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Abstract
Embedded domain-specific languages (eDSLs) are typically

implemented in a rich host language, such as Haskell, using

a combination of deep and shallow embedding techniques.

While such a combination enables programmers to exploit

the execution mechanism of Haskell to build and specialize

eDSL programs, it blurs the distinction between the host lan-

guage and the eDSL. As a consequence, extension with fea-

tures such as sums and effects requires a significant amount

of ingenuity from the eDSL designer. In this paper, we demon-

strate that Normalization by Evaluation (NbE) provides a

principled framework for building, extending, and customiz-

ing eDSLs. We present a comprehensive treatment of NbE for

deeply embedded eDSLs in Haskell that involves a rich set

of features such as sums, arrays, exceptions and state, while

addressing practical concerns about normalization such as

code expansion and the addition of domain-specific features.

CCS Concepts: • Software and its engineering→ Func-
tional languages.

Keywords: Normalization by Evaluation, Partial Evaluation,

eDSL, Haskell
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1 Introduction
An embedded domain-specific language (eDSL) [24, 26] is

a seamless implementation of a domain-specific language

(DSL) as a library in a host language. Haskell is particularly

well suited as a host for eDSLs as witnessed by the vari-

ety of practical Haskell eDSLs covering domains as diverse
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as circuit design [12], database querying [25], digital sig-

nal processing [6], graphics acceleration [14], and security

[38]. Haskell eDSL developers have at their disposal all of

Haskell’s features such as higher-order functions, extensible

syntax, and a rich type-system. It is common to represent

programs in an eDSL using a data type that denotes them

explicitly, together with compilers and interpreters that ma-

nipulate values of this type. Let us consider such a data type

Exp :: ∗ → ∗ parameterized by the type of the expression

it denotes. Whereas a value of type Int in Haskell denotes

an integer value, a value of type Exp Int denotes an integer

expression. (We use the words “program” and “expression”

interchangeably in the rest of the paper.)

Often, eDSL designers face a choice between either adding

complex features to an eDSL or keeping the core eDSL sim-

ple and exploiting the host language to construct programs.

Should the eDSL support pairs in expressions (Exp (a, b)), or
should it use pairs of expressions ((Exp a, Exp b))? Should
the eDSL support functions (Exp (Int → Int)) directly or

should it instead rely on Haskell functions (Exp Int →
Exp Int) to build programs? As the complexity increases,

it can become difficult to draw a line between the end of the

host language and the beginning of the eDSL.

In an eDSL program we may think of a value of type Int
as a static integer that is known at compile-time, and a value

of type Exp Int as a dynamic integer that is known only at

runtime. The stage separation of values as static and dynamic

corresponds to a manual form of binding-time analysis in par-
tial evaluation [27], and presents an opportunity to exploit

Haskell’s execution mechanism to evaluate static compu-

tations in an eDSL program. In other words, static values
belong to the host language, whereas dynamic values belong
to the eDSL. For example, consider the following implementa-

tion of the exponentiation function that receives two integer

arguments n and x and returns 𝑥𝑛

𝑝𝑜𝑤𝑒𝑟1 :: Int → Exp Int → Exp Int
𝑝𝑜𝑤𝑒𝑟1 n x = if (n ⩽ 1) then x else (x ∗ (𝑝𝑜𝑤𝑒𝑟1 (n − 1))

where (∗) :: Exp Int → Exp Int → Exp Int. The type of

𝑝𝑜𝑤𝑒𝑟1 ensures the first argument is static, and using this

function, we can evaluate the expression 𝑝𝑜𝑤𝑒𝑟1 3 x for

some x ::Exp Int to generate the specialized expression x∗x∗x.
Even though the definition of 𝑝𝑜𝑤𝑒𝑟1 uses a conditional

(if ... then ...else), comparison (n ⩽ 1) and function recursion

(𝑝𝑜𝑤𝑒𝑟1 (n − 1)), these have all been evaluated (by Haskell)

and removed in the specialized expression.

https://doi.org/10.1145/3471874.3472983
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Though separation of stages enables the programmer to

manually specify those parts of an eDSL program that must

be evaluated by Haskell, it also burdens them to maintain

multiple variants of the same program. In addition to 𝑝𝑜𝑤𝑒𝑟1,

we may also demand the following variants of the exponenti-

ation function, each corresponding to a different separation

of stages for its arguments and result.

𝑝𝑜𝑤𝑒𝑟0 :: Int → Int → Int
𝑝𝑜𝑤𝑒𝑟1 :: Int → Exp Int → Exp Int
𝑝𝑜𝑤𝑒𝑟2 :: Exp Int → Int → Exp Int
𝑝𝑜𝑤𝑒𝑟3 :: Int → Int → Exp Int
𝑝𝑜𝑤𝑒𝑟4 :: Exp Int → Exp Int → Exp Int
𝑝𝑜𝑤𝑒𝑟5 :: Int → Exp (Int → Int)
𝑝𝑜𝑤𝑒𝑟6 :: Exp Int → Exp (Int → Int)
𝑝𝑜𝑤𝑒𝑟7 :: Exp (Int → Int → Int)

The need for multiple variants can be mitigated to some ex-

tent by using an overloading mechanism that automatically

lifts Int to Exp Int, and converts back and forth between some

static and dynamic representations, such as Exp (a → b) and
Exp a → Exp b. This is done, for example, in Feldspar [6].

However, conversion between representations does not work

for types with multiple introduction forms such as sum types:

we cannot convert an expression of type Exp (Either a b) to
Either (Exp a) (Exp b) as the precise injection may not be

known until runtime.

Normalization by Evaluation (NbE) [9], is a program spe-

cialization technique that offers a solution to this problem by

making specialization automatic,without the need for manual
stage separation. Using the NbE approach, all variants of the

exponentiation function can be recovered from the imple-

mentation of 𝑝𝑜𝑤𝑒𝑟7 :: Exp (Int → Int → Int) depending on
the availability of the arguments at the site of invocation,

i.e., depending on how 𝑝𝑜𝑤𝑒𝑟7 is used.

Unlike traditional normalization techniques, NbE bypasses

rewriting entirely and instead normalizes an expression by

evaluating it using a special interpreter. While NbE tech-

niques for well-typed languages, also known as typed NbE,
have found a number of theoretical applications such as de-

ciding equivalence of lambda-calculus with sums [3], prov-

ing completeness [16], and coherence theorems [11], the

practical relevance of typed NbE remains relatively less well-

understood. This paper argues that typed NbE is particularly

well-suited for specializing eDSL programs in Haskell given

the natural reliance on a host language. Indeed, existing

techniques for embedding DSLs in Haskell (e.g. the work

of Svenningsson and Axelsson [40] on combining deep and

shallow embeddings), which may at first seem somewhat ad

hoc, can be viewed as instances of NbE.

The contributions of this paper are as follows.

• The first comprehensive practical treatment of NbE

for eDSLs.

• A coherent combination of NbE techniques to deal

with a rich set of features such as sums, arrays, ex-

ceptions, and state—and in particular—a detailed and

extensible account of their interaction.

• Practical extensions of standard NbE techniques to im-

plement a richer set of domain-specific equations, and

variations that control unnecessary code expansion.

• Examples showing that NbE provides a principled al-

ternative to ad hoc techniques that combine deep and

shallow embedding to implement fusion for functions,

loops and arrays in an eDSL.

The complete Haskell source code and examples in this

paper can be found in the accompanying material available

at https://github.com/nachivpn/nbe-edsl.

2 Normalizing EDSL Programs
This section showcases our implementationwith examples of

normalizing eDSL programs using NbE. We begin with stan-

dard examples of normalizing the exponentiation function

and array operations, and then show examples that illus-

trate normalization of programs that contain side-effects,

branching, and an intricate interaction between them.

Normalization is performed by a function norm :: Rf a ⇒
Exp a → Exp a, and the result is observed by printing the

resulting expression. The type class constraint Rf limits the

type of an expression to the types recognized by the eDSL,

and is defined along with the data type Exp in the next sec-

tion. The name Rf is short for reifiable. For convenience, we

do not program with the constructors of Exp directly, and in-
stead use derived combinators and “smart constructors” that

provide a programming interface to the eDSL. This means

that the observed result of normalizing an eDSL program

is that of its internal representation, and may not directly

resemble the surface program.

We make use of a form of higher-order abstract syntax

(HOAS) [34] in order to repurpose the binding features of

Haskell in the eDSL. Thus the constructor that constructs an

expression of a function type Exp (a → b) (Lam in Figure 2)

takes a Haskell function on expressions Exp a → Exp b
as its argument. Our focus here is on practical implemen-

tation so we do not concern ourselves with subtleties such

as ruling out so called exotic terms or exotic types [5] in

the internal representation of expressions. Nevertheless, it

is a routine exercise to adapt our approach to use standard

techniques to preclude such infelicities, for instance by using

an abstract type to hide the concrete type constructors [36]

or moving to a tagless representation [5, 13] whereby the

smart constructors are first-class.

