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Abstract

The RPC calculus is a simple semantic foundation for multi-tier program-
ming languages such as Links in which located functions can be written for
the client-server model. Subsequently, the typed RPC calculus is designed to
capture the location information of functions by types and to drive location
type-directed slicing compilations. However, the use of locations is currently
limited to monomorphic ones, which is one of the gaps to overcome to put into
practice the theory of RPC calculi for client-server model.

This paper proposes a polymorphic RPC calculus to allow programmers
to write succinct multi-tier programs using polymorphic location constructs.
Then the polymorphic multi-tier programs can be automatically translated into
programs only containing location constants amenable to the existing slicing
compilation methods. We formulate a type system for the polymorphic RPC
calculus, and prove its type soundness. Also, we design a monomorphization
translation together with proofs on its type and semantic correctness for the
translation.

Keywords: multi-tier programming, location polymorphism, remote
procedure call, client-server model

1. Introduction

Multi-tier programming languages for the client-server model are designed to
address the client-server dichotomy. For example, a web system basically con-
sists of a web server that accesses databases and a web client that provides user
interfaces, and they are connected by a network. Programmers have to develop
two individual programs separately for the two machines, which increases the
programmer’s burden. Once a program is developed, programmers need to test
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the two programs together, which is more complex than with one program on
a single machine. After that, the integrity between the two programs should be
properly maintained when each of them evolves. Further, some tasks cross the
boundary of two computers, and so the separate development increases coupling
between the client and server modules for the tasks.

Multi-tier programming attempts to solve this problem by allowing program-
mers to write a unified program for client and server expressions together in a
single programming language, and by providing a slicing compilation method
that can slice the unified program into separate client and server programs au-
tomatically.

The untyped RPC calculus (Cooper and Wadler, 2009) is the semantic foun-
dation for the RPC (remote procedure call) feature of Links (Cooper et al.,
2007), which is a functional programming language for multi-tier web program-
ming. Here is an example excerpted from the RPC calculus paper, rewritten in
Links as:

fun main() client { authenticate () }

fun authenticate () server {

var creds = getCredentials( "Enter name:passwd > " )

if ( creds == "ezra:opensesame" ) {

"The secret document"

} else { "Access denied" }

}

fun getCredentials(prompt) client { (print(prompt); read) }

There are location attributes client and server that indicate where the asso-
ciated functions should run. The program begins with main, which is a client
function. It invokes a server function authenticate. Subsequently, in the body
of the server function, a client function getCredentials is invoked. These are
two examples of remote procedure call (RPC), one from the client to the server
and the other from the server to the client. The RPC calculus thus expresses
remote procedure calls as plain lambda applications. It also expresses local pro-
cedure calls such as print(prompt) as the same syntax of lambda application.
As a result, it may take some time to see if a given lambda application is a
remote procedure call, particularly when higher-order functions are extensively
used. The two remote procedure calls in the example are underlined.

Then a slicing compilation in the untyped RPC calculus slices a unified
program such as the one above into a client program and a server program
where each separate program contains only functions that must run at their own
location and the remote procedure calls are compiled with some communication
primitives.

The typed RPC calculus (Choi and Chang, 2019) is an extension with loca-
tion types to specify where functions must run. For example, authenticate has
type Unit

s−→ String while getCredentials has type String
c−→ String where

s denotes the server and c does the client. It is equipped with a type system
that can account for remote procedure calls at the type level as is done in the
previous example by underlining them. Also, it provides a type-directed slic-
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ing compilation method simpler than the untyped slicing compilation method.
Thanks to the simplicity, the method offers a spectrum of slicing compilations:
one for the stateless server where no states are maintained in the server, which
is good for scalability, and the other for the stateful server where the server
maintains all states during multiple interactions with the client. The method
even suggests an idea of how to mix the two styles. The details for these slicing
compilations are in (Choi and Chang, 2019).

Note that in Links, location attributes are hints that are used at run-time
rather than part of the type as in the typed RPC calculus.

In spite of the advancement, there are still gaps in putting into practice
the theory of RPC calculi for client-server model. The typed RPC calculus is
good for writing functions with specific locations such as web page modification
and database accesses. But it is bad for writing location neutral functions such
as list utilities and primitive type functions because programmers write them
twice, one for the client and the other for the server. Instead, the calculus
should allow programmers to write location neutral functions only once for the
two locations. Then the compiler should be extended to translate them into
location-specific versions, for example, one written in JavaScript for the client
and the other written in OCaml for the server, automatically. It is much like
the convenience of polymorphically typed functions that are written once but
can be applied multiple times over different instantiated types.

An introduction of polymorphic locations to multi-tier programming lan-
guages including the RPC calculi poses a technical problem. In the RPC calculi,
programmers write remote procedure calls in the same syntax as for local proce-
dure calls. They provide no RPC keyword. This is believed to be a good design
for programmers because this abstracts out a difference in terms of the use of
client-server communication. For implementation, however, we need to distin-
guish between these two kinds of procedure calls, one implemented by a jump
instruction and the other by a RPC library, exposing the difference explicitly
in terms. The typed RPC calculus does this by location types as, for example,
every application is a remote procedure call if the location of the application
is different from the location of a function to invoke. On introducing polymor-
phic locations, we will have location variables where such location information
is uncertain at compile-time.

In this paper, we propose a polymorphic RPC calculus, which is an exten-
sion of the typed RPC calculus with polymorphic locations. A key idea behind
the polymorphic RPC calculus is to introduce location variables on lambda
abstractions, to abstract locations by location abstraction, Λl.M , and to instan-
tiate them by location application, M [Loc] for some location Loc. For example,
the location-neutral map function could be written in Links extended with the
feature of polymorphic locations as ‘fun map(f, xs) l { the body of map }’ where
the location attribute is replaced with a location variable l. In other words,

map = Λl.λlf.λlxs. · · · the body of map · · ·

that has type ∀l.(A l−→ B)
l−→ ([A]

l−→ [B]). The type of f is A
l−→ B, the type of xs
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Figure 1: Overview of a polymorphic RPC calculus

is a list type whose elements have type A, i.e., [A], and the ultimate return type
is [B]. The map function should run at location l, which is specified by location
application. To run it as a client function, we use a location application map[c],

which becomes λcf.λcxs. · · · of type (A
c−→ B)

c−→ ([A]
c−→ [B]) by replacing all

occurrences of l with c. To run it as a server function, map[s] will be used. Thus,
every polymorphic λ-abstraction can be regarded as a location-neutral one, and
a choice of a location specific λ-abstraction is done by a location application
with the location.

For implementation of the location polymorphism, we design a method to
translate away both the location abstraction construct and the location appli-
cation construct from polymorphic RPC terms. It then becomes possible to
make use of the existing slicing compilation methods for the typed RPC calcu-
lus (Choi and Chang, 2019). Combining the translation and each of the existing
slicing compilations, we can obtain two new slicing compilation methods for the
polymorphic RPC calculus. Figure 1 shows an overview of the polymorphic
RPC calculus.

The contributions of this paper are as follows:

• We propose a new polymorphic RPC calculus with the notion of polymor-
phic location, and prove its type soundness property.

• We design a monomorphization translation for the polymorphic RPC cal-
culus, and prove the type correctness and the semantic correctness of the
translation.

The roadmap of this paper is this. Section 2 reviews the typed RPC calculus
as a background. In Section 3, we propose a polymorphic RPC calculus and a
monomorphization translation, and prove a few important properties. After we
discuss related work in Section 4, we conclude in Section 5.

2. Background: The typed RPC calculus

In this section, we review the typed RPC calculus. Figure 2 shows a typed
RPC calculus λrpc. It is a call-by-value λ-calculus with location annotations
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Syntax
Location a, b ::= c | s
Term L,M,N ::= V | L M | M [A]
Value V,W ::= x | λax.M | Λα.V

Semantics

(Abs)
λbx.M ⇓a λbx.M

L ⇓a λbx.N M ⇓a W N{W/x} ⇓b V
(App)

L M ⇓a V

(Tabs)
Λα.V ⇓a Λα.V

M ⇓a Λα.V
(Tapp)

M [B] ⇓a V {B/α}

Figure 2: A typed RPC calculus λrpc

on λ-abstractions. The location annotations tell where the λ-abstractions must
execute. The client-server model is assumed in the design of the calculus, and
so the location annotations are either c denoting client or s denoting server.
The syntax of the typed RPC calculus is thus defined as shown in the figure.

The semantics of λrpc is defined in a big-step operational semantics with
evaluation judgment, M ⇓a V that denotes the evaluation of a term M at
location a resulting in a value V . (Abs) straightforwardly defines an evaluation
relation between a location annotated λ-abstraction and itself. (App) is more
interesting for an application L M at location a: it performs β-reduction at
location b, which a λ-abstraction from L has as an annotation, with a value W
from M , and it continues to evaluate the β-reduced term at the location. Here,
N{W/x} is a substitution of W for x in N .

Note that in (App), L M is a remote procedure call whenever the caller
location a is different from the callee location b. Otherwise, it is a local procedure
call. When a is client and b is server, a server function is invoked from the client,
and vice versa. The typed RPC calculus is a simple semantic foundation because
it uses the same syntax of λ-application and the same evaluation rule (App)
both for remote procedure calls and local ones. But every remote procedure
call must be implemented differently from local procedure calls since it involves
communication between client and server.

The typed RPC calculus in the figure is in fact an extension with polymor-
phic types of the original typed one (Choi and Chang, 2019), but is still limited
to monomorphic locations in the same way. So, the typed RPC calculus now
has type abstraction Λα.V and type application M [A] where α is a type vari-
able and A is a type, which will be defined soon. (Tabs) and (Tapp) are quite
the standard definitions for evaluation of type abstraction and type application.
Note V {B/α} is a substitution of type B for type variable α in V .

A type system for the typed RPC calculus in Figure 3 basically comes from
the one in (Choi and Chang, 2019) that accounts for remote procedure calls
in the type level. It extends the original type system with polymorphic types
by having two standard typing rules for type abstraction and type application,
(T-Tabs) and (T-Tapp). A{B/α} is a substitution of B for each occurrence of α
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Types

Type A,B,C ::= base | A
a−→ A | α | ∀α.A

Typing Rules

Γ(x) = A
(T-Var)

Γ `a x : A

Γ, x : A `b M : B
(T-Abs)

Γ `a λbx.M : A
b−→ B

Γ `a L : A
b−→ B Γ `a M : A

(T-App)
Γ `a L M : B

Γ, α `a V : A
(T-Tabs)

Γ `a Λα.V : ∀α.A
Γ `a M : ∀α.A

(T-Tapp)
Γ `a M [B] : A{B/α}

Figure 3: A type system for the typed RPC calculus

in A. Accordingly, every typing environment Γ now has type variables as well as
associations of variables and types in general as {α1, · · · , αk, x1 : A1, · · · , xm :
Am}.

