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ABSTRACT
Nested relational query languages have been explored extensively,
and underlie industrial language-integrated query systems such as
Microsoft’s LINQ. However, relational databases do not natively
support nested collections in query results. This can lead to ma-
jor performance problems: if programmers write queries that yield
nested results, then such systems typically either fail or generate
a large number of queries. We present a new approach to query
shredding, which converts a query returning nested data to a fixed
number of SQL queries. Our approach, in contrast to prior work,
handles multiset semantics, and generates an idiomatic SQL:1999
query directly from a normal form for nested queries. We provide
a detailed description of our translation and present experiments
showing that it offers comparable or better performance than a re-
cent alternative approach on a range of examples.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing

Keywords
language-integrated query; querying nested collections

1. INTRODUCTION
Databases are one of the most important applications of declar-

ative programming techniques. However, relational databases only
support queries against flat tables, while programming languages
typically provide complex data structures that allow arbitrary com-
binations of types including nesting of collections (e.g. sets of
sets). Motivated by this so-called impedance mismatch, and in-
spired by insights into language design based on monadic com-
prehensions [28], database researchers introduced nested relational
query languages [22, 3, 4] as a generalisation of flat relational
queries to allow nesting collection types inside records or other
types. Several recent language designs, such as XQuery [21] and
PigLatin [20], have further extended these ideas, and they have
been particularly influential on language-integrated querying sys-
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tems such as Kleisli [30], Microsoft’s LINQ in C# and F# [19, 24,
5], Links [8, 18], and Ferry [10].

This paper considers the problem of translating nested queries
over nested data to flat queries over a flat representation of nested
data, or query shredding for short. Our motivation is to support
a free combination of the features of nested relational query lan-
guages with those of high-level programming languages, particu-
larly systems such as Links, Ferry, and LINQ. All three of these
systems support queries over nested data structures (e.g. records
containing nested sets, multisets/bags, or lists) in principle; how-
ever, only Ferry supports them in practice. Links and LINQ cur-
rently either reject such queries at run-time or execute them ineffi-
ciently in-memory by loading unnecessarily large amounts of data
or issuing large numbers of queries (sometimes called query storms
or avalanches [11] or the N + 1 query problem). To construct
nested data structures while avoiding this performance penalty, pro-
grammers must currently write flat queries (e.g. loading in a super-
set of the needed source data) and convert the results to nested data
structures. Manually reconstructing nested query results is tricky
and hard to maintain; it may also mask optimisation opportunities.

In the Ferry system, Grust et al. [10, 11] have implemented shred-
ding for nested list queries by adapting an XQuery-to-SQL trans-
lation called loop-lifting [14]. Loop-lifting produces queries that
make heavy use of advanced On-Line Analytic Processing (OLAP)
features of SQL:1999, such as ROW_NUMBER and DENSE_RANK,
and to optimise these queries Ferry relies on a SQL:1999 query
optimiser called Pathfinder [13].

Van den Bussche [26] proved expressiveness results showing
that it is possible in principle to evaluate nested queries over
sets via multiple flat queries. To strengthen the result, Van den
Bussche’s simulation eschews value invention mechanisms such as
SQL:1999’s ROW_NUMBER. The downside, however, is that the flat
queries can produce results that are quadratically larger than needed
to represent sets and may not preserve bag semantics.

Query shredding is related to the well-studied query unnesting
problem [16, 9]. However, most prior work on unnesting only con-
siders SQL queries that contain subqueries in WHERE clauses, not
queries returning nested results; the main exception is Fegaras and
Maier’s work on query unnesting in a complex object calculus [9].

In this paper, we introduce a new approach to query shredding
for nested multiset queries (a case not handled by prior work).
Our work is formulated in terms of the Links language, but should
be applicable to other language-integrated query systems, such as
Ferry and LINQ, or to other complex-object query languages [9].
Figure 1 illustrates the behaviour of Links, Ferry and our approach.

We decompose the translation from nested to flat queries into
a series of simpler translations. We leverage prior work on nor-
malisation that translates a higher-order query to a normal form in
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Figure 1: (a) Default Links behaviour (flat queries) (b) Ferry (nested list queries) (c) Our approach (nested bag queries)

which higher-order features have been eliminated [29, 7, 9]. Our
algorithm operates on normal forms. We review normalisation in
Section 2, and give a running example of our approach in Section 3.

Sections 4–7 present the remaining phases of our approach, which
are new. The shredding phase translates a single, nested query to a
number of flat queries. These queries are organised in a shredded
package, which is essentially a type expression whose collection
type constructors are annotated with queries. The different queries
are linked by indexes, that is, keys and foreign keys. The shred-
ding translation is presented in Section 4. Shredding leverages the
normalisation phase in that we can define translations on types and
terms independently. Section 5 shows how to run shredded queries
and stitch the results back together to form nested values.

The let-insertion phase implements a flat indexing scheme us-
ing a let-binding construct and a row-numbering operation. Let-
insertion (described in Section 6) is conceptually straightforward,
but provides a vital link to proper SQL by providing an implemen-
tation of abstract indexes. The final stage is to translate to SQL
(Section 7) by flattening records, translating let-binding to SQL’s
WITH, and translating row-numbering to SQL’s ROW_NUMBER.

We have implemented and experimentally evaluated our approach
(Section 8) in comparison with Ulrich’s implementation of loop-
lifting in Links [25]. Our approach typically performs as well or
better than loop-lifting, and can be significantly faster.

Our contribution over prior work can be summarised as follows.
Fegaras and Maier [9] show how to unnest complex object queries
including lists, sets, and bags, but target a nonstandard nested re-
lational algebra, whereas we target standard SQL. Van den Buss-
che’s simulation [26] translates nested set queries to several rela-
tional queries but was used to prove a theoretical result and was not
intended as a practical implementation technique, nor has it been
implemented and evaluated. Ferry [10, 11] translates nested list
queries to several SQL:1999 queries and then tries to simplify the
resulting queries using Pathfinder. Sometimes, however, this pro-
duces queries with cross-products inside OLAP operations such as
ROW_NUMBER, which Pathfinder cannot simplify. In contrast, we
delay introducing OLAP operations until the last stage, and our ex-
periments show how this leads to much better performance on some
queries. Finally, we handle nested multisets, not sets or lists.

Additional details, proofs of correctness, and comparison with
related work are available in a companion technical report [6].

2. BACKGROUND
We use metavariables x, y, . . . , f, g for variables, and c, d, . . .

for constants and primitive operations. We also use letters t, t′, . . .
for table names, `, `′, `i, . . . for record labels and a, b, . . . for tags.

We write M [x := N ] for capture-avoiding substitution of N for
x in M . We write ~x for a vector x1, . . . , xn. Moreover, we extend
vector notation pointwise to other constructs, writing, for example,
〈
−−−−→
` = M〉 for 〈`1 = M1, . . . , `n = Mn〉.

We write: square brackets [−] for the meta level list constructor;
w :: ~v for adding the element w onto the front of the list ~v; ~v ++ ~w
for the result of appending the list ~w onto the end of the list ~v; and

N JxKρ = ρ(x)
N Jc(X1, . . . , Xn)Kρ = JcK(N JX1Kρ, . . . ,N JXnKρ)

N Jλx.MKρ = λv.N JMKρ[x 7→v]
N JM NKρ =N JMKρ(N JNKρ)

N J〈`i = Mi〉ni=1Kρ = 〈`i = N JMiKρ〉ni=1
N JM.`Kρ =N JMKρ.`

N Jif L thenM elseNKρ =

{
N JMKρ, ifN JLKρ = true
N JNKρ, ifN JLKρ = false

N JreturnMKρ = [N JMKρ]
N J∅Kρ = [ ]

N JM ]NKρ =N JMKρ ++N JNKρ
N Jfor (x←M)NKρ = concat [N JNKρ[x 7→v] | v ← N JMKρ]

N JemptyMKρ =

{
true, ifN JMKρ = [ ]
false, ifN JMKρ 6= [ ]

N Jtable tKρ = JtK

Figure 2: Semantics of λNRC

concat for the function that concatenates a list of lists. We also
make use of the following functions:

init [xi]
n
i=1 = [xi]

n−1
i=1 last [xi]

n
i=1 = xn

enum([v1, . . . , vm]) = [〈1, v1〉, . . . 〈m, vm〉]

In the meta language we make extensive use of comprehensions,
primarily list comprehensions. For instance, [v | x ← xs, y ←
ys, p], returns a copy of v for each pair 〈x, y〉 of elements of xs
and ys such that the predicate p holds. We write [vi]

n
i=1 as short-

hand for [vi | 1 ≤ i ≤ n] and similarly, e.g., 〈`i = Mi〉ni=1 for
〈`1 = M1, . . . , `n = Mn〉.

