
Many Holes in Hindley-Milner

Sam Lindley
The University of Edinburgh

Sam.Lindley@ed.ac.uk

Abstract
We implement statically-typed multi-holed contexts in OCaml us-
ing an underlying algebraic datatype augmented with phantom
types. Existing approaches require dynamic checks or more com-
plex type systems. In order to support concatenation we use two
type parameters to represent the number of holes in a context as
the difference between two Peano numbers. In order to support
plugging a context with contexts of different arity we introduce a
datatype of lists of contexts of length n with a total of m holes. Fur-
ther, we extend our representation to allow holes to be marked with
additional type information. As an example, we use these marks to
implement statically-typed multi-holed XHTML contexts. We take
advantage of Garrigue’s relaxed value restriction.

Categories and Subject Descriptors D.1.1 [Programming tech-
niques]: Applicative (functional) programming

General Terms Design, Languages

Keywords multi-holed context, phantom type, dependent type,
indexed type, value restriction

1. Introduction
It is well-known how to define a statically typed encoding of the
type of one-hole contexts of an algebraic datatype in a ML-style
Hindley-Milner type system (Huet 1997; McBride 2001).

A more challenging problem is to define a datatype of multi-
holed contexts. We require that the datatype supports operations
for constructing multi-holed contexts, including an operation to
concatenate two multi-holed contexts, as well as an operation for
plugging all the holes of a multi-holed contexts with other multi-
holed contexts.

Two obvious encodings come to mind: an algebraic datatype
consisting of the raw algebraic datatype augmented with a con-
structor for holes, or a curried function where each argument rep-
resents a hole. The first encoding is deficient because plugging re-
quires a dynamic check. The second encoding is deficient because
it is too general in that it fails to capture the property that each hole
occurs exactly once in a context, and it is too restrictive in that each
hole can only be plugged with multi-holed contexts containing a
fixed number of holes.

It is well-known how to solve this class of problem by adding
features to the type system such as: type classes (McBride 2002),

[Copyright notice will appear here once ’preprint’ option is removed.]

indexed types (Zenger 1997; Xi and Pfenning 1999), GADTs (Ch-
eney and Hinze 2003; Xi et al. 2003; Jones et al. 2006), or full-on
dependent types (Altenkirch et al. 2005; Fogarty et al. 2007). This
paper gives an implementation of statically-typed multi-holed con-
texts in a standard Hindley-Milner type system. The only extension
we rely on is abstract types. We also take advantage of Garrigue’s
relaxed value restriction (Garrigue 2004).

It is not entirely obvious how one might implement a concate-
nation operation on multi-holed contexts because it requires an en-
coding of type level addition (the type of concat should capture the
property that the number of holes in the output context is the sum
of the number of holes in each of the input contexts). The same
difficulty arises in the slightly simpler task of defining an append
function on lists of length n.

Folklore holds that it is not possible in ML to give the append
function on lists a type that captures the property that the length
of the output list is the sum of the lengths of the input lists. For
instance, Xi writes (Xi 2007):

A correct implementation of the append function on lists
should return a list of length m + n when given two lists
of length m and n, respectively. This property, however,
cannot be captured by the type system of ML, and the
inadequacy can be remedied if we introduce a restricted
form of dependent types.

We show how to capture this property in the type system of ML
using phantom types. Our main innovation is to encode naturals at
the type level as pairs of Peano numbers 〈m, n〉 representing the
difference between n and m. This allows us to implement addition
as composition: (m − l) + (n − m) = (n − l). Once we have
shown how to implement the append function, we apply and ex-
tend the technique to implement statically-typed multi-holed con-
texts with concatenation and plugging. We then demonstrate how
to combine these multi-holed contexts with additional static type
information, using Elsman and Larsen’s MiniXHTML fragment of
XHTML (Elsman and Larsen 2004) as an example.

2. Multi-holed contexts
The ideas of this paper are applicable to multi-holed contexts over
any regular algebraic datatype. As a running example we use an
algebraic datatype for representing XML contexts. The underlying
datatype represents multi-holed XML contexts where the number
of holes does not appear in the type.

type xml =
| Empty
| Text of string
| Tag of string * xml
| Concat of xml * xml
| Hole

The constructors are interpreted as follows: Empty constructs an
empty XML context, Text s constructs a text node, Tag (name,

1 2008/7/28

x) wraps a tag whose name is name around the XML context x,
Concat (x, y) concatenates the XML context x with the XML
context y and Hole constructs a hole. To simplify the presentation
we ignore attributes. Note that the first four constructors are suf-
ficient for constructing XML. The Hole constructor allows us to
promote the XML datatype to an XML context datatype. In gen-
eral we can convert any regular algebraic datatype to a datatype of
contexts over the original datatype by adding an extra Hole con-
structor.

The constructors can be used to build up an arbitrary XML
context. For XML contexts to be useful we also need a means for
deconstructing them. We define an operation to plug the holes of a
primary context with a list of sub-contexts.