The type system has two features related to location. First, location annota-
tions are introduced to function types as A

a−→ B. Every λ-abstraction that must
run at location a gets this function type. For example, (λsf. (f M)) (λcy. · · · )
is well-typed when f is of type A

c−→ B for some types A and B. However,
(λcf. · · · (λch. · · · ) f · · · (λcg. · · · ) f · · · ) is ill-typed when h is of A

c−→ B and

g is of A
s−→ B since the type language of the typed RPC calculus only allows

either c or s, not both of them on a function type. In this respect, this typed
RPC calculus (or the original one (Choi and Chang, 2019)) is monomorphic in
terms of specifying location of evaluation.

Second, location annotations are also attached on typing judgments as Γ `a
M : A saying a term M at location a has type A under a type environment
Γ. (T-Var) is defined as usual. (T-Abs) assigns λ-abstraction a function type
with the same location as its annotation. Note that a location on the typing
judgment in the conclusion changes to the annotated location in the premise for
the body of λ-abstraction.

Combining these two features, (T-App) is designed to be a refinement of the
conventional λ-application typing with respect to the combinations of location
a (where to evaluate the application) and location b (where to evaluate the
function). When a is different from b, L M is statically found to be a remote
procedure call: if a = c and b = s, it is to invoke a server function from the
client, and if a = s and b = c, it is to invoke a client function from the server.
Otherwise, one can statically decide that it is a local procedure call.

The type soundness theorem for the typed RPC calculus (Choi and Chang,
2019) guarantees that every remote procedure call thus identified statically will
never change to a local procedure call under evaluation. The two slicing compi-
lations for the typed RPC calculus depend on this capability of the type system
as an analysis on dynamic communication patterns.

As shown in Figure 1, the typed RPC calculus offers slicing compilation
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methods to slice a unified RPC program in λrpc into a client program and a
server program in the client-server (CS) calculi λenccs or λstatecs , automatically.
Each separate program will contain only functions that must run at one’s own
location, and the remote procedure calls in the unified program will be compiled
with some communication primitives in the client-server programs.

The slicing methods are type-directed compilations where every input RPC
program is type-checked to produce a typing derivation for it and then sliced
programs are generated. In a unified RPC program, there is no particular syntax
to specify remote procedure calls but only location types can be used to identify
them. In separate client and server programs, we introduce explicit constructs
for remote procedure calls like this. A construct req(V,W ) is used to invoke a
server function V with an argument W from the client, and call(V,W ) is another
remote procedure call construct in the reverse direction. In separate programs,
we use V (W ) only for local procedure calls, differently from what we do in a
unified program.

Now we are ready to present a key idea of the type-directed slicing compi-
lations. Given a well-typed unified RPC program, each use of (T-App) in the
typing derivation is compiled differently depending on the combination of the
two locations on where to evaluate the application (a) and where to evaluate
the function (b), as is explained above. When a is the same as b, the slicing
compilation methods generate a normal application term, say, V (W ) where V is
a local function and W is an argument. When a = c and b = s, the slicing com-
pilation methods generate req(V,W ) where V is a server function. This term
is implemented as sending V and W to the server to apply the function to the
argument there and receiving either the application result or a new server-side
call to invoke a client function. When a = s and b = c, the slicing compila-
tion methods generate call(V,W ) where V is a client function. This term is
implemented in a similar way for req(−,−) but in the reverse direction from the
server to the client. In sliced programs, only applications of the form V (W ) do
not involve communication at all. For details, the reader can refer to the for-
mal semantics for the client-server calculi (λenccs and λstatecs ) and the two slicing
compilation rules in (Choi and Chang, 2019).

Although the original typed RPC calculus does not consider type polymor-
phism for a simple presentation, we see no problem in applying the two slicing
compilations to this typed RPC calculus in the presence of type polymorphism
assuming the target language also has type polymorphism.

3. A typed RPC calculus extended with polymorphic locations

In this section, we firstly extend the typed RPC calculus with the notion of
polymorphic location to write polymorphic functions seamlessly with monomor-
phic functions, which is convenient for programmers. We call it a polymorphic
RPC calculus, λ∀rpc. Secondly, we design a translation of the polymorphic RPC
calculus into the typed RPC calculus. Then we are able to make use of the two
existing slicing compilation methods even for the polymorphic RPC calculus.
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Syntax
Location a, b ::= c | s

Loc ::= a | l
Term L,M,N ::= V | L M | M [A] | M [Loc]
Value V,W ::= x | λLocx.M | Λα.V | Λl.V

Semantics

(Abs)
λbx.M ⇓a λbx.M

L ⇓a λbx.N M ⇓a W N{W/x} ⇓b V
(App)

L M ⇓a V

(Tabs)
Λα.V ⇓a Λα.V

M ⇓a Λα.V
(Tapp)

M [B] ⇓a V {B/α}

(Labs)
Λl.V ⇓a Λl.V

M ⇓a Λl.V
(Lapp)

M [b] ⇓a V {b/l}

Figure 4: The polymorphic RPC calculus λ∀
rpc

3.1. A polymorphic RPC calculus

An important feature of the polymorphic RPC calculus is the notion of loca-
tion variable l for which we can substitute a location (constant) a. Accordingly,
a new syntactic object Loc is introduced to be either a location constant or a
location variable.

Every λ-abstraction λLocx.M now has an annotation of Loc instead of a.
By substituting a location b for a location variable annotation, (λlx.M){b/l}
becomes a monomorphic λ-abstraction λbx.(M{b/l}). This location variable is
abstracted by the location abstraction construct Λl.V , and it is instantiated by
the location application construct M [Loc]. Except for these three constructs,
the other syntax is the same as that in the typed RPC calculus. Figure 4
summarizes the syntax of the polymorphic RPC calculus.

The semantics for the polymorphic RPC calculus is shown in Figure 4. Every
location abstraction is regarded as a value; it evaluates to itself by (Labs). Every
location application M [Loc] firstly evaluates to a location abstraction, and then
Loc is substituted for the location variable in the body of the abstraction by
(Lapp).

A new form of substitution M{Loc/l} is defined as this.

x{Loc/l} = x

(λLocx.M){Loc′/l} = λLoc{Loc′/l}x.M{Loc′/l}
(Λα.M){Loc/l} = Λα.(M{Loc/l})

(Λl.V ){Loc/l′} =

{
Λl.V if l = l′

Λl.(V {Loc/l′}) otherwise

(L M){Loc/l} = (L{Loc/l})(M{Loc/l})
(M [A]){Loc/l} = (M{Loc/l})(A{Loc/l})

(M [Loc]){Loc′/l} = (M{Loc′/l})[Loc{Loc′/l}]
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Types

Type A,B,C ::= base | A
Loc−−→ B | α | ∀α.A | ∀l.A

Typing Rules

Γ(x) = A
(T-Var)

Γ `Loc x : A

Γ, x : A `Loc M : B
(T-Abs)

Γ `Loc′ λ
Locx.M : A

Loc−−→ B

Γ `Loc L : A
Loc′−−−→ B Γ `Loc M : A

(T-App)
Γ `Loc L M : B

Γ, α `Loc V : A
(T-Tabs)

Γ `Loc Λα.V : ∀α.A
Γ `Loc M : ∀α.A

(T-Tapp)
Γ `Loc M [B] : A{B/α}

Γ, l `Loc V : A
(T-Labs)

Γ `Loc Λl.V : ∀l.A
Γ `Loc M : ∀l.A

(T-Lapp)
Γ `Loc M [Loc′] : A{Loc′/l}

Figure 5: A type system for the polymorphic RPC calculus

where the definition of Loc{Loc′/l} is

Loc{Loc′/l} =

 Loc if Loc = a
Loc′ if Loc = l′ and l = l′

Loc if Loc = l′ and l 6= l′

and the definition of A{Loc/l} will be presented below.
For example, a polymorphic identity function id is defined as Λl.λlx.x so

that we can use id[c] as λcx.x, and id[s] as λsx.x. Thus, every polymorphic
λ-abstraction can be regarded as a function usable both in the client and in the
server, and a choice of a location specific λ-abstraction is done by a location
application with the location.

Figure 5 shows a type system for the polymorphic RPC calculus. The type
language allows function types to have the new syntactic object Loc as their

annotation as A
Loc−−→ B. Then every λ-abstraction at unknown location gets

assigned A
l−→ B using some location variable l. A universal quantifier over a

location variable, ∀l.A, is also introduced to the type language accordingly.
We extend a typing judgment Γ `Loc M : A with two things. First, a

location variable can be annotated on it. This extension is used to assert
a typing relation in the body of λlx.M . Second, typing environments now
include location variables as well. A general form of Γ can now be writ-
ten as {α1, · · · , αk, l1, · · · , ln, x1 : A1, · · · , xm : Am}. This extension is used
to keep track of a set of usable location variables. The domain of environ-
ment, dom(Γ), is defined as a union of type, location, and term variables as
{α1, · · · , αk, l1, · · · , ln, x1, · · · , xm}, and the range, rng(Γ), is {A1, · · · , Am}.

Recall that (λcf. · · · (λch. · · · ) f · · · (λcg. · · · ) f · · · ) is an ill-typed term

in the typed RPC calculus, where h is of type A
c−→ B and g is of type A

s−→ B.
The polymorphic RPC calculus can make the term be well-typed by assigning f
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a polymorphic type as ∀l.A l−→ B and by slightly changing the first and second
occurrences of f into f [c] and f [s] respectively.

As a set of free variables is defined by the conventional definition of fv(M),
we define a set of free location variables over various kinds of objects in the form
as flv(−). Two definitions for locations and types are as follows.

flv(a) = {}
flv(l) = {l}

flv(base) = ∅
flv(α) = ∅

flv(A
Loc−−→ B)) = flv(A) ∪ flv(Loc) ∪ flv(B)

flv(∀α.A) = flv(A)

flv(∀l.A) = flv(A)\{l}

For typing environments, it is a union of location variables there and free
location variables occurring in types associated with variables as

flv({α1, · · · , αk, l1, · · · , ln, x1 : A1, · · · , xm : Am}) = {l1, · · · , ln} ∪
⋃

1≤i≤m

flv(Ai)

The five typing rules (T-Var), (T-Abs), (T-App), (T-Tabs), and (T-Tapp)
for the polymorphic RPC calculus generalize those for the typed RPC calculus
by having Loc on function types and on typing judgments. Two new typing rules
(T-Labs) and (T-Lapp) are similar to the typing rules for type abstraction and
type application. (T-Labs) checks if the body of the location abstraction is typed
with an extended typing environment with a fresh location variable. (T-Lapp)
substitutes Loc′ for all occurrences of a location variable l on λ-abstractions in
M .

The definition of A{Loc/l} is this.

base{Loc/l} = base

(A
Loc−−→ B){Loc′/l} = A{Loc′/l} Loc{Loc′/l}−−−−−−−−→ B{Loc′/l}

α{Loc/l} = α

(∀α.A){Loc/l} = ∀α.(A{Loc/l})

(∀l.A){Loc/l′} =

{
∀l.A if l = l′

∀l.(A{Loc/l′}) otherwise

From now on, we will consider only well-formed typing judgments where
there are no unbound variables, no unbound type variables, and no unbound
free location variables. That is, given Γ `Loc M : A, we will safely assume
three things. First, fv(M) ⊆ dom(Γ). Second,

⋃
Ai∈rng(Γ) ftv(Ai) ∪ ftv(M) ∪

ftv(A) ⊆ dom(Γ) where ftv(A) or ftv(M) are the sets of free type variables

10



occurring in the type and the term respectively. They can be defined straight-
forwardly. Third,

⋃
Ai∈rng(Γ) flv(Ai) ∪ flv(Loc) ∪ flv(M) ∪ flv(A) ⊆ dom(Γ).