2.1 Nested relational calculus
We take the higher-order, nested relational calculus (evaluated

over bags) as our starting point. We call this λNRC ; this is es-
sentially a core language for the query components of Links, Ferry,
and LINQ. The types of λNRC include base types (integers, strings,
booleans), record types 〈

−−→
` : A〉, bag types BagA, and function

types A→ B.

Types A,B ::= O | 〈
−−→
` : A〉 | BagA | A→ B

Base types O ::= Int | Bool | String

We say that a type is nested if it contains no function types and flat
if it contains only base and record types.

The terms of λNRC include λ-abstractions, applications, and the
standard terms of nested relational calculus.

Terms M,N ::= x | c( ~M) | table t | ifM thenN elseN ′

| λx.M |M N | 〈
−−−−→
` = M〉 |M.` | emptyM

| returnM | ∅ |M ]N | for (x←M)N

We assume that the constants and primitive functions include
boolean values with negation and conjunction, and integer values
with standard arithmetic operations and equality tests. We assume
special labels #1,#2, . . . and encode tuple types 〈A1, . . . , An〉



as record types 〈#1 : A1, . . . ,#n : An〉, and similarly tuple terms
〈M1, . . . ,Mn〉 as record terms 〈#1 = M1, . . . ,#n = Mn〉. We
assume fixed signatures Σ(t) and Σ(c) for tables and con-
stants. The tables are constrained to have flat relation type
(Bag 〈`1 : O1, . . . , `n : On〉), and the constants must be of base
type or first order n-ary functions (〈O1, . . . , On〉 → O).

Most language constructs are standard. The ∅ expression builds
an empty bag, returnM constructs a singleton, and M ]N builds
the bag union of two collections. The for (x←M) N comprehen-
sion construct iterates over a bag obtained by evaluating M , binds
x to each element, evaluates N to another bag for each such bind-
ing, and takes the union of the results. The expression emptyM
evaluates to true if M evaluates to an empty bag, false otherwise.
λNRC employs a standard type system similar to that presented

in other work [30, 18, 5]. We will also employ several typed in-
termediate languages and translations mapping λNRC to SQL. All
of these (straightforward) type systems are omitted due to space
limits; they will be available in the full version of this paper.

Semantics. We give a denotational semantics in terms of lists.
Though we wish to preserve bag semantics, we interpret object-
level bags as meta-level lists. For meta-level values v and v′, we
consider v and v′ equivalent as multisets if they are equal up to
permutation of list elements. We use lists mainly so that we can
talk about order-sensitive operations such as row_number.

We interpret base types as integers, booleans and strings, func-
tion types as functions, record types as records, and bag types as
lists. For each table t ∈ dom(Σ), we assume a fixed interpretation
JtK of t as a list of records of type Σ(t). In SQL, tables do not
have a list semantics by default, but we can impose one by choos-
ing a canonical ordering for the rows of the table. We order by
all of the columns arranged in lexicographic order (assuming linear
orderings on field names and base types).

We assume fixed interpretations JcK for the constants and prim-
itive operations. The semantics of nested relational calculus are
shown in Figure 2. We let ρ range over environments mapping vari-
ables to values, writing ε for the empty environment and ρ[x 7→ v]
for the extension of ρ with x bound to v.

2.2 Query normalisation
In Links, query normalisation is an important part of the execu-

tion model [7, 18]. Links currently supports only queries mapping
flat tables to flat results, or flat–flat queries. When a subexpression
denoting a query is evaluated, the subexpression is first normalised
and then converted to SQL, which is sent to the database for evalua-
tion; the tuples received in response are then converted into a Links
value and normal execution resumes (see Figure1(a)).

For flat–nested queries that read from flat tables and produce a
nested result value, our normalisation procedure is similar to the
one currently used in Links [18], but we hoist all conditionals into
the nearest enclosing comprehension as where clauses. This is a
minor change; the modified algorithm is given in the full version of
this paper. The resulting normal forms are:

Query terms L ::=
⊎ ~C

Comprehensions C ::= for ( ~GwhereX) returnM
Generators G ::= x← t
Normalised terms M,N ::= X | R | L
Record terms R ::= 〈

−−−−→
` = M〉

Base terms X ::= x.` | c( ~X) | emptyL

Any closed flat–nested query can be converted to an equivalent term
in the above normal form.

JdepartmentsK =

(id) name
1 Product
2 Quality
3 Research
4 Sales

JemployeesK =

(id) dept name salary
1 Product Alex 20000
2 Product Bert 900
3 Research Cora 50000
4 Research Drew 60000
5 Sales Erik 2000000
6 Sales Fred 700
7 Sales Gina 100000

JtasksK =

(id) employee task
1 Alex build
2 Bert build
3 Cora abstract
4 Cora build
5 Cora call
6 Cora dissemble
7 Cora enthuse
8 Drew abstract
9 Drew enthuse

10 Erik call
11 Erik enthuse
12 Fred call
13 Gina call
14 Gina dissemble

JcontactsK =

(id) dept name client
1 Product Pam false
2 Product Pat true
3 Research Rob false
4 Research Roy false
5 Sales Sam false
6 Sales Sid false
7 Sales Sue true

Figure 3: Sample data

THEOREM 1. Given a closed flat–nested query ` M : BagA,
there exists a normalisation function normBagA, mapping eachM
to an equivalent normal form normBagA(M).

The normalisation algorithm and correctness proof are similar to
those in previous papers [7, 18, 5]. The normal forms above can
also be viewed as an SQL-like language allowing relation-valued
attributes (similar to the complex-object calculus of Fegaras and
Maier [9]). Thus, our results can also be used to support nested
query results in an SQL-like query language. In this paper, how-
ever, we focus on the functional core language based on compre-
hensions, as illustrated in the next section.

3. RUNNING EXAMPLE
To motivate and illustrate our work, we present an extended ex-

ample showing how our shredding translation could be used to pro-
vide useful functionality to programmers working in LINQ using
F#, Ferry or Links. We first describe the code the programmer
would actually write and the results the system produces. Through-
out the rest of the paper, we return to this example to illustrate how
the shredding translation works.

Consider a flat database schema Σ for an organisation:

tasks(employee : String, task : String)
employees(dept : String, name : String, salary : Int)
contacts(dept : String, name : String, client : Bool)
departments(name : String)

Each department has a name, a collection of employees, and a col-
lection of external contacts. Each employee has a name, salary and
a collection of tasks. Some contacts are clients. Figure 3 shows
a small instance of this schema. For convenience, we also assume
every table has an integer-valued key id.

In λNRC , queries of the form for . . .where . . . return . . . are na-
tively supported. These are comprehensions as found in XQuery or
functional programming languages, and they generalise idiomatic
SQL SELECT FROM WHERE queries [3]. Unlike SQL, we can use



(nonrecursive) functions to define queries with parameters, or parts
of queries, and freely combine them. For example, the following
functions define useful query patterns over the above schema:

tasksOfEmp e = for (t← tasks)
where (t.employee = e.name)
return t.tsk

contactsOfDept d = for (c← contacts)
where (d.dept = c.dept)
return 〈name = c.name, client = c.client〉

employeesByTask t =
for (e← employees, d← departments)
where (e.name = t.employee ∧ e.dept = d.dept)
return 〈b = e.employee, c = d.dept〉

Nested queries allow free mixing of collection (bag) types with
record or base types. For example, the following query

employeesOfDept d = for (e← employees)
where (d.dept = e.dept)
return 〈name = e.name, salary = e.salary,

tasks = tasksOfEmp e〉

returns a nested result: a collection of employees in a department,
each with an associated collection of tasks. That is, its return type
is Bag 〈name:String , salary:Int , tasks:Bag String〉

Consider the following nested schema for organisations:

Task = String
Employee = 〈name : String, salary : Int , tasks : Bag Task〉

Contact = 〈name : String, client : Bool〉
Department = 〈name : String, employees : Bag Employee,

contacts : Bag Contact〉
Organisation = Bag Department

Using some of the above functions we can write a query Qorg that
maps data in the flat schema Σ to the nested type Organisation , as
follows:

Qorg = for (d← departments)
return (〈name = d.name,

employees = employeesOfDept d,
contacts = contactsOfDept d〉

We can also define and use higher-order functions to build queries,
such as the following:

filter p xs = for (x← xs)where (p(x)) returnx
any xs p = ¬(empty(for (x← xs)where (p(x)) return 〈〉))
all xs p = ¬(any xs (λx.¬(p(x))))
contains xs u = any xs (λx.x = u)

To illustrate the main technical challenges of shredding, we con-
sider a query with two levels of nesting and a union operation.