(* dynamic_plug : xml * xml list -> xml *)
let dynamic_plug (k, xs) =

let rec plug (k, xs) =
match k with

| Empty -> Empty, xs
| Text s -> Text s, xs
| Tag (s, k) ->

let (k, xs) = plug (k, xs) in
Tag (s, k), xs

| Concat (k, k’) ->
let (k, xs) = plug (k, xs) in
let (k’, xs) = plug (k’, xs) in

Concat (k, k’), xs
| Hole ->

begin match xs with
| [] ->
failwith "ran out of xml to plug in"

| x::xs -> x, xs
end in

let k, xs = plug (k, xs) in
if (xs <> []) then

failwith "failed to plug in all the xml"
else

k

The dynamic plug operation is defined in terms of an auxiliary
plug function that recursively plugs the holes of the primary con-
text with the sub-contexts, returning a pair of the plugged primary
context (the output context) and any remaining sub-contexts. It is
dynamic in the sense that it checks for failure at run-time. Plug-
ging can fail in two places corresponding to too few or too many
elements in the list of sub-contexts.

It is not difficult to verify that dynamic plug(k, xs) will fail
iff the number of holes in k differs from the length of xs, that is,
dynamic plug(k, xs) fails iff holes k 6= length xs where
length and holes are defined as follows:

let rec holes =
function
| Empty -> 0
| Text s -> 0
| Tag (_, k) -> holes k
| Concat (k, k’) -> holes k + holes k’
| Hole -> 1

let rec length =
function
| [] -> 0
| _::xs -> 1 + length xs

In the rest of this paper we will show how to define multi-holed
contexts in such a way that plugging cannot fail at run-time. We do
this by defining an XML context datatype that is annotated with its

number of holes, a list of XML contexts datatype that is annotated
with its length and the total number of holes in the list, and a plug
function that takes an annotated primary context and an annotated
list of sub-contexts and returns an annotated output context. The
type of the plug function captures the property that the number of
holes in the primary context matches the length of the list of sub-
contexts, and furthermore that the number of holes in the output
context is the same as the total number of holes in the list of sub-
contexts.

3. Difference types
One of the most basic tools we need for counting statically is a type-
level encoding of naturals. Type-level Peano numbers are easily
encoded in OCaml.

type z
type ’a s

The type z represents zero and given any type-level natural n, the
type n s represents the successor of n. (The syntax of OCaml
forces the Peano numbers to appear backwards, for instance, (z s)
s instead of s (s z)), but this is no great burden.) Note that these
definitions define uninhabited types, which is what we want as their
sole purpose is static checking. Also note that the type variable can
be instantiated at types that do not encode naturals, for instance,
there is nothing to stop us using the type int s. However, the use
of abstract types at least ensures that such “nonsense types” can
only be introduced through explicit type annotations, and we ensure
that such annotations do not allow programmers to do anything
unsafe.

Now we have a type-level encoding of naturals, it is not difficult
to implement basic operations for constructing lists of length n.

module SimpleNList :
sig
type (’length, ’elem_type) t

val nil : (z, ’a) t
val cons : ’a * (’n, ’a) t -> (’n s, ’a) t

end
=

struct
type (’n, ’a) t = ’a list

let nil = []
let cons (x, xs) = x :: xs

end

The first parameter of SimpleNList.t is a phantom type parame-
ter that encodes the length of a list. The actual implementation of
the SimpleNList operations simply calls the corresponding opera-
tion on standard lists. All of the interesting part of this code is in
the types. The types encode the number of elements in the list. For
instance, the following:

open SimpleNList;;
cons (1, (cons (2, nil)));;
- : (z s s, int) SimpleNList.t = <abstr>

produces a list of integers of length two (Peano number z s s).
We could use the same idea to define statically-typed multi-

holed XML contexts. This works for all the constructors except
Concat. The problem is that if we concatenate two contexts then
we need to add the number of holes together, and our type-level
encoding of Peano numbers cannot support addition. We need an
alternative encoding that does support addition.

The key idea is to represent the number of holes as the differ-
ence between two Peano numbers rather than just a single number.

2 2008/7/28

Let concat be the concatenation operator. Suppose the number of
holes x is represented by the difference n −m and the number of
holes of y is represented by the difference m− l, then the number
of holes in concat (x, y) is (n − m) + (m − l) = (n − l):
addition of differences does not require any addition at all!

Of course, we actually want to leverage the Hindley-Milner type
system to perform addition for us, and we want to be able to write
functions that are polymorphic in our encoding of naturals. Con-
cretely, we encode a natural number as a pair of type parameters
’m*’n. The intention is that ’m and ’n be only instantiated as type-
level Peano numbers, and that the pair ’m*’n represents the differ-
ence ’n− ’m.