Normalizing exponentiation. Consider again the expo-

nentiation function from the previous section, and suppose

that it is implemented as follows.

https://github.com/nachivpn/nbe-edsl
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power :: Exp (Int → Int → Int)
power = lam $ 𝜆n → lam $ 𝜆x → rec n (f x) 1
where f x = lam $ 𝜆 → lam $ 𝜆acc → (x ∗ acc)

This implementation corresponds to the 𝑝𝑜𝑤𝑒𝑟7 variant,

and is implemented using expression combinators: lam ::

(Exp a → Exp b) → Exp (a → b) is a lambda expression

combinator and rec :: Exp Int → Exp (Int → a → a) →
Exp a → Exp a is a primitive recursion combinator such that

rec n g a is equivalent to g 1 (g 2 (...(g n a))). Although
possible, note that the type of rec is not entirely wrapped

under Exp as Exp (Int → (Int → a → a) → a → a). This
choice prevents unnecessary clutter caused by explicit func-

tion application in the expression language, and trades some

specialization power (i.e., the subsumption of some stage

separations) for a more convenient interface. We make this

choice for all primitive combinators that require multiple

arguments.

An expression of a function type can be applied using

the combinator app :: Exp (a → b) → Exp a → Exp b as

app (power 3), where the argument is a numeral expression

3 :: Exp Int. We can normalize this expression in the Haskell

interpreter GHCi using the function norm as follows.

∗NbE.OpenNbE> norm (app power 3)
𝜆x .(x ∗ (x ∗ x))

The result is a pretty-printed representation of the expres-

sion syntax of the Exp data type—here a function that returns
the cube of its argument. Observe that the result is slightly

more optimal than that of a textbook partial evaluator that

returns 𝜆x .(x ∗ (x ∗ (x ∗ 1))) by unrolling the recursion. This
optimization is a simple instance of NbE’s ability to aggres-

sively reduce arithmetic expressions even in the presence of

unknown values—we return to this in Section 6.

Note here that the specialization of power is automatic

and there was no need to manually separate the stages of

arguments as static (Int) and dynamic (Exp Int). We con-

sider the entire expression to be dynamic, and leave it to the

normalizer to identify the best specialization strategy.

As another example, consider normalizing an invocation

of power with flipped arguments using a utility function flip′.

∗NbE.OpenNbE> norm (app (flip′ power) 3)
𝜆n.(Rec n (𝜆y.𝜆acc.(3 ∗ acc)) 1)

Observe that the (expected) definition of flip′ has been re-

moved in the result, producing a more optimal function.

Normalizing array operations. Normalization can be

used to achieve fusion of operations over arrays such as map

and fold [33]. We consider immutable pull arrays [41] in our

eDSL, and an expression of the array type is denoted by the

type Exp (Arr a), where a denotes the type of the elements in

the array. The map and fold operations are given by derived

combinators, whose types and corresponding fusion laws

are given as below.

mapArr :: Exp (a → b) → Exp (Arr a) → Exp (Arr b)
foldArr :: Exp (b → a → b) → Exp b → Exp (Arr a) → Exp b

-- fusion laws:

-- 1. mapArr f (mapArr g arr) = mapArr (f . g) arr

-- 2. foldrArr f x (mapArr g arr) = foldArr (f . g) x arr

These combinators are derived using simpler expression con-

structors, that for e.g., create an array (NewArr), or perform
recursion (Rec), and the fusion laws follow from the equa-

tions that specify their behavior.

Using these combinators, we may implement a function

(expression)mapMap that maps twice over a given argument

array, first with the function (+1), and then with (+2).
mapMap :: Exp (Arr Int → Arr Int)
mapMap = lam $ 𝜆arr →

mapArr (lam (+2)) (mapArr (lam (+1)) arr)

By the first fusion law, this expression is equivalent to one

that maps once with (+3) as: mapArr (lam (+3)) arr . Nor-
malizing mapMap returns a new array which has the same

length as the argument array arr , and whose elements are

the elements of arr incremented by 3.

∗NbE.OpenNbE> norm mapMap
𝜆arr .(NewArr (LenArr arr) (𝜆i.(arr ! i) + 3))

The result is indeed the expression constructed by applying

the derived combinator mapArr as mapArr (lam (+3)) arr .
Besides map fusion, NbE also eliminates the function com-

position from the fused function (+2) ◦ (+1) and performs

constant folding to obtain (+3).
To illustrate the second fusion law, consider the following

function, mapFold, that first maps (+2) over a given array

and then computes the sum of the result using foldArr .

mapFold :: Exp (Arr Int → Int)
mapFold = lam $ 𝜆arr → foldArr go 0 (mapArr (lam (+2)) arr)

where go = lam $ 𝜆acc → lam $ 𝜆x → acc + x

By the second fusion law, this expression is equivalent to one

which simply folds the entire array as: foldArr (lam (𝜆acc →
lam (𝜆x → acc + x + 2))) 0 arr . NormalizingmapFold yields

the following result.

∗NbE.OpenNbE> norm mapFold
𝜆arr .(Rec (LenArr arr) (𝜆i.𝜆acc.acc + (arr ! i) + 2) 0)

The normalized function receives an argument array, and

performs recursion over its length to compute the sum of its

elements, each of which has been incremented by 2.

Normalizing branching programs. Branching programs,

or programs that perform a case analysis over a value of a

sum type, complicate normalization. The difficulty arises

from the fact that the outcome of a case analysis over an

unknown value cannot be determined at normalization time.

NbE offers a modular solution to address this difficulty and

achieve normalization for branching programs, as we shall

see later in Section 4.
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Consider the following branching program, prgBr , that
illustrates a scenario where map fusion on arrays is inter-

rupted by a case analysis on an unknown value.

prgBr :: Exp (Either Int Int → Arr Int → Arr Int)
prgBr = lam $ 𝜆scr → lam $ 𝜆arr →

mapArr (lam (+1)) $ case′ scr
(lam $ 𝜆x → mapArr (lam (+x)) arr)
(lam $ 𝜆y → arr)

It performs a case analysis using the combinator case′ ::
Exp (Either a b) → Exp (a → c) → Exp (b → c) on the

argument scr (an unknown value), and if the left injection is

found with an integer x, it returns an array that increments

elements of arr by x, else arr is returned as found otherwise.

The array returned by case′ is further incremented by 1.

Normalizing prgBr yields the following result.

∗NbE.OpenNbE> norm prgBr
(𝜆scr .(𝜆arr .NewArr (LenArr arr)

(𝜆i.Case scr (𝜆x .((arr ! i) + x + 1)) (𝜆y.((arr ! i) + 1)))))

The normalized function returns a new arraywhose elements

are given by performing case analysis on scr . Observe that
the effect of mapArr (lam (+1)) in prgBr has been fused

with the application of mapArr in the first branch, and left

unaltered in the second branch. The normalized program

delays case analysis on scr to the point at which it is required,
thus avoiding the materialisation of an intermediate array.

Normalizing stateful programs. Programs with side-

effects can be also normalized using NbE, and the following

example illustrates such a program that writes to and reads

from a global state in a State monad.

prgSt :: Exp (Arr Int → State (Arr Int) Int)
prgSt = lam $ 𝜆arr →
put (mapArr (lam (+2)) arr)
≫𝑠𝑡 put (mapArr (lam (+1)) arr
≫𝑠𝑡 get ≫=𝑠𝑡 (lam $ 𝜆arr ′ → 𝑟𝑒𝑡𝑢𝑟𝑛𝑠𝑡 (ixArr arr ′ 0)))

The program prgSt receives an integer array arr , and returns
an Int by writing to and reading from (using combinators get
and put) a global state that contains an array of type Arr Int.
Precisely, it performs the following actions (sequenced using

monadic combinators ≫𝑠𝑡 and ≫=𝑠𝑡 ):
• writes the result of mapping over arr with (+2)

• writes the result of mapping over arr with (+1)

• reads the array from state, and returns its first element

The combinators put, get, ≫𝑠𝑡 , ≫=𝑠𝑡 and 𝑟𝑒𝑡𝑢𝑟𝑛𝑠𝑡 have their
expected types lifted to expressions. For example, put::Exp s →
Exp (State s ()) and get :: Exp (State s s).
Normalizing prgSt yields the following result.

∗NbE.OpenNbE> norm prgSt
𝜆arr .(Get >>= 𝜆s.(Put (NewArr (LenArr arr) (𝜆i.(arr ! i) + 1))

>> return ((arr ! 0) + 1)))

The resulting program puts a new array that contains the

elements of the original array incremented by 1, and returns

the head of the original array, also incremented by 1. The

first put operation in prgSt is removed as it is overwritten

by the subsequent put. Similarly, the operation get and the

intermediate array arr ′ in prgSt are also removed, as the

array in the state is known locally from the previous put
operation. The Get in the result is redundant as the state s
is never used. This Get is introduced by the normalizer as a

consequence of 𝜂-expansion (see Section 5). We show later,

in Section 6, how such redundancy in generated code can be

eliminated by disabling 𝜂-expansion.

