
Encoding Product Types

SAM LINDLEY, The University of Edinburgh, UK

Can product types be encoded in simply-typed lambda calculus with base types and function types? In this

paper we demonstrate that the answer is more nuanced than one might expect. For instance, it depends on

whether the encoding is allowed to be global or not, whether the encoding is allowed to be type-indexed or

not, the number of base types, whether the encoding is allowed to use 𝜂-conversion or not, and whether the

base types include constants or not.

1 SIMPLY-TYPED LAMBDA CALCULUS
We begin by considering simply-typed lambda calculi whose types are constructed from base types

(𝑋) and function types (𝐴 → 𝐵).

Type contexts Δ ::= · | Δ, 𝑋
Types 𝐴, 𝐵 ::= 𝑋 | 𝐴 → 𝐵

Term contexts Γ ::= · | Γ, 𝑥 : 𝐴

Terms 𝑀, 𝑁 ::= 𝑥 | 𝜆𝑥𝐴 .𝑀 | 𝑀 𝑁

We track the base types in a type context Δ. We frequently omit type annotations on bound variables.

We identify terms up to renaming of bound variables. We write 𝐴[𝐵/𝑋] for the substitution of type

𝐵 for 𝑋 in 𝐴. Similarly, we write𝑀 [𝑁 /𝑥] for the (capture-avoiding) substitution of term 𝑁 for 𝑥 in

𝑀 . Well-kinded types are constructed from base types and the function type constructor.

Δ ⊢ 𝐴 : ★

Base

𝑋 ∈ Δ

Δ ⊢ 𝑋 : ★

Fun

Δ ⊢ 𝐴 : ★ Δ ⊢ 𝐵 : ★

Δ ⊢ 𝐴 → 𝐵 : ★

Well-typed terms are constructed from variables, lambda abstraction, and application.

Γ ⊢ 𝑀 : 𝐴

Var

𝑥 : 𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴

Lam

Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵

Γ ⊢ 𝜆𝑥𝐴 .𝑀 : 𝐴 → 𝐵

App

Γ ⊢ 𝑀 : 𝐴 → 𝐵 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ 𝑀 𝑁 : 𝐵

We assume here that all types appearing in typing rules and term contexts are well-kinded with

respect to a fixed Δ. There are two rewrite rules for the core calculus with function types (→.𝛽 and

→.𝜂).

(𝜆𝑥.𝑀) 𝑁 { 𝑀 [𝑁 /𝑥] (→.𝛽)
𝑀 { 𝜆𝑥 .𝑀 𝑥 (→.𝜂)

(We have chosen to orient the 𝜂-rule as an expansion [5], but in this paper we focus on the

conversion relation so the choice of orientation of the underlying rewrite relation has no material

impact on our results.) Later we will add further 𝛽 and 𝜂 rewrite rules for product types. We write

{𝛽 for 𝛽-reduction and{𝜂 for 𝜂-reduction.

We use the rewrite relations to generate corresponding conversion relations. We write ∼ for the

compatible, transitive, reflexive, symmetric closure of{ (i.e. the relation that allows the reduction

rules to be applied backwards or forwards anywhere in a term any number of times). We write ∼𝛽

and ∼𝜂 for the corresponding closure of{𝛽 and{𝜂 respectively.

Author’s address: Sam Lindley, The University of Edinburgh, Edinburgh, UK, Sam.Lindley@ed.ac.uk.

2 Sam Lindley

Definition 1.1. A 𝛽-normal form is a simply-typed lambda calculus term whose shape matches

the syntactic category of normal forms given below.

Normal forms 𝑀 ::= 𝑁 | 𝜆𝑥𝐴 .𝑀
Neutral forms 𝑁 ::= 𝑥 | 𝑁 𝑀

It is standard that every well-typed term is 𝛽-convertible to a unique 𝛽-normal form.

Proposition 1.2. Given Γ ⊢ 𝑀 : 𝐴 there exists a unique 𝛽-normal form Γ ⊢ 𝑀 ′
: 𝐴 such that

𝑀 ∼𝛽 𝑀 ′.

This result follows, for instance, from confluence and termination for simply-typed lambda-

calculus.

1.1 Products
The extension of simply-typed lambda calculus with product types is standard. The syntax of

types is extended with the product type and the syntax of terms with pairs and first and second

projections.

Types 𝐴, 𝐵 ::= · · · | 𝐴 × 𝐵

Terms 𝑀, 𝑁 ::= · · · | pair 𝑀 𝑁 | fst 𝑀 | snd 𝑀

The kinding and typing rules are extended as follows.

Δ ⊢ 𝐴 : ★

. . .

Prod

Δ ⊢ 𝐴 : ★ Δ ⊢ 𝐵 : ★

Δ ⊢ 𝐴 × 𝐵 : ★

Γ ⊢ 𝑀 : 𝐴

. . .

Pair

Γ ⊢ 𝑀 : 𝐴 Γ ⊢ 𝑁 : 𝐵

Γ ⊢ pair 𝑀 𝑁 : 𝐴 × 𝐵

Fst

Γ ⊢ 𝑀 : 𝐴 × 𝐵

Γ ⊢ fst 𝑀 : 𝐴

Snd

Γ ⊢ 𝑀 : 𝐴 × 𝐵

Γ ⊢ snd 𝑀 : 𝐵

For products there are two 𝛽-rewrite rules, one for the first projection (×.𝛽2) and another for the

second projection (×.𝛽2), and one 𝜂-rewrite rule (×.𝜂).

fst (pair 𝑀 𝑁) { 𝑀 (×.𝛽1)
snd (pair 𝑀 𝑁) { 𝑁 (×.𝛽2)

𝑀 { pair (fst 𝑀) (snd 𝑀) (×.𝜂)

When working with the extended calculus{ and ∼ and their subscripted variants are extended in

the obvious way. As well as working with the full 𝛽-conversion relation and full 𝛽𝜂-conversion

relation, we will also sometimes work with the relation that is closed under all of the 𝛽-rules and

the →.𝜂-rule but not ×.𝜂. We will denote this convertibility relation by ∼𝛽𝜂→ .