In fact, the operations we define will ensure that the types ex-
posed to users are always in a more restricted form. The first pa-
rameter is always a type variable ’m, and the second one is always
of the form ’m si, writing si for a sequence of s constructors of
length i. We refer to types of this form as difference types. Note
that difference types make use of the successor constructor s, but
do not require the zero constructor z (zero is encoded as ’m*’m).
A difference type encodes a type function that given any ’m returns
’m + i. To perform addition we compose two such type functions
together: given ’n*’n si and ’m*’m sj we simply unify ’m si

with ’n to obtain ’m*’m si+j .
Before implementing statically-typed XML contexts we illus-

trate difference types by adapting our simple implementation of
lists of length n to use difference types, and augmenting it with an
append operation.

module NList :
sig

type (+’length, +’elem_type) t

val nil : (’m*’m, ’a) t
val cons : ’a * (’m*’n, ’a) t ->

(’m*’n s, ’a) t
val append : (’m*’n, ’a) t * (’l*’m, ’a) t ->

(’l*’n, ’a) t

val to_list : (’i, ’a) t -> ’a list
end

=
struct

type (’i, ’a) t = ’a list

let nil = []
let cons (x, xs) = x :: xs
let append (xs, ys) = xs @ ys

let to_list xs = xs
end

As with SimpleNList.t the first parameter of NList.t is a phan-
tom type parameter that encodes the length of the list. The types of
nil and cons are adjusted accordingly and the type of the append
operation adds the list lengths of its two inputs together by com-
posing the difference types.

3.1 The relaxed value restriction
The variance annotations (+) on the type variables of NList.t
indicate that the type variables are only used in covariant positions,
enabling Garrigue’s relaxed value restriction (Garrigue 2004). (Of
course, the phantom type variable does not occur at all in the type,
so we could equally well give it a contravariant annotation if we
wanted.) With the variance annotations any list we construct will
always be as polymorphic as possible. For instance:

NList.cons (1, NList.nil);;

- : (’a * ’a s, int) NList.t = <abstr>

Normally the value restriction (Wright 1995) would prevent this
term from being generalised, and hence it would not be poly-
morphic. However, Garrigue’s relaxed value restriction (Garrigue
2004) allows it to be generalised. The relaxed value restriction al-
lows any free type variables which only occur in covariant positions
outside of reference types to be generalised even for terms which
are not syntactic values. Without the variance annotations, OCaml
would not be able to determine that the difference type parameter
to NList.t only occurs covariantly and we would get:

- : (’_a * ’_a s, int) NList.t = <abstr>

(The weak type variable ’ a, once instantiated, must always be
instantiated to the same type in the future.) Of course, we still do
not get all the polymorphism we might hope for. For instance:

let curry f = fun x y -> f(x,y);;
val curry : (’a * ’b -> ’c) -> ’a -> ’b ->

’c = <fun>
(curry NList.cons) 1;;
- : (’_a * ’_b, int) NList.t ->

(’_a * ’_b s, int) NList.t = <fun>

The problem here is that the type variables occur in contravariant
positions, so the relaxed value restriction does not apply. We have
deliberately chosen to give uncurried types to constructors in or-
der to make it harder to accidentally lose polymorphism. Manual
currying does give us a value and hence allows type inference to
generalise:

fun xs -> NList.cons (1, xs);;
- : (’a * ’b, int) NList.t ->

(’a * ’b s, int) NList.t = <fun>

The to list operation performs a safe cast from the type
(’i,’a) NList.t to the type ’a list (a list of length n can
always be safely treated as a list of arbitrary length). Casting allows
us to spread our implementation across several modules.

4. Counting holes
The implementation of statically-typed multi-holed contexts uses
the same ideas as NList.

module NContext
:

sig
(* context*)
type +’holes t

(* context constructors *)
val empty : (’m*’m) t
val text : string -> (’m*’m) t
val tag : string * ’i t -> ’i t
val concat : (’m*’n) t * (’l*’m) t -> (’l*’n) t
val hole : (’n*’n s) t

(* upcast to xml *)
val to_xml : ’i t -> xml

end
=

struct
type ’i t = xml

let empty = Empty
let text s = Text s
let tag (s, x) = Tag (s, x)
let concat (x, y) = Concat (x, y)

3 2008/7/28

let hole = Hole

let to_xml k = k
end

The operations empty, text, tag, concat and hole simply invoke
the corresponding constructors of the xml type. As with append,
the concat operation adds the number of holes together by com-
posing difference encodings.

Example 1

open NContext;;
let k =

concat
(tag ("p", hole),
tag ("table",

concat
(tag ("tr", hole),
tag ("tr", hole))));;

val k : (’a * ’a s s s) NContext.t = <abstr>
to_xml k;;
- : xml =
Concat
(Tag ("p", Hole),
Tag ("table",

Concat
(Tag ("tr", Hole),
Tag ("tr", Hole))))

The context k has three holes, and is hence assigned the type (’a
* ’a s s s) NContext.t.

Now we can statically type the construction of multi-holed con-
texts, but we would also like a means for statically typing the de-
struction of multi-holed contexts: a statically-typed plugging oper-
ation. At first glance, it may seem unlikely that we would be able
to define a statically typed plugging operation. In the general case
we want to be able to plug an n-holed context with a heteroge-
neous list of length n of multi-holed contexts [C1, . . . , Cn] to give
an (m1 + · · ·+ mn)-holed context where each Ci is an mi-holed
context. But how can we implement a heterogeneous list?

The key observation is that the implementation does not actually
need to use a heterogeneous list. The plugging operation takes an
n-holed context and a list of multi-holed contexts, but it is not
necessary to track the number of holes in each of the individual
contexts; we just need to know the sum of the total number of holes
in the list of contexts. Thus we define a datatype of lists of multi-
holed contexts of length n with m holes, along with an associated
plugging operation.

module NContext
:

sig
...