For example, in (T-App), location variables occurring in A and Loc′ are from
any location abstractions enclosing the application term, in (T-Tabs), a bound
type variable α does not occur as a free type variable in Γ, and in (T-Labs), a
bound location variable l never occurs as a free location variable in Γ and Loc.

3.1.1. Type soundness

Now we are ready to prove the type soundness of the type system for the
polymorphic RPC calculus. Theorem 3.1 formulates this property. Its proof
is done by induction on the height of evaluation derivations, and is available
below. The value substitution lemma (3.2) offers a typing hypothesis for the
β-reduced term necessary for proving the case (App) of the theorem. The type
substitution lemma (3.3) proves a typing for a type substituted value from a
type abstraction. The value relocation lemma (3.1) is used to prove that the
movement of a return value from a callee location to a caller location does not
change its type. The location substitution lemma (3.4) results in proving the
case (Lapp) of the theorem by offering a typing hypothesis for the location-
reduced term. The proofs of all these lemmas are available in the appendix.

Lemma 3.1 (Value relocation). If Γ `Loc V : A then Γ `Loc′ V : A.

Lemma 3.2 (Value substitution). If Γ `Loc λ
Loc′x.M : A

Loc′−−−→ B and Γ `Loc

V : A then Γ `Loc′ M{V/x} : B.

Lemma 3.3 (Type substitution). If Γ `Loc Λα.V : ∀α.A then Γ `Loc V {B/α} :
A{B/α}.

Lemma 3.4 (Location substitution). If Γ `Loc Λl.V : ∀l.A then Γ `Loc

V {Loc′/l} : A{Loc′/l}.

Theorem 3.1 (Type soundness for λ∀rpc). For a closed term M , if ∅ `a M : A
and M ⇓a V , then ∅ `a V : A.

Proof. We prove this theorem by induction on the height of the evaluation
derivation. Base cases use (Abs), (Labs), and (Tabs) while inductive cases
involve (App), (Lapp), and (Tapp).

Case (Abs): λbx.M0 ⇓a λbx.M0 where M = V = λbx.M0. Therefore, this
case holds by the typing judgment hypothesis.

Case (Labs): Λl.V0 ⇓a Λl.V0 where M = V = Λl.V0. Again, the typing
judgment hypothesis proves this case.

Case (Tabs): Λα.V0 ⇓a Λα.V0 where M = V = Λα.V0. Once again, the
typing judgment hypothesis proves this case.

Case (App): LM1 ⇓a V , (1):L ⇓a λbx.M0, (2):M1 ⇓a W , and (3):M0{W/x} ⇓b
V where M = L M1. By ∅ `a L M1 : B, (4):∅ `a L : A1

Loc′−−−→ B, and
(5):∅ `a M1 : A1 where B = A.
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By applying I.H. to (1) and (4), (6):∅ `a λbx.M0 : A1
Loc′−−−→ B where Loc′ =

b. By applying I.H. to (2) and (5), (7):∅ `a W : A1.
From (6) and (7), (8):∅ `b M0{W/x} : B is implied by the lemma (Value

substitution).
By applying I.H to (3) and (8), (9):∅ `b V : B. By the lemma (Value

relocation) with (9), ∅ `a V : B. Since B = A, this case is proved.
Case (Lapp): L[b] ⇓a V0{b/l}, (1):L ⇓a Λl.V0 where M = L[b] and

V = V0{b/l}.
∅ `a L[b] : A0{b/l}, (2):∅ `a L : ∀l.A0 where Γ = ∅ and A = A0{b/l}.
By applying I.H. to (1) and (2), (3):∅ `a Λl.V0 : ∀l.A0.
The lemma (Location substitution) with (3) implies (4):∅ `a V0{b/l} :

A0{b/l}, which proves this case.
Case (Tapp): M1[B] ⇓a V0{B/α}, (1):M1 ⇓a Λα.V0 where M = M1[B]

and V = V0{B/α}.
By ∅ `a M1[B] : A0{B/α}, (2):∅ `a M1 : ∀α.A0 where A = A0{B/α}.
By applying I.H. to (1) and (2), (3):∅ `a Λα.V0 : ∀α.A0.
By the lemma (Type substitution) with (3), ∅ `a V0{B/α} : A0{B/α},

which proves this case.

3.1.2. An example using polymorphic location

To explain how polymorphic location is useful in writing multi-tier programs,
we will present an example. Whenever a remote user enters text messages, the
accumulated texts are converted to an HTML file for a local browser to display.
For example, suppose that the user enters “Hi, Bobby!”, “Your nose is shiny.”,
and “Where is John?”, in sequence. Then the following HTML files will be
generated in sequence:

• 〈ul〉〈/ul〉

• 〈ul〉〈li〉Hi, Bobby!〈/li〉〈/ul〉

• 〈ul〉〈li〉Hi, Bobby!〈/li〉 〈li〉Your nose is shiny.〈/li〉〈/ul〉

• 〈ul〉〈li〉Hi, Bobby!〈/li〉 〈li〉Your nose is shiny.〈/li〉 〈li〉Where is John?〈/li〉〈/ul〉

Then the browser will display them one by one replacing each HTML file with
the next one.

A program that behaves in this way may have type Stream String
c−→

Stream HTML on a hypothetical runtime system, e.g.,

λcprg. browser (prg keyboard)

where keyboard offers the program, prg, a stream of strings that the user enters,
and browser displays a stream of HTMLs generated by the program.

Thus a simple minded multi-tier program is a conversion function of a string
stream into an HTML stream. Such a program may be written by composing
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a server function and a client function by a cross-tier composition function in-
stantiated with the client location and the server location, ◦[s, c] (or written as
◦[s,c] for readability), as this.

program = (foldl[c] f [ ]) (◦[s,c]) (foldl[s] g [ [ ] ])

where
f = λchtmls.λcstrs. htmls ++[c]

[ <ul> map[c] (λcstr. <li>str</li>) strs </ul> ]

g = λsstrs.λsstr. strs ++[s] [ last[s] strs ++[s] [str] ]

Note that the example uses [ and ] to denote a stream. It also assumes the
standard stream functions extended with a single polymorphic location abstrac-
tion: the left fold function, foldl, the stream concatenation function, (++), the
map function, map, and the last element selection function, last.

Also note that as the multi-tier programming languages such as Links,
Ur/Web, and so on provide one’s own convenient notation for HTML, the exam-
ple makes use of such notation as <ul>· · ·</ul> and <li>· · ·</li> to construct
HTML elements. They can be viewed as values of a special base type HTML.

In the structure of the program, the server function, foldl[s] g [ [ ] ], is

of type Stream String
s−→ Stream Text where Text is the type for a fi-

nite list of strings, and it generates a sequence of texts accumulated up to
whenever a user enters a string. The client function, foldl[c] f [ ], of type

Stream Text
c−→ Stream HTML takes the sequence of texts through the

composition function. Each text, [str1, · · · , strn], is converted into an HTML,
<ul><li>str1</li>, · · · , <li>strn</li></ul> for the browser to display, and
the conversion is repeated over the sequence to update one HTML with the next
one.

Now we are ready to review how the notion of polymorphic location is useful
in writing multi-tier programs. First of all, polymorphic location functions are
extensively used in the example. It is straightforward to use them at different
locations just by instantiating them with the locations. The example requires no
duplicate codes that would otherwise be written in the monomorphically typed
RPC calculus, for example, for foldl, (++), map, and last. The resulting ex-
ample looks more like a single computer program when all location applications
are ignored, which is an ultimate goal in the multi-tier programming languages.

Second of all, it is also easy to compose two differently located functions
as shown by ◦[s, c] in the example. The term and the type of the cross-tier
composition function, (◦), can be defined as follows.

◦ : ∀l1, l2.∀α, β, γ.(β
l2−→ γ)

l2−→ (α
l1−→ β)

l2−→ (α
l2−→ γ)

◦ = Λl1, l2.Λα, β, γ.λ
l2f.λl2g.λl2x. f (g x)

Then f ◦[s,c] g composes a server function g and a client function f with data flow
from the server to the client. f ◦[c,s] g does another cross-tier composition with
the reverse data flow. Of course, it is also easy to express the local composition
by ◦[c, c] and ◦[s, s]. Without the notion of polymorphic location, four different
located functions would be written, which is more laborious task.
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Syntax
Location a, b ::= c | s
Term L,M,N ::= V | L M | M [A]

| (M,N) | πi(M)
Value V,W ::= x | λax.M | Λα.V | (V,W )

Semantics

(Abs)
λbx.M ⇓a λbx.M

L ⇓a λbx.N M ⇓a W N{W/x} ⇓b V
(App)

L M ⇓a V

(Tabs)
Λα.V ⇓a Λα.V

M ⇓a Λα.V
(Tapp)

M [B] ⇓a V {B/α}

L ⇓a V M ⇓a W
(Pair)

(L,M) ⇓a (V,W )

M ⇓a (V1, V2) i ∈ {1, 2}
(Proj-i)

πi(M) ⇓a Vi

Figure 6: The typed RPC calculus extended with pairs

3.2. A monomorphization translation of the polymorphic RPC calculus

Once programmers have the polymorphic RPC calculus in hand to be able
to write RPC terms succinctly with the notion of polymorphic location, the
next step is to design a method to compile to the client-server model. Instead
of reinventing the wheel, we choose to make use of the two slicing compilation
methods for the typed RPC calculus after translating polymorphic RPC terms
into typed RPC terms. To realize this strategy, we need to translate all features
of polymorphic locations away completely. This monomorphization translation
will be discussed in this section.

A key idea behind the monomorphization translation is to interpret a lo-
cation abstraction as a pair of its client version and its server version, and to
regard a location application as a projection of the pair according to the loca-
tion to be applied. For example, an identity function id, Λl.λlx.x, is translated
as (λcx.x, λsx.x). Also, id[c] and id[s] are translated as π1([[id]]) and π2([[id]]),
respectively, where [[M ]] is a translation of M . A systematic translation like this
allows the monomorphic typed RPC to pretend to have the notion of polymor-
phic locations without explicit location abstraction and location application.

Note that this pair-based translation scheme can potentially produce an
exponentially large term. We believe that this would not be a big problem in
practice as long as the nesting depth of location lambdas is shallow. This issue
will be discussed more later.

For the target of the translation, we extend the typed RPC calculus with
pairs (M,N) and projections πi(M) in the standard way as shown in Figure 6
and Figure 7. The extended type language includes pair types A × B. From
now on, we call this extension just the typed RPC calculus λrpc.