This paper studies encodings of product types in terms of base types and function types.

1.2 Compositional Encodings
As all of the encodings we consider in this paper target syntax, we choose to give a syntactic

characterisation of what it means to be a compositional encoding.

Encoding Product Types 3

First let us consider the encoding of types. A compositional encoding of types is determined by

three open type parameters.

Δ,𝒳 ⊢ Base : ★
Δ,𝒳,𝒴 ⊢ Fun : ★

Δ,𝒳,𝒴 ⊢ Prod : ★

Here we extend the fixed Δ of the object language with type variables𝒳,𝒴 in order to define type

operators which we will use to interpret base types, function types, and products. We will not use

these open types directly, but instead always substitute their free type variables with closed types

using the following syntactic sugar.

Base[𝐴] ≡ Base[𝐴/𝒳]
Fun[𝐴, 𝐵] ≡ Fun[𝐴/𝒳, 𝐵/𝒴]
Prod[𝐴, 𝐵] ≡ Prod[𝐴/𝒳, 𝐵/𝒴]

An encoding J−K on types is compositional if it factors through suitable definitions of Base, Fun,
and Prod.

J𝑋 K = Base[𝑋]
J𝐴 → 𝐵K = Fun[J𝐴K, J𝐵K]
J𝐴 × 𝐵K = Prod[J𝐴K, J𝐵K]

We fix encodings of contexts to be fully determined by an encoding of types. The encoding of

type contexts is the identity (we assume the same base types are available in the source and the

target).

JΔK = Δ

The encoding on term contexts is pointwise.

J·K = ·
JΓ, 𝑥 : 𝐴K = JΓK, 𝑥 : J𝐴K

Just as we characterise a compositional encoding of types by factoring it through an open type

parameter for each type constructor, we characterise a compositional encoding of terms by factoring

it through an open term parameter for each term constructor.

𝑥 : 𝐴 ⊢ var𝐴 : 𝐴

𝑓 : 𝐴 → 𝐵 ⊢ lam𝐴,𝐵 : Fun[𝐴, 𝐵]
𝑓 : Fun[𝐴, 𝐵], 𝑥 : 𝐴 ⊢ app𝐴,𝐵 : 𝐵

𝑥 : 𝐴,𝑦 : 𝐵 ⊢ pair𝐴,𝐵 : Prod[𝐴, 𝐵]
𝑝 : Prod[𝐴, 𝐵] ⊢ fst𝐴,𝐵 : 𝐴

𝑝 : Prod[𝐴, 𝐵] ⊢ snd𝐴,𝐵 : 𝐵

Again, we do not use these open terms directly, but rather define syntactic sugar for substituting

for the free variables.

var𝐴 [𝑀] ≡ var𝐴 [𝑀/𝑥]
lam𝐴,𝐵 [𝑀] ≡ lam𝐴,𝐵 [𝑀/𝑓]

app𝐴,𝐵 [𝑀, 𝑁] ≡ app𝐴,𝐵 [𝑀/𝑓 , 𝑁 /𝑥]
pair𝐴,𝐵 [𝑀, 𝑁] ≡ pair𝐴,𝐵 [𝑀/𝑥, 𝑁 /𝑦]

fst𝐴,𝐵 [𝑀] ≡ fst𝐴,𝐵 [𝑀/𝑝]
snd𝐴,𝐵 [𝑀] ≡ snd𝐴,𝐵 [𝑀/𝑝]

4 Sam Lindley

An encoding J−K on terms is compositional if it factors through suitable definitions of var, lam,

app, pair, fst, and snd.

J𝑥𝐴K = varJ𝐴K [𝑥]
J𝜆𝑥𝐴 .𝑀𝐵K = lamJ𝐴K,J𝐵K [𝜆𝑥J𝐴K .J𝑀K]

J𝑀𝐴→𝐵 𝑁𝐴K = appJ𝐴K,J𝐵K [J𝑀K, J𝑁 K]
Jpair 𝑀𝐴 𝑁 𝐵K = pairJ𝐴K,J𝐵K [J𝑀K, J𝑁 K]

Jfst 𝑀𝐴×𝐵K = fstJ𝐴K,J𝐵K [J𝑀K]
Jsnd 𝑀𝐴×𝐵K = sndJ𝐴K,J𝐵K [J𝑀K]

The most basic sanity check for any translation between typed calculi is that it preserves typing

judgements. Thus we we will always ensure that whenever Γ ⊢ 𝑀 : 𝐴 then JΓK ⊢ J𝑀K : J𝐴K. Indeed
we consider a translation to be ill-defined if it does not preserve typing (and if we were to mechanise

our development in a system like Agda or Coq we would use an intrinsically typed representation

in which type preservation holds by construction).

Formally one can view a translation on terms as being defined on typed terms, that is typing

derivations, rather than on untyped terms. Often such translations are parametric in type informa-

tion so we can write them down as if they were defined on untyped terms. Sometimes, however, our

translations will depend at least to some extent on type information in the derivation, which we

abbreviate by placing annotations on subterms. Correspondingly, we choose to include or omit type

subscripts on the open term and type parameters depending on whether an encoding is parametric

or type-indexed.

1.3 Local Encoding of Products
An encoding of products is local if all other features are encoded directly as is. Concretely, this

means that the open type and term parameters are defined as follows.

Base = 𝑋

Fun = 𝑋 → 𝑌

var = 𝑥

lam = 𝑓

app = 𝑓 𝑥

The encoding itself is then partially defined as follows.

J𝑋 K = 𝑋

J𝐴 → 𝐵K = J𝐴K → J𝐵K

J𝑥K = 𝑥

J𝜆𝑥 .𝑀K = 𝜆𝑥.J𝑀K
J𝑀 𝑁 K = J𝑀K J𝑁 K

To complete the local encoding we just need to describe how to encode product types (Prod), pairs
(pair), and projections (fst and snd).