(* context list *)
type (+’holes, +’length) ts

(* context list constructors *)
val nil : (’p*’p, ’m*’m) ts
val cons :
(’p*’q) t * (’o*’p, ’m*’n) ts ->
(’o*’q, ’m*’n s) ts

val append :
(’p*’q, ’m*’n) ts * (’o*’p, ’l*’m) ts ->
(’o*’q, ’l*’n) ts

(* plugging *)
val plug : ’j t * (’i, ’j) ts -> ’i t

end
=

struct
...

type (’i, ’j) ts = (’j, xml) NList.t

let nil = NList.nil
let cons (x, xs) = NList.cons (to_xml x, xs)
let append = NList.append

let plug (k, xs) =
dynamic_plug (k, NList.to_list xs)

end

The underlying implementation is a homogeneous list of length
n of unannotated XML contexts. The list constructor operations
forward to the corresponding operations on lists of length n. The
casts to unannotated contexts allow us to get away with using a
homogeneous list in the implementation.

Example 2

let xs =
cons (tag ("em", text "plugging"),
cons (tag ("td", hole),
cons (tag ("td", text "holes"), nil)));;

val xs :
(’a * ’a s, ’b * ’b s s s) NContext.ts =
<abstr>

plug (k, xs);;
- : (’a * ’a s) NContext.t = <abstr>
to_xml (plug (k, xs));;
- : xml =
Concat (Tag ("p", Tag ("em", Text "plugging")),
Tag ("table",
Concat (Tag ("tr", Tag ("td", Hole)),
Tag ("tr", Tag ("td", Text "holes")))))

The contexts in the list xs have a total of one hole and there are
three contexts in the list, hence it is assigned the type (’a * ’a
s, ’b * ’b s s s) NContext.ts. As k has three holes, it can
be plugged with the elements of xs, yielding a one-holed context
of type (’a * ’a s) NContext.t.

Example 3

let ys =
cons (tag ("td", hole),
cons (tag ("td", text "holes"), nil));;

val ys :
(’a * ’a s, ’b * ’b s s) NContext.ts =

<abstr>
plug (k, ys);;
Characters 5-12:

plug (k, ys);;
^^^^^^^

This expression has type
(’a * ’a s s s) NContext.t *

(’b * ’b s, ’a * ’a s s) NContext.ts
but is here used with type

(’a * ’a s s s) NContext.t *
(’b * ’b s, ’a * ’a s s s) NContext.ts

The contexts in the list ys have a total of one hole and there are two
contexts in the list, hence it is assigned the type (’a * ’a s, ’b

4 2008/7/28

* ’b s s) NContext.ts. Attempting to plug k with ys fails as
there are only two elements in ys but k has three holes.

An important criticism of the style of “type-hackery” that we are
engaging in is that it can lead to hard to understand error messages.
The above error message simply says that the plugging operation
has been supplied with a pair of a context with three holes and a list
of two elements, but expects a pair of a context with three holes and
a list of three elements. It would certainly be nicer if the difference
types could be rendered using Arabic numerals, but apart from that
it seems quite readable, at least to the author. Admittedly, this view
becomes rather less tenable as the number of holes gets bigger —
the unary Peano representation of naturals is exponentially longer
than the denary Arabic representation. One might imagine post-
processing error messages to turn difference types into numbers.

5. Marking holes
Using a number of tricks we have managed to implement statically-
typed multi-holed contexts in OCaml. The type system keeps track
of the number of holes in contexts and statically ensures that we
cannot plug the wrong number of sub-contexts into a primary
context. The solution presented thus far is somewhat restrictive,
though, in that it does not allow further type information to be
attached to contexts or holes. For instance, we might want to stati-
cally ensure that our XML matches some XML schema. This would
require a way of attaching additional type information to both con-
texts and holes.

In this section, we demonstrate how to add this extra type infor-
mation. A number of different means for statically enforcing XML
validity appear in the literature (Brabrand et al. 2001; Thiemann
2002; Hosoya and Pierce 2003; Elsman and Larsen 2004; Møller
and Schwartzbach 2005). As a proof of concept, we illustrate how
to combine our statically-typed multi-holed contexts with Elsman
and Larsen’s MiniXHTML (Elsman and Larsen 2004). We believe
it should be possible to integrate other XML typing schemes with
our multi-holed XML contexts as the two features appear to be or-
thogonal. Elsman and Larsen’s is a natural fit for our setting as it
uses phantom types to classify the different kinds of XHTML tags.
MiniXHTML is a tiny fragment of XHTML which only includes
the tags p, em, pre, big, table, tr and td.