Suppose we wish to find for each department a collection of peo-
ple of interest, both employees and contacts, along with a list of the
tasks they perform. Specifically, we are interested in those employ-
ees that earn less than a thousand euros and those who earn more
than a million euros, call them outliers, along with those contacts
who are clients. The following code defines poor, rich, outliers, and
clients:

isPoor x = x.salary < 1000
isRich x = x.salary > 1000000
outliers xs = filter (λx.isRich x ∨ isPoor x) xs
clients xs = filter (λx. x.client) xs

We also introduce a convenient higher-order function that uses its
f parameter to initialise the tasks of its elements:

getTasks xs f = for (x← xs) return 〈name = x.name, tasks = f x〉

Using the above operations, the query Q returns each depart-
ment, the outliers and clients associated with that department, and
their tasks. We assign the special task “buy” to clients.

Q(organisation) =
for (x← organisation)
return (〈department = x.name,

people =
getTasks(outliers(x.employees)) (λy. y.tasks)
] getTasks(clients(x.contacts)) (λy. return “buy”)〉)

The result type of Q is:

Result = Bag 〈department : String,
people : Bag 〈name : String, tasks : Bag String〉〉

We can compose Q with Qorg to form a query Q(Qorg) from the
flat data stored in Σ to the nested Result . The normal form of this
composed query, which we call Qcomp , is as follows:

Qcomp = for (x← departments)
return (
〈department = x.name,
people =

(for (y ← employees)where (x.name = y.dept ∧
(y.salary < 1000 ∨ y.salary > 1000000))

return (〈name = y.name,
tasks = for (z ← tasks)

where (z.employee = y.name)
return z.task〉))

] (for (y ← contacts)
where (x.name = y.dept ∧ y.client)
return (〈name = y.name,

tasks = return “buy”〉))〉)

The result of running Qcomp on the data in Figure 3 is:

[〈department = “Product”,
people = [〈name = “Bert”, tasks = [“build”]〉,

〈name = “Pat”, tasks = [“buy”]〉]〉]
〈department = “Research”, people = ∅〉,
〈department = “Quality”, people = ∅〉,
〈department = “Sales”,
people = [〈name = “Erik”, tasks = [“call”, “enthuse”]〉,

〈name = “Fred”, tasks = [“call”]〉,
〈name = “Sue”, tasks = [“buy”]〉]〉]

Now, however, we are faced with a problem: SQL databases
do not directly support nested multisets (or sets). Our shredding
translation, like Van den Bussche’s simulation for sets [26] and
Grust et al.’s for lists [11], can translate a normalised query such
as Qcomp : Result that maps flat input Σ to nested output Result
to a fixed number of flat queries q1 : Result1, . . . , qn : Resultn
whose results can be combined via a stitching operation Qstitch :
Result1 × · · · × Resultn → Result . Thus, we can simulate the
query Qcomp by running q1, . . . , qn remotely on the database and
stitching the results together usingQstitch . The number of interme-
diate queries n is the nesting degree of Result , that is, the number
of collection type constructors in the result type. For example, the
nesting degree of Bag 〈A : Bag Int , B : Bag String〉 is 3. The
nesting degree of the type Result is also 3, which means Q can be
shredded into three flat queries.

The basic idea is straightforward. Whenever a nested bag ap-
pears in the output of a query, we generate an index that uniquely
identifies the current context. Then a separate query produces the
contents of the nested bag, where each element is paired up with its
parent index. Each inner level of nesting requires a further query.

We will illustrate by showing the results of the three queries and
how they can be combined to reconstitute the desired nested result.



The outer query q1 contains one entry for each department, with an
index 〈a, id〉 in place of each nested collection:

r1 = [〈department = “Product”, people = 〈a, 1〉〉,
〈department = “Quality”, people = 〈a, 2〉〉,
〈department = “Research”, people = 〈a, 3〉〉,
〈department = “Sales”, people = 〈a, 4〉〉]

The second query q2 generates the data needed for the people
collections:

r2 = [〈〈a, 1〉, 〈name = “Bert”, tasks = 〈b, 1, 2〉〉〉,
〈〈a, 4〉, 〈name = “Erik”, tasks = 〈b, 4, 5〉〉〉,
〈〈a, 4〉, 〈name = “Fred”, tasks = 〈b, 4, 6〉〉〉,
〈〈a, 1〉, 〈name = “Pat”, tasks = 〈d, 1, 2〉〉〉,
〈〈a, 4〉, 〈name = “Sue”, tasks = 〈d, 4, 7〉〉〉]

The idea is to ensure that we can stitch the results of q1 together
with the results of q2 by joining the inner indexes of q1 (bound to
the people field of each result) with the outer indexes of q2 (bound
to the first component of each result). In both cases the static com-
ponents of these indexes are the same tag a. Joining the people
field of q1 to the outer index of q2 correctly associates each person
with the appropriate department.

Finally, let us consider the results of the innermost query q3 for
generating the bag bound to the tasks field:

r3 = [〈〈b, 1, 2〉, “build”〉, 〈〈b, 4, 5〉, “call”〉, 〈〈b, 4, 5〉, “enthuse”〉,
〈〈b, 4, 6〉, “call”〉, 〈〈d, 1, 2〉, “buy”〉, 〈〈d, 4, 7〉, “buy”〉]

Recall that q2 returns further inner indexes for the tasks associ-
ated with each person. The two halves of the union have different
static indexes for the tasks b and d, because they arise from differ-
ent comprehensions in the source term. Furthermore, the dynamic
index now consists of two id fields (x.id and y.id) in each half of
the union. Thus, joining the tasks field of q2 to the outer index of
q3 correctly associates each task with the appropriate outlier.

Note that each of the queries q1, q2, q3 produces records that con-
tain other records as fields. This is not strictly allowed by SQL, but
it is straightforward to simulate such nested records by rewriting to
a query with no nested collections in its result type; this is simi-
lar to Van den Bussche’s simulation [26]. However, this approach
incurs extra storage and query-processing cost. Later in the paper,
we explore an alternative approach which collapses the indexes at
each level to a pair 〈a, i〉 of static index and a single “surrogate”
integer, similarly to Ferry’s approach [11]. For example, using this
approach we could represent the results of q2 and q3 as follows:

r′2 = [〈〈a, 1〉, 〈name = “Bert”, tasks = 〈b, 1〉〉〉,
〈〈a, 4〉, 〈name = “Erik”, tasks = 〈b, 2〉〉〉,
〈〈a, 4〉, 〈name = “Fred”, tasks = 〈b, 3〉〉〉,
〈〈a, 1〉, 〈name = “Pat”, tasks = 〈d, 1〉〉〉,
〈〈a, 4〉, 〈name = “Sue”, tasks = 〈d, 2〉〉〉]

r′3 = [〈〈b, 1〉, “build”〉, 〈〈b, 2〉, “call”〉, 〈〈b, 2〉, “enthuse”〉,
〈〈b, 3〉, “call”〉, 〈〈d, 1〉, “buy”〉, 〈〈d, 2〉, “buy”〉]

The rest of this paper gives the details of the shredding trans-
lation, explains how to stitch the results of shredded queries back
together, and shows how to use row_number to avoid the space
overhead of indexes. We will return to the above example through-
out the paper, and we will use Qorg , Q and other queries based on
this example in the experimental evaluation.

4. SHREDDING TRANSLATION
As a pre-processing step, we annotate each comprehension body

in a normalised term with a unique name a— the static component
of an index. We write the annotations as superscripts, for example:

for (~GwhereX) returnaM

In order to shred nested queries, we introduce an abstract type
Index of indexes for maintaining the correspondence between outer
and inner queries. An index a � d has a static component a and a
dynamic component d. The static component a links the index to
the corresponding returna in the query. The dynamic component
identifies the current bindings of the variables in the comprehen-
sion.