Encoding Product Types 5

2 GLOBAL ENCODINGWITH CONTINUATION-PASSING STYLE
One way of encoding products hinges on the isomorphism between uncurried and curried functions:

(curry, uncurry) : (𝐴 × 𝐵) → 𝐶 ≃ 𝐴 → 𝐵 → 𝐶

curry = 𝜆𝑓 .𝜆𝑥 .𝜆𝑦.𝑓 (pair 𝑥 𝑦)
uncurry = 𝜆𝑔.𝜆𝑝.𝑔 (fst 𝑝) (snd 𝑝)

If we can ensure that product types appear only on the left of an arrow then we can use this

isomorphism to translate them away. A CPS translation ensures that all types apart from the final

return type do indeed appear to the left of an arrow.

2.1 A Call-by-Name CPS translation
A call-by-name CPS translation [8] generalises a double-negation translation, where the empty

type is replaced by an arbitrary return type 𝑅.

NJ𝐴K = (𝐴★ → 𝑅) → 𝑅

𝑋★ = 𝑋

(𝐴 × 𝐵)★ = NJ𝐴K × NJ𝐵K
(𝐴 → 𝐵)★ = NJ𝐴K → NJ𝐵K

The translation on types compositionally inserts a “double-negation” around each type constructor.

Inlining the definition of (−)★ makes it apparent that product types only occur to the left of arrows

(assuming we choose an 𝑅 that is not a product type).

NJ𝑋 K = (𝑋 → 𝑅) → 𝑅

NJ𝐴 → 𝐵K = ((NJ𝐴K → NJ𝐵K) → 𝑅) → 𝑅

NJ𝐴 × 𝐵K = ((NJ𝐴K × NJ𝐵K) → 𝑅) → 𝑅

The translation on term contexts is pointwise.

NJ·K = ·
NJΓ, 𝑥 : 𝐴K = NJΓK, 𝑥 : NJ𝐴K

The translation on terms is as follows.

NJ𝑥K = 𝜆𝑘.𝑥 𝑘

NJ𝜆𝑥.𝑀K = 𝜆𝑘.𝑘 (𝜆𝑥 .NJ𝑀K)
NJ𝑀 𝑁 K = 𝜆𝑘.NJ𝑀K (𝜆𝑓 .𝑓 NJ𝑁 K 𝑘)

NJpair 𝑀 𝑁 K = 𝜆𝑘.𝑘 (pair NJ𝑀K NJ𝑁 K)
NJfst 𝑀K = 𝜆𝑘.NJ𝑀K (𝜆𝑝.(fst 𝑝) 𝑘)
NJsnd 𝑀K = 𝜆𝑘.NJ𝑀K (𝜆𝑝.(snd 𝑝) 𝑘)

Proposition 2.1. If Γ ⊢ 𝑀 : 𝐴 and Γ ⊢ 𝑁 : 𝐴 then𝑀 ∼𝛽 𝑁 iff NJ𝑀K ∼𝛽 NJ𝑁 K.

The original proof of this proposition (adapted to the untyped lambda calculus) is due to

Plotkin [8]. It is somewhat complicated by the fact that the translation introduces administrative-
redexes which means that the 𝛽-rule sometimes has to be applied in reverse. Danvy and Filinski

remedy this complication with a more efficient higher-order one-pass CPS translation [3].

6 Sam Lindley

2.2 Curried CPS Translation
As in the image of the CPS translation products appear only on the left of arrows we can replace

all such instances with curried functions.

CJ𝑋 K = (𝑋 → 𝑅) → 𝑅

CJ𝐴 → 𝐵K = ((CJ𝐴K → CJ𝐵K) → 𝑅) → 𝑅

CJ𝐴 × 𝐵K = (CJ𝐴K → CJ𝐵K → 𝑅) → 𝑅

CJ𝑥K = 𝜆𝑘.𝑥 𝑘

CJ𝜆𝑥 .𝑀K = 𝜆𝑘.𝑘 (𝜆𝑥.CJ𝑀K)
CJ𝑀 𝑁 K = 𝜆𝑘.CJ𝑀K (𝜆𝑓 .𝑓 CJ𝑁 K 𝑘)

CJpair 𝑀 𝑁 K = 𝜆𝑘.𝑘 CJ𝑀K CJ𝑁 K
CJfst 𝑀K = 𝜆𝑘.CJ𝑀K (𝜆𝑥 .𝜆𝑦.𝑥 𝑘)
CJsnd 𝑀K = 𝜆𝑘.CJ𝑀K (𝜆𝑥 .𝜆𝑦.𝑦 𝑘)

The changes to the translation are highlighted.

Proposition 2.2. If Γ ⊢ 𝑀 : 𝐴 and Γ ⊢ 𝑁 : 𝐴 then𝑀 ∼𝛽 𝑁 iff CJ𝑀K ∼𝛽 CJ𝑁 K.

2.3 Localising CPS
The curried CBN CPS translation relies on CPS to enable currying of functions. If we want to make

it local then an obvious thing to try is to only apply CPS at product types and attempt to leave

everything else in direct style. The idea is to encode a pair using a term that expects a continuation,

and a projection by supplying a continuation such that the value returned by the continuation is

the projected value. Indeed we can define a suitable term translation as the homomorphic extension

of the following equations.

HJpair 𝑀 𝑁 K = 𝜆𝑠.𝑠 HJ𝑀K HJ𝑁 K
HJfst 𝑀K = HJ𝑀K (𝜆𝑥.𝜆𝑦.𝑥)
HJsnd 𝑀K = HJ𝑀K (𝜆𝑥.𝜆𝑦.𝑦)

2.4 Homogeneous Products
The above local translation is only typeable in a simply-typed lambda-calculus if both components

of the product have the same type. The reason is that the type of the selector function 𝑠 (the

counterpart of the continuation in the global CPS translation) must be fixed. Specifically, it must

have type 𝐴 → 𝐴 → 𝐴 for some 𝐴. Consequently, we have a local encoding of 𝐴×𝐴 for every type

𝐴, but no local encoding of 𝐴 × 𝐵 for distinct types 𝐴 and 𝐵. This local encoding HJ−K is defined
on simply-typed lambda calculus with homogeneous products.