The DTD for MiniXHTML is:

<!ENTITY %block "p|table|pre">
<!ENTITY %inline "%inpre|big">
<!ENTITY %flow "%block|%inline">
<!ENTITY %inpre "#PCDATA|em">
<!ENTITY %td "td">
<!ENTITY %tr "tr">

<!ELEMENT p (%inline)*>
<!ELEMENT em (%inline)*>
<!ELEMENT big (%inline)*>
<!ELEMENT pre (%inpre)*>
<!ELEMENT td (%flow)*>
<!ELEMENT tr (%td)+>
<!ELEMENT table (%tr)+>

The adaptation of contexts to accomodate extra type informa-
tion is relatively straightforward. As well as the phantom type pa-
rameter +’i for the number of holes, the type t is also given a fur-
ther type parameter +’h, a mark which encodes validity constraints
on the XML. Furthermore, a mark is also added to each hole in the
successor constructor, encoding validity constraints on the XML
that is allowed to be plugged in the hole. In effect, we are moving
from a difference encoding of naturals to a difference encoding of
type lists. The type constructor s can now be read as cons.

module MX
:

sig
(* entities *)
type (+’blk, +’inl) flw and tr and td
type blk and inl and no and inpre
type preclosed

(* contexts *)
type (+’holes, +’mark) t

(* context constructors *)
val empty : (’m*’m, ’h) t
val text : string -> (’m*’m, ’h) t
val p : (’i, (no,inl)flw*’c) t ->

(’i, (blk,’b)flw*’c) t
val em : (’i, (no,inl)flw*’c) t ->

(’i, (’b,inl)flw*’c) t
val pre : (’i, (no,inl)flw*inpre) t ->

(’i, (blk,’b)flw*’c) t
val big : (’i, (no,inl)flw*’c) t ->

(’i, (’b,inl)flw*preclosed) t
val table : (’i, tr*’c) t ->

(’i, (blk,’b)flw*’c) t
val tr : (’i, td*’c) t ->

(’i, tr*’c) t
val td : (’i, (blk,inl)flw*’c) t ->

(’i, td*’c) t
val concat : (’m*’n, ’h) t * (’l*’m, ’h) t ->

(’l*’n, ’h) t
val hole : (’m*(’m*’h) s, ’h) t

(* cast a context to xml *)
val to_xml : (’i, ’h) t -> xml

(* context list *)
type (+’holes, +’length) ts

(* context list constructors *)
val nil : (’m*’m, ’n*’n) ts
val cons :

(’p*’q, ’h) t * (’o*’p, ’m*’n) ts ->
(’o*’q, ’m*((’n*’h) s)) ts

val append :
(’p*’q, ’m*’n) ts * (’o*’p, ’l*’m) ts ->
(’o*’q, ’l*’n) ts

val plug :
(’j, ’h) t * (’i, ’j) ts ->
(’i, ’h) t

end
=

struct
type (+’blk, +’inl) flw and tr and td
type blk and inl and no and inpre
type preclosed

type (’i, ’h) t = xml

let empty = Empty
let text s = Text s
let p x = Tag ("p", x)
let em x = Tag ("em", x)
let pre x = Tag ("pre", x)
let big x = Tag ("big", x)

5 2008/7/28

let table x = Tag ("table", x)
let tr x = Tag ("tr", x)
let td x = Tag ("td", x)
let concat (x, y) = Concat (x, y)
let hole = Hole

let to_xml k = k

type (’i, ’j) ts = xml list

let nil = []
let append (xs, ys) = xs @ ys
let cons (x, xs) = (to_xml x) :: xs

let plug (k, xs) = dynamic_plug (k, xs)
end

The marks have two components. As explained in (Elsman and
Larsen 2004) the first component is used for specifying entity types
and the second one is used for implementing the element prohibi-
tion of XHTML 1.0 that disallows big elements from appearing
anywhere inside pre elements. The names of the phantom types
used in marks are as in (Elsman and Larsen 2004) except for no
which they call NOT (unlike SML, OCaml requires type names to
begin with a lowercase letter).

Note that the tag constructor has been replaced by specific
constructors for each tag that introduce the validity constraints.
The empty and text constructors leave the XML context uncon-
strained. The hole constructor ensures that the annotation on the
hole is the same as the annotation on the context consisting of the
hole.

Example 4 The context p hole which represents a paragraph
element with a hole in it is given the type:

(’a * (’a * ((MX.no, MX.inl) MX.flw * ’b)) s,
(MX.blk, ’c) MX.flw * ’b)

This type indicates that the context has one hole which can contain
inline entities and the context itself is a flow entity that contains
block entities.

Example 5 The extension of NContext.ts to lists of MiniX-
HTML simply threads the marks through. The singleton context
list cons (p hole, nil) is given the type:

(’a * (’a * ((MX.no, MX.inl) MX.flw * ’b)) s,
’c * (’c * ((MX.blk, ’d) MX.flw * ’b)) s)
MX.ts

This type indicates that the list of contexts has one hole which can
contain inline entities and contains one context which is a flow
entity that contains block entities.

Example 6

open MX;;
let k =

concat
(p hole,
table (concat (tr hole, tr hole)));;

val k :
(’a *
(((’a * (MX.td * ’b)) s * (MX.td * ’b)) s *

((MX.no, MX.inl) MX.flw * ’b))
s, (MX.blk, ’c) MX.flw * ’b)
MX.t = <abstr>

to_xml k;;
- : xml =
Concat

(Tag ("p", Hole),
Tag ("table",
Concat
(Tag ("tr", Hole),
Tag ("tr", Hole))))

The type of k is the same as in Example 1, but now each hole
is annotated with extra typing information for constraining what
entities are allowed to be plugged into it, and the context itself
is similarly annotated with extra typing information constraining
what of entity it can be. In this case the first hole must be plugged
with an inline entity, and the other two holes with td entities. The
context itself is a flow entity that contains block entitites.