Normalizing branching stateful programs. The pres-
ence of side-effects and branching in the same language

creates subtle interactions between the primitives that must

be considered when implementing normalization. To illus-

trate that our NbE procedure can also be applied seamlessly

to their combination, we consider the following program

that combines the last two examples.

prgBrSt :: Exp (Either Int Int → Arr Int → State (Arr Int) Int)
prgBrSt = lam $ 𝜆scr → lam $ 𝜆arr →

put (mapArr (lam (+1)) arr)
≫𝑠𝑡 (case′ scr
(lam $ 𝜆x → put (mapArr (lam (+x)) arr))
(lam $ 𝜆y → return unit))

≫𝑠𝑡 get ≫=𝑠𝑡 (lam (𝜆arr ′ → 𝑟𝑒𝑡𝑢𝑟𝑛𝑠𝑡 (ixArr arr ′ 0))))

Unlike in prgSt, the first put here cannot be eliminated as the

second branch does not have a subsequent put. Moreover,

elimination of get here is less straightforward as we cannot

readily determine the value of the array in the state.

Normalizing prgBrSt yields the following result.

∗NbE.OpenNbE> norm prgBrSt
𝜆scr .(𝜆arr .(Get >>= (𝜆s.(Case scr of

(𝜆x .(Put (NewArr (LenArr arr) (𝜆i.(arr ! i) + x))
>> Return ((arr ! 0) + x)))

(𝜆y.(Put (NewArr (LenArr arr) (𝜆i.(arr ! i) + 1))
>> Return ((arr ! 0) + 1)))))))

The resulting program pattern matches on scr , performs

appropriate put operations and returns the expected result

individually on each branch. The first put operation, i,e.,
put (mapArr (lam (+1)) arr) is discarded in the first branch

but preserved in the latter!

3 NbE for an EDSL Core
NbE is the process of evaluating, or interpreting, expres-
sions of a language in a semantic domain and then obtaining

normal forms by reifying, or extracting, normal forms from

values in the semantic domain. The key idea behind NbE is

to leverage an (often non-standard) evaluator implemented

in the host language to normalize expressions in the object

language—hence the name normalization by evaluation.
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-- Expressions, neutrals and normal forms

data Exp a where ...
data Ne a where ...
data Nf a where ...

-- Embedding functions

embNe :: Ne a → Exp a
embNf :: Nf a → Exp a

-- NbE semantics

class Rf a where
type Sem a :: ∗
reify :: Sem a → Nf a
reflect :: Ne a → Sem a

-- Evaluation function

eval :: Rf a ⇒ Exp a → Sem a

-- Normalization function

norm :: Rf a ⇒ Exp a → Exp a
norm = embNf ◦ reify ◦ eval

Figure 1. Components of NbE

Figure 1 summarizes the components of NbE in our imple-

mentation. The object language is defined by the expression

data type Exp, and its normal forms are defined by Nf and

Ne (a subcategory of normal forms called neutrals). Unlike
a traditional evaluator, an NbE evaluator interprets expres-

sions in a semantic domain that is carefully chosen such

that normal forms can be reified from it. The type class Rf
specifies the requirements of such a semantic domain.

In the class Rf , the type family Sem maps types in the

object language to the Haskell types that interpret them.

The definition of Rf requires that an interpretation of a type

be chosen such that we can also implement the functions

reify and reflect. The function reify performs reification, and

the function reflect performs a process known as reflection.
Reflection inserts neutral expressions into the semantic do-

main, and is used to evaluate free variables whose values

are unknown. Reflection is crucial to reifying functions: to

convert a semantic function to a syntactic one, we apply it

to a semantic value given by the reflecting the argument

variable of the syntactic function. Our syntax for functions

calls for a slightly different treatment, as we shall see shortly.

In this section, we discuss the implementation of NbE for

an eDSL core language that is defined by the Exp data type.

This language is based on a simply-typed lambda calculus

(STLC) with product and base types, extended with primitive

recursion and simple arithmetic operations. We later extend

it further with array and sum types (Section 4), exception and

state effects (Section 5), and other uninterpreted primitives

(Section 6). These features have been chosen to illustrate

the practical applicability, extensibility, and customizabil-

ity of NbE to a class of functional eDSLs like Feldspar [6],

Haski [42], and others [4, 40] found in eDSL literature.

data Exp a where
Var :: Rf a ⇒ String → Exp a
Lift :: Base a ⇒ a → Exp a
Lam :: (Rf a, Rf b) ⇒ (Exp a → Exp b) → Exp (a → b)
App :: (Rf a, Rf b) ⇒ Exp (a → b) → Exp a → Exp b
Unit :: Exp ()
Pair :: (Rf a, Rf b) ⇒ Exp a → Exp b → Exp (a, b)
Fst :: (Rf a, Rf b) ⇒ Exp (a, b) → Exp a
Snd :: (Rf a, Rf b) ⇒ Exp (a, b) → Exp b
Mul :: Exp Int → Exp Int → Exp Int
Add :: Exp Int → Exp Int → Exp Int
Rec :: Rf a ⇒ Exp Int

→ Exp (Int → a → a) → Exp a → Exp a

Figure 2. Basic core expression language

Figure 2 summarizes the pure fragment of the core ex-

pression syntax. It consists of expression constructors for

unknowns (Var), constants (Lift), functions (Lam,App), prod-
ucts (Pair , Fst, Snd), arithmetic operations (Mul, Add), and
primitive recursion (Rec). The constructor Var allows us to
insert unbound free variables, and Lift allows us to lift con-

stant values of primitive base types (identified by the type

class Base) directly to expressions. For example, instances

Base Int and Base String allow us to lift integers and strings

to expressions of type Exp Int and Exp String respectively.

Function and product types. To implement NbE for a

fragment of the language under consideration, we begin by

specifying the equations of interest, and identifying normal

forms of these equations. The equations for the fragment of

function and product types are specified as follows.

f :: Exp (a → b) ≈ Lam (App f )
App (Lam f ) e ≈ f e

p :: Exp (a, b) ≈ Pair (Fst p) (Snd p)
Fst (Pair e1 e2) ≈ e1
Snd (Pair e1 e2) ≈ e2

The type directed equations, or 𝜂-laws, specify the structure

of the resulting normal forms, and the reduction laws, or

𝛽-laws, specify how expressions should be reduced.

To a first approximation, neutrals denote expressionswhose

reduction is stuck at unknowns, and normal forms denote

value expressions. A normal form in NbE only needs to be

some canonical element in the equivalence class of expres-

sions identified by the equations, but it is often helpful to

think of it as an expression that cannot be reduced further

by applying the 𝛽 laws by orienting them from left to right,

and has a canonical shape as dictated by the 𝜂 law. For this

fragment, we define neutral and normal forms as follows,

resembling 𝛽-short 𝜂-long normal forms in STLC.
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data Ne a where
NVar :: Rf a ⇒ String → Ne a
NApp :: (Rf a, Rf b) ⇒ Ne (a → b) → Nf a → Ne b
NFst :: (Rf a, Rf b) ⇒ Ne (a, b) → Ne a
NSnd :: (Rf a, Rf b) ⇒ Ne (a, b) → Ne b

data Nf where
NUp :: Base a ⇒ Ne a → Nf a
NUnit :: Nf ()
NLam :: (Rf a, Rf b) ⇒ (Exp a → Nf b) → Nf (a → b)
NPair :: (Rf a, Rf b) ⇒ Nf a → Nf b → Nf (a, b)

Observe that a normal form of type Nf (a → b) cannot be
reduced further by applying the 𝛽-law on any of its subex-

pressions, and it must be constructed byNLam. This property

of normal forms can as well be observed for products and

all other types under consideration in this paper.

The normal form constructor for functions, NLam, re-

ceives an argument of type Exp a → Nf b instead of the

more restrictive type Nf a → Nf b. This is to allow the

syntactic embedding—i.e, without invoking functions that

involve semantics, such as eval or reify—of normal forms

to expressions via embNf by mapping NLam to Lam, which

would not be possible with the latter option.