Next, we modify types so that bag types have an explicit index
component and we use indexes to replace nested occurrences of
bags within other bags:

Shredded types A,B ::= Bag 〈Index , F 〉
Flat types F ::= O | 〈

−−→
` : F 〉 | Index

We also adapt the syntax of terms to incorporate indexes. After
shredding, terms will have the following forms:

Query terms L,M ::=
⊎ ~C

Comprehensions C ::= returna 〈I,N〉
| for (~GwhereX)C

Generators G ::= x← t
Inner terms N ::= X | R | I
Record terms R ::= 〈

−−−→
` = N〉

Base terms X ::= x.` | c( ~X) | emptyL

Indexes I, J ::= a � d
Dynamic indexes d ::= out | in

A comprehension is now constructed from a sequence of genera-
tor clauses of the form for (~GwhereX) followed by a body of the
form returna 〈I,N〉. Each level of nesting gives rise to such a gen-
erator clause. The body always returns a pair 〈I,N〉 of an outer
index I , denoting where the result values from the shredded query
should be spliced into the final nested result, and a (flat) inner term
N . Records are restricted to contain inner terms, which are either
base types, records, or indexes, which replace nested multisets. We
assume a distinguished top level static index >, which allows us to
treat all levels uniformly. Each shredded term is associated with an
outer index out and an inner index in. (In fact out only appears in
the left component of a comprehension body, and in only appears
in the right component of a comprehension body. These properties
will become apparent when we specify the shredding transforma-
tion on terms.)

4.1 Shredding types and terms
We use paths to point to parts of types.

Paths p ::= ε | ↓.p | `.p

The empty path is written ε. A path p can be extended by traversing
a bag constructor (↓.p) or selecting a label (`.p). We will sometimes
write p.↓ for the path p with ↓ appended at the end and similarly
for p.`; likewise, we will write p.~̀ for the path p with all the labels
of ~̀ appended. The function paths(A) defines the set of paths to
bag types in a type A:

paths(O) = {}
paths(〈`i : Ai〉ni=1) =

⋃n
i=1{`i.p | p← paths(Ai)}

paths(BagA) = {ε} ∪ {↓.p | p← paths(A)}

We now define a shredding translation on types. This is defined
in terms of the inner shredding TAU, a flat type that represents the
contents of a bag.

TOU = O
T〈`i : Ai〉ni=1U = 〈`i : TAiU〉ni=1

TBagAU = Index



VLWp =
⊎

(VLW?>,p)

V
⊎n
i=1 CiW

?
a,p = concat([VCiW?a,p]ni=1)

V〈`i = Mi〉ni=1W?a,`j .p = VMjW?a,p
Vfor ( ~GwhereX) returnbMW?a,ε = [for ( ~GwhereX) returnb 〈a � out, TMUb〉]

Vfor ( ~GwhereX) returnbMW?a,↓.p = [for ( ~GwhereX)C | C ← VMW?b,p]

Tx.`Ua = x.`
Tc([Xi]ni=1)Ua = c([TXiUa]ni=1)

TemptyLUa = empty VLWε
T〈`i = Mi〉ni=1Ua = 〈`i = TMiUa〉ni=1

TLUa = a � in

Figure 4: Shredding translation on terms

Given a path p ∈ paths(A), the type VAWp is the outer shredding
of A at p. It corresponds to the bag at path p in A.

VBagAWε = Bag 〈Index , TAU〉
VBagAW↓.p = VAWp

V〈
−−→
` : A〉W`i.p = VAiWp

For example, consider the result type Result from Section 3. Its
nesting degree is 3, and its paths are:

paths(Result) = {ε, ↓.people.ε, ↓.people.↓.tasks.ε}

We can shred Result in three ways using these three paths, yielding
three shredded types:

A1 = VResultWε
A2 = VResultW↓.people.ε
A3 = VResultW↓.people.ε.↓.tasks.ε

or equivalently:

A1 = Bag 〈Index , 〈department : String, people : Index〉〉
A2 = Bag 〈Index , 〈name : String, tasks : Index〉〉
A3 = Bag 〈Index ,String〉

The shredding translation on terms VLWp is given in Figure 4.
This takes a term L and a path p and gives a query VLWp that com-
putes a result of type VAWp, where A is the type of L. The aux-
iliary translation VMW?a,p returns the shredded comprehensions of
M along path p with outer static index a. The auxiliary translation
TMUa produces a flat representation of M with inner static index
a. Note that the shredding translation is linear in time and space.
Observe that for emptiness tests we need only the top-level query.

Continuing the example, we can shred Qcomp in three ways,
yielding shredded queries:

q1 = VQcompWε
q2 = VQcompW↓.people.ε
q3 = VQcompW↓.people.ε.↓.tasks.ε

or equivalently:

q1 = for (x← departments)
returna 〈> � 1, 〈department = x.name, people = a � in〉〉

q2 = (for (x← departments)
for (y ← employees)where (x.name = y.dept ∧

(y.salary < 1000 ∨ y.salary > 1000000))
returnb (〈a � out, 〈name = y.name, tasks = b � in〉〉))

] (for (x← departments)
for (y ← contacts)where (x.name = y.dept ∧ y.client)
returnd (〈a � out, 〈name = y.name, tasks = d � in〉〉))

q3 = (for (x← departments)
for (y ← employees)where (x.name = y.dept ∧

(y.salary < 1000 ∨ y.salary > 1000000))
for (z ← tasks)where (z.employee = y.employee)
returnc 〈b � out, z.task〉)

] (for (x← departments)
for (y ← contacts)where (x.name = y.dept ∧ y.client)
returne 〈d � out, “buy”〉)

As a sanity check, we show that well-formed normalised terms
shred to well-formed shredded terms of the appropriate shredded
types. We discuss other correctness properties of the shredding
translation in Section 5.

THEOREM 2. Suppose L is a normalised flat-nested query with
` L : A and p ∈ paths(A), then ` VLWp : VAWp.

4.2 Shredded packages
To maintain the relationship between shredded terms and the

structure of the nested result they are meant to construct, we use
shredded packages. A shredded package Â is a nested type with
annotations, denoted (−)α, attached to each bag constructor.

Â ::= O | 〈
−−→
` : Â〉 | (Bag Â)α

For a given package, the annotations are drawn from the same
set. We write Â(S) to denote a shredded package with annota-
tions drawn from the set S. We sometimes omit the type parameter
when it is clear from context.

Given a shredded package Â, we can erase its annotations to
obtain its underlying type.

erase(O) = O

erase(〈`i : Âi〉ni=1) = 〈`i : erase(Âi)〉ni=1

erase((Bag Â)α) = Bag (erase(Â))

We lift the type shredding function VAW to produce a shredded
package Shred(A), where each annotation contains the shredded
version of the input type or query along the path to the associated
bag constructor. We define Shred(A) = Shredε(A) as follows:

Shredp(O) = O
Shredp(〈`i : Ai〉ni=1) = 〈`i : Shredp.`i (Ai)〉

n
i=1

Shredp(BagA) = (Bag (Shredp.↓(A)))VBWp

Similarly, we lift the term shredding functionVLW to produce a
shredded query package shred(L) = shredε(L), where:

shredp(O) = O
shredp(〈`i : Ai〉ni=1) = 〈`i : shredp.`i (Ai)〉

n
i=1

shredp(BagA) = (Bag (shredp.↓(A)))VLWp

For example, the shredded package for the Result type from
Section 3 is:

ShredResult (Result) =
Bag 〈department : String,

people : Bag 〈name : String,
tasks : (Bag String)A3 〉A2 〉A1

where A1, A2, and A3 are as shown in Section 4.1. Shredding
the normalised query Q′ gives the same package, except the type
annotations A1, A2, A3 become queries q1, q2, q3.

Again, as a sanity check we show that erasure is the left inverse
of type shredding and that term-level shredding operations preserve
types.

THEOREM 3. For any type A, we have erase(shredA(A)) =
A. Furthermore, if L is a closed, normalised, flat–nested query
such that ` L : A then ` shredL(A) : shredA(A).



5. QUERY EVALUATION AND STITCHING
Having shredded a normalised nested query, we can then run

all of the resulting shredded queries separately. If we stitch the
shredded results together to form a nested result, then we obtain the
same nested result as we would obtain by running the nested query
directly. In this section we describe how to run shredded queries
and stitch their results back together to form a nested result.

5.1 Evaluating shredded queries
The semantics of shredded queries SJ−K is given in Figure 5.

Apart from the handling of indexes, it is much like the semantics
for nested queries given in Figure 2. To allow different implemen-
tations of indexes, we first define a canonical notion of index, and
then parameterise the semantics by the concrete type of indexes X
and a function index : Index → X mapping each canonical in-
dex to a distinct concrete index. A canonical index a � ι comprises
static index a and dynamic index ι, where the latter is a list of pos-
itive natural numbers. For now we take concrete indexes simply
to be canonical indexes, and index to be the identity function. We
consider other definitions of index in Section 6.

The current dynamic index ι is threaded through the semantics
in tandem with the environment ρ. The former encodes the position
of each of the generators in the current comprehension and allows
us to invoke index to construct a concrete index. The outer index
at dynamic index ι.i is ι; the inner index is ι.i. In order for a
comprehension to generate dynamic indexes we use the function
enum (introduced in Section 2) that takes a list of elements and
returns the same list with the element number paired up with each
source element.