Example 7

let xs =
cons (em (text "plugging"),
cons (td hole,
cons (td (text "holes"), nil)));;

val xs :
(’a * (’a * ((MX.blk, MX.inl) MX.flw * ’b)) s,
’c *
(((’c * (MX.td * ’d)) s * (MX.td * ’b)) s *

((’e, MX.inl) MX.flw * ’f)) s)
MX.ts = <abstr>

plug (k, xs);;
- : (’a * (’a * ((MX.blk, MX.inl)

MX.flw * ’b)) s,
(MX.blk, ’c) MX.flw * ’b)

MX.t

If the number of holes matches the number of elements in the list
and the XHTML constraints on the sub-contexts match those of
the holes, then plugging succeeds. The element em is an inline
entity and the element td is a td entity, so plugging succeeds. As
in Example 2 we obtain a one-holed context. As the hole is inside
a td element it must be plugged with a flow entity. Plugging the
holes does not change the type of entity ascribed to the context
itself: it is still a flow entity that contains block entities.

Example 8

let ys =
cons (td hole,
cons (td (text "holes"), nil));;

val ys :
(’a * (’a * ((MX.blk, MX.inl) MX.flw * ’b)) s,
’c * ((’c * (MX.td * ’d)) s * (MX.td * ’b)) s)
MX.ts = <abstr>

plug (k, ys);;
Characters 5-12:
plug (k, ys);;

^^^^^^^

This expression has type
(’a *
(((’a * (MX.td * ’b)) s * (MX.td * ’b)) s *

((MX.no, MX.inl) MX.flw * ’b))
s, (MX.blk, ’c) MX.flw * ’b)

MX.t *
(’d * (’d * ((MX.blk, MX.inl) MX.flw * ’e)) s,
’a * ((’a * (MX.td * ’f)) s * (MX.td * ’e)) s)

MX.ts
but is here used with type
(’a *
(((’a * (MX.td * ’b)) s * (MX.td * ’b)) s *

6 2008/7/28

((MX.no, MX.inl) MX.flw * ’b))
s, (MX.blk, ’c) MX.flw * ’b)
MX.t *
(’d * (’d * ((MX.blk, MX.inl) MX.flw * ’e)) s,
’a *
(((’a * (MX.td * ’b)) s * (MX.td * ’b)) s *

((MX.no, MX.inl) MX.flw * ’b)) s)
MX.ts

As in Example 3, we get a type error if we try to plug the wrong
number of sub-contexts into a primary context. Though the type er-
ror may look rather intimidating, the important part is quite simple.
The only part of the two types that differs is the second component
of MX.ts. In the first type this has two successors, whereas in the
second type it has three.

Example 9

let zs =
cons (em (text "plugging"),
cons (tr hole,
cons (td (text "holes"), nil)));;

val zs :
(’a * (’a * (MX.td * ’b)) s,
’c *
(((’c * (MX.td * ’d)) s * (MX.tr * ’b)) s *
((’e, MX.inl) MX.flw * ’f))
s)
MX.ts = <abstr>

plug (k, zs);;
Characters 5-12:

plug (k, zs);;
^^^^^^^

This expression has type
(’a *
(((’a * (MX.td * ’b)) s * (MX.td * ’b)) s *
((MX.no, MX.inl) MX.flw * ’b))
s, (MX.blk, ’c) MX.flw * ’b)
MX.t *
(’d * (’d * (MX.td * ’e)) s,
’a *
(((’a * (MX.td * ’b)) s * (MX.tr * ’e)) s *
((’f, MX.inl) MX.flw * ’g))
s)
MX.ts

but is here used with type
(’a *
(((’a * (MX.td * ’b)) s * (MX.td * ’b)) s *
((MX.no, MX.inl) MX.flw * ’b))
s, (MX.blk, ’c) MX.flw * ’b)
MX.t *
(’d * (’d * (MX.td * ’e)) s,
’a *
(((’a * (MX.td * ’b)) s * (MX.td * ’b)) s *
((MX.no, MX.inl) MX.flw * ’b))
s)
MX.ts

If the number of holes match up, but the XHTML constraints do
not, then we also get a static type error. Again the type error may
look rather intimidating, but the only difference between the two
types is a MX.tr in the first type that becomes MX.td in the second
type. This difference exactly captures the bug: k is expecting a td
entity in its second hole, but has been supplied with a tr entity.

As illustrated above, although the error messages are long, the
parts that are relevant form only a small part of them, and once
the relevant parts have been identified it is quite easy to understand

what the problem is. With reference to their implementation Els-
man and Larsen (Elsman and Larsen 2004) write:

It is also our experience that type errors caused by erroneous
use of XHTML combinators are understandable and pin-
point problems directly.