We present a monomorphization translation of λ∀rpc into λrpc as shown in
Figure 8. The translation has two parts. The first part is for types. The
type translation of base is base. We translate a monomorphic function type
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Types

Type A,B,C ::= base | A
a−→ B | α | ∀α.A | A×B

Typing Rules

Γ(x) = A
(T-Var)

Γ `a x : A

Γ, x : A `b M : B
(T-Abs)

Γ `a λbx.M : A
b−→ B

Γ `a L : A
b−→ B Γ `a M : A

(T-App)
Γ `a L M : B

Γ, α `a V : A
(T-Tabs)

Γ `a Λα.V : ∀α.A
Γ `a M : ∀α.A

(T-Tapp)
Γ `a M [B] : A{B/α}

Γ `a L : A Γ `a M : B
(T-Pair)

Γ `a (L,M) : A×B

Γ `a M : A1 ×A2 i ∈ {1, 2}
(T-Proj-i)

Γ `a πi(M) : Ai

Figure 7: A type system for the extended typed RPC calculus

with a location a element-wise leaving the location as it is. Any attempt to
translate a function type with a location variable is undefined. We prevent this
undesirable translation by systematically substituting c or s for every location
variable that we meet during a translation and by starting from a closed type
with no free location variables in it. The translation is designed to operate
on closed types only with location constants all the time. The translation of
polymorphic location types is [[∀l.A]] = ([[A{c/l}]], [[A{s/l}]]), which realizes the
pair-based interpretation of location polymorphism as well as the invariant of
location constants.

The second part is a translation of terms. The translations of variable,
λ-abstraction, λ-application, type abstraction, and type application are done
element-wise. The translation of location abstraction is defined as a pair-based
interpretation with the first element for client and the second element for server:
[[Λl.V ]] = ([[V {c/l}]], [[V {s/l}]]). The translation maintains an invariant that
whenever a term Λl.V is closed, the translated term also remains closed. This
is so by systematically substituting c or s for every occurrence of the location
variable l in the body V . The translation of location application with c or s
is a projection of a pair that represents a polymorphic term. It is undefined
when a location variable l appears as an argument in the location application.
Our design associates the client version of the polymorphic term with the first
element of the pair, and it does the server version with the second element.
Therefore, [[M [a]]] = πi([[M ]]) where i = 1 if a = c and i = 2 if a = s.

The monomorphization translation can be naturally extended for typing
environments as: [[{α1, · · · , αk, x1 : A1, · · · , xn : An}]] = {α1, · · · , αk, x1 :
[[A1]], · · · , xn : [[An]]}. This translation is undefined if the typing environment
contains any location variables or types associated with variables have any free
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Translation: types

[[base]] = base [[A
a−→ B]] = [[A]]

a−→ [[B]] [[∀l.A]] = [[A{c/l}]]× [[A{s/l}]]
[[α]] = α [[∀α.A]] = ∀α.[[A]]

Translation: terms
[[x]] = x [[λax.M ]] = λax.[[M ]] [[Λl.V ]] = ([[V {c/l}]], [[V {s/l}]])
[[L M ]] = [[L]] [[M ]] [[M [c]]] = π1([[M ]]) [[M [s]]] = π2([[M ]])
[[Λα.V ]] = Λα.[[V ]] [[M [B]]] = [[M ]][[[B]]]

Figure 8: A translation of the polymorphic RPC calculus into the RPC calculus

location variables.

3.2.1. Examples of the monomorphization translation

Let us discuss a few examples of the translation. The simplest one is with
an identity function as:

[[Λl.λlx.x]] = ([[(λlx.x){c/l}]], [[(λlx.x){s/l}]])
= (λcx.[[x]], λsx.[[x]])

= (λcx.x, λsx.x).

Next are more complex examples about map functions over lists. Suppose
MX is a body of a map function parameterized by location arguments X as:
case xs of { nil ⇒ nil; cons y ys ⇒ cons (f y) (map[X] f ys) } under some
syntactic extension with case expression and with list constructors such as nil
and cons. Also assume that [A] is the list type over element type A.

Then a map function of type ∀l.(A l−→ B)
l−→ ([A]

l−→ [B]) can be defined by
a recursive let construct as:

letrec map = Λl.λlf.λlxs.Ml in · · ·

The translation of this map function proceeds as

[[map]] = ([[(λlf.λlxs.Ml){c/l}]], [[(λlf.λlxs.Ml){s/l}]])
= (λcf.[[λcxs.Mc]], λsf.[[λsxs.Ms]])

= (λcf.λcxs.[[Mc]], λsf.λsxs.[[Ms]]).

To finish the translation of a recursive function such as map, we will ulti-
mately need something like tying a knot over map[X] in the recursive call
map[X] f ys. In the first element of the translated pair, map[c] in Mc is
translated as π1([[map]]), and, in the second element, map[s] in Ms is translated
as π2([[map]]). Here, instead of repeating [[map]] from the beginning, the trans-
lation stops here, and it just refers to the result of the beginning translation
of map lazily to construct a recursive function. Then the translation continues
over the rest of the body. As a result, we will get a pair of the client map
function and the server map function.
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Let us consider another map function of type ∀l1.∀l2.∀l3.(A
l3−→ B)

l1−→
([A]

l2−→ [B]) can be defined as:

letrec map = Λl1.Λl2.Λl3.map0 in · · ·

wheremap0 is λl1f.λl2xs.Ml1l2l3 and multiple location applicationsM [Loc1 · · ·Lock]
is defined as M [Loc1] · · · [Lock]. The translation [[map]] becomes

(
([[map0{c/l1, c/l2, c/l3}]], [[map0{c/l1, c/l2, s/l3}]]),
([[map0{c/l1, s/l2, c/l3}]], [[map0{c/l1, s/l2, s/l3}]])

)
,(

([[map0{s/l1, c/l2, c/l3}]], [[map0{s/l1, c/l2, s/l3}]]),
([[map0{s/l1, s/l2, c/l3}]], [[map0{s/l1, s/l2, s/l3}]])

)


which looks like a full binary tree with eight leaves. As you see, the monomor-
phization translation could generate exponentially many instances.

Let us discuss this problem in two ways. First, we believe that the first
version of the map function would be typical in multi-tier programs by anno-
tating the same location variable on all function types of a polymorphic type.
For example, the Links compiler already performs something similar to the
monomorphization for the standard library such as list utilities, which is com-
mon between the client and the server programs. It does code duplication for
each common function as done with the first version, not for each argument of
the functions as done with the second version. Our translation method can be
regarded as a type-theoretic basis for the ad hoc code duplication in the Links
compiler. In addition to this, the polymorphic RPC calculus offers a type-based
method to control code duplication in a fine-grained way.

Note that the Eliom (Radanne, 2017; Radanne and Vouillon, 2018) com-
piler also uses code duplication to support a kind of location polymorphism,
what they call shared sections in the expression-level and mixed modules in the
module-level. In the related work, we will discuss these features in detail.

Second, we could take an alternative approach of dynamically passing loca-
tions even in separate client and server programs, which is radically different
from the proposed static compilation of location polymorphism. This comes
from the idea of compiling polymorphism using intensional type analysis on
types arranged dynamically (Harper and Morrisett, 1995). It would solve the
potential code explosion problem completely at the expense of runtime cost for
maintaining location information and deciding whether to do local or remote
calls dynamically. We will discuss this approach later.

3.2.2. Type correctness

Now we are ready to formulate the type correctness of the monomorphization
translation as Theorem 3.2 saying that every closed well-typed term in λ∀rpc is
translated to a well-typed term in λrpc. We prove this theorem by Lemma 3.7,
which generalizes the formulation of the theorem to allow to have non-empty
typing environments but only with free variables and free type variables, saying
if Γ `a M : A then [[Γ]] `a [[M ]] : [[A]]. This lemma should maintain an
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invariant that the translation always sees type environments, terms, and types
only with location constants. This invariant is sufficient to make sure that the
three translations in the lemma are well-defined.

For this invariant, we need to define a set of free location variables for terms,
flv(M), as well. Here is a definition:

flv(x) = ∅
flv(λLocx.M) = flv(Loc) ∪ flv(M)

flv(Λα.V ) = flv(V )

flv(Λl.V ) = flv(V )\{l}
flv(L M) = flv(L) ∪ flv(M)

flv(M [A]) = flv(M) ∪ flv(A)

flv(M [Loc]) = flv(M) ∪ flv(Loc)

The proof of Lemma 3.7 is done by induction on the height of a typing
derivation for a term that the translation is to apply to. The invariant of
location constants plays a role to ensure that the translation is well-defined for
each subterm. The inductive proof works for all the cases except the case of
(T-Tapp) and the case of (T-Labs). To finish the case of (T-Tapp), we use
Lemma 3.5. This lemma turns a type substituted after a translation, which is
obtained by the inductive hypothesis, into a translation of a substituted type,
which is necessary to prove the case.

The case of (T-Labs) is more interesting. Dealing with Λl.V , it needs two
hypotheses over V {c/l} and V {s/l}, not a hypothesis over V that is required
by the plain inductive proof but violates the invariant because of the potential
occurrence of a free location variable l. Lemma 3.6 allows the proof to use the
two hypotheses as follows.

According to Lemma 3.6, given a typing derivation possibly with the use of
free location variables, one can build a new typing derivation with the similar
structure and the same height by substituting any of c or s for the occurrences
of the free location variables in the typing derivation. This lemma accounts for
location polymorphism in the polymorphic RPC calculus, which is why we call
it the location polymorphism lemma.

The proof of Lemma 3.5 and Lemma 3.6 is available in the appendix.

Lemma 3.5 (Type substitution over type under monomorphization). [[A]]{[[B]]/α}
= [[A{B/α}]].
Lemma 3.6 (Location polymorphism). Suppose Γ = {l1, · · · , ln} ∪ Γ0 such
that Γ0 has no location variables. If Γ `Loc M : A then (Γ0 `Loc M :
A){a1/l1, · · · , an/ln} for any a1, · · · , an with the same height.

Lemma 3.7. Given flv(Γ) ∪ flv(M) ∪ flv(A) = ∅, if Γ `a M : A then
[[Γ]] `a [[M ]] : [[A]].

Proof. We prove this lemma by induction on the height of the typing derivation.
A base case uses (T-Var), and inductive cases involve the other kinds of typing
rules.
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(T-Var): [[Γ]] and [[A]] are well-defined since FLV (Γ) = ∅ and FLV (A) = ∅.
By the typing derivation, Γ(x) = A. This implies (1):[[Γ]](x) = [[A]]. By (T-Var)
with (1), [[Γ]] `a x : [[A]], which proves this case since [[x]] = x.

(T-Abs): Γ `a λLocx.M0 : A0
Loc−−→ B0, (1):Γ, x : A0 `Loc M0 : B0 where

M = λLocx.M0 and A = A0
Loc−−→ B0. It is easy to verify (2):flv(Γ, x : A0) ∪

flv(M0) ∪ flv(B0) = ∅ by the hypothesis on free location variables.

I.H. can be applied to to (1) and (2) since Loc = b for some b; flv(A0
Loc−−→

B0) = ∅ implies flv(Loc) = ∅. This implies (3):[[Γ, x : A0]] `Loc [[M0]] : [[B0]].