After the identification of suitable normal forms, it re-

mains to define a semantic domain that supports the reifica-

tion of normal forms and evaluation of terms. The semantic

domain for product and function types are readily available

in Haskell, so we simply interpret them by their Haskell

counterparts by defining instances of Rf as follows.

instance Rf () where
type Sem () = ()
reify = NUnit
reflect = ()

instance (Rf a, Rf b) ⇒ Rf (a, b) where
type Sem (a, b) = (Sem a, Sem b)
reify p = NPair (reify (fst p)) (reify (snd p))
reflect n = (reflect (NFst n), reflect (NSnd n))

instance (Rf a, Rf b) ⇒ Rf (a → b) where
type Sem (a → b) = Sem a → Sem b
reify f = NLam (reify ◦ f ◦ eval)
reflect n = 𝜆y → reflect (NApp n (reify y))

The implementation of functions reify and reflect is achieved
by converting from and to Haskell values. To reify a pair

p :: (Sem a, Sem b), we construct a normal form using the con-

structor NPair , whose arguments are obtained by recursively

reifying the projections of p. To reflect a neutral n ::Ne (a, b),
we construct a pair whose components are obtained by recur-

sively reflecting the projections of n using neutral construc-

tors NFst and NSnd. On the other hand, to reify a function

f :: Sem a → Sem b, we evaluate the expression argument
1

provided by the constructor NLam and recursively reify its

1
Traditionally, reflection is sufficient since the argument in Lam is a variable,

but our formulation demands evaluation since it can be any expression.

application to f , and to reflect a neutral n :: Ne (a → b), we
recursively reflect the application of n using the constructor

NApp with the reification of the semantic argument y.
Evaluation resembles a standard evaluator, with the ex-

ception of the Var and Lam cases, as witnessed below.

eval (Var x :: Exp a) = reflect@a (NVar x)
eval Unit = ()
eval (Lam f ) = 𝜆y → eval (f (embNf (reify y)))
eval (App f e) = (eval f ) (eval e)
eval (Pair e e′) = (eval e, eval e′)
eval (Fst e) = fst (eval e)
eval (Snd e) = snd (eval e)

For the Var case, we use reflection to insert the neutral

NVar x into the semantics, and for the Lam case, we recur-

sively evaluate the application of f to an expression obtained

by reifying and embedding the semantic argument y.
Reflection constructs a semantic value based on the type

of an unknown, which when reified, has the effect of 𝜂-

expansion [9]. Evaluating an unknown Var "x" :: Exp (() →
()) returns its reflection 𝜆y → (), which when reified yields

the normal form NLam (𝜆e → NUnit), where 𝜂-expansion
has been applied for both the function and unit types.

eval (Var "x" :: Exp (() → ()))
-- by definition

≡ reflect@(() → ()) (NVar "x")
-- reflecting neutral of type ‘Ne (() -> ())‘

≡ 𝜆y → reflect@() (NApp (NVar x) (reify y))
-- reflecting neutral of type ‘Ne ()‘

≡ 𝜆y → ()
reify@(() → ()) (𝜆y → ())

-- reifying value of type ‘() -> ()‘

≡ NLam (reify@() ◦ f ◦ eval)
-- function composition

≡ NLam (𝜆e → reify@() (f (eval e)))
-- reifying value of type ‘()‘

≡ NLam (𝜆e → NUnit)

Base types. The expression syntax can be freely extended

with base types by defining new instances of the type class

Base. Normal forms of base types can either be neutrals or

values. While neutrals can be embedded into normal forms

using the constructor NUp, we extend the definition of nor-

mal forms with a constructor NLift to embed values.

data Nf where ...
NLift :: Base a ⇒ a → Nf a

The semantic domain for base types resemble the definition

of normal forms as neutrals or values, which we illustrate

for the types Int and String below.

instance Rf Int where
type Sem Int = Either (Ne Int) Int
reify x = either NUp NLift x
reflect n = Left n
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data Exp a where ...
NewArr :: Rf a ⇒ Exp Int → Exp (Int → a) → Exp (Arr a)
LenArr :: Rf a ⇒ Exp (Arr a) → Exp Int
IxArr :: Rf a ⇒ Exp (Arr a) → Exp Int → Exp a
Inl :: (Rf a, Rf b) ⇒ Exp a → Exp (Either a b)
Inr :: (Rf a, Rf b) ⇒ Exp b → Exp (Either a b)
Case :: (Rf a, Rf b, Rf c) ⇒ Exp (Either a b)

→ Exp (a → c) → Exp (b → c) → Exp c

Figure 3. Extension with arrays and sums

instance Rf String where
type Sem Int = Either (Ne String) String

-- similar to above

For integers, we use the type Either (Ne Int) Int as the
semantic domain for interpretation, and similarly for strings

we use Either (Ne String) String. Reification replaces Left by

NUp and Right by NLift, while reflection embeds a neutral

into the semantic domain using Left.
In the absence of primitives that return a value of base

type, such as String, we need not perform any further modifi-

cations. For base types with primitives, such as Int, however,
we must also extend evaluation and the definition of neutrals

to accommodate them.

For a simple treatment of integer expressions, let us sup-

pose that we would like to normalize them using the follow-

ing equations.

Add (Lift x) (Lift y) ≈ Lift (x + y)
Mul (Lift x) (Lift y) ≈ Lift (x ∗ y)

These equations specify that addition and multiplication

must be performed when both the operands are available

as lifted integer values. In the absence of either, such as in

Add (Lift 2) (Var "x"), the expression cannot be reduced

further, and must be considered to be in normal form.

To implement these equations, we extend the definition

of neutrals for stuck applications of Add and Mul as follows.

data Ne a where ...
NAdd1 :: Ne Int → Int → Ne Int
NAdd2 :: Int → Ne Int → Ne Int
NAdd :: Ne Int → Ne Int → Ne Int

-- similarly NMul1, NMul2 and NMul

Following this, evaluation can be implemented using seman-

tic functions add ′,mul′ :: Sem Int → Sem Int → Sem Int as
below. These functions are implemented by performing the

corresponding operation when both the right injections are

available, and constructing neutrals otherwise.

eval (Add e e′) = add ′ (eval e) (eval e′)
eval (Mul e e′) = mul′ (eval e) (eval e′)

4 NbE for Arrays and Sums
Figure 3 summarizes the extension of the core language with

array and sum types. The type Exp (Arr a) denotes an a array
expression indexed by integers, and the type Exp (Either a b)
denotes a sum expression of type Either a b. The array

operation NewArr constructs a new array, LenArr computes

the length of an array, and IxArr indexes into an array. Sum

types are formulated in the usual way with injections (Inl
and Inr) and case analysis (Case).

4.1 Arrays
Array primitives satisfy the following equations, where the

first is 𝜂-expansion for arrays, and the latter two are reduc-

tions for LenArr and IxArr respectively.

arr :: Exp (Arr a) ≈ NewArr (LenArr arr) (Lam (IxArr arr))
LenArr (NewArr n f ) ≈ n
IxArr (NewArr n f ) k ≈ f k

Neutral and normal forms are defined by placing stuck

applications of LenArr and IxArr in neutrals, and an array

construction using NewArr in normal forms.

data Ne a where ...
NLenArr :: Rf a ⇒ Ne (Arr a) → Ne Int
NIxArr :: Rf a ⇒ Ne (Arr a) → Nf Int → Ne a

data Nf a where ...
NNewArr :: Rf a ⇒ Nf Int → (Exp Int → Nf a) → Nf (Arr a)

The semantic domain for arrays, defined by SArr below, is
given by a refinement of a shallow embedding of arrays in

Haskell (called vectors in Feldspar [6]).

data SArr a where
SNewArr :: Sem Int → (Exp Int → a) → SArr a

instance (Rf a) ⇒ Rf (Arr a) where
type Sem (Arr a) = SArr (Sem a)
reify (SNewArr k f ) = NNewArr (reify k) (reify ◦ f )
reflect n = SNewArr

(reflect (NLenArr n))
(reflect ◦ NIxArr n ◦ reify ◦ eval)

The constructor SNewArr constructs a semantic array from

the length of an array, given by a semantic integer Sem Int,
and a function Exp Int → a that returns elements of the

array for a given index expression. Reification converts a

semantic array constructed using SNewArr to a syntactic

one in normal form constructed using NNewArr . Reflection,
on the other hand, inserts a neutral n :: Exp (Arr a) into
semantics by constructing a semantic array with the same

length and same elements as n.
Evaluation is extended to arrays by interpreting NewArr

as SNewArr , and the array operations IxArr and LenArr by
extracting the appropriate components of SNewArr .

eval (NewArr n f ) = SNewArr (eval n) f
eval (IxArr arr i) = let (SNewArr f ) = eval arr in f i
eval (LenArr arr) = let (SNewArr n ) = eval arr in n
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4.2 Sum Types
Equations and normal forms. Expressions of sum types

are given the following standard equations.

e :: Exp (Either a b) ≈ Case e Inl Inr
Case (Inl e) f g ≈ f e
Case (Inr e) f g ≈ g e
F (Case e g h) ≈ Case e (F ◦ g) (F ◦ h)

The first equation specifies a restricted 𝜂-expansion for sums.