This author agrees, but feels that the type errors are too verbose
(things are made slightly worse by the use of multi-holed contexts,
but the main problem is due to the complexity of the types needed
to type plain XHTML). Other systems have similar problems (Thie-
mann 2002). It would be interesting to follow up Peter Thiemann’s
suggestion (Thiemann 2002) of “filtering and translating error mes-
sages to make them more informative to casual users”.

6. Limitations of the difference encoding
The difference encoding of natural numbers has allowed us to
implement a list append function and plugging operations for
multi-holed contexts. It should be emphasised however, that our
approach is fairly limited compared to indexed types, as imple-
mented in DML (Xi and Pfenning 1999), type classes, as imple-
mented in GHC (Hall et al. 1994), and GADTs, as implemented in
GHC (Jones et al. 2006).

As already mentioned, nonsense types can be introduced. This
is not really a problem in practice though. The other aesthetic issue
that has already been mentioned is the verbosity of types, and in
particular type error messages. This could be more of a problem in
practice, particularly when trying to scale to large examples.

A much more severe limitation is that it is difficult to write
non-trivial destructors. We can easily implement safe versions of
functions for computing the head and tail of a list, but a general
fold operation seems hopeless, and even an operation for filtering
the elements of a list matching a predicate seems tricky. The filter
operation is one of the standard examples that can be implemented
in programming languages that support indexed types.

One problem is that the length of the output cannot be computed
statically as it depends on the dynamic predicate. So it is not clear
how we could even give a type to filter. We can at least side-
step this problem by using an existential type and instead define a
partition function that returns a pair of lists: one containing the
elements for which the predicate is true and the other containing
the elements for which the predicate is false. The existential type
we want to define is:

type split_list (’l, ’n, ’a) =
exists ’m.

(’l*’m, ’a) NList.t * (’m*’n, ’a) NList.t

which allows us to assign partition the following type:

val partition :
(’a -> bool) -> (’l*’n, ’a) NList.t ->
(’l, ’n, ’a) split_list

OCaml does not directly support existential types but they can
be encoded using higher-rank polymorphism via records or recur-
sive modules. For instance, the type split list can be encoded
as as follows:

type (-’l, -’n, -’a, -’r) cont =
{k: ’m.
(’l*’m, ’a) NList.t * (’m*’n, ’a) NList.t -> ’r}

type (+’l, +’n, +’a) split_list =
{l: ’r.(’l, ’n, ’a, ’r) cont -> ’r}

Although existentials allow us to specify a type for partition,
it is still not clear how to implement the body of the function. We
could attempt to use the trick we used to plug a multi-holed context,
where we first perform an upcast, then perform an unsafe version

7 2008/7/28

of the operation, and then perform a downcast. Unfortunately that
trick does not work in this case because we do not know the
length of the two lists in advance. Another alternative is to attempt
to define partition in terms of more primitive operations on
split lists. The problem then is that we would need different
branches for empty and non-empty lists, and the non-empty list
branch would have to be able to perform operations such as taking
the head and tail of a list which are not well-defined on empty
lists. Indexed types (Zenger 1997; Xi and Pfenning 1999), type-
classes (McBride 2002) and GADTs (Cheney and Hinze 2003; Xi
et al. 2003; Jones et al. 2006) each provide different solutions to
this problem, at the expense of adding more complexity to the type
system.

7. Related work
Encoding types The idea of encoding expressive types in
Hindley-Milner type systems is not new.

Zhe Yang (Yang 1998, 2004) introduced a general scheme for
encoding type-indexed families of functions in ML. Each type con-
structor is encoded as an function that combines the functions as-
sociated with the arguments to the type constructor to build a com-
posite function. In effect, the encoding is the implementation of
the function at a particular type. A canonical example of Yang’s
technique is the implementation of Type-Directed Partial Evalua-
tion (TDPE) (Danvy 1996) in ML. Each type constructor is en-
coded as a pair of reify and reflect functions for converting between
ML values and abstract syntax. This allows arbitrary pure ML val-
ues to be reified as abstract syntax using a type-indexed program
written in plain ML. Danvy’s functional unparsing (Danvy 1998),
which he uses to implement a statically typed variant of the C func-
tion printf in ML is another widely-used example of Yang’s tech-
nique.

Daniel Fridlender and Mia Indrika (Fridlender and Indrika
2000) explore a particular instance of Yang’s technique (though
they do not make the connection with his technique, they do cite
Danvy’s work on functional unparsing as inspiration). Their work
is related to this article in that the types they encode are naturals:
they encode functions whose type depends on natural numbers.
Whereas Fridlender and Indirka encode naturals as terms, we en-
code them as type-level differences between Peano numbers. The
two encodings are really orthogonal. The term encoding is good
for defining families of functions (such as an n-ary versions of
zipWith), whereas the type encoding is good for enforcing static
properties that are otherwise difficult to express (such as the prop-
erty that appending a list of length m with a list of length n gives a
list of length m + n).

Conor McBride (McBride 2002) “fakes” dependent types using
the Haskell type class system. As well as being able to implement
the class of functions supported by Yang’s technique, McBride’s
technique directly supports operations such as addition on type-
level natural numbers using type classes.