By (T-Abs) with (3), (4):[[Γ]] `a λLocx.[[M0]] : [[A0]]
Loc−−→ [[B0]]. By the

definition of the translation, (4) implies [[Γ]] `a [[λLocx.M0]] : [[A0
Loc−−→ B0]] since

Loc = b.

(T-App): Γ `a L M0 : A, (1):Γ `a L : B
Loc′−−−→ A, and (2):Γ `a M0 : B

where M = L M0.
By well-formed typing judgments, flv(B) = ∅ and flv(Loc′) = ∅.
By the argument stated above, we can safely assume (3):flv(Γ) ∪ flv(L) ∪

flv(B
Loc′−−−→ A) = ∅. Also, we have (4):flv(Γ) ∪ flv(M0) ∪ flv(B) = ∅.

By applying I.H. to (1) and (3), (5):[[Γ]] `a [[L]] : [[B
Loc′−−−→ A]].

By applying I.H. to (2) and (4), (6):[[Γ]] `a [[M0]] : [[B]].

Since flv(Loc′) = ∅, Loc′ = b for some b. Therefore, [[B
Loc′−−−→ A]] = [[B]]

Loc′−−−→
[[A]]. By (T-App) with (5) and (6), [[Γ]] `a [[L]][[M0]] : [[A]], which proves this case
by [[M ]] = [[LM0]] = [[L]][[M0]].

(T-Tabs): Γ `a Λα.V0 : ∀α.A0, and (1):Γ, α `a V0 : A0 where M = Λα.V0

and A = ∀α.A0.
(2):flv(Γ, α) ∪ flv(V0) ∪ flv(A0) = ∅.
By applying I.H. to (2), [[Γ, α]] `a [[V0]] : [[A0]], which is (3):[[Γ]], α `a [[V0]] :

[[A0]] by the def. of the translation.
By (T-Tabs) with (3), [[Γ]] `a Λα.[[V0]] : ∀α.[[A0]]. This is the same as [[Γ]] `a

[[Λα.V0]] : [[∀α.A0]] by the def. of the translation, which proves this case.
(T-Tapp): Γ `a M1[B] : A0{B/α}, and (1):Γ `a M1 : ∀α.A0 where M =

M1[B] and A = A0{B/α}.
(2):flv(Γ) ∪ flv(M1) ∪ flv(∀α.A0) = ∅.
By I.H. with (2), [[Γ]] `a [[M1]] : [[∀α.A0]], which is (3):[[Γ]] `a [[M1]] : ∀α.[[A0]]

by the def. of the translation.
By (T-Tapp) with(3),(4):[[Γ]] `a [[M1]][[[B]]] : [[A0]]{[[B]]/α}.
By the lemma 3.5 with (4), (5):[[Γ]] `a [[M1]][[[B]]] : [[A0{B/α}]], which proves

this case by the def. of the translation.
(T-Labs): Γ `a Λl.V0 : ∀l.A0, and (1):Γ, l `a V0 : A0 where M = Λl.V0 and

A = ∀l.A0.
By applying the lemma 3.6 to (1), (2): Γ `a V0{a/l} : A0{a/l} for all a. Also,

(3):flv(Γ) ∪ flv(V0{a/l}) ∪ flv(A0{a/l}) = ∅ since l is the only free location
variable.

By applying I.H. to (2) and (3), (4):[[Γ]] `a [[V0{a/l}]] : [[A0{a/l}]] for a = c, s.
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By (T-Pair) in the type system for λrpc with two premises, one with (4)
and a = c and the other with (4) and a = s, [[Γ]] `a ([[V0{c/l}]], [[V0{s/l}]]) :
[[A0{c/l}]] × [[A0{s/l}]]. By the definition of the translation, [[Γ]] `a [[Λl.V0]] :
[[∀l.A0]], which proves this case.

(T-Lapp): Γ `a L[Loc′] : A0{Loc′/l}, and (1):Γ `a L : ∀l.A0 where M =
L[Loc′], A = A0{Loc′/l}. Loc′ = b for some b since flv(Loc′) = ∅ by the
hypothesis on free location variables. Also, (2):flv(Γ)∪flv(L)∪flv(∀l.A0) = ∅
since flv(A0{Loc′/l}) = ∅ and so l can be the only free location variable in A0.

By applying I.H. to (1) and (2), [[Γ]] `a [[L]] : [[∀l.A0]], which is (3): [[Γ]] `a
[[L]] : [[A0{c/l}]]× [[A0{s/l}]] by the definition of the translation.

By (T-Proj-i) with (3), [[Γ]] `a πi([[L]]) : [[A0{Loc′/l}]] where i = 1 if Loc′ = c,
and i = 2 if Loc′ = s, which is (4):[[Γ]] `a [[L[Loc′]]] : [[A0{Loc′/l}]] by the
definition of the translation. (4) proves this case.

Theorem 3.2 (Type correctness of the monomorphization translation). For a
closed term M , if ∅ `a M : A then ∅ `a [[M ]] : [[A]].

Proof. This theorem is proved by the lemma 3.7 as M is a top-level closed term
and so flv(∅) ∪ flv(M) ∪ flv(A) = ∅.

3.2.3. Semantic correctness

This time we formulate a stronger property, the semantic correctness of the
monomorphization translation, as Theorem 3.3: for a well-typed closed term,
the evaluation of the term in λ∀rpc is preserved in λrpc under the translation. We
prove this theorem by induction on the height of the evaluation derivation for the
closed well-typed term. Two of the three base cases are (Abs) and (Tabs), which
are proved immediately. The case (App) of the proof uses Lemma 3.8 saying
the translation of a substitution is the same as a substitution of the translated
terms. Similarly, the case (Tapp) uses Lemma 3.9 to turn a translated term
substituted with a translated type into a translation of a term substituted with
a type. The most interesting cases are (Labs) and (Lapp).

(Labs) is the remaining one of the three base cases, and it needs to prove
that if Λl.V ⇓a Λl.V , then [[Λl.V ]] ⇓a [[Λl.V ]]. The proof in this case needs
the second induction because [[Λl.V ]] becomes translated into a possibly deeply
nested pair and the evaluation derivation of the translated term grows accord-
ingly. Generally, Λl.V as a closed value is in the form of Λl.Λl1. · · ·Λln.Vn where
Vn = λLocx.M0 or Vn = Λα.W due to the syntactic restriction on V . When
n is zero, the translated term is a flat pair. When n is greater than zero, the
translated pair looks more or less like a full binary tree of height n. By the
second induction, the proof constructs an evaluation derivation of the same as
the structure of the translated term of this case.

In (Lapp), we prove that if L[b] ⇓a V0{b/l} then [[L[b]]] ⇓a [[V0{b/l}]] under
the assumption that L ⇓a Λl.V0. The proof involves two subcases, one with
b = c and the other with b = s, both of which can be proved with no difficulty.

The proof of Lemma 3.8 and Lemma 3.9 is available in the appendix.

20



Lemma 3.8 (Substitution under monomorphization). [[M ]]{[[W ]]/x} = [[M{W/x}]].

Lemma 3.9 (Type substitution over term under monomorphization). [[V ]]{[[B]]/α} =
[[V {B/α}]].

Theorem 3.3 (Semantic correctness of monomorphization). If ∅ `a M : A
and M ⇓a V , then [[M ]] ⇓a [[V ]].

Proof. We prove this theorem by induction on the height of the evaluation
derivation. Base cases involve (Abs) and (Labs), and inductive cases use (App)
and (Lapp).

(Abs): λbx.M0 ⇓a λbx.M0 where M = V = λbx.M0. Therefore, [[M ]] ⇓a
[[V ]], which proves this case.

(Tabs): Λα.V0 ⇓a Λα.V0 where M = V = Λα.V0. Therefore, [[M ]] ⇓a [[V ]],
which proves this case.

(Labs): Λl.V0 ⇓a Λl.V0 where M = V = Λl.V0. By a careful analysis, it
turns out that V0 is written as Λl1. · · ·Λln.Vn for n ≥ 0. Let us name Λli+1.Vi+1

as Vi for 0 ≤ i ≤ n − 1, and Vn is either λLocx.M0 or Λα.W . Note that all
Vis and Vn must not be a variable since the empty typing environment is in the
hypothesis of the typing derivation over M . Hence, we need to prove

[[Λl.Λl1. · · ·Λln.Vn]] ⇓a [[Λl.Λl1. · · ·Λln.Vn]]

We prove this case by the second induction on the number of the nested
location abstractions, n. When n = 0, consider V0 = λLocx.M0.

[[M ]] = [[V ]] = [[Λl.λLocx.M0]] = ([[(λLocx.M0){c/l}]], [[(λLocx.M0){s/l}]])

which is translated into (λLoc{c/l}x.[[M0{c/l}]], λLoc{s/l}x.[[M0{s/l}]]). This trans-
lation is well-defined in either case over Loc. If Loc is some b then Loc{a/l} is
Loc, which is b. If Loc is a location variable, then it must be l since M is a
top-level closed term. So, Loc{a/l} is a.

By (Abs), (1):λLoc{c/l}x.[[M0{c/l}]] ⇓a λLoc{c/l}x.[[M0{c/l}]].
By (Abs), (2):λLoc{s/l}x.[[M0{s/l}]] ⇓a λLoc{s/l}x.[[M0{s/l}]].
By (Pair) in the evaluation rule for λrpc with (1) and (2), M ⇓a V , which

proves this base case with V0 = λLocx.M0 of the second induction.
Also when n = 0, consider the other base case with V0 = Λα.W .

[[M ]] = [[V ]] = [[Λl.Λα.W ]] = ([[(Λα.W ){c/l}]], [[(Λα.W ){s/l}]])

which is translated into (Λα.[[W{c/l}]],Λα.[[W{s/l}]]).
By (Tabs), (1)’:Λα.[[W{c/l}]] ⇓a Λα.[[W{c/l}]].
By (Tabs), (2)’:Λα.[[W{s/l}]] ⇓a Λα.[[W{s/l}]].
By (Pair) with (1)’ and (2)’, M ⇓a V , which proves the remaining base case

with V0 = Λα.W of the second induction.
Now let us prove the inductive case of the second induction, n > 0.

[[M ]] = [[V ]] = [[Λl.Λl1.V1]] = ([[(Λl1.V1){c/l}]], [[(Λl1.V1){s/l}]])
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which is ([[Λl1.(V1{c/l})]], [[Λl1.(V1{s/l})]]) since l must not be equal to l1. Then,
by I.H. with n− 1 of the second induction,

(3) : [[Λl1.(V1{c/l})]] ⇓a [[Λl1.(V1{c/l})]] (4) : [[Λl1.(V1{s/l})]] ⇓a [[Λl1.(V1{s/l})]]

By (Pair) in the evaluation rule for λrpc with (3) and (4), [[M ]] ⇓a [[V ]], which
proves this inductive case of the second induction. Therefore, we prove this case
of (Labs).

(App): L1M1 ⇓a V , (1):L1 ⇓a λbx.M0, (2):M1 ⇓a W , and (3):M0{W/x} ⇓b
V where M = L1M1. By (T-App), (4):∅ `a L1 : B

b−→ A and (5):∅ `a M1 : B.
By I.H. with (1) and (4), [[L1]] ⇓a [[λbx.M0]], which is (6):[[L1]] ⇓a λbx.[[M0]].
By I.H. with (2) and (5), (7):[[M1]] ⇓a W .