HJ𝐴 ×𝐴K = (HJ𝐴K → HJ𝐴K → HJ𝐴K) → HJ𝐴K

HJpair 𝑀𝐴 𝑁𝐴K = 𝜆𝑠HJ𝐴K→HJ𝐴K→HJ𝐴K .𝑠 HJ𝑀K HJ𝑁 K
HJfst 𝑀𝐴×𝐴K = HJ𝑀K (𝜆𝑥HJ𝐴K .𝜆𝑦HJ𝐴K .𝑥)
HJsnd 𝑀𝐴×𝐴K = HJ𝑀K (𝜆𝑥HJ𝐴K.𝜆𝑦HJ𝐴K .𝑦)

Proposition 2.3. If Γ ⊢ 𝑀 : 𝐴 and Γ ⊢ 𝑁 : 𝐴 then𝑀 ∼𝛽 𝑁 iffHJ𝑀K ∼𝛽 HJ𝑁 K.

2.5 Untyped Encoding
If we discard all types then the above local encoding degenerates to the well-known Church

encoding of pairs in untyped lambda calculus [1, 2], which works for pairs of terms that would be

ascribed different types by a simply-typed lambda calculus.

Encoding Product Types 7

UJpair 𝑀 𝑁 K = 𝜆𝑠.𝑠 UJ𝑀K UJ𝑁 K
UJfst 𝑀K = UJ𝑀K (𝜆𝑥 .𝜆𝑦.𝑥)
UJsnd 𝑀K = UJ𝑀K (𝜆𝑥 .𝜆𝑦.𝑦)

Proposition 2.4. If Γ ⊢ 𝑀 : 𝐴 and Γ ⊢ 𝑁 : 𝐴 then𝑀 ∼𝛽 𝑁 iffUJ𝑀K ∼𝛽 UJ𝑁 K.

2.6 Polymorphic Encoding
If we extend the target language to a polymorphic lambda-calculus, then the above translation can

be adapted to use a polymorphic return type, thus supporting heterogeneous pairs.

F J𝐴 × 𝐵K = ∀𝑍 .(F J𝐴K → F J𝐵K → 𝑍) → 𝑍

F Jpair𝐴,𝐵 𝑀 𝑁 K = Λ𝑍 .𝜆𝑠FJ𝐴K→FJ𝐵K→𝑍 .𝑠 F J𝑀K F J𝑁 K
F Jfst𝐴,𝐵 𝑀K = F J𝑀K F J𝐴K (𝜆𝑥 FJ𝐴K .𝜆𝑦FJ𝐵K.𝑥)
F Jsnd𝐴,𝐵 𝑀K = F J𝑀K F J𝐵K (𝜆𝑥 FJ𝐴K.𝜆𝑦FJ𝐵K .𝑦)

Proposition 2.5. If Γ ⊢ 𝑀 : 𝐴 and Γ ⊢ 𝑁 : 𝐴 then𝑀 ∼𝛽 𝑁 iff F J𝑀K ∼𝛽 F J𝑁 K.

3 NON-EXISTENCE OF LOCAL ENCODINGS
In simply-typed lambda calculi, at least one base type is necessary in order for types to be well-

defined. In our presentation, the base types are abstract in the sense that there are no typing rules

that explicitly mention base types and hence no closed terms of base type. Some common variations

of simply-typed lambda calculus such as Gödel’s System T [4] and Plotkin’s PCF [9] include a

concrete base type of natural numbers and no abstract base types.

3.1 Multiple Abstract Base Types
We now prove that if there are multiple abstract base types then there can be no local encoding of

products. In order to prove that no such encoding can exist in the presence of two distinct abstract

base types 𝑋 and 𝑌 we need only consider the encoding of projections on a variable 𝑝 : 𝑋 × 𝑌 .

Because we seek a local encoding, we must have the following translations on judgements.

J𝑝 : 𝑋 × 𝑌 ⊢ fst 𝑝 : 𝑋 K = 𝑝 : J𝑋 × 𝑌 K ⊢ fst𝑋,𝑌 : 𝑋

J𝑝 : 𝑋 × 𝑌 ⊢ snd 𝑝 : 𝑌 K = 𝑝 : J𝑋 × 𝑌 K ⊢ snd𝑋,𝑌 : 𝑌

(In contrast, the global CPS translations of Sections 2.2 and 2.1 have that NJ𝑋 K = CJ𝑋 K = (𝑋 →
𝑅) → 𝑅 so fst𝑋,𝑌 and snd𝑋,𝑌 never feature in the encoding.) Without loss of generality we can

assume that fst𝑋,𝑌 and snd𝑋,𝑌 are in 𝛽-normal form. But a 𝛽-normal form of base type must be a

variable applied to a sequence of 𝛽-normal forms. Thus we must have𝑚,𝑛,𝑀1, ..., 𝑀𝑚, 𝑁1, ..., 𝑁𝑛

such that:

fst𝑋,𝑌 = 𝑝 𝑀1 . . . 𝑀𝑚

snd𝑋,𝑌 = 𝑝 𝑁1 . . . 𝑁𝑛

The typing rule for application means that we also have

𝐴1 → · · · → 𝐴𝑚 → 𝑋 = J𝑋 × 𝑌 K = 𝐵1 → · · · → 𝐵𝑛 → 𝑌

where

(𝑝 : J𝑋 × 𝑌 K ⊢ 𝑀𝑖 : 𝐴𝑖)1≤𝑖≤𝑚
(𝑝 : J𝑋 × 𝑌 K ⊢ 𝑁 𝑗 : 𝐵𝑖)1≤ 𝑗≤𝑛 𝑗

But these equations could only hold if 𝑋 and 𝑌 were the same type (and of course incidentally that

𝑚 = 𝑛, 𝐴1 = 𝐵1, . . . , 𝐴𝑚 = 𝐵𝑚). Thus no such encoding can exist.