Difference types Our idea of using a difference to encode addable
naturals at the type-level was inspired by Didier Rémy’s tech-
nique for implementing polymorphic record concatenation “for
free” (Rémy 1992). He defines record concatenation on top of
his implementation of polymorphic extensible records using row
types (Rémy 1989). A catenable record is encoded as a function
that takes a single argument representing an extension of the record
and returns a row consisting of the existing fields along with the ex-
tension. Concatenation is implemented as simple composition. To
project a field of a record we can simply pass in an empty extension
and then project from the resulting row.

Another way of viewing Rémy’s encoding is as a difference
between two records: the difference between the record consisting

of the fields with the extension and the record consisting of just
the extension. Conversely, as described in Section 3, another way
of viewing our encoding of addable naturals is as type functions
taking a single argument representing an offset and returning a
natural consisting of the sum of the encoded natural plus the offset.
Addition is then simple composition.

A common idiom both in functional programming and in logic
programming is to encode a list as a function which takes a sin-
gle argument representing an extension of the list and returns a list
consisting of the extension appended to the existing lists. Concate-
nation is implemented as simple composition. The primary motiva-
tion here is to allow concatenation to be implemented in constant
time (Hughes 1986) (concatenation takes linear time for the usual
linked-list representation of lists employed by typical declarative
programming languages). Of course, like Rémy’s representation of
catenable records, our representation of addable naturals, and our
representation of catenable lists, we can view the functional rep-
resentation of lists as a difference: the difference between the list
consisting of the extension appended to the existing list and the
list consisting of just the extension. Indeed, in logic programming
the term used for this idiom is difference list (Sterling and Shapiro
1994, Chapter 15).

Formlets Our motivation for investigating a statically typed
multi-holed plugging operation was to try to improve the imple-
mentation of formlets (Cooper et al. 2008a), an abstraction for
building web forms. The original version of formlets builds up the
HTML presentation of a formlet using single-holed plugging oper-
ations. This forces the semantic part of formlets to be intermingled
with raw HTML and requires nested formlets to be rebound. A
clearer and more efficient approach is to use a multi-holed plug-
ging operation. Using the ideas of this paper we have implemented
a version of formlets in OCaml with statically-typed multi-holed
contexts (Cooper et al. 2008b).

Acknowledgments
Thanks to Jeremy Yallop for suggesting the use of the relaxed value
restriction and the anonymous reviewers for helpful feedback. This
work was supported by EPSRC grant number EP/D046769/1.

References
Thorsten Altenkirch, Conor McBride, and James McKinna. Why

dependent types matter. Unpublished manuscript, April 2005.
http://www.cs.nott.ac.uk/~txa/publ/ydtm.pdf.

Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Static
validation of dynamically generated HTML. In PASTE, pages 38–45,
2001.

James Cheney and Ralf Hinze. First-class phantom types. Technical
Report TR2003-1901, Cornell University, July 2003.
http://ecommons.library.cornell.edu/handle/1813/5614.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. An idiom’s
guide to formlets. Technical Report EDI-INF-RR-1263, School of
Informatics, University of Edinburgh, 2008a.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. The essence
of form abstraction, 2008b.
http://groups.inf.ed.ac.uk/links/formlets.

Olivier Danvy. Type-directed partial evaluation. In POPL, pages 242–257,
1996.

Olivier Danvy. Functional unparsing. J. Funct. Program., 8(6):621–625,
1998.

Martin Elsman and Ken Friis Larsen. Typing XHTML web applications in
ML. In PADL, pages 224–238, 2004.

Seth Fogarty, Emir Pasalic, Jeremy Siek, and Walid Taha. Concoqtion:
indexed types now! In PEPM, pages 112–121, 2007.

8 2008/7/28

Daniel Fridlender and Mia Indrika. Do we need dependent types? J.
Funct. Program., 10(4):409–415, 2000.

Jacques Garrigue. Relaxing the value restriction. In FLOPS, pages
196–213, 2004.

Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip
Wadler. Type classes in haskell. In ESOP, pages 241–256, 1994.

Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically typed XML
processing language. ACM Trans. Internet Techn., 3(2):117–148, 2003.

Gérard P. Huet. The zipper. J. Funct. Program., 7(5):549–554, 1997.
John Hughes. A novel representation of lists and its application to the

function “reverse”. Inf. Process. Lett., 22(3):141–144, 1986.
Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and

Geoffrey Washburn. Simple unification-based type inference for
GADTs. In ICFP, pages 50–61, 2006.

Conor McBride. The derivative of a regular type is its type of one-hole
contexts. Unpublished manuscript, 2001.
http://strictlypositive.org/diff.pdf.

Conor McBride. Faking it: Simulating dependent types in Haskell. J.
Funct. Program., 12(4&5):375–392, 2002.

Anders Møller and Michael I. Schwartzbach. The design space of type
checkers for XML transformation languages. In ICDT ’05, January
2005.

Didier Rémy. Typechecking records and variants in a natural extension of
ML. In POPL, pages 77–88, 1989.

Didier Rémy. Typing record concatenation for free. In POPL, pages
166–176, 1992.

Leon