By the type soundness theorem with (1) and (4), (8):∅ `a λbx.M0 : B
b−→ A.

By the type soundness theorem with (2) and (5), (9):∅ `a W : B.
By the lemma (Value substitution) with (8) and (9), (10):∅ `b M0{W/x} : A.
By I.H. with (3) and (10), (11):[[M0{W/x}]] ⇓b [[V ]].
By the lemma (Substitution with the monomorphization translation) with

(11), (12):[[M0]]{[[W ]]/x} ⇓b [[V ]].
By (App) with (6), (7), and (12), [[L1]][[M1]] ⇓a [[V ]], which proves this case

since [[L1M1]] = [[L1]][[M1]].
(Tapp): M1[B] ⇓a V0{B/α}, and (1):M1 ⇓a Λα.V0 where M = M1[B] and

V = V0{B/α}.
By (T-Tapp), ∅ `a M1[B] : A0{B/α}, (2):∅ `a M1 : ∀α.A0 where A =

A0{B/α}.
By I.H. with (1) and (2), [[M1]] ⇓a [[Λα.V0]], which is (3):[[M1]] ⇓a Λα.[[V0]] by

the def. of the translation.
By (Tapp) with (3), [[M1]][[[B]]] ⇓a [[V0]]{[[B]]/α}.
By the lemma 3.9, [[M1]][[[B]]] ⇓a [[V0{B/α}]], which proves this case.
(Lapp): L[b] ⇓a V0{b/l} and (1):L ⇓a Λl.V0 where M = L[b] and V =

V0{b/l}. By (T-Lapp), ∅ `a L[b] : A0{b/l} and (2):∅ `L a : ∀l.A0 where
A = A0{b/l}.

By applying I.H. to (1) and (2), [[L]] ⇓a [[Λl.V0]]. By the definition of the
translation, (3):[[L]] ⇓a ([[V0{c/l}]], [[V0{s/l}]]).

Since [[L[b]]] is π1([[L]]) if b = c, and it is π2([[L]]) if b = s, we prove two
sub cases. Suppose b = c. By (Pair) in the evaluation rule for λrpc with (3),
π1([[L]]) ⇓a V0{c/l}, which proves one case of (Lapp) when b = c. Now suppose
b = s. By (Pair) with (3) again, π2([[L]]) ⇓a V0{s/l}, which proves the other
case of (Lapp).

3.3. On putting the polymorphic RPC calculus into practice

Now we have finished presenting our theory of the polymorphic RPC calcu-
lus. A strong point is that this is a new RPC calculus supporting polymorphic
locations that conservatively extends the typed RPC calculus.

To put this theory into practice, however, there is a weak point to address.
Although our theory clearly accounts for what is the polymorphic RPC calculus,
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the monomorphization translation, on which the theory depends, can potentially
lead to code explosion, as was explained in Section 3.2.1. The reason to perform
the monomorphization translation is that after it, one can determine statically
if every lambda abstraction is a local or remote procedure call. We call this a
static approach to the polymorphic RPC calculus.

An alternative way is what we call a dynamic approach that allows one
to determine dynamically if a given lambda application is a local or remote
procedure call in runtime after the slicing compilation. However, in the existing
client-server calculi, given a function V and an argument W , three application
terms are local procedure call, V (W ), a remote procedure call from the client
to the server, req(V,W ), and the other remote procedure call for the reverse
direction, call(V,W ), and they can be used only where the caller and the callee
locations are statically resolved. They are not equipped with such dynamic
operation on locations in runtime necessary for lambda applications that are
not certain whether they are remote procedure calls. For example, the cross-
tier composition function (◦) in Section 3.1.2 gets a typing for a subterm g x
as

{αβγ, l1l2, f : β
l2−→ γ, g : α

l1−→ β, x : α} `l2 g x : β

where l1 is where to run the function g and l2 is where the application is. It
cannot be statically determined if g x is a remote procedure call or not.

For the dynamic approach to the polymorphic RPC calculus, we need to
introduce a new application term that allows such dynamic location checking in
runtime as this:

gen(Loc′, V,W )

where Loc′ is the (callee) location of where to run the function V . Note that
the caller location, say, Loc, is where this application term runs, which is easy
to obtain in runtime. Whenever a lambda application in λ∀rpc poses uncertain
caller or callee locations, it can be compiled into this new dynamic application
term in a client-server calculus, which we might call a polymorphic CS calculus,
λ∀cs.

The dynamic semantics for gen(Loc′, f, arg) at Loc can be defined as in the
following table.

Caller(Loc), Callee(Loc′) gen(Loc′, f, arg) procedure call (flow)

Loc = Loc′ = a f(arg) Local (a →a)
Loc = c and Loc′ = s req(f, arg) Remote (c→ s)
Loc = s and Loc′ = c call(f, arg) Remote (s→ c)

The first column of the table shows three cases of dynamic checking on caller and
callee locations. Note that the caller and the callee locations become monomor-
phic in runtime. When the caller and callee locations match to one of the three
cases, the semantics for the generic application term is defined by the semantics
for the matched specific application term in the second column.
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Now a slicing compilation may simply compile a lambda application L N in
λ∀rpc into a generic application term in λ∀cs:

C[[L N ]]Γ,Loc,B = gen(Loc′, C[[L]]
Γ,Loc,A

Loc′−−−→,B
, C[[N ]]Γ,Loc,A)

where C[[M ]]Γ,Loc,A denotes a compilation of a term M that has type A at
location Loc under a type environment Γ. Then the generic application term
will do local or remote procedure calls under the dynamic semantics in λ∀cs, as
explained previously. For example, in the cross-tier composition function, the
subterm g x under the typing explained above is compiled into gen(l1, g, x) at
the location l2.

Note that whenever the caller and callee locations are determined statically
for comparison in compile-time, it is possible to optimize the compilation of
lambda applications in λ∀rpc so as to generate more specific application terms in

λ∀cs for the purpose of avoiding dynamic location checking.
The dynamic approach could be further optimized in terms of the reduction

of dynamically passing locations and checking them if we could make use of
the monomorphization translation in the static approach without risking code
explosion. Some polymorphic location functions, say, with only one location
abstraction such as Λl.Λα.λlx.x, had better be monomorphized into a client
version and a server version. This is because the polymorphic functions will be
placed anyway both in the client and in the server after the slicing compilation.

The design of a selective monomorphization translation would be also useful
in making the polymorphic RPC calculus into practice. A basic idea is to
classify location variables by kind indicating if the location variables are static
or dynamic. That is, we may replace Λl.V by

Λl : k.V where the kind k is either static or dynamic.

For example, two location abstractions in the cross-tier composition function
may get kind information as:

Λl1 : static. Λl2 : dynamic. Λα.Λβ.Λγ.λl2f.λl2g.λl2x.f (g x).

Then the selective monomorphization translation would be only applied to
the polymorphic locations of the static kind.

[[Λl : k.V ]]∀l:k.A =

{
([[V {c/l}]]A{c/l}, [[V {s/l}]]A{s/l}) if k = static

Λl : k.[[V ]]A if k = dynamic

where [[M ]]A denotes the selective monomorphization translation for a term M of
type A. When the kind k is static, it is the same as the monomorphization trans-
lation. Otherwise, it leaves the location abstraction and translates the body.
The remaining dynamic kinded locations after the selective translation would
be supported by the polymorphic CS calculus. For example, the location-kinded
cross-tier composition function is selectively monomorphized into one instanti-
ated with c for l1 and the other with s for l1. A benefit is that locations for l1
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can be statically resolved incurring no burden in run-time due to dynamically
passing them.

Now a question on the selective monomorphization is how to decide if given
location variables are static or dynamic. Generally, there are two options. Pro-
grammers may assign location variables appropriate kinds manually, or some
static analysis may do this automatically.

While the dynamic approach thus solves the potential code explosion prob-
lem of the static approach, it seems to require a type-passing semantics where
type information is formed and passed to polymorphic functions during run-
time. But only the generic application terms depend on location information.
Nothing else depends on location nor type information. So, we would like
to have a type-erasure semantics where types will ultimately be erased and
the same term represents different instantiations of polymorphic functions at
run-time, resulting in no run-time cost. To retain location information in the
type-erasure semantics, we need to introduce location representations that can
carry run-time location information about location variables and can be type-
safely inspected. For this purpose, a generalized algebraic data type (GADT
(Xi et al., 2003) or first-class phantom type (Cheney and Hinze, 2003)) can
be used. For example Location α is such a GADT that has two constructors
ĉ of type Location Client and ŝ of type Location Server where Client and
Server are some types. Then every generic application term gen(Loc,M,N) in
the type-passing semantics can be implemented by a variant as gen(L,M,N) in
the type-erasure semantics where L is a term of Location A. The type A will
be one of α, Client, and Server when Loc is one of l, c, and s, respectively.
The variant generic application terms can be implemented as a case expression,
case L of { ĉ→M ; ŝ→ N }. This shows that using GADT to encode location
information fits well for our purpose.

In summary, the polymorphic RPC calculus can be supported either by a
static approach or a dynamic approach. In the static approach, no dynamic lo-
cation checking is required in runtime but there is some potential code explosion
problem. In the dynamic approach, no code explosion problem will happen but
this advantage comes at the cost of dynamically passing locations and checking
them in runtime.

The following table summarizes the status.

RPC calculi Dynamic check Location type Slicing
Untyped RPC always (untyped) yes
Typed RPC never mono. loc. yes

Poly. RPC (Static) never (code size ↑) poly. loc. yes
Poly. RPC (Dynamic) only for poly loc. poly. loc. yes

4. Related work and Discussion

Polymorphic locations. There are only a few publications that are relevant to
the notion of polymorphic locations. ML5 supports what they call world poly-
morphism (Murphy et al., 2008; Murphy, 2008). Let us first explain ML5 briefly.
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A key construct for remote evaluation is from L get M where L is supposed to
evaluate to a world and M is an expression at the world. For example, here is
an example program that involves two worlds, home and server:

extern bytecode world server

extern val server : server addr @ home

extern val version : unit -> string @ server

extern val alert : string -> unit @ home

fun showversion () =

let val s = from server

get version ()

in alert [Server 's version is: [s]]

end

do showversion ()

where a client at world named home invokes a client function showversion and,
subsequently, it invokes a server function version at world named server to
retrieve a version string and to display it.

In ML5, a function is said to be valid, which means it can be used at any
world, when it does not access any local resources. An example is map, which
roughly has type �w.(A → B) → ([A] → [B]) using the box modal construct4

over a bound world variable w. Using map, we can write as

from server get (map (fn x => x+ 1) [1, 2, 3]).