8 Sam Lindley

Proposition 3.1. There exists no local encoding J−K of products in simply-typed lambda calculus
with multiple abstract base types.

3.2 A Single Abstract Base Type
We now show that a similar argument to the one above can be used to prove that even with a single

abstract base type there can be no local encoding of product types. However, as we shall see later

the proof is somewhat fragile: small changes to the underlying assumptions invalidate it.

The non-existence proof of the previous subsection depends on the assumption that an encoding

should be type-preserving (i.e. well-defined), without even considering soundness. The following

proof depends also on an assumption that the encoding is sound with respect to 𝛽-conversion.

Consider the encoding of 𝑋 × (𝑋 → 𝑋). We require:

J𝑝 : 𝑋 × (𝑋 → 𝑋) ⊢ fst 𝑝 : 𝑋 K = 𝑝 : J𝑋 × (𝑋 → 𝑋)K ⊢ fst𝑋,𝑋→𝑋 : 𝑋

J𝑝 : 𝑋 × (𝑋 → 𝑋) ⊢ snd 𝑝 : 𝑋 → 𝑋 K = 𝑝 : J𝑋 × (𝑋 → 𝑋)K ⊢ snd𝑋,𝑋→𝑋 : 𝑋 → 𝑋

As before, fst𝑋,𝑋→𝑋 must be of the form

𝑝 𝑀1 . . . 𝑀𝑚

and hence:

J𝑋 × (𝑋 → 𝑋)K = 𝐴1 → · · · → 𝐴𝑚 → 𝑋

But this time there are two choices for snd𝑋,𝑋→𝑋 . Either it can be of the form

𝑝 𝑁1 . . . 𝑁𝑚−1 (1)

in which case

𝐴𝑚 = 𝑋

or it can be of the form:

𝜆𝑧.𝑁 ′ (2)

But we can immediately rule out (2) as it implies that

Jsnd (pair 𝑥 𝑦)K = 𝜆𝑧.𝑁 ′[Jpair 𝑥 𝑦K/𝑝]

which cannot be 𝛽-converted to 𝑦 whatever the definitions of 𝑁 ′
and pair are (meaning that J−K

would be unsound with respect to 𝛽-conversion).

We can also rule out (1) as𝑀𝑚 must be a normal form of base type and the only free variable in

scope is 𝑝 , so𝑀𝑚 must again be the application of 𝑝 to𝑚 normal forms, and the last of those must

itself be 𝑝 applied to𝑚 normal forms, and so on. Thus no finite snd can exist.

Proposition 3.2. There exists no local encoding J−K of products in simply-typed lambda calculus
with functions and a single abstract base type such that: if Γ ⊢ 𝑀 : 𝐴 and Γ ⊢ 𝑁 : 𝐴 and 𝑀 ∼𝛽 𝑁

then J𝑀K ∼𝛽 J𝑁 K.

4 EXISTENCE OF LOCAL ENCODINGS
We now describe two distinct small changes to our underlying assumptions, each of which invali-

dates the proof in Section 3.2 and moreover enables a local encoding of products.

Encoding Product Types 9

4.1 Allowing 𝜂-Conversion
The non-existence proof in Section 3.2 relies on ruling out the second form for 𝑁 , which we do

by observing that no lambda abstraction can ever be 𝛽-converted to a variable. If however, we

relax our requirements just slightly by looking for an encoding in which we admit 𝜂-conversion in

addition to 𝛽-conversion, then it turns out that we can in fact encode 𝑋 × (𝑋 → 𝑋) as follows:

EJ𝑋 × (𝑋 → 𝑋)K = (𝑋 → (𝑋 → 𝑋) → 𝑋) → 𝑋

EJpair 𝑀𝑋 𝑁𝑋→𝑋 K = 𝜆𝑓 .𝑓 EJ𝑀K EJ𝑁 K
EJfst 𝑀𝑋×(𝑋→𝑋)K = EJ𝑀K (𝜆𝑥 𝑦.𝑥)
EJsnd 𝑀𝑋×(𝑋→𝑋)K = 𝜆𝑧.EJ𝑀K (𝜆𝑥 𝑦.𝑦 𝑧)

Now we have

EJfst (EJpair 𝑥 𝑦K)K ∼𝛽 𝑥

EJsnd (EJpair 𝑥 𝑦K)K ∼𝛽 𝜆𝑧.𝑦 𝑧 ∼𝜂 𝑦

as required.

Indeed if we have a single abstract base type 𝑋 and admit 𝜂-conversion then we can encode all
product types.

EJ𝐴 × 𝐵K = (EJ𝐴K → EJ𝐵K → 𝑋) → 𝑋

EJpair 𝑀 𝑁 K = 𝜆𝑓 .𝑓 EJ𝑀K EJ𝑁 K
EJfst 𝑀𝐴1→...𝐴𝑛→𝑋,𝐵K = 𝜆𝑧1 . . . 𝑧𝑛 .EJ𝑀K (𝜆𝑥 𝑦.𝑥 𝑧1 . . . 𝑧𝑛)
EJsnd 𝑀𝐴,𝐵1→...𝐵𝑛→𝑋 K = 𝜆𝑧1 . . . 𝑧𝑛 .EJ𝑀K (𝜆𝑥 𝑦.𝑦 𝑧1 . . . 𝑧𝑛)

As there is a single abstract base type𝑋 , we can always obtain a term of type𝑋 from any 𝑝 whatever

its type by applying it to enough arguments. We can take advantage of 𝜂-conversion to ensure that

arguments (𝑧1, . . . , 𝑧𝑛) of the required types are in scope.

Proposition 4.1. If Γ ⊢ 𝑀 : 𝐴 and Γ ⊢ 𝑁 : 𝐴 then𝑀 ∼𝛽𝜂→ 𝑁 iff EJ𝑀K ∼𝛽𝜂 EJ𝑁 K.

Soundness (left-to-right) follows by induction on typing derivations. Completeness (right-to-left)

follows from soundness, existence of unique normal forms, and the observation that normal forms

are encoded as normal forms.