Running a shredded query yields a list of pairs of indexes and
shredded values.

Results s ::= [〈I1, w1〉, . . . , 〈Im, wm〉]
Flat values w ::= c | 〈`1 = w1, . . . , `n = wn〉 | I

Given a shredded package Â(S) and a function f : S → T , we
can map f over the annotations to obtain a new shredded package
Â′(T ) such that erase(Â) = erase(Â′).

pmapf (O) = O

pmapf (〈`i : Âi〉ni=1) = 〈`i : pmapf (Âi)〉ni=1

pmapf ((Bag Â)α) = ((Bag pmapf (Â)))f(α)

The semantics of a shredded query package is a shredded
value package containing indexed results for each shredded query.
For each type A we define HJAK = shredA(A) and for each
flat–nested, closed ` L : A we define HJLKA : HJAK as
pmapSJ−K (shredL(A)). In other words, we first construct the
shredded query package shredL(A), then apply the shredded se-
mantics SJqK to each query q in the package.

For example, here is the shredded package that we obtain after
running the normalised query Qcomp from Section 2.2:
HJQcompKA = Bag 〈department : String,

people : Bag 〈name : String,
tasks : (Bag String)r3 〉r2 〉r1

where r1, r2, and r3 are as in Section 3 except that indexes are of
the form a � 1.2.3 instead of 〈a, 1, 2, 3〉.

5.2 Stitching shredded query results together
A shredded value package can be stitched back together into a

nested value, preserving annotations, as follows:

stitch(Â) = stitch>� 1(Â)

stitchc(O) = c

stitchr(〈`i : Âi〉ni=1) = 〈`i = stitchr.`i (Âi)〉
n
i=1

stitchI((Bag Â)s) = [(stitchw(Â)) | 〈I, w〉 ← s]

The flat value parameter w to the auxiliary function stitchw(−)
specifies which values to stitch along the current path.

Resuming our running example, once the results r1 : A1, r2 :
A2, r3 : A3 have been evaluated on the database, they are shipped
back to the host system where we can run the following code in-
memory to stitch the three tables together into a single value: the
result of the original nested query. The code for this query Qstitch

follows the same idea as the query Qorg that constructs the nested
organisation from Σ.

for (x← r1)
return (〈department = x.name,

people = for (〈i, y〉 ← r2)
where (x.people = i))
return (〈name = y.name,

tasks = for (〈j, z〉 ← r3)
where (y.tasks = j)
return z〉)〉)

We can now state our key correctness property: evaluating shred-
ded queries and stitching the results back together yields the same
results as evaluating the original nested query directly.

THEOREM 4. If ` L : BagA then:

stitch(HJLKBagA) = N JLK

PROOF SKETCH. We omit the full proof due to space limits; it
is available in the full version of this paper. The proof introduces
several intermediate definitions. Specifically, we consider an anno-
tated semantics for nested queries in which each collection element
is tagged with an index, and we show that this semantics is consis-
tent with the ordinary semantics if the annotations are erased. We
then prove the correctness of shredding and stitching with respect
to the annotated semantics, and the desired result follows.

6. INDEXING SCHEMES
So far, we have worked with canonical indexes of the form

a � 1.2.3. These could be represented in SQL by using multi-
ple columns (padding with NULLs if necessary) since for a given
query the length of the dynamic part is bounded by the number of
for-comprehensions in the query. This imposes space and running
time overhead due to constructing and maintaining the indexes. In-
stead, in this section we consider alternative, more compact index-
ing schemes.

We can define alternative indexing schemes by varying the index
parameter of the shredded semantics (see Section 5.1). Not all pos-
sible instantiations are valid. To identify those that are, we first
define a function for computing the canonical indexes of a nested
query result.

IJLK = IJLKε,1
IJ
⊎n
i=1 CiKρ,ι = concat([IJCiKρ,ι]ni=1)

IJ〈`i = Mi〉ni=1Kρ,ι = concat([IJMiKρ,ι]ni=1)
IJXKρ,ι = [ ]

IJfor ([xi ← ti]
n
i=1 whereX) returnaMKρ,ι =

concat([a � ι.j :: IJMKρ[xi 7→ri]ni=1,ι.j

| 〈j, ~r〉 ← enum([~r | [ri ← JtiK]ni=1,N JXKρ[xi 7→ri]ni=1
])])

An indexing function index : Index → X is valid with respect
to the closed nested query L if it is injective and defined on ev-
ery canonical index in IJLK. The only requirement on indexes in
the proof of Theorem 4 is that index is valid. We consider two
alternative valid indexing schemes: natural and flat indexes.



SJLK = SJLKε,1
SJ〈` = N〉ni=1Kρ,ι = 〈`i = SJNiKρ,ι〉ni=1

SJXKρ,ι =N JXKρ
SJa � outKρ,ι.i = index(a � ι)
SJa � inKρ,ι.i = index(a � ι.i)

SJ
⊎n
i=1 CiKρ,ι = concat([SJCiKρ,ι]ni=1) SJreturnaNKρ,ι = [SJNKρ,ι]

SJfor ([xi ← ti]
n
i=1 whereX)CKρ,ι = concat([SJCKρ[xi 7→ri]ni=1,ι.j

| 〈j, ~r〉 ← enum([~r | [ri ← JtiK]ni=1,N JXKρ[xi 7→ri]ni=1
])])

Figure 5: Semantics of shredded queries

6.1 Natural indexes
Natural indexes are synthesised from row data. In order to gen-

erate a natural index for a query every table must have a key, that is,
a collection of fields guaranteed to be unique for every row in the
table. For sets, this is always possible by using all of the field val-
ues as a key; this idea is used in Van den Bussche’s simulation for
sets [26]. However, for bags this is not always possible, so using
natural indexes may require adding extra key fields.

Given a table t, let keyt be the function that given a row r of t
returns the key fields of r. We now define a function to compute
the list of natural indexes for a query L.

I\JLK = I\JLKε
I\J
⊎n
i=1 CiKρ = concat([I\JCiKρ]ni=1)

I\J〈`i = Mi〉ni=1Kρ = concat([I\JMiKρ]ni=1)
I\JXKρ = [ ]

I\Jfor ([xi ← ti]
n
i=1 whereX) returnaMKρ =

concat([a � 〈keyti (ri)〉
n
i=1

:: I\JMKρ[xi 7→ri]ni=1

| [ri ← JtiK]ni=1,N JXKρ[xi 7→ri]ni=1
])

If a � ι is the i-th element of IJLK, then index \L(a � ι) is defined as
the i-th element of I\JLK. The natural indexing scheme is defined
by setting index = index \L.

An advantage of natural indexes is that they can be implemented
in plain SQL, so for a given comprehension all where clauses can
be amalgamated (using the ∧ operator) and no auxiliary subqueries
are needed. The downside is that the type of a dynamic index
may still vary across the component comprehensions of a shred-
ded query, complicating implementation of the query (due to the
need to pad some subqueries with null columns) and potentially
decreasing performance due to increased data movement. We now
consider an alternative, in which row_number is used to generate
dynamic indexes.

6.2 Flat indexes and let-insertion
The idea of flat indexes is to enumerate all of the canonical dy-

namic indexes associated with each static index and use the enu-
meration as the dynamic index.

Let ι be the i-th element of the list [ι′ | a � ι′ ← IJLK], then
index [L(a � ι) = 〈a, i〉. The flat indexing scheme is defined by
setting index = index [L. Let I[JLK = [index [L(I) | I ← IJLK]
and let S[JLK be SJLK where index = index [L.

In this section, we give a translation called let-insertion that uses
let-binding and an index primitive to manage flat indexes. In the
next section, we take the final step from this language to SQL.

Our semantics for shredded queries uses canonical indexes. We
now specify a target language providing flat indexes. In order to do
so, we introduce let-bound sub-queries, and translate each compre-
hension into the following form:

let q = for (
−−→
Gout whereXout) returnNout in

for (
−→
Gin whereXin) returnNin

The special index expression is available in each loop body, and is
bound to the current index value.

Following let-insertion, the types are as before, except indexes
are represented as pairs of integers 〈a, d〉 where a is the static com-
ponent and d is the dynamic component.

Types A,B ::= Bag 〈〈Int , Int〉, F 〉
Flat types F ::= O | 〈

−−→
` : F 〉 | 〈Int , Int〉

The syntax of terms is adapted as follows:

Query terms L,M ::=
⊎ ~C

Comprehensions C ::= let q = S inS′

Subqueries S ::= for (~GwhereX) returnN
Data sources u ::= t | q
Generators G ::= x← u
Inner terms N ::= X | R | index
Record terms R ::= 〈

−−−→
` = N〉

Base terms X ::= x.~̀ | c( ~X) | emptyL

The semantics of let-inserted queries is given in Figure 6. Rather
than maintaining a canonical index, it generates a flat index for each
subquery.