Although the use of quantified modal construct may look like the use of the
universal quantifier over a bound location variable ∀l, they are subtly different
from each other. Every world variable quantified by a box modal construct is
instantiated with some current world. In the example, w becomes instantiated
with server in the server where map is used. The polymorphic RPC calculus
expresses location polymorphism by parametric polymorphism. In the example,
the client would select a server version of map by map[s] in the client, and would
invoke the selected server map function. In this respect, while ML5 can be called
modally quantified polymorphism, the polymorphic RPC calculus is based on
parametric polymorphism. At least, our approach is believed to be more suitable
for the Links programming language. It would be interesting to investigate a
formal comparison between world polymorphism and location polymorphism.

For implementation of polymorphism, ML5 represents worlds at run-time to
specialize the representation of values given its world while, in (the static ap-
proach to) the polymorphic RPC calculus, we compile all location abstractions
and applications away during compile-time to know communication flows stat-
ically. Here, worlds are treated as concrete addresses of distributed computers
while locations are regarded as abstract categories of distributed computers, i.e.,
client and server. That is why the ML5 example imports the server address as
an external value to use it in the client. However, both of ML5 and the polymor-

4In fact, it is sham, a variant of the box modal construct.
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phic RPC calculus can take an advantage of each other’s approach. On the one
hand, ML5 could enjoy something like our monomorphization translation, for
example, as an optimization. On the other hand, the polymorphic RPC calculus
could represent locations at run-time after introducing a dynamic operation on
locations as in the dynamic approach.

In Eliom (Radanne, 2017; Radanne and Vouillon, 2018), there are a few
features to discuss for comparison. First, it supports a macro feature called
shared sections, which makes it possible to write code for the client and for the
server at the same time. It is reported that this technique is pervasively used
in Eliom to expose implementations that can be used either on the client or on
the server with similar semantics, in a very concise way. But this is a purely
syntactic transformation, which is implemented simply by duplicating the code
before type checking.

Second, for integration with the OCaml language, Eliom introduces a third
location called base. Code located on base can be used both on the client
and on the server. This feature allows Eliom to be integrated with the OCaml
ecosystem smoothly. The type checker reports an error if Eliom programs put on
the base location other than OCaml constructs. When a multi-tier programming
language is designed to be based on some existing programming language, this
feature will be useful.

Third, Eliom allows the same module to mix declarations from multiple
locations. Such modules are called mixed. This allows programmers to group
together declarations that are semantically related, regardless of client-server
boundaries. The module type checker enforces an important constraint that as
you go down inside sub modules, locations should be properly included. A client
module cannot contain server declarations and conversely, but mixed modules
can contain everything. It would be interesting to extend the polymorphic RPC
calculus with multi-tier ML modules like the ones provided by Eliom.

Location inference. The polymorphic RPC calculus needs a location inference
method in practice. Without it, programmers would be burdened because they
have to annotate locations on applications as well as on lambda abstractions.
It is desirable to have an automatic location inference method.

In the design of a location inference algorithm, an issue is how location
abstractions and applications are written in polymorphic RPC programs. A
solution is to extend type inference methods for the System F calculus since the
inference problem for type abstractions and applications is thought to be similar
to one for location counterparts in the polymorphic RPC calculus. Although
it is well-known to be an undecidable problem in general (Wells, 1993), there
have been some practical trade-offs including (Milner, 1978; Dunfield and Kr-
ishnaswami, 2013; Serrano et al., 2018). It would be interesting to see whether
their methods can be applied to location inferences successfully.

Besides inference for location constructs, location inference may be designed
to insert coercions where there are location conflicts to accept more programs
as well-located ones. For example, λc(f : A

s−→ B). · · · ) (λcx. · · · ) is ill-
typed but the term can be slightly transformed to be well-typed by inserting
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an η-conversion coercion over the argument automatically as: λc(f : A
s−→

B). · · · ) (λsy.(λcx. · · · ) y).
Regarding ML5, it is reported that a simple extension of Hindley-Milner type

inference algorithm is developed. The programmer does not usually need to use
the box modality manually, because type inference will automatically generalize
declarations to be valid whenever possible (Murphy et al., 2008; Murphy, 2008).

Neubauer developed a constraint-based static analysis that statically infers
optimal location annotations for operations in the multi-tier calculus (Neubauer,
2007).

Multi-tier calculi. There have been several multi-tier programming languages
being developed. Links (Cooper et al., 2007) is a multi-tier web programming
language that employs the RPC calculus as the foundation for client-server com-
munication. Lambda5 (Murphy VII et al., 2004; Murphy, 2008) is a modally-
typed lambda calculus in which modal type systems can control local resources
safely in distributed systems. A multi-tier calculus by Neubauer and Thiemann
(Neubauer and Thiemann, 2005) automatically constructs communications for
concurrently running processes employing session types (Gay and Hole, 1999)
to enforce the integrity of communications. They proposed a series of transfor-
mations as compilation to convert a source program into separate programs at
different locations determined by the use of primitives that run only at specific
locations. There are many other multi-tier web programming languages as fol-
lows. Hop (Serrano et al., 2006; Serrano and Berry, 2012) extending Scheme;
Hop.js extending JavaScript (Serrano and Prunet, 2016); Eliom, a multi-tier
ML programming language, featuring module systems extended with location
annotations (Radanne, 2017) in the project Ocsigen (Balat, 2006); and Ur/Web
(Chlipala, 2015) with a dependently typed system; a multi-tier functional re-
active programming framework, ScalaLoci (Weisenburger et al., 2018), and an-
other interesting framework for Scala (Reynders et al., 2014).

5. Conclusion

This paper proposed the polymorphic RPC calculus where programmers
can write succinct multi-tier programs using polymorphic location constructs
and the polymorphic multi-tier programs can be automatically translated into
monomorphic multi-tier programs only with location constants amenable to the
existing slicing compilation methods for client-server model. For the polymor-
phic RPC calculus, we formulated the type system, and proved its type sound-
ness. Also, we designed the monomorphization translation, and we proved its
type and semantic correctness for the translation.

As future work, we want to integrate the polymorphic RPC calculus into the
Links programming language (Cooper et al., 2007), which was once designed
based on the untyped RPC calculus. But today Links offers many modern
features of programming languages on a call-by-value variant of System F with
row polymorphism, row-based effect types, and implicit subkinding (Lindley
and Cheney, 2012; Hillerström et al., 2017; Fowler et al., 2019). Therefore it
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would be a challenge how the polymorphic RPC type system can be integrated
smoothly to work with these features.

Another interesting direction is to mechanize the semantics of the polymor-
phic RPC calculus using a proof assistant to substantiate the proofs in this work
and to make the mechanized semantics a basis for further development.
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Appendix A. Proofs of Lemmas in Section 3.1 A polymorphic RPC
calculus

A.1. Proofs of Lemmas in Section 3.1.1 Type soundness

Lemma 3.1 (Value relocation). If Γ `Loc V : A then Γ `Loc′ V : A.
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Proof. This lemma is proved by induction on the height of the typing derivation
tree in the condition. Base cases use (T-Var) and (T-Abs). Let V be x where
(T-Var) is used. Then we have Γ(x) = A. By (T-Var) with Loc′ this time,
Γ `Loc′ x : A. This proves one base case with (T-Var). For the other base case,
the lemma is provable similarly.

Inductive cases involve (T-Tabs) and (T-Labs). Let V be Λα.V0 and A be
∀α.A0 where (T-Tabs) is used. The condition of the lemma gives us the subtree
with (1):Γ, α `Loc V0 : A0.

By applying the induction hypothesis to (1), we will have (2):Γ, α `Loc′ V0 :
A0.

By applying (T-Tabs) to (2), we can derive the typing derivation tree in the
conclusion of the lemma: Γ `Loc′ Λα.V0 : ∀α.A0.

For the other inductive case, the lemma can be proved in a similar way.

Lemma 3.2 (Value substitution). If Γ `Loc λ
Loc′x.M : A

Loc′−−−→ B and Γ `Loc

V : A then Γ `Loc′ M{V/x} : B.

Proof. By (T-Abs) with the first part of the condition, Γ, x : A `Loc′ M : B.
Since x is a bound variable, x cannot appear as a free variable in V . By the
lemma (Value relocation), we have Γ `Loc′ V : A from the second part.

Then we have only to show a generalized lemma as: if (1):Γ, x : A `Loc′ M :
B, (2):Γ `Loc′ V : A, and (3):x 6∈ fv(V ) then (4):Γ `Loc′ M{V/x} : B.

We prove the generalized lemma by induction on the height of the derivation
tree (1). The only base case uses (T-Var) with M = y. We do case analysis by
y = x and y 6= x. In either cases, the generalized lemma is provable immediately.

For inductive cases, let us first consider a case using (T-App) with M = L N .
The instance of (1) becomes Γ, x : A `Loc′ L N : B.

By (T-App), we have (5):Γ, x : A `Loc′ L : C
Loc′′−−−→ B and (6):Γ, x : A `Loc′

N : C.

By I.H. with (5), (7):Γ `Loc′ L{V/x} : C
Loc′′−−−→ B.

By I.H. with (6), (8):Γ `Loc′ N{V/x} : C.
By (T-App) with (7) and (8), Γ `Loc′ (L{V/x}) (N{V/x}) : B where

(L{V/x}) (N{V/x}) is (L N){V/x}. Hence, the case is proved.
The other inductive cases use (T-Abs), (T-Tabs), (T-Tapp), (T-Labs), and

(T-Lapp), which are all provable similarly.

Lemma 3.3 (Type substitution). If Γ `Loc Λα.V : ∀α.A then Γ `Loc V {B/α} :
A{B/α}.

Proof. By (T-Tabs) with the first part of the condition, Γ, α `Loc V : A. Since
α is a bound type variable, α cannot occur in Γ, i.e., α 6∈ ftv(Γ).

We prove a generalized lemma as: if (1):Γ, α `Loc M : A and (2):α 6∈ ftv(Γ)
then (3):Γ `Loc M{B/α} : A{B/α}.

This generalized lemma is proved by induction on the height of the derivation
tree (1). The base case uses (T-Var) with M = x. M{B/α} = x{B/α} = x.
A{B/α} must be A. Otherwise, α occurs in A for Γ(x) = A, which violates (2).
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For inductive cases, consider a case using (T-Tapp) with M = L[C] and
A = A0{C/β}. (1) becomes (4):Γ, α `Loc L[C] : A0{C/β}. By (T-Tapp)
with (4), we have (5):Γ, α `Loc L : ∀β.A0. By I.H. with (5), (6):Γ `Loc

L{B/α} : (∀β.A0){B/α}. Note that (∀β.A0){B/α} = ∀β.(A0{B/α}) since α 6=
β. By applying (T-Tapp) to (6) with C{B/α}, (7):Γ `Loc L{B/α}[C{B/α}] :
(A0{B/α}){C{B/α}/β}. This proves the inductive case by Γ `Loc (L[C]){B/α} :
(A0{C/β}){B/α}. The other inductive cases use (T-Abs), (T-App), (T-Tabs),
(T-Labs), and (T-Lapp), which are provable similarly.

Lemma 3.4 (Location substitution). If Γ `Loc Λl.V : ∀l.A then Γ `Loc

V {Loc′/l} : A{Loc′/l}.

Proof. By (T-Labs) with the first part of the condition, Γ, l `Loc V : A. Since l
is a bound location variable, l cannot occur in Γ, i.e., l 6∈ flv(Γ).