The second and third equations are the standard 𝛽-rules for

sums. The last equation is a commuting conversion, where the
function F denotes an elimination context, which arises from

a more general 𝜂-rule [29] and enables more opportunities

to apply the 𝛽-rules [35]. This equation is further explained

in Appendix A.1. Normal forms for sums comprise injections

and case analysis.

data Nf a where ...
NInl :: (Rf a, Rf b)

⇒ Nf a → Nf (Either a b)
NInr :: (Rf a, Rf b)

⇒ Nf b → Nf (Either a b)
NCase :: (Rf a, Rf b, Rf c) ⇒ Ne (Either a b)

→ (Exp a → Nf c) → (Exp b → Nf c) → Nf c

Unlike stuck applications of eliminators, such as NFst and
NSnd, that we class as neutral, we classify a stuck application
of NCase as a normal form. This choice has to do with the

implementation of the commuting conversions for sums.

Classifying NCase as neutral does not force commuting

reductions, and may cause case analysis to prevent reduc-

tions by harboring introduction forms. For example, defining

NCase under neutrals would deem the following expression

to be neutral, and thus normal (via NUp).

NApp (NCase (NVar "x") (NLam id) (NLam id)) (NLift 1)

Placing NCase in normal forms, on the other hand, forces

this expression to be reduced further as below since a normal

form of function type cannot be applied.

NCase (Var "x") (NLam $ 𝜆 → Lift 1) (NLam $ 𝜆 → Lift 1)

Semantic domain for sums. It is tempting to interpret

sum types by their Haskell counterpart, i.e., Sem (Either a b)
= Either (Sem a) (Sem b). But this interpretation is insuffi-

cient for NbE, and does not support reflection. For example,

what should be the reflection of the unknown Var "x" ::

Exp (Either () ())? We cannot make a choice over the Left
or Right injection! To solve this dilemma, we define a se-

mantic domain that captures branching over neutrals (which

subsume unknowns), and use that to interpret sums.

data MDec a where
Leaf :: a → MDec a
Branch :: (Rf a, Rf b) ⇒ Ne (Either a b)

→ (Exp a → MDec c) → (Exp b → MDec c) → MDec c

instance Monad MDec where ...

instance (Rf a, Rf b) ⇒ Rf (Either a b) where
type Sem (Either a b) = MDec (Either (Sem a) (Sem b))
reify (Leaf (Left x)) = NInl (reify x)
reify (Leaf (Right x)) = NInr (reify x)
reify (Branch n f g) = NCase n (reify ◦ f ) (reify ◦ g)
reflect n = Branch n

(Leaf ◦ Left ◦ eval)
(Leaf ◦ Right ◦ eval)

Intuitively, the data typeMDec defines a decision tree (monad)

that prevents us from having to make a choice during reflec-

tion. Unlike a value of type Either (Sem a) (Sem b), a value
of type MDec (Either (Sem a) (Sem b)) can be constructed

using the Branch constructor without making a choice. The

Branch constructor requires us to handle both possible in-

jections, and is the semantic equivalent of the normal form

NCase—as witnessed by the implementation of reify.

Evaluating case analysis. The introduction of sum types

causes a subtle problem for evaluation: consider the follow-

ing expression of type Exp Int.

Case (Var "x") (Lam $ 𝜆 → Lift 1) (Lam $ 𝜆 → Lift 2)

While irreducible (and representable as a normal form), the

semantic domain for integers, i.e., Either (Ne Int) Int, has
no room for its interpretation! How should this Case ex-

pression of type Expr Int be evaluated as a value of type

Either (Ne Int) Int? We proceed to adapt our interpretation

of Int (and similarly with String) as follows.

instance Rf Int where
type Sem Int = MDec (Either (Ne Int) Int) ...

instance Rf String where
type Sem Int = MDec (Either (Ne String) String) ...

In short, we place the decision tree monad MDec on top

of the original interpretation of Int allowing room for con-

structing case trees in the semantics. The problematic integer

expression from above can now be evaluated to:

Branch (NVar "x") (𝜆 → Right 1) (𝜆 → Right 2)

Reification and reflection can be implemented easily by adapt-

ing our previous implementation to deal with MDec along
the lines of the Rf (Either a b) instance.
Following this change to the interpretation, we proceed

with evaluation as below using a semantic function run ::

Rf a ⇒ MDec (Sem a) → Sem a that can be implemented

by induction on the type parameter a—which rephrases the

branches of the decision tree as semantic ones.

eval (Inl e) = Leaf (Left (eval e))
eval (Inr e) = Leaf (Right (eval e))
eval (Case s f g) = let s′ = eval s; f ′ = eval f ; g′ = eval g

in run (fmap (either f ′ g′) s′)

Not all type constructors require a modification of the

semantic domain. In particular, all type constructors with a

single introduction form and a corresponding 𝜂-rule (such
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data Exp a where ...
Throw :: Rf a ⇒ Exp String → Exp (Err a)
Catch :: Rf a ⇒ Exp (Err a)

→ Exp (String → Err a) → Exp (Err a)
Returnerr :: Rf a ⇒ Exp a → Exp (Err a)
Binderr :: (Rf a, Rf b) ⇒ Exp (Err a)

→ Exp (a → Err b) → Exp (Err b)

(a) Exceptions

data Exp a where ...
Get :: Rf s ⇒ Exp (State s s)
Put :: Rf s ⇒ Exp s → Exp (State s ())
Returnst :: (Rf s, Rf a) ⇒ Exp a → Exp (State s a)
Bindst :: (Rf s, Rf a, Rf b) ⇒ Exp (State s a)

→ Exp (a → State s b) → Exp (State s b)

(b) State

Figure 4. Extension with exception and state effects

as functions, products, and arrays) avoid this problem as we

may perform 𝜂-expansion of the Case expression, followed
by commuting conversions, to represent the value in the

semantic domain. For example, the following expression of

type Exp (Int, Int)
Case (Var "x") (Lam $ 𝜆 → Var "y") (Lam $ 𝜆 → Var "z")

can be 𝜂-expanded and then two commuting conversions

applied to give

Pair
(Case (Var "x")

(Lam $ 𝜆 → Fst (Var "y")) (Lam $ 𝜆 → Fst (Var "z")),
Case (Var "x")

(Lam $ 𝜆 → Snd (Var "y")) (Lam $ 𝜆 → Snd (Var "z")))

which is interpreted as a pair of semantic integers:

(Branch (NVar "x")
(𝜆 → NFst (NVar "y")) (𝜆 → NFst (NVar "z")),

Branch (NVar "x")
(𝜆 → NSnd (NVar "y")) (𝜆 → NSnd (NVar "z")))

This means that we need only to refine our interpretation

of Int and String, where we lack a combination of a single

introduction form accompanied by a corresponding 𝜂-rule.

The above treatment of sums is sound and often suffices

in practice, but it does not capture all natural equations for

sums. In Section 6 we outline how to augment our imple-

mentation to eliminate repeated and redundant case splits.

5 NbE for Monadic Effects
Figure 4 summarizes the extension of the expression syn-

tax respectively with exceptions and state formulated as

monadic types. Exceptions consist of a throw operation

(Throw) to throw string exceptions, a catch operation (Catch)

to handle exceptions, along with the return (Returnerr ), and
bind (Binderr ) of the monadic type Err . Stateful computations

are formulated similar to the State monad in Haskell, and

consists of a get operation (Get) to retrieve the state, a put
operation (Put) to overwrite the state, along with the return

(Returnst ), and bind (Bindst ) of the monadic type State s.
Both monadic types (denotedM) are subject to the follow-

ing equations, typically called the monad laws.

m :: Exp (M a) ≈ Bind m Return
Bind (Return x) f ≈ App f x
Bind (Bind e1 f ) g ≈ Bind e1 (Lam (𝜆x → Bind (App f x) g))

The first equation is 𝜂-expansion for monads, the second

𝛽-reduction, and the third a commuting conversion that

arranges Bind operations in a right-associative chain.

5.1 Exceptions
Aswell as the monad laws, exception computations also obey

the following equations. The first equation is 𝜂-expansion

and the second and third equations are 𝛽-reductions for

exceptions.

m :: Exp (Err a) ≈ Catch m Throw
Catch (Throw s) f ≈ App f s
Catch (Return x) f ≈ Return x

Notice here that there is a contention between two 𝜂

laws: one for the Err monad and one specific to exceptions.

What should be the 𝜂-expanded form of an expression e ::
Exp (Err a)? We must make a choice here, and we choose

Catch (Binderr e Return) Throw, where we first apply the

𝜂-rule for monads, and then apply the one for exceptions.