We first give the translation on shredded types as follows:

L(O) = O

L(〈
−−→
` : F 〉) = 〈

−−−−−→
` : L(F )〉

L(Index) = 〈Int , Int〉
L(Bag 〈Index , F 〉) = Bag 〈〈Int , Int〉,L(F )〉

For example:

L(A2) = Bag 〈〈Int , Int〉, 〈name : String , tasks : 〈Int , Int〉〉〉

Without loss of generality we rename all the bound variables in
our source query to ensure that all bound variables have distinct
names, and that none coincides with the distinguished name z used
for let-bindings. The let-insertion translation L is defined in Fig-
ure 7, where we use the following auxiliary functions:

expand(x, t) = 〈`i = x.`i〉ni=1

where Σ(t) = Bag 〈
−−→
` : A〉

gens (for ( ~GwhereX)C) = ~G :: gens C
gens (returnaN) = [ ]

conds (for ( ~GwhereX)C) = X :: conds C
conds (returnaN) = [ ]

body (for ( ~GwhereX)C) = body C
body (returnaN) = N

Each comprehension is rearranged into two sub-queries. The first
generates the outer indexes. The second computes the results. The
translation sometimes produces n-ary projections in order to refer
to values bound by the first subquery inside the second.

For example, applying L to q1 from Section 4.2 yields:

for (x← departments)
return 〈〈>, 1〉, 〈dept = x.name, people = index〉〉



LJLK = LJLKε
LJ
⊎m
j=1 CjKρ = concat([LJCjKρ]mj=1)

LJtKρ = JtK
LJqKρ = ρ(q)

LJ〈`j = Nj〉mj=1Kρ,i = 〈`j = LJNjKρ,i〉mj=1
LJXKρ,i =N JXKρ

LJindexKρ,i = i

LJlet q = Sout inSinKρ = LJSinKρ[q 7→LJSoutKρ]
LJfor ([xj ← uj ]

m
j=1 whereX) returnNKρ = [LJNKρ[xj 7→rj ]mj=1,i

| 〈i, ~r〉 ← enum([~r | [rj ← LJujKρ]mj=1,N JXKρ[xj 7→rj ]mj=1
])]

Figure 6: Semantics of let-inserted shredded queries

L(
⊎n
i=1 Ci) =

⊎n
i=1 L(Ci)

L(C) = let q = (for (
−−→
Gout whereXout) return 〈Rout, index〉) in for (z ← q,

−→
Gin whereL~y(Xin)) returnL~y(N)

where
−−→
Gout = concat (init (gens C))
Xout =

∧
init (conds C)

−−−→
y = t =

−−→
Gout

Rout = 〈expand(yi, ti)〉ni=1

−→
Gin = last (gens C)
Xin = last (conds C)

N = body C

n = length
−−→
Gout

L~y(x.`) =

{
x.`, if x /∈ {y1, . . . , yn}
z.1.i.`, if x = yi

L~y(c(X1, . . . , Xm)) = c(L~y(X1), . . . ,L~y(Xm))

L~y(emptyL) = empty (L~y(L))
L~y(

⊎n
i=1 Ci) =

⊎n
i=1 L~y(Ci)

L~y(for ( ~GwhereX) returna 〈a,N〉) = for ( ~GwhereL~y(X))
return 〈a,L~y(N)〉

L~y(〈`j = Xj〉mj=1) = 〈`j = L~y(Xj)〉mj=1
L~y(a � d) = 〈a,L(d)〉

L(out) = z.2
L(in) = index

Figure 7: The let-insertion translation

and q2 becomes:

(let q = for (x← departments) return 〈〈dept = x.name〉, index〉 in
for (z ← q, y ← employees)where (z.1.1.name = y.dept ∧

(y.salary < 1000 ∨ y.salary > 1000000))
return (〈〈a, z.2〉, 〈name = y.name, tasks = 〈b, index〉〉〉))
]
(let q = for (x← departments) return 〈〈dept = x.name〉, index〉 in
for (z ← q, y ← contacts)where (z.1.1.name = y.dept ∧ y.client)
return (〈〈a, z.2〉, 〈name = y.name, tasks = 〈d, index〉〉〉))

As a sanity check, we show that the translation is type-preserving:

THEOREM 5. Given shredded query ` M : Bag 〈Index , F 〉,
then ` L(M) : L(Bag 〈Index , F 〉).

To prove the correctness of let-insertion, we need to show that
the shredded semantics and let-inserted semantics agree. In the
statement of the correctness theorem, recall that S[JLK refers to
the version of SJLK using index = index [L.

THEOREM 6. Suppose ` L : A and VLWp = M . Then
S[JMK = LJL(M)K.

PROOF SKETCH. The high-level idea is to separate results into
data and indexes and compare each separately. It is straightforward,
albeit tedious, to show that the different definitions are equal if we
replace all dynamic indexes by a dummy value. It then remains
to show that the dynamic indexes agree. The pertinent case is the
translation of a comprehension:

[for ( ~Gi ← Xi)]
n
i=1 for ( ~Gin ← Xin) return

b 〈a � out, N〉

which becomes let q = Sout inSin for suitable Sout and Sin. The
dynamic indexes computed by Sout coincide exactly with those of
I[JLK at static index a, and the dynamic indexes computed by Sin,
if there are any, coincide exactly with those of I[JLK.

7. CONVERSION TO SQL
Earlier translation stages have employed nested records for con-

venience, but SQL does not support nested records. At this stage,
we eliminate nested records from queries. For example, we can rep-
resent a nested record 〈a = 〈b = 1, c = 2〉, d = 3〉 as a flat record
〈a b = 1, a c = 2, d = 3〉.

In order to interpret shredded, flattened, let-inserted terms as
SQL, we interpret index generators using SQL’s OLAP facilities.

Query terms L ::= (union all) ~C

Comprehensions C ::= with q as (S)C | S′

Subqueries S ::= selectR from ~GwhereX
Data sources u ::= t | q
Generators G ::= u asx

Inner terms N ::= X | row_number() over (order by ~X)

Record terms R ::=
−−−→
N as `

Base terms X ::= x.` | c( ~X) | emptyL

Continuing our example, L(q1) and L(q2) translate to q′1 and q′2
where:

q′1 = selectx.name as i1_name,
row_number() over (order by x.name) as i1_people

from departments asx
q′2 = (with q as (selectx.name as i1_name,

row_number() over (order by x.name) as i2
from departments asx)

select a as i1_1, z.i2 as i1_2, y.name as i2_name, b as i2_tasks_1,
row_number() over (order by z.i1_name, z.i2,

y.dept, y.employee, y.salary) as i2_tasks_2
from employees as y, q as z
where (z.i1_name = y.dept ∧

(y.salary < 1000 ∨ y.salary > 1000000)))
union all
(with q as (selectx.name as i1_name,

row_number() over (order by x.name) as i2
from departments asx)

select a as i1_1, z.i2 as i1_2, y.name as i2_name, d as i2_tasks_1,
row_number() over (order by z.i1_name, z.i2,

y.dept, y.name, y.client) as i2_tasks_2
from contacts as y, q as z
where (z.i1_name = y.dept ∧ y.client))

Modulo record flattening, the above fragment of SQL is almost
isomorphic to the image of the let-insertion translation. The only
significant difference is the use of row_number in place of index.
Each instance of index in the body R of a subquery of the form
for (
−−−→
x← t whereX) returnR is simulated by a term of the form

row_number() over (order by
−→
x.`), where:

xi : 〈`i,1 : Ai,1, . . . , `i,mi : Ai,mi 〉−→
x.` = x1.`1,1, . . . , x1.`1,m1 , . . . , xn.`n,1, . . . , xn.`n,mn



QF1: SELECT e.emp FROM employees e
WHERE e.salary > 10000

QF2: SELECT e.emp, t.tsk
FROM employees e, tasks t
WHERE e.emp = t.emp

QF3: SELECT e1.emp, e2.emp
FROM employees e1, employees e2
WHERE e1.dpt = e2.dpt

AND e1.salary = e2.salary
AND e1.emp <> e2.emp

QF4: (SELECT t.emp FROM tasks t
WHERE t.tsk = ’abstract’)
UNION ALL (SELECT e.emp FROM employees

WHERE e.salary > 50000)
QF5: (SELECT t.emp FROM tasks t

WHERE t.tsk = ’abstract’)
MINUS
(SELECT e.emp FROM employees e
WHERE e.salary > 50000)

QF6: ((SELECT t.emp FROM tasks t
WHERE t.tsk = ’abstract’)
UNION ALL (SELECT e.emp FROM employees e

WHERE e.salary > 50000))
MINUS
((SELECT t.emp FROM tasks t

WHERE t.tsk = ’enthuse’)
UNION ALL (SELECT e.emp FROM employees e

WHERE e.salary > 10000))

Figure 8: SQL versions of flat queries used in experiments

A possible concern is that row_number is non-deterministic. It
computes row numbers ordered by the supplied columns, but if
there is a tie, then it is free to order the equivalent rows in any
order. However, we always order by all columns of all tables ref-
erenced from the current subquery, so our use of row_number is
always deterministic. (An alternative could be to use nonstandard
features such as PostgreSQL’s OID or MySQL’s ROWNUM, but
sorting would still be necessary to ensure consistency across inner
and outer queries.)