We prove a generalized lemma as: if (1):Γ, l `Loc M : A and (2):l 6∈ flv(Γ)
then (3):Γ `Loc M{Loc′/l} : A{Loc′/l}. In the base case, M = x. M{Loc′/l} =
x{Loc′/l} = x. A{Loc′/l} = A because of Γ(x) = A and (2).

For inductive cases, let us first a case using (T-Lapp) with M = L[Loc0]
and A = B{Loc0/l0}. The instance of (1) becomes (4):Γ, l `Loc L[Loc0] :
B{Loc0/l0}.

By (T-Lapp) with (4), we have (5):Γ, l `Loc L : ∀l0.B.
By I.H. with (5), (6):Γ `Loc L{Loc′/l} : (∀l0.B){Loc′/l}. Since l 6= l0,

(7):(∀l0.B){Loc′/l} = ∀l0.(B{Loc′/l}).
By (T-Lapp) with (6), (7), and Loc0{Loc′/l}, we can derive

Γ `Loc (L{Loc′/l})[Loc0{Loc′/l}] : (B{Loc′/l}){Loc0{Loc′/l}/l0}

which is Γ `Loc (L[Loc0]){Loc′/l} : (B{Loc0/l0}){Loc′/l}.
The other inductive cases use (T-Abs), (T-App), (T-Tabs), (T-Tapp), and

(T-Labs), which are proved similarly.

Appendix B. Proofs of Lemmas in Section 3.2 A monomorphization
translation of the polymorphic RPC calculus

B.1. Proofs of Lemmas in Section 3.2.2 Type correctness

Lemma 3.5 (Type substitution over type under monomorphization). [[A]]{[[B]]/α}
= [[A{B/α}]].

Proof. We prove this lemma by the structural induction on A. We have two
base cases. Let us first consider when A = base. In the left-hand side of
the equation, [[base]]{[[B]]/α} = base{[[B]]/α} = base. In the right-hand side,
[[base{B/α}]] = base.

For the other base case that A is a type variable, say, β, we do a case analysis
on if β is the same as α or not. When β 6= α, this can be proved similarly as for
the first base case. When β = α, [[α]]{[[B]]/α} = α{[[B]]/α} = [[B]] = [[α{B/α}]].

There are three inductive cases where A is a function type, a polymorphic
type, and a polymorphic location.
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Case A is A1
a−→ A2:

[[A1
a−→ A2]]{[[B]]/α} by def. of [[−]]

= ([[A1]]
a−→ [[A2]]){[[B]]/α}

= [[A1]]{[[B]]/α} a−→ [[A2]]{[[B]]/α} by I.H.

= [[A1{B/α}]]
a−→ [[A2{B/α}]] by def. of [[−]]

= [[A1{B/α}
a−→ A2{B/α}]]

= [[(A1
a−→ A2){B/α}]]

Case A is ∀β.A0:
i) β = α

[[∀β.A0]]{[[B]]/α} by def. of [[−]]
= (∀β.[[A0]]){[[B]]/α}
= ∀β.[[A0]] by def. of [[−]]
= [[∀β.A0]]
= [[(∀β.A0){B/α}]]

ii) β 6= α
[[∀β.A0]]{[[B]]/α} by def. of [[−]]

= (∀β.[[A0]]){[[B]]/α}
= ∀β.([[A0]]{[[B]]/α}) by I.H.
= ∀β.([[A0{B/α}]])
= [[∀β.(A0{B/α})]]
= [[(∀β.A0){B/α}]]

Case A is ∀l.A0:
[[∀l.A0]]{[[B]]/α} by def. of [[−]]

= ([[A0{c/l}]]× [[A0{s/l}]]){[[B]]/α}
= ([[A0{c/l}]]× [[A0{s/l}]]){[[B]]/α}
= [[A0{c/l}]]{[[B]]/α} × [[A0{s/l}{[[B]]/α}]] by I.H.
= [[(A0{c/l}){B/α}]]× [[(A0{s/l}){B/α}]]
= [[(A0{B/α}){c/l}]]× [[(A0{B/α}){s/l}]] by def. of [[−]]
= [[∀l.(A0{B/α})]]
= [[(∀l.A0){B/α}]]

Lemma 3.6 (Location polymorphism). Suppose Γ = {l1, · · · , ln} ∪ Γ0 such
that Γ0 has no location variables. If Γ `Loc M : A then (Γ0 `Loc M :
A){a1/l1, · · · , an/ln} for any a1, · · · , an with the same height.

Proof. The proof can be done straightforwardly by induction on the height of
the derivation tree for the typing judgment in the condition.

B.2. Proofs of Lemmas in Section 3.2.3 Semantics correctness

Lemma 3.8 (Substitution under monomorphization). [[M ]]{[[W ]]/x} = [[M{W/x}]].

34



Proof. We prove this lemma by the structural induction on M . In the base case,
M = y. When y = x, [[x]]{[[W ]]/x} = x{[[W ]]/x} = [[W ]] = [[x{W/x}]]. When
y 6= x, [[y]]{[[W ]]/x} = y{[[W ]]/x} = y = [[y]] = [[y{W/x}]].

For the inductive cases, the proof is done as follows.
Case M is λay.L:

i) y = x
[[λay.L]]{[[W ]]/x} by def. of [[−]]

= (λay.[[L]]){[[W ]]/x}
= λay.[[L]]
= [[λay.L]]
= [[(λay.L){W/x}]]
ii) y 6= x

[[λay.L]]{[[W ]]/x} by def. of [[−]]
= (λay.[[L]]){[[W ]]/x}
= λay.([[L]]{[[W ]]/x}) by I.H.
= λay.[[L{W/x}]] by def. of [[−]]
= [[λay.(L{W/x})]]
= [[(λay.L){W/x}]]

Case M is LN :
[[LN ]]{[[W ]]/x} by def. of [[−]]

= ([[L]][[N ]]){[[W ]]/x}
= ([[L]]{[[W ]]/x})([[N ]]{[[W ]]/x}) by I.H.
= ([[L{W/x}]])([[N{W/x}]])
= [[(L{W/x})(N{W/x}]])
= [[(LN){W/x}]]

Case M is Λl.V :
[[Λl.V ]]{[[W ]]/x} by def. of [[−]]

= ([[V {c/l}]], [[V {s/l}]]){[[W ]]/x}
= ([[V {c/l}]]{[[W ]]/x}, [[V {s/l}]]{[[W ]]/x}) by I.H.
= ([[(V {c/l}){W/x}]], [[(V {s/l}){W/x}]]
= ([[(V {W/x}){c/l}]], [[(V {W/x}){s/l}]] by def. of [[−]]
= ([[Λl.(V {W/x})]]
= ([[(Λl.V ){W/x}]]

Case M is Λα.V :
[[Λα.V ]]{[[W ]]/x} by def. of [[−]]

= (Λα.[[V ]]){[[W ]]/x}
= Λα.([[V ]]{[[W ]]/x}) by I.H.
= Λα.([[V {W/x}]]) by def. of [[−]]
= [[Λα.(V {W/x})]]
= [[(Λα.V ){W/x}]]

Case M is L[a]:
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[[L[a]]]{[[W ]]/x} by def. of [[−]]
= (πi[[L]]){[[W ]]/x} i = 1 if a = c, i = 2 if a = s
= πi([[L]]{[[W ]]/x}) by I.H.
= πi([[L{W/x}]])
= [[L{W/x}[a]]] by def. of [[−]]
= [[(L[a]){W/x}]]

Case M is L[B]:
[[L[B]]]{[[W ]]/x} by def. of [[−]]

= [[L]][[[B]]]{[[W ]]/x}
= ([[L]]{[[W ]]/x})[[[B]]] by I.H.
= [[L{W/x}]][[[B]]] by def. of [[−]]
= [[L{W/x}[B]]]
= [[(L[B]){W/x}]]

Lemma 3.9 (Type substitution over term under monomorphization). [[V ]]{[[B]]/α} =
[[V {B/α}]].

Proof. We prove a slightly general lemma as [[M ]]{[[B]]/α} = [[M{B/α}]]. We
prove the general lemma by the structural induction on M . For the base case
M = x, [[x]]{[[B]]/α} = x{[[B]]/α} = x = [[x]] = [[x{B/α}]].

For the inductive cases, the proof is done as follows.
Case M is λax.L:

[[λax.L]]{[[B]]/α} by def. of [[−]]
= (λax.[[L]]){[[B]]/α}
= λax.([[L]]{[[B]]/α}) by I.H.
= λax.[[L{B/α}]]
= [[λax.(L{B/α})]] by def. of [[−]]
= [[(λax.L){B/α}]]

Case M is Λl.V :
[[Λl.V ]]{[[B]]/α} by def. of [[−]]

= ([[V {c/l}]], [[V {s/l}]]){[[B]]/α}
= ([[V {c/l}]]{[[B]]/α}, [[V {s/l}]]{[[B]]/α}) by applying I.H. twice
= ([[(V {c/l}){B/α}]], [[(V {s/l}){B/α}]]
= ([[(V {B/α}){c/l}]], [[(V {B/α}){s/l}]] by def. of [[−]]
= [[Λl.(V {B/α})]]
= [[(Λl.V ){B/α}]]

Case M is LN :
[[LN ]]{[[B]]/α} by def. of [[−]]

= ([[L]][[N ]]){[[B]]/α}
= ([[L]]{[[B]]/α}([[N ]]{[[B]]/α}) by applying I.H. twice
= [[L{B/α}]][[N{B/α}]] by def. of [[−]]
= [[(L{B/α})(N{B/α})]]
= [[(LN){B/α}]]
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Case M is L[a]:
[[L[a]]]{[[B]]/α} by def. of [[−]] (i = 1 if a = c, i = 2 if a = s)

= (πi[[L]]){[[B]]/α}
= πi([[L]]{[[B]]/α}) by I.H.
= πi[[L{B/α}]] by def. of [[−]]
= [[(L{B/α})[a]]]
= [[(L[a]){B/α}]]

Case M is Λβ.V :
i) β = α

[[Λα.V ]]{[[B]]/α} by def. of [[−]]
= (Λα.[[V ]]){[[B]]/α}
= Λα.[[V ]] by def. of [[−]]
= [[Λα.V ]]
= [[(Λα.V ){B/α}]]

i) β 6= α
[[Λβ.V ]]{[[B]]/α} by def. of [[−]]

= (Λβ.[[V ]]){[[B]]/α}
= Λβ.([[V ]]{[[B]]/α}) by I.H.
= Λβ.([[V {B/α}]])
= [[Λβ.(V {B/α})]]
= [[(Λβ.V ){B/α}]]

Case M is L[A]:
[[L[A]]]{[[B]]/α} by def. of [[−]]

= ([[L]][[[A]]]){[[B]]/α}
= ([[L]]{[[B]]/α})[[[A]]{[[B]]/α}] by I.H. and Lemma 3.5
= [[L{B/α}]][[[A{B/α}]]] by def. of [[−]]
= [[L{B/α}[A{B/α}]]]
= [[(L[A]){B/α}]]
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