Our normal forms reflect this choice using a normal form

constructor NTryUnless that denotes a fusion of Binderr and
Catch in normal form [8].

data Nf a where ...
NReturnerr :: Rf a ⇒ Nf a → Nf (Err a)
NThrow :: Rf a ⇒ Nf String → Nf (Err a)
NTryUnless :: (Rf a, Rf b) ⇒ Ne (Err a)

→ (Exp a → Nf (Err b))
→ (Exp String → Nf (Err b)) → Nf (Err b)

The constructorsNReturnerr andNThrow are the normal form

counterparts of Returnerr andThrow.
The semantic domain is defined by a data type MErr that

closely parallels the structure of normal forms.

data MErr a where
SReturnerr :: Rf a ⇒ a → MErr a
SThrow :: Rf a ⇒ Nf String → MErr a
STryUnless :: (Rf a, Rf b) ⇒ Ne (Err a)

→ (Exp a → MErr b)
→ (Exp String → MErr b) → MErr b

instance (Rf a) ⇒ Rf (Err a) where
type Sem (Err a) = MErr (Sem a)
reify (SReturnerr x) = NReturnerr (reify x)
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reify (SThrow n) = NThrow n
reify (STryUnless n f g) = NTryUnless n (reify ◦ f ) (reify ◦ g)
reflect n = STryUnless n (SReturnerr ◦ eval) (SThrow ◦ eval)

The data type definition of MErr gives rise to a semantic

monad that can be used to evaluate the monadic expression

constructors Returnerr and Binderr . We evaluate Throw using

semantic constructor SThrow, and Catch using a semantic

function catch′ that is implemented by pattern matching on

its first argument.

eval (Returnerr e) = return (eval e)
eval (Binderr e f ) = eval e >>= eval f
eval (Throw e) = SThrow (eval e)
eval (Catch e f ) = catch′ (eval e) (eval f )
instance Monad MErr where ...
catch′ ::MErr sa → (Sem String → MErr sa) → MErr sa

The rest of the definitions can be found in Appendix A.3.

5.2 Stateful Computations
Similar to exceptions, stateful computations are also given

equations specific to the operations Put and Get, in addition

to the monad laws.

m :: Exp (State s a) ≈ Get ≫=𝑠𝑡 (Lam (𝜆s → (Put s) ≫𝑠𝑡 m))
(Put x) ≫𝑠𝑡 ((Put y) ≫𝑠𝑡 m) ≈ (Put y) ≫𝑠𝑡 m
(Put x) ≫𝑠𝑡 (Bindst Get f ) ≈ (Put x) ≫𝑠𝑡 (App f x)

We have an 𝜂 law as usual, and two reduction laws that

reduce sequencing of Put and Get operations. Note that the
operator ≫=𝑠𝑡 is an alias for Bindst , and ≫𝑠𝑡 is a shorthand

defined as m ≫𝑠𝑡 m′ = Bindst m (Lam (𝜆 → m′)).
As with exceptions, there is a contention between two

𝜂-laws, and we choose the 𝜂-expanded form of an expression

m :: Exp (State s a) to be

Get ≫=𝑠𝑡 (Lam $ 𝜆s → (Put s) ≫𝑠𝑡 (m ≫=𝑠𝑡 (Lam $ 𝜆x →
Get ≫=𝑠𝑡 (Lam $ 𝜆s′ → (Put s′) ≫𝑠𝑡 (Returnst x)))))

Our normal forms reflect this choice, while also ensuring

that the expression they denote cannot be further reduced

by the 𝛽-laws.

data Nf a where ...
NGetPut :: (Rf s, Rf a)

⇒ (Exp s → (Nf s,NfStres s a)) → Nf (State s a)
data NfStres s a where

NReturnst :: (Rf s, Rf a) ⇒ Nf a → NfStres s (State s a)
NBindst :: (Rf s, Rf a, Rf b) ⇒ Ne (State s a)

→ (Exp a → Nf (State s b)) → NfStres s (State s b)

The data type NfStres defines a separate syntactic category
of normal forms to capture the following desired shape.

NGetPut $ 𝜆s1 → (s′
1
,NBindst n1 (Lam $ 𝜆e1 →

NGetPut $ 𝜆s2 → (s′
2
,NBindst n2 (Lam $ 𝜆e2 →

...

NReturnst x ...))))

Intuitively, a normal form of a state computation is a func-

tion constructed using NGetPut that gets the global state and
returns a new state to put along with a chain of neutrals

bound using NBindst ending with NReturnst . The construc-
tor NBindst denotes a stuck binding, and NReturnst returns
a value in the monad. Since the binding of a neutral may

change the state, the definition of normal forms must allow

the state to be retrieved and modified after every binding.

The semantic domain is given by data typesMSt andMStres
that once again parallel the structure of normal forms.

newtype MSt s a = SGetPut {
runMSt :: Sem s → (Sem s,MStres s a) }

data MStres s a where
SReturnst :: (Rf s, Rf a) ⇒ a → MStres s a
SBindst :: (Rf s, Rf a, Rf b) ⇒ Ne (State s a)

→ (Exp a → MSt s b) → MStres s b

instance (Rf s, Rf a) ⇒ Rf (State s a) where
type Sem (State s a) = MSt s (Sem a)
reify m = NGetPut $ (𝜆(s, r) → (reify s, reifyres r))

◦ runMSt m ◦ eval
where

reifyres ::MStres s (Sem a) → NfStres s a
reifyres (SReturnst x) = NReturnst (reify x)
reifyres (SBindst n f ) = NBindst n (reify ◦ f )

reflect n = SGetPut $ 𝜆s → (s, SBindst n $ 𝜆e →
SGetPut $ 𝜆s′ → (s′, SReturnst (eval e)))

The interpretation of State s a as MSt s (Sem a), along with

the definition ofMSt andMStres lends itself naturally to both
reification and reflection.

Evaluation makes use of a monad instance for MSt s (de-
fined in Appendix A.3) for Returnst and Bindst , and the Get
and Put constructs are evaluated using a combination of the

semantic constructors SGetPut and SReturnst .

eval (Returnst e) = return (eval e)
eval (Bindst e e′) = eval e >>= eval e′

eval (Get e) = SGetPut $ 𝜆s → (s, SReturnst s)
eval (Put e) = SGetPut $ 𝜆 → (eval e, SReturnst ())
instance Monad (MSt s) where ...

5.3 Interaction with Sum Types
As in the pure case, the semantic domains with effects also

require refinement to account for sums. Unlike in the pure

case, it is insufficient to merely place the monad MDec on
top of the existing interpretation and requires a careful con-

sideration of the monadic operations. This is because case

analysis can also be performed on the result of a monadic

bind and in between operations.

For the MErr monad, case distinction can be performed

on the result of a monadic bind, and we extend the data type

definition with a constructor similar to Branch to allow this.



Practical Normalization by Evaluation for EDSLs Haskell ’21, August 26–27, 2021, Virtual, Republic of Korea

data MErr a where ...
SCaseErr :: (Rf a, Rf b) ⇒ Ne (Either a b)

→ (Exp a → MErr c)
→ (Exp b → MErr c) → MErr c

The constructor SCaseErr is reified using the normal form

constructor NCase.
For theMSt monad, on the other hand, case distinction can

be performed both on the result of a monadic bind and on

the result of a retrieving the state using SGetPut. We modify

the definition ofMSt as follows, by placing theMDec monad

on the result of the functional argument to SGetPut.

newtype MSt s a = SGetPut {
runMState :: Sem s → MDec (Sem s,MStres s a) }

To retain reification, we modify the definition of normal

forms in a similar fashion.

data Nf a where ...
NGetPut :: (Rf s, Rf a)

⇒ (Exp s → MDec (Nf s,NfStres s a)) → Nf (State s a)
The modifications performed in this section do not pre-

clude the implementation of semantic functions such as

return, (>>=), catch′, etc., (see Appendix A.3), or the embed-

ding functions embNe and embNf .

6 Practical NbE Extensions and Variations
The normalization procedures described in previous sections

are adaptations of NbE for simply typed lambda calculus, that

strive to identify the normal form of an expression as a canon-

ical element of its equivalence class of semantically identical

expressions. This traditional approach to NbE suffers from

the following problems for practical eDSL applications:

• Our implementation 𝛽-reduces expressions as much as

possible and 𝜂-expands expressions, yielding normal

forms that are in 𝛽-short 𝜂-long form. Such aggressive

normalization can lead to unnecessary code explosion,

which may be harmful for code-generating eDSLs.

• The treatment of base types in Section 3 is insufficient

for many practical applications. For example, the ex-

pression Add (Var "x") (Lift 0) is not reduced, while
we would typically like it to be reduced to (Var "x").

• We have not yet explained how to incorporate uninter-
preted primitives, that is, primitives without equations

that dictate their behaviour.

In this section, we show these three problems can be ad-

dressed by refining the semantic domain used to implement

NbE. Specifically, we present techniques to tame code expan-

sion in NbE, a variation of NbE for integers that performs

more advanced arithmetic reductions, and a recipe for adding

uninterpreted primitives.