8. EXPERIMENTAL EVALUATION
Ferry’s loop-lifting translation has been implemented in Links

previously by Ulrich, a member of the Ferry team [25], following
the approach described by Grust et al. [11] to generate SQL:1999
algebra plans, then calling Pathfinder [13] to optimise and evaluat-
ing the resulting SQL on a PostgreSQL database. We have also im-
plemented query shredding in Links, running against PostgreSQL;
our implementation1 does not use Pathfinder. We performed ini-
tial experiments with a larger ad hoc query benchmark, and devel-
oped some optimisations, including inlining certain WITH clauses
to unblock rewrites, using keys for row numbering, and implement-
ing stitching in one pass to avoid construction of intermediate in-
memory data structures that are only used once and then discarded.
We report on shredding with all of these optimisations enabled.

Benchmark queries. There is no standard benchmark for
queries returning nested results. In particular, the popular TPC-
H benchmark is not suitable for comparing shredding and loop-
lifting: the TPC-H queries do not return nested results, and can be
run directly on any SQL-compliant RDBMS, so neither approach
needs to do any work to produce an SQL query.

We selected twelve queries over the organisation schema de-
scribed in Section 3 to use as a benchmark. The first six queries,
1http://github.com/slindley/links/tree/shredding

Q1 : for (d← departments)
return (〈name = d.name,

employees = employeesOfDept d,
contacts = contactsOfDept d〉

Q2 : for (d← Q1)
where (all d.employees (λx.contains x.tasks “abstract”))
return 〈dept = d.dept〉

Q3 : for (e← employees)
return 〈name = e.name, task = tasksOfEmp(e)〉

Q4 : for (d← departments)
return 〈dept = d.dept, employees = for (e← employees)

where (d.dept = e.dept)
return e.employee〉

Q5 : for (t← tasks) return 〈a = t.task, b = employeesByTask t〉
Q6 : for (d← Q1)

return (〈department = d.name,
people =

getTasks(outliers(d.employees)) (λy. y.tasks)
] getTasks(clients(d.contacts)) (λy. return “buy”)〉)

Figure 9: Nested queries used in experiments

named QF1–QF6, return flat results and can be translated to SQL
using existing techniques, without requiring either shredding or
loop-lifting. We considered these queries as a sanity check and
in order to measure the overhead introduced by loop-lifting and
shredding. Figure 8 shows the SQL versions of these queries.

We also selected six queries Q1–Q6 that do involve nesting, ei-
ther within query results or in intermediate stages. They are shown
in Figure 9; they use the auxiliary functions defined in Section 3.
Q1 is the query Qorg that builds the nested organisation view from
Section 3. Q2 is a flat query that computes a flat result from Q1 con-
sisting of all departments in which all employees can do the “ab-
stract” task; it is a typical example of a query that employs higher-
order functions. Q3 returns records containing each employee and
the list of tasks they can perform. Q4 returns records containing
departments and the set of employees in each department. Q5 re-
turns a record of tasks paired up with sets of employees and their
departments. Q6 is the outliers query Q introduced in Section 3.

Experimental results. We measured the query execution time
for all queries on randomly generated data, where we vary the num-
ber of departments in the organisation from 4 to 4096 (by powers of
2). Each department has on average 100 employees and each em-
ployee has 0–2 tasks, and the largest (4096 department) database
was approximately 500MB. Although the test datasets are mod-
erate in size, they suffice to illustrate the asymptotic trends in the
comparative performance of the different techniques. All tests were
performed using PostgreSQL 9.2 running on a MacBook Pro with
4-core 2.6GHz CPU, 8GB RAM and 500GB SSD storage, with
the database server running on the same machine (hence, negligi-
ble network latency). We measure total time to translate a nested
query to SQL, evaluate the resulting SQL queries, and stitch the
results together to form a nested value, measured from Links.

We evaluated each query using query shredding and loop-lifting,
and for the flat queries we also measured the time for Links’ default
(flat) query evaluation. The experimental results for the flat queries
are shown in Figure 10 and for the nested queries in Figure 11.
Note that both axes are logarithmic. All times are in milliseconds;
the times are medians of 5 runs. The times for small data sizes
provide a comparison of the overhead associated with shredding,
loop-lifting or Links’ default query normalisation algorithm.

http://github.com/slindley/links/tree/shredding


flat 0 4 8 16 32 64 128 256 512 1024 2048 4096 8192
QF1:
QF2:
QF3:
QF4:
QF5:
QF6:
shredding

sand
QF1:
QF2:
QF3:
QF4:
QF5:
QF6:

links
QF1:
QF2:
QF3:
QF4:
QF5:
QF6:

Q1:
shredding
sand
links

Q2:
shredding
sand
links

Q3:
shredding
sand
links

Q4:
shredding
sand
links

Q5
shredding
sand
links

Q6:
shredding
sand
links

1 1 1 2 4 7 11 31 56 107 219 439 922
1 3 7 11 25 47 94 216 449 916 2333 3754 8377
1 20 41 74 161 320 767 1744 3449 8822 14717 61169 732911
0 1 2 5 9 14 31 63 120 237 478 995 13712
1 1 2 4 5 11 20 40 92 185 389 786 10165
1 4 6 9 19 33 65 146 305 648 1324 2675 1851332

15 16 15 16 22 23 32 53 113 217 432 914 2109
22 26 31 37 54 95 180 364 740 1560 3191 6647 14992
36 64 100 169 303 597 1307 2635 5445 11647 25048 55435 502615
23 23 27 29 36 48 102 212 404 818 1699 3477 27233
27 28 29 31 37 47 68 118 224 452 1031 2089 12824

0 0 0 1 2 5 7 19 35 71 140 288 572
1 4 5 9 17 31 68 151 314 655 1338 2707 6590
1 15 25 53 107 216 534 940 1961 4017 8066 16828 281015
0 2 1 4 4 11 20 40 86 156 334 653 8014
1 2 2 3 5 9 16 34 78 162 337 699 5818
1 4 6 9 19 32 65 152 306 636 1326 2673 42431

1 1 1 2 4 7 11 31 56 107 219 439 922
15 16 15 16 22 23 32 53 113 217 432 914 2109
0 0 0 1 2 5 7 19 35 71 140 288 572

1 3 7 11 25 47 94 216 449 916 2333 3754 8377
22 26 31 37 54 95 180 364 740 1560 3191 6647 14992

1 4 5 9 17 31 68 151 314 655 1338 2707 6590

1 20 41 74 161 320 767 1744 3449 8822 14717 61169 732911
36 64 100 169 303 597 1307 2635 5445 11647 25048 55435 502615
1 15 25 53 107 216 534 940 1961 4017 8066 16828 281015

0 1 2 5 9 14 31 63 120 237 478 995 13712
23 23 27 29 36 48 102 212 404 818 1699 3477 27233
0 2 1 4 4 11 20 40 86 156 334 653 8014

1 1 2 4 5 11 20 40 92 185 389 786 10165
27 28 29 31 37 47 68 118 224 452 1031 2089 12824
1 2 2 3 5 9 16 34 78 162 337 699 5818

