
that we have not considered here. Guillemette and Monnier [2008]
embed a polymorphic language using HOAS, but they resort to

using de Bruijn indices to represent type variables, which makes
the embedding less usable.

Oliveira et al. [2006] investigate modularity in the context of
generic programming. Our use of type classes to give modular ex-
tensions of embedded DSLs is essentially the same as their encod-
ing of extensible generic functions.

Our unembedding translations are reminiscent of normalisation
by evaluation (NBE) [Berger et al. 1998]. The idea of NBE is to
obtain normal forms by first interpreting terms in some model and
then defining a reify function mapping values in the model back to
normal forms. The key is to choose a model that includes enough
syntactic hooks in order to be able to define the reify function. In
fact our unembeddings can be seen as degenerate cases of NBE.
HOAS is a model of α-conversion and the reify function is given
by the DB instance of the UntypedLambda type class.

Acknowledgements Atkey is supported by grant EP/G006032/1
from EPSRC. We would like to thank the anonymous reviewers for
helpful comments, and Bruno Oliveira for pointing us to related
work.

References
Martı́n Abadi, Luca Cardelli, and Pierre-Louis Curien. Formal parametric

polymorphism. In POPL, pages 157–170, 1993.
Andrew W. Appel and Trevor Jim. Shrinking lambda expressions in linear

time. Journal of Functional Programming, 7(5):515–540, 1997.
Robert Atkey. Syntax for free: Representing syntax with binding using

parametricity. In Typed Lambda Calculi and Applications (TLCA), vol-
ume 5608 of Lecture Notes in Computer Science, pages 35–49. Springer,
2009a.

Robert Atkey. Parameterised notions of computation. Journal of Functional
Programming, 19(3 & 4):355–376, 2009b.

Lennart Augustsson, Howard Mansell, and Ganesh Sittampalam. Paradise:
a two-stage dsl embedded in Haskell. In ICFP, pages 225–228, 2008.

Arthur I. Baars and S. Doaitse Swierstra. Typing dynamic typing. In ICFP
’02, pages 157–166, New York, NY, USA, 2002. ACM.

Nick Benton, Andrew Kennedy, Sam Lindley, and Claudio V. Russo.
Shrinking reductions in SML.NET. In IFL, pages 142–159, 2004.

Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Normalisation
by evaluation. In Prospects for Hardware Foundations, 1998.

Jacques Carette, Oleg Kiselyov, and Chung chieh Shan. Finally tagless,
partially evaluated. Journal of Functional Programming, 2009. To
appear.

James Cheney and Ralf Hinze. A lightweight implementation of generics
and dynamics. In Haskell ’02, New York, NY, USA, 2002. ACM.

Alonso Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

Ezra Cooper. The script-writer’s dream: How to write great sql in your own
language, and be sure it will succeed. In DBPL, 2009. To appear.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. The essence
of form abstraction. In APLAS, December 2008.

Thierry Coquand and Gérard P. Huet. Constructions: A higher order proof
system for mechanizing mathematics. In European Conference on Com-
puter Algebra (1), pages 151–184, 1985.

Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dum-
mies: A tool for automatic formula manipulation, with application to the
church-rosser theorem. Indagationes Mathematicae, 1972.

Conal Elliott, Sigbjorn Finne, and Oege de Moor. Compiling embedded
languages. Journal of Functional Programming, 13(3):455–481, 2003.

Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms over
datatypes with embedded functions (or, programs from outer space). In
POPL, pages 284–294, 1996.

N. Ghani, M. Hamana, T. Uustalu, and V. Vene. Representing cyclic
structures as nested datatypes. In H. Nilsson, editor, Proc. of 7th Symp.
on Trends in Functional Programming, TFP 2006 (Nottingham, Apr.
2006), 2006.

Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber. Ferry:
Database-supported program execution. In SIGMOD 2009, Providence,
Rhode Island, June 2009. To appear.

Louis-Julien Guillemette and Stefan Monnier. A type-preserving closure
conversion in Haskell. In Haskell, pages 83–92, 2007.

Louis-Julien Guillemette and Stefan Monnier. A type-preserving compiler
in Haskell. In ICFP, pages 75–86, 2008.

Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors.
Polymorphic embedding of dsls. In GPCE, pages 137–148, 2008.

Andrew Kennedy. Compiling with continuations, continued. In ICFP,
2007.

Marco Kuhlmann. Functional metapost for latex, 2001.
Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combina-

tors for the real world. Technical Report UU-CS-2001-27, Department
of Computer Science, Universiteit Utrecht, 2001.

Daan Leijen and Erik Meijer. Domain specific embedded compilers. In
DSL’99, pages 109–122, Austin, Texas, October 1999.

Daniel R. Licata, Noam Zeilberger, and Robert Harper. Focusing on Bind-
ing and Computation. In LICS, pages 241–252, 2008.

Sam Lindley. Many holes in Hindley-Milner. In ML ’08, 2008.
The Coq development team. The Coq proof assistant reference manual.

LogiCal Project, 2009. URL http://coq.inria.fr. Version 8.2.
Conor McBride and Ross Paterson. Applicative programming with effects.

Journal of Functional Programming, 18(1), 2008.
Erik Meijer and Graham Hutton. Bananas in space: Extending fold and

unfold to exponential types. In FPCA, pages 324–333, 1995.
Bruno Oliveira, Ralf Hinze, and Andres Löh. Extensible and modular

generics for the masses. In Trends in Functional Programming, pages
199–216, 2006.

Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing
contracts: an adventure in financial engineering (functional pearl). In
ICFP ’00, pages 280–292, New York, NY, USA, 2000. ACM.

Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In PLDI,
pages 199–208, 1988.

Frank Pfenning and Peter Lee. Metacircularity in the polymorphic lambda-
calculus. Theor. Comput. Sci., 89(1):137–159, 1991.

Brigitte Pientka. A type-theoretic foundation for programming with higher-
order abstract syntax and first-class substitutions. In POPL, pages 371–
382, 2008.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
Gordon D. Plotkin and Martı́n Abadi. A logic for parametric polymorphism.

In Marc Bezem and Jan Friso Groote, editors, TLCA, volume 664 of
Lecture Notes in Computer Science, pages 361–375. Springer, 1993.
ISBN 3-540-56517-5.

John C Reynolds. Towards a theory of type structure. In Programming
Symposium, Proceedings Colloque sur la Programmation, pages 408–
423, London, UK, 1974. Springer-Verlag.

Morten Rhiger. A foundation for embedded languages. ACM Trans.
Program. Lang. Syst., 25(3):291–315, 2003.

Tim Sheard, James Hook, and Nathan Linger. GADTs + extensible kind
system = dependent programming. Technical report, Portland State
University, 2005.

Val Tannen, Peter Buneman, and Limsoon Wong. Naturally embedded
query languages. In ICDT ’92, pages 140–154. Springer-Verlag, 1992.

The Agda2 development team. The agda2 website. http://wiki.
portal.chalmers.se/agda/, 2009.

Peter Thiemann. WASH/CGI: Server-side web scripting with sessions and
typed, compositional forms. In PADL, pages 192–208, 2002.

Geoffrey Washburn and Stephanie Weirich. Boxes go bananas: Encoding
higher-order abstract syntax with parametric polymorphism. Journal of
Functional Programming, 18(1):87–140, 2008.

Stephanie Weirich. Type-safe cast. Journal of Functional Programming, 14
(6):681–695, 2004.

http://coq.inria.fr
http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/