6.1 Taming Code Expansion
Disabling𝜂-expansionusing glueing. While𝜂-expansion

can be useful for some applications such as deciding program

equivalence, it may be unsuitable for other applications such

as code generation. For example, observe how the normalizer

𝜂 expands the unknown Var "f" :: Exp (Int → Arr Int).
∗NbE.OpenNbE> norm (Var "f" :: Exp (Int → Arr Int))
𝜆arr .(NewArr (LenArr (f arr)) (𝜆i.(f arr ! i)))
Our implementation of NbE applies 𝜂-expansion by default,

but we show here how 𝜂-expansion can be selectively dis-

abled using the glueing technique [17], yielding (potentially)

smaller normal forms.

We begin by modifying our definition of normal forms to

allow neutrals to be embedded directly.

data Nf a where ...
NUp :: Ne a → Nf a

We remove the type constraint Base a on the constructor

NUp, which relaxes the definition of normal forms to include,

for example, the unknownVar "f" above asNUp (NVar "f").
Let us suppose that we would like to disable 𝜂 expansion

for function types.We refine the semantic domain of function

types to include a syntactic component by “glueing” (i.e.

pairing) it with normal forms of the function type as follows.

instance (Rf a, Rf b) ⇒ Rf (a → b) where
type Sem (a → b) = (Sem a → Sem b,Nf (a → b))
reify = snd
reflect n = (...,NUp n)

Here we write ellipsis (...) for the original implementation of

reflection. Reification projects the second component, a nor-

mal form, and reflection is modified to include an embedding

of the neutral n to normal forms.

We proceed with evaluation as follows.

eval (Lam f ) = (...,NLam (reify ◦ eval ◦ f ))
eval (App f e) = (fst (eval f )) (eval e)
For the case of Lam, we retain our previous implementation

for the first component, and build a normal form in the

second component. The evaluation of application is as before,

with a minor modification that projects out the semantic

function from the recursive evaluation of the expression f .
We may also disable 𝜂-expansion for the other types by

modifying the interpretation similarly.

type Sem (a, b) = ((Sem a, Sem b),Nf (a, b))
type Sem (Arr a) = (SArr (Sem a),Nf (Arr a))
...

Glueing provides a compositional solution to disabling 𝜂-

expansion for some (or all) types without changing the imple-

mentation for other types. In contrast, another approach de-

scribed by Lindley [28], where, for instance, the type a → b
is interpreted by Either (Sem a → Sem b) (Ne (a → b)),
requires a more involved reimplementation of the evaluator.

Glueing can also be applied for effect types, but the defini-

tion of normal forms requires more careful consideration to

avoid unnecessary expansion. Unlike in a strict language,

the implementation of glueing in Haskell avoids a significant
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performance cost as the semantic and syntactic parts are

only computed as required, thanks to lazy evaluation.

Controlling duplication with explicit sharing. Much

like other program specialization techniques, NbE can cause

code duplication. For example, consider a function double
that doubles its argument as Lam (𝜆x → Add x x). Normal-

izing an application of double to an irreducible expression

large causes it to be duplicated as Add large large.
Code duplication can be avoided with a Let construct for

explicit sharing, for which NbE can be extended as follows.

data Exp a where ...
Let :: (Rf a, Rf b) ⇒ Exp a → Exp (a → b) → Exp b

data Ne a where ...
NLet :: (Rf a, Rf b) ⇒ Nf a → Nf (a → b) → Ne b

eval (Let e f ) = reflect (NLet (reify (eval e)) (reify (eval f )))

Normalizing Let expressions respects sharing, and the expres-
sion Let large double does not reduce, avoiding duplication.

Disabling normalization on subexpressions. An alter-

native to explicit sharing is to disable normalization entirely

on a subexpression using a construct Save, such that normal-

izing Save (App double large) returns the original expression
unaffected

2
. We achieve this with a Save construct as follows.

data Exp a where ...
Save :: Exp a → Exp a

data Ne a where ...
NSave :: Exp a → Ne a

eval (Save e) = reflect (NSave e)

Optimizing case expressions. The implementation of

commuting conversions for sums in Section 4 can produce

normal forms with redundant or repeated case analysis.

Case scr (Lam $ 𝜆 → e) (Lam $ 𝜆 → e)
Case scr (Lam $ 𝜆x → Case scr ...) (Lam $ 𝜆y → Case scr ...)

The use of Case in these expressions is wasteful, and can be

optimized further to reduce the size of the generated normal

forms. Specifically, we are interested in the following two

equations (identified by Lindley [29] as constituents of the

general 𝜂-rule for sums).

Case scr (Lam $ 𝜆 → e) (Lam $ 𝜆 → e) ≈ e
Case scr (Lam $ 𝜆x → Case scr f1 f2)

(Lam $ 𝜆y → Case scr g1 g2)
≈ Case scr (Lam $ 𝜆x → f1) (Lam $ 𝜆y → g2)

The first equation removes a redundant case analysis on scr ,
while the second removes a repeated analysis on scr .

One way to implement these equations is to refine the

definition ofMDec to preclude problematic decision trees by

construction. However, given Haskell’s limited support for

dependent types and the pervasive nature of NbE for sums,

2
in an implementation that disables 𝜂 expansion entirely

this is a somewhat non-trivial modification. An easier (albeit

ad hoc) solution is to implement a post-processing function

optimize :: Rf a ⇒ MDec (Nf a) → MDec (Nf a) that is
invoked when reifying decision trees. This is made possible

since these transformations are merely syntactic manipula-

tions of case trees that introduce no further reductions.

6.2 Applying Arithmetic Equations
To implement richer arithmetic equations (specified in Ap-

pendix A.1), our selection of normal forms must force the

normalizer to perform reductions specified by these equa-

tions, for example, by reducingAdd (Lift 1) (Lift 2) to Lift 3,

Add (Lift 0) (Var "x") to Var "x", and so on.

We consider normal forms of integers to be in a sum-of-

products form (𝑎𝑘 ∗ 𝑛𝑘 ) + (𝑎𝑘−1 ∗ 𝑛𝑘−1) + ... + 𝑎0, where 𝑎𝑖
denotes a constant, and 𝑛𝑖 denotes a neutral expression, for

each 𝑖 . Correspondingly, we extend the definition of neutrals

and normal forms as follows.

data Ne a where ...
NMul :: Ne Int → Ne Int → Ne Int

data Nf a where ...
NInt :: Int → Nf Int
NAdd :: (Int,Ne Int) → Nf Int → Nf Int

The NMul constructor in neutrals denotes a stuck multipli-

cation, and NAdd denotes the addition of an integer (𝑎𝑖 ∗𝑛𝑖 )
to the left end of an integer in sum-of-products form.

We define the semantic domain for integers using a data

type SOPInt that is identical to the shape of normal forms,

and use it in our definition of an instance of Rf .

data SOPInt where
SInt :: Int → SOPInt
SAdd :: (Int,Ne Int) → SOPInt → SOPInt

instance Rf Int where
type Sem Int = SOPInt
reify (SInt a0) = NInt a0
reify (SAdd (ai, ni) k) = NAdd (ai, ni) (reify k)
reflect n = SAdd (1, n) (SInt 0)

The implementation of reify simply converts from the seman-

tic domain to normal forms, while reflect expands a neutral
n :: Exp Int to the form (1 ∗ n) + 0.

Evaluation can be implemented by interpreting Add and

Mul by their semantic counterparts add ′ and mul′, which
can be defined by induction on values of SOPInt.

add ′ :: SOPInt → SOPInt → SOPInt
mul′ :: SOPInt → SOPInt → SOPInt

eval (Add e1 e2) = add ′ (eval e1) (eval e2)
eval (Mul e1 e2) = mul′ (eval e1) (eval e2)

The function add ′ adds two integers (𝑎𝑘 ∗ 𝑛𝑘 ) + ... + 𝑎0 and

(𝑏 𝑗 ∗𝑚 𝑗 ) + ... + 𝑏0 in sum-of-products form by joining them

as (𝑎𝑘 ∗𝑛𝑘 ) + ...+ (𝑏 𝑗 ∗𝑚 𝑗 ) + ...+ (𝑎0 +𝑏0), and functionmul′



Practical Normalization by Evaluation for EDSLs Haskell ’21, August 26–27, 2021, Virtual, Republic of Korea

multiplies them as (𝑎𝑘 ∗ 𝑏 𝑗 ) ∗ (𝑛𝑘 ∗𝑚 𝑗 ) + (𝑎𝑘 ∗ 𝑏 𝑗−1) ∗ (𝑛𝑘 ∗
𝑚 𝑗−1) + ... + (𝑎0 ∗ 𝑏0).

6.3 Adding Uninterpreted Primitives
The core eDSL can be freely extended with uninterpreted

primitives using the unknown constructor Var . For example,

to extend our eDSL with a fixed-point construct without the

corresponding equation, we define a combinator fix as:

fix :: Rf a ⇒ Exp ((a → a) → a)
fix = Var "Fix"

Normalizing an application fix f returns the equivalent of

the expression of fix (embNf (norm f )), normalizing the

function f , but leaving fix uninterpreted.