4.2 Adding Constants
Adding a constant of type 𝑋 is another way to subvert the proof that there is no encoding of

𝑋 × (𝑋 → 𝑋) in Section 3.2. If we introduce a single constant 𝑐𝑋 : 𝑋 (or equivalently interpret

top-level terms in a context extended with a distinguished free variable 𝑐𝑋 : 𝑋), then we can encode

𝑋 × (𝑋 → 𝑋) without the need for 𝜂-conversion. The introduction of the constant removes the

obstacle to 𝑁 having the form (1), and we can simply set𝑀𝑚 = 𝑐𝑋 (with𝑚 = 2) as follows.

LJ𝑋 × (𝑋 → 𝑋)K = ((𝑋 → 𝑋) → (𝑋 → 𝑋) → (𝑋 → 𝑋)) → (𝑋 → 𝑋)

LJpair 𝑀 𝑁 K = 𝜆𝑓 .𝑓 (𝜆𝑧.EJ𝑀K) EJ𝑁 K
LJfst 𝑀𝑋×(𝑋→𝑋)K = LJ𝑀K (𝜆𝑥 𝑦.𝑥) 𝑐𝑋
LJsnd 𝑀𝑋×(𝑋→𝑋)K = LJ𝑀K (𝜆𝑥 𝑦.𝑦)

Now that 𝑋 is inhabited (by the constant 𝑐𝑋), we can embed an 𝑋 value into 𝑋 → 𝑋 in such a way

that we can re-extract the original 𝑋 value as required (by application to 𝑐𝑋), which means we can

10 Sam Lindley

simulate the heterogeneous product𝑋 × (𝑋 → 𝑋) by a homogeneous product (𝑋 → 𝑋) × (𝑋 → 𝑋).
𝑥 : 𝑋 ⊢ 𝜆𝑧𝑋 .𝑥 : 𝑋 → 𝑋

𝑓 : 𝑋 → 𝑋 ⊢ 𝑓 𝑐𝑋 : (𝑋 → 𝑋) → 𝑋

Without 𝑐𝑋 it would not be possible to map a function of type 𝑋 → 𝑋 to a term of type 𝑋 .

The same idea generalises to enable us to encode all product types. The constant 𝑐𝑋 ensures

that 𝑋 is inhabited, but this also means that every other type is inhabited and for any type we can

define a default closed term default𝐴 as follows.

default𝑋 = 𝑐𝑋
default𝐴→𝐵 = 𝜆𝑧𝐴 .default𝐵

The property that enables us to factor heterogeneous products through homogeneous products is

that for any pair of types 𝐴 and 𝐵 there exists a least-upper bound 𝐴 ⊔ 𝐵 such that we can embed

both 𝐴 and 𝐵 into 𝐴 ⊔ 𝐵, formally both 𝐴 and 𝐵 are definable retracts of 𝐴 ⊔ 𝐵.

Definition 4.2. Given types 𝐴 and 𝐵, we say that 𝐴 is a definable retract of 𝐵 if there exist terms

𝑥 : 𝐴 ⊢ 𝑁 : 𝐵 and 𝑥 : 𝐵 ⊢ 𝑀 : 𝐴 such that𝑀 [𝑁 /𝑥] ∼𝛽𝜂 𝑥 . We say that (𝑀, 𝑁) is a retraction pair for
the retraction 𝐴 ⊳ 𝐵, or more concisely (𝑀, 𝑁) : 𝐴 ⊳ 𝐵.

The least upper bound 𝐴 ⊔ 𝐵 of types 𝐴 and 𝐵 is defined together with type-indexed open terms

for injecting into and projecting out of 𝐴 ⊔ 𝐵.

𝑥 : 𝐴 ⊢ inl𝐴,𝐵 : 𝐴 ⊔ 𝐵

𝑥 : 𝐵 ⊢ inr𝐴,𝐵 : 𝐴 ⊔ 𝐵

𝑥 : 𝐴 ⊔ 𝐵 ⊢ outl𝐴,𝐵 : 𝐴

𝑥 : 𝐴 ⊔ 𝐵 ⊢ outr𝐴,𝐵 : 𝐵

𝑋 ⊔ 𝑋 = 𝑋

𝑥 : 𝑋 ⊢ inl𝑋,𝑋 = 𝑥 : 𝑋

𝑥 : 𝑋 ⊢ inr𝑋,𝑋 = 𝑥 : 𝑋

𝑥 : 𝑋 ⊢ outl𝑋,𝑋 = 𝑥 : 𝑋

𝑥 : 𝑋 ⊢ outr𝑋,𝑋 = 𝑥 : 𝑋

(𝐴 → 𝐵) ⊔ 𝑋 = 𝐴 → (𝐵 ⊔ 𝑋)
𝑥 : 𝐴 → 𝐵 ⊢ inl𝐴→𝐵,𝑋 = 𝜆𝑦𝐴 .inl[𝑥 𝑦] : 𝐴 → (𝐵 ⊔ 𝑋)

𝑥 : 𝑋 ⊢ inr𝐴→𝐵,𝑋 = 𝜆𝑧𝐴 .inr[𝑥] : 𝐴 → (𝐵 ⊔ 𝑋)
𝑥 : 𝐴 → (𝐵 ⊔ 𝑋) ⊢ outl𝐴→𝐵,𝑋 = 𝜆𝑦𝐴 .outl[𝑥 𝑦] : 𝐴 → 𝐵

𝑥 : 𝐴 → (𝐵 ⊔ 𝑋) ⊢ outr𝐴→𝐵,𝑋 = outr[𝑥 default𝐴] : 𝑋

𝑋 ⊔ (𝐴 → 𝐵) = 𝐴 → (𝑋 ⊔ 𝐵)
𝑥 : 𝑋 ⊢ inl𝑋,𝐴→𝐵 = 𝜆𝑧𝐴 .inl[𝑥] : 𝐴 → (𝑋 ⊔ 𝐵)