1 4 6 9 19 33 65 146 305 648 1324 2675 1851332

1 4 6 9 19 32 65 152 306 636 1326 2673 42431

0

15

30

45

60

0 4 8 16 32 64 128 256

QF1

m
se

c

#departments

shredding
loop-lifting
default

0

100

200

300

400

0 4 8 16 32 64 128 256

QF2

m
se

c

#departments

shredding
loop-lifting
default

0

750

1500

2250

3000

0 4 8 16 32 64 128 256

QF3

m
se

c

#departments

shredding
loop-lifting
default

0

37.5

75

112.5

150

0 4 8 16 32 64 128

QF4

m
se

c

#departments

shredding
loop-lifting
default

0

37.5

75

112.5

150

0 4 8 16 32 64 128 256

QF5

m
se

c

#departments

shredding
loop-lifting
default

QF1: SELECT e.emp FROM employees e WHERE e.salary > 10000
QF2: SELECT e.emp, t.tsk FROM employees e, tasks t 
     WHERE e.emp = t.emp
QF3: SELECT e1.emp, e2.emp FROM employees e1, employees e2 
     WHERE e1.dpt = e2.dpt AND e1.salary = e2.salary 
       AND e1.emp <> e2.emp
QF4: (SELECT t.emp FROM tasks t WHERE t.tsk = ‘abstract’)
     UNION (SELECT e.emp FROM employees 
            WHERE e.salary > 50000)
QF5: (SELECT t.emp FROM tasks t WHERE t.tsk = ‘abstract’)
     MINUS (SELECT e.emp FROM employees e 
            WHERE e.salary > 50000)

1E+00

1E+01

1E+02

1E+03

4 16 64 256 1024 4096

QF1
m
se

c

#departments

shredding
loop-lifting
default

1E+00
1E+01
1E+02
1E+03
1E+04

4 16 64 256 1024 4096

QF2

m
se

c

#departments

shredding
loop-lifting
default

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05

4 16 64 256 1024 4096

QF3

m
se

c

#departments

shredding
loop-lifting
default

1E+00
1E+01
1E+02
1E+03
1E+04

4 16 64 256 1024 4096

QF4

m
se

c

#departments

shredding
loop-lifting
default

1E+00
1E+01
1E+02
1E+03
1E+04

4 16 64 256 1024 4096

QF5

m
se

c

#departments

shredding
loop-lifting
default

1E+00
1E+01
1E+02
1E+03
1E+04

4 16 64 256 1024 4096

QF6

m
se

c

#departments

shredding
loop-lifting
default

Figure 10: Experimental results (flat queries)

Discussion. We should re-emphasise that Ferry (and Ulrich’s
loop-lifting implementation for Links) supports grouping and ag-
gregation features that are not handled by our translation. We fo-
cused on queries that both systems can handle, but Ferry has a clear
advantage for grouping and aggregation queries or when ordering
is important (e.g. sorting or top-k queries). Ferry is based on list se-
mantics, while our approach handles multiset semantics. So, some
performance differences may be due to our exploitation of multiset-
based optimisations that Ferry (by design) does not exploit.

The results for flat queries show that shredding has low per-query
overhead in most cases compared to Links’ default flat query eval-
uation, but the queries it generates are slightly slower. Loop-lifting,
on the other hand, has a noticeable per-query overhead, likely due
to its invocation of Pathfinder and associated serialisation costs. In
some cases, such as QF4 and QF5, loop-lifting is noticeably slower
asymptotically; this appears to be due to additional sorting needed
to maintain list semantics. We encountered a bug that prevented
loop-lifting from running on query QF6; however, shredding had
negligible overhead for this query. In any case, the overhead of ei-
ther shredding or loop-lifting for flat queries is irrelevant: we can
simply evaluate such queries using Links’ default flat query evalua-
tor. Nevertheless, these results show that the overhead of shredding
for such queries is not large, suggesting that the queries it generates
are similar to those currently generated by Links. (Manual inspec-
tion of the generated queries confirms this.)

The results for nested queries are more mixed. In most cases,
the overhead of loop-lifting is dominant on small data sizes, which
again suggests that shredding may be preferable for OLTP or Web
workloads involving rapid, small queries. Loop-lifting scales poorly
on two queries (Q1 and Q6), and did not finish within 1 minute even
for small data sizes. Both Q1 and Q6 involve 3 levels of nesting and
in the innermost query, loop-lifting generates queries with Carte-
sian products inside OLAP operators such as DENSE_RANK or
ROW_NUMBER that Pathfinder was not able to remove. The queries
generated by shredding in these cases avoid this pathological be-
haviour. For other queries, such as Q2 and Q4, loop-lifting per-
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Figure 11: Experimental results (nested queries)

forms better but is still slower than shredding as data size increases.
Comparison of the queries generated by loop-lifting and shredding
reveals that loop-lifting encountered similar problems with hard-
to-optimise OLAP operations. Finally, for Q3 and Q5, shredding
is initially faster (due to the overhead of loop-lifting and calling
Pathfinder) but as data size increases, loop-lifting wins out. Inspec-
tion of these generated queries reveals that the queries themselves
are similar, but the shredded queries involve more data movement.
Also, loop-lifting returns sorted results, so it avoids in-memory
hashing or sorting while constructing the nested result. It should
be possible to incorporate similar optimisations into shredding to
obtain comparable performance.

Our experiments show that shredding performs similarly or bet-
ter than loop-lifting on our (synthetic) benchmark queries on mod-
erate (up to 500MB) databases. Further work may need to be done
to investigate scalability to larger databases or consider more real-
istic query benchmarks.

9. RELATED AND FUTURE WORK
We have discussed related work on nested queries, Links, Ferry

and LINQ in the introduction. Besides Cooper [7], several authors
have recently considered higher-order query languages. Benedikt
et al. [1, 27] study higher-order queries over flat relations. The
Links approach was adapted to LINQ in F# by Cheney et al. [5].
Higher-order features are also being added to XQuery 3.0 [21].

Research on shredding XML data into relations and evaluating
XML queries over such representations [17] is superficially simi-
lar to our work in using various indexing or numbering schemes
to handle nested data. Grust et al.’s work on translating XQuery
to SQL via Pathfinder [13] is a mature solution to this problem,
and Grust et al. [12] discuss optimisations in the presence of un-
ordered data processing in XQuery. However, XQuery’s ordered
data model and treatment of node identity would block transforma-
tions in our algorithm that assume unordered, pure operations.

We can now give a more detailed comparison of our approach
with the indexing strategies in Van den Bussche’s work and in



Ferry. Van den Bussche’s approach uses natural indexes (that is,
n-tuples of ids), but does not preserve multiset semantics. Our ap-
proach preserves multiplicity and can use natural indexes, we also
propose a flat indexing scheme based on row_number. In Ferry’s
indexing scheme, the surrogate indexes only link adjacent nesting
levels, whereas our indexes take information at all higher levels
into account. Our flat indexing scheme relies on this property,
and Ferry’s approach does not seem to be an instance of ours (or
vice versa). Ferry can generate multiple SQL:1999 operations and
Pathfinder tries to merge them but cannot always do so. Our ap-
proach generates row_number operations only at the end, and does
not rely on Pathfinder. Finally, our approach uses normalisation
and tags parts of the query to disambiguate branches of unions.

Loop-lifting has been implemented in Links by Ulrich [25], and
Grust and Ulrich [15] recently presented techniques for support-
ing higher-order functions as query results. By using Ferry’s loop-
lifting translation and Pathfinder, Ulrich’s system also supports list
semantics and aggregation and grouping operations; to our knowl-
edge, it is an open problem to either prove their correctness or adapt
these techniques to fit our approach. Ferry’s approach supports
a list-based semantics for queries, while we assume a bag-based
semantics (matching SQL’s default behaviour). Either approach
can accommodate set-based semantics simply by eliminating du-
plicates in the final result. In fact, however, we believe the core
query shredding translation (Sections 4–6) works just as well for a
list semantics. The only parts that rely on unordered semantics are
normalisation (Section 2.2) and conversion to SQL (Section 7). We
leave these extensions to future work.

Our work is also partly inspired by work on unnesting for nested
data parallelism. Blelloch and Sabot [2] give a compilation scheme
for NESL, a data-parallel language with nested lists; Suciu and Tan-
nen [23] give an alternative scheme for a nested list calculus. This
work may provide an alternative (and parallelisable) implementa-
tion strategy for Ferry’s list-based semantics [11].

10. CONCLUSION
Combining efficient database access with high-level program-

ming abstractions is challenging in part because of the limitations
of flat database queries. Currently, programmers must write flat
queries and manually convert the results to a nested form. This
damages declarativity and maintainability. Query shredding can
help to bridge this gap. Although it is known from prior work that
query shredding is possible in principle, and some implementations
(such as Ferry) support this, getting the details right is tricky, and
can lead to queries that are not optimised well by the relational en-
gine. Our contribution is an alternative shredding translation that
handles queries over bags and delays use of OLAP operations until
the final stage. Our translation compares favourably to loop-lifting
in performance, and should be straightforward to extend and to in-
corporate into other language-integrated query systems.
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