7 Related Work
The NbE technique goes back at least as far as Martin-Löf

[31] who used it for proving normalization in his work on

intuitionistic type theory. The core NbE algorithm for STLC

was pioneered by Berger and Schwichtenberg [10]. The name

is due to Berger et al. [9] who used it to speed up theMinlog

theorem prover. A closely related technique is type-directed

partial evaluation (TDPE) [18, 20, 21]. TDPE amounts to an

instance of NbE used for partial evaluation in which the NbE

semantics is exactly that of the host language. In contrast,

for embedding DSLs we make essential use of non-standard

semantics, e.g. using glueing for suppressing 𝜂-expansion.

Normalization for pure call-by-name STLC with sums

is notoriously subtle [23] because general 𝜂-rule for sums

includes additional equations such as those described in Sec-

tion 6. Altenkirch et al. [3] give an NbE algorithm for sums

based on a Grothendieck topology which implicitly captures

the kind of decision tree that we use, but at every type. Balat

et al. [7], in contrast, make use of multiprompt delimited con-

trol to allow retrospective exploration of different branches

during reification. Both algorithms build in a degree of syn-

tactic manipulation in order to manage redundant and re-

peated case splits similarly to what we describe in Section 6.

NbE for sums becomes considerably easier in an effectful

call-by-value setting, as fewer equations hold. Danvy [18]

uses (single prompt) delimited control operators for handling

sums in TDPE. Filinski [22] adapts Danvy’s approach to

computational lambda calculus extended with sums. Lindley

[30] adapts Filinksi’s work to replace delimited control with

an accumulation monad which we here call a decision tree
monad andAbel and Sattler [1] characterise as a cover monad.

The Danvy/Filinski approach based on delimited control is

at the heart of the treatment of sums in existing eDSLs [40].

Ahman and Staton [2] give an NbE algorithm for general

algebraic effects. We speculate that our bespoke treatment

of specific monadic effects can be related to their generic

approach, but we do not know to what extent their approach

maps conveniently onto the Haskell eDSL setting.

Yallop et al. [43] cast partially-static data as free extensions

of algebras, which they use as the basis for a generic partial

evaluation library, frex. The frex approach has similarities

with NbE, providing in particular a principled foundation for

optimising in the presence of first-order algebraic theories.

Implementations of NbE in Haskell are not new. For in-

stance, Danvy et al. [19] give an implementation not dissimi-

lar to ours for plain STLC. Prior work on combining deep and

shallow embeddings [40] implicitly uses a restricted form

of NbE. Their Syntactic type class plays a similar role to our

Rf type class. However, they do not make a connection with

NbE and they do not use an instance for functions.

We have presentedNbE as a unifying framework for eDSLs

based on solid theoretical foundations. A related framework

is offered by quoted domain-specific languages (QDSLs) [33].

QDSLs exploit a similar normalization procedure as part of

the embedding process. A key difference is that QDSLs are

based on staging and a separate normalization algorithm.

The idea of viewing eDSLs through the lens of NbE was

explored in an earlier draft paper [32] using Agda rather

than Haskell.

8 Final Remarks
We have presented, to the best of our knowledge, the first

comprehensive practical implementation of NbE for Haskell

eDSLs. NbE provides a systematic and modular approach to

specialize eDSL programs in Haskell, and provides a prin-

cipled account of ad hoc techniques previously developed

using a combination of deep and shallow embedding. We

have shown how problems that arise from a traditional ap-

proach to NbE can be addressed to suit practical concerns

such as code expansion, normalization with domain-specific

equations, and extension with uninterpreted primitives.

We have not proved the correctness of our NbE imple-

mentation, which is typically achieved by showing that an

expression is equivalent to its normal form in the chosen

equational theory. Moreover, the account of interactions be-

tween effects and sums is quite intricate, and appears to be

somewhat ad hoc in this level of presentation. A formal in-

vestigation of the semantic monads and their interaction is

required to identify a more modular solution to add effects

to an eDSL that enjoys the benefits of NbE. We leave both

these formal aspects as avenues for future work.

We believe that NbE has a broader applicability beyond

the examples of fusion shown here. For example, NbE could

be used in the security domain, to automatically remove su-

perfluous security checks performed at runtime by programs

written in a security eDSL (e.g., [39]). Similarly, in databases

(e.g., [37]), NbE could be used normalize queries written in

a higher-order eDSL to achieve elimination of higher-order

functions and other intermediate data-structures [15, 25].
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A Appendix
A.1 Equational Theory

Commmuting conversions.
F (Case e g h) ≈ Case e (F ◦ g) (F ◦ h)

This equation specifies commuting conversions that en-

able us to push eliminators under a case expression, for

example, as:

App f (Case e g h) ≈ Case e (App f ◦ g) (App f ◦ h)

The symbol F in the equation is a unary function on expres-

sions that denotes an elimination context such as App f ::

Exp a → Exp b (for some f ::Exp (a → b)), Fst ::Exp (a, b) →
Exp a, or Add e :: Exp Int → Exp Int, etc.

Arithmetic equations.
(Lift x) + (Lift y) ≈ Lift (x + y)
(Lift 0) + e ≈ e
(Lift x) + (e1 + e2) ≈ e1 + (Lift x + e2)
(e1 + e2) + e3 ≈ e1 + (e2 + e3)
(Lift x) ∗ (Lift y) ≈ Lift (x ∗ y)
(Lift 0) ∗ e ≈ Lift 0

(Lift 1) ∗ e ≈ e
(Lift x) ∗ (e1 + e2) ≈ (Lift x ∗ e1) + (Lift x ∗ e2)
(e1 + e2) ∗ e3 ≈ (e1 ∗ e3) + (e2 ∗ e3)

A.2 Normalizing Primitive Recursion
The recursion construct Rec can be used to perform primitive

recursion. As mentioned earlier for its combinator counter-

part rec, an expression Rec n f x is the equivalent of applying
f repetitively as f 1 (f 2 (...(f n x))). This behaviour can
be specified by the following equations.

Rec i f x ≈ x -- (i <= 0)

Rec (e1 + e2) f x ≈ Rec e1 f (Rec e2 f x)

To extend our NbE implementation with recursion, we

extend the definition of neutrals with a new constructor for

stuck recursion as follows.

data Ne a where ...
NRec :: Rf a ⇒ (Int,Ne Int)

→ (Exp Int → Exp a → Nf a) → Nf a → Ne a

We then evaluate recursion using a semantic function rec′.

rec′ :: Rf a ⇒ SOPInt
→ (Sem Int → Sem a → Sem a) → Sem a → Sem a

rec′ (SInt i) f x
| i ⩽ 0 = x
| otherwise = rec′ (SInt (i − 1)) f (f (SInt i) x)

rec′ (SAdd aini k) f x
= reflect (NRec aini f ′ (reify (rec′ k f x)))
where

f ′ i b = reify (f (eval i) (eval b))
eval (Rec n f x) = rec′ (eval n) (eval f ) (eval x)
When the value of an integer is available, rec′ performs the

expected recursion, and otherwise simply applies the second

equation of recursion.

A.3 Semantic Monads

instance Monad MDec where
return x = Leaf x
(Leaf x) >>= f = f x
(Branch n g h) >>= f = Branch n ((=<<) f ◦ g) ((=<<) f ◦ h)

instance Monad MErr where
return x = SReturnerr x
(SReturnerr x) >>= f = f x
(SThrow x) >>= f = SThrow x
(STryUnless n g h) >>= f = STryUnless n
((=<<) f ◦ g) ((=<<) f ◦ h)

(SCaseErr n g h) >>= f = SCaseErr n
((=<<) f ◦ g) ((=<<) f ◦ h)

catch′ ::MErr sa → (Sem String → MErr sa) → MErr sa
catch′ (SReturnerr x) f = SReturnerr x
catch′ (SThrow x) f = f x
catch′ (STryUnless n g h) f = STryUnless n

(flip catch′ f ◦ g) (flip catch′ f ◦ h)
catch′ (SCaseErr n g h) f = SCaseErr n

(flip catch′ f ◦ g) (flip catch′ f ◦ h)

-- mutually recursive Functor instances

instance Functor (MStres s) where
fmap f (SReturnst x) = SReturnst (f x)
fmap f (SBindst n g) = SBindst n (fmap f ◦ g)

instance Functor (MSt s) where
fmap f m = SGetPut $ fmap (fmap (fmap f )) ◦ runMState m

joinMSt ::MSt s (MSt s a) → MSt s a
joinMSt m = SGetPut $ (=<<) magic ◦ runMState m
where
magic :: (Sem s,MStres s (MSt s a)) → MDec (Sem s,MStres s a)
magic (s, SReturnst m) = runMState m s
magic (s, SBindst n g) = Leaf (s, SBindst n (joinMSt ◦ g))

instance Monad (MSt s) where
return x = SGetPut $ 𝜆s → Leaf (s, SReturnst x)
m >>= f = joinMSt (fmap f m)
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