𝑥 : 𝐴 → 𝐵 ⊢ inr𝑋,𝐴→𝐵 = 𝜆𝑦𝐴 .inr[𝑥 𝑦] : 𝐴 → (𝑋 ⊔ 𝐵)
𝑥 : 𝐴 → (𝑋 ⊔ 𝐵) ⊢ outl𝑋,𝐴→𝐵 = outl[𝑥 default𝐴] : 𝑋
𝑥 : 𝐴 → (𝑋 ⊔ 𝐵) ⊢ outr𝑋,𝐴→𝐵 = 𝜆𝑦𝐴 .outr[𝑥 𝑦] : 𝐴 → 𝐵

(𝐴 → 𝐵) ⊔ (𝐴′ → 𝐵′) = (𝐴 ⊔𝐴′) → (𝐵 ⊔ 𝐵′)
𝑥 : 𝐴 → 𝐵 ⊢ inl𝐴→𝐵,𝐴′→𝐵′ = 𝜆𝑦𝐴⊔𝐴

′
.inl[𝑥 (outl[𝑦])] : (𝐴 ⊔𝐴′) → (𝐵 ⊔ 𝐵′)

𝑥 : 𝐴′ → 𝐵′ ⊢ inr𝐴→𝐵,𝐴′→𝐵′ = 𝜆𝑦𝐴⊔𝐴
′
.inr[𝑥 (outr[𝑦])] : (𝐴 ⊔𝐴′) → (𝐵 ⊔ 𝐵′)

𝑥 : (𝐴 ⊔𝐴′) → (𝐵 ⊔ 𝐵′) ⊢ outl𝐴→𝐵,𝐴′→𝐵′ = 𝜆𝑦𝐴 .outl[𝑥 (inl[𝑦])] : 𝐴 → 𝐵

𝑥 : (𝐴 ⊔𝐴′) → (𝐵 ⊔ 𝐵′) ⊢ outr𝐴→𝐵,𝐴′→𝐵′ = 𝜆𝑦𝐵 .outr[𝑥 (inr[𝑦])] : 𝐴′ → 𝐵′

Encoding Product Types 11

Just as with the open encoding parameters of Section 1.2 we make use of syntactic sugar for

substituting for the free variables in the injection and projection terms.

inl[𝑀] ≡ inl[𝑀/𝑥]
inr[𝑀] ≡ inr[𝑀/𝑥]
outl[𝑀] ≡ outl[𝑀/𝑥]
outr[𝑀] ≡ outr[𝑀/𝑥]

Proposition 4.3. For all types 𝐴 and 𝐵:
(1) (outl𝐴,𝐵, inl𝐴,𝐵) : 𝐴 ⊳𝐴 ⊔ 𝐵

(2) (outr𝐴,𝐵, inr𝐴,𝐵) : 𝐵 ⊳𝐴 ⊔ 𝐵

The proof is by simultaneous induction on the structure of 𝐴 and 𝐵.

We can now encode products using the least-upper bound construction.

LJ𝐴 × 𝐵K = ((𝐴 ⊔ 𝐵) → (𝐴 ⊔ 𝐵) → (𝐴 ⊔ 𝐵)) → (𝐴 ⊔ 𝐵)

LJpair 𝑀𝐴 𝑁 𝐵K = 𝜆𝑓 .𝑓 (inlLJ𝐴K,LJ𝐵K [LJ𝑀K]) (inrLJ𝐴K,LJ𝐵K [LJ𝑁 K])
LJfst 𝑀𝐴×𝐵K = outlLJ𝐴K,LJ𝐵K [LJ𝑀K (𝜆𝑥 𝑦.𝑥)]
LJsnd 𝑀𝐴×𝐵K = outrLJ𝐴K,LJ𝐵K [LJ𝑀K (𝜆𝑥 𝑦.𝑦)]

Alas, there is a slight issue here. In the definition of definable retracts we allow 𝜂-conversion.

This is necessary for the case that both 𝐴 and 𝐵 are function types in the above proposition.

Let us revisit the setup of Section 3.2, but with a slightly more complicated product. Consider a

local encoding of (𝑋 → 𝑋) × (𝑋 → 𝑋) → 𝑋 . We require:

J𝑝 : (𝑋 → 𝑋) × ((𝑋 → 𝑋) → 𝑋) ⊢ fst 𝑝 : 𝑋 → 𝑋 K
=

𝑝 : J(𝑋 → 𝑋) × ((𝑋 → 𝑋) → 𝑋)K ⊢ fst𝑋→𝑋,(𝑋→𝑋)→𝑋 : 𝑋 → 𝑋

J𝑝 : (𝑋 → 𝑋) × ((𝑋 → 𝑋) → 𝑋) ⊢ snd 𝑝 : (𝑋 → 𝑋) → 𝑋 K
=

𝑝 : J𝑋 × (𝑋 → 𝑋)K ⊢ snd𝑋→𝑋,(𝑋→𝑋)→𝑋 : (𝑋 → 𝑋) → 𝑋

Following similar reasoning to that of Section 3.2we observe thatwithout𝜂-conversion fst𝑋→𝑋,(𝑋→𝑋)→𝑋

must be of the form

𝑝 𝑀1 . . . 𝑀𝑚−1
and snd𝑋→𝑋,(𝑋→𝑋)→𝑋 must be of the form

𝑝 𝑁1 . . . 𝑁𝑚−1

and hence:

𝐴1 → · · · → 𝐴𝑚−2 → 𝑋 → 𝑋

=

J(𝑋 → 𝑋) × ((𝑋 → 𝑋) → 𝑋)K
=

𝐵1 → · · · → 𝐵𝑚−2 → (𝑋 → 𝑋) → 𝑋

But this cannot be the case as 𝑋 and 𝑋 → 𝑋 are different types.

Proposition 4.4. There exists no local encoding J−K of products in simply-typed lambda calculus
with functions and a single base type with one constant.

Nevertheless, we have at least constructed an alternative encoding that uses both 𝜂-conversion

and constants.

12 Sam Lindley

Proposition 4.5. If Γ ⊢ 𝑀 : 𝐴 and Γ ⊢ 𝑁 : 𝐴 then𝑀 ∼𝛽𝜂→ 𝑁 iff LJ𝑀K ∼𝛽𝜂 LJ𝑁 K.

Soundness (left-to-right) follows by induction on typing derivations using Proposition 4.3. Com-

pleteness (right-to-left) follows from soundness, existence of unique normal forms, and the obser-

vation that normal forms are encoded as normal forms.

The same idea can be further adapted to accommodate multiple base types. In order for this to

work out we require not only that there is a constant 𝑐𝑋 for each base type 𝑋 , but there must exist

a least upper bound 𝑋 ⊔ 𝑌 for every pair of base types 𝑋 and 𝑌 . To construct the latter we would

need some additional structure on base types. For instance if 𝑋 was a type of booleans and 𝑌 a

type of natural numbers then we might reasonably expect to be able to embed 𝑋 in 𝑌 .

5 DISCUSSION
We proved that there are no local encodings of products in simply-typed lambda calculus if either:

there are multiple abstract base types, or there is a single abstract base type and we seek an encoding

that may not rely on →.𝜂-conversion.

Despite these non-existence proofs we have also now seen three compositional encodings of

products in simply-typed lambda calculus.

• The first (Section 2.2) is the CPS encoding. This is a global encoding. It is not type-indexed,

works for any number of base types, and does not rely on 𝜂-conversion or any constants.

• The second (Section 4.1) is a local encoding. It is type-indexed, depends on having exactly

one base type and→ .𝜂-conversion, but does not require any constants.

• The third (Section 4.2) is also a local encoding. It is type-indexed, depends on having one

constant for each base type, a least upper bound for every pair of base types, and →.𝜂-

conversion.

Localising the CPS Encoding. Though it is itself a global encoding, we have seen that several local

encodings can be derived from the CPS encoding. First of all it gives rise to a local encoding of

homogeneous products (Section 2.4) within simply-typed lambda calculus. Our third encoding of

heterogeneous products factors through the encoding of homogeneous products. Essentially the

same translation on terms also gives rise to the Church encoding of heterogeneous products in

untyped lambda calculus (Section 2.5) and in System F (Section 2.6).

Church Encoding of Pairs. Church’s original encoding for pairs [2] is in fact given for homoge-

neous pairs of natural numbers. His encoding of the pair constructor is the familiar one discussed

in this paper. However, he gives more complicated encodings of projection than the familiar ones

presented in this paper. His encoding of first and second projection explicitly discards the unused

component of the pair, and only work for pairs of natural numbers. This is because the encoding is

given in a relevant untyped lambda calculus in which every bound variable must be used.

Type-Indexing. It is worth noting that without type-indexing neither of the local encodings would
work, and indeed there can be no parametric encoding of fst or snd irrespective of whether we

have 𝜂-conversion or constants. The untyped encoding (Section 2.5) is local and parametric. The

polymorphic encoding (Section 2.6) is local. Technically it is type-indexed, however, it is parametric

in the sense that the type indexes are only used to determine type annotations, so, for instance, an

implementation that used type erasure could use a uniform parametric encoding.

Related Work. Local type-indexed encodings of products (and richer data types) in PCF are

well-known. For instance, Longley and Normann give a theoretical account of encodings of a

range of data types in PCF in Chapter 4 of their textbook on higher-order computability [7], whilst

Kiselyov [6] gives concrete implementations of encodings of a range of data types in PCF. Whereas

Encoding Product Types 13

PCF includes a single decidedly concrete base type, namely natural numbers, we have considered

simply-typed lambda calculus with abstract base types.

Conclusion. We have analysed the encoding of a rather basic feature, namely product types, in

simply-typed lambda calculus. In doing so we have highlighted the fragility of such encodings and

the importance of carefully stating the underlying assumptions before claiming that a particular

feature (even a really simple one like product types) is expressible in a given language.

REFERENCES
[1] Hendrik Pieter Barendregt. 1985. The Lambda Calculus - its Syntax and Semantics. Studies in logic and the foundations

of mathematics, Vol. 103. North-Holland.

[2] Alonzo Church. 1941. The Calculi of Lambda-Conversion.
[3] Olivier Danvy and Andrzej Filinski. 1992. Representing Control: A Study of the CPS Transformation. Math. Struct.

Comput. Sci. 2, 4 (1992), 361–391.
[4] Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and Types. Cambridge University Press.

[5] C. Barry Jay and Neil Ghani. 1995. The Virtues of Eta-Expansion. J. Funct. Program. 5, 2 (1995), 135–154.
[6] Oleg Kiselyov. 2022. Simply-typed encodings: PCF considered as unexpectedly expressive programming language.

https://okmij.org/ftp/Computation/simple-encodings.html.

[7] John Longley and Dag Normann. 2015. Higher-Order Computability. Springer.
[8] Gordon D. Plotkin. 1975. Call-by-Name, Call-by-Value and the lambda-Calculus. Theor. Comput. Sci. 1, 2 (1975), 125–159.
[9] Gordon D. Plotkin. 1977. LCF Considered as a Programming Language. Theor. Comput. Sci. 5, 3 (1977), 223–255.

https://okmij.org/ftp/Computation/simple-encodings.html

	Abstract
	1 Simply-Typed Lambda Calculus
	1.1 Products
	1.2 Compositional Encodings
	1.3 Local Encoding of Products

	2 Global Encoding with Continuation-Passing Style
	2.1 A Call-by-Name CPS translation
	2.2 Curried CPS Translation
	2.3 Localising CPS
	2.4 Homogeneous Products
	2.5 Untyped Encoding
	2.6 Polymorphic Encoding

	3 Non-Existence of Local Encodings
	3.1 Multiple Abstract Base Types
	3.2 A Single Abstract Base Type

	4 Existence of Local Encodings
	4.1 Allowing -Conversion
	4.2 Adding Constants

	5 Discussion
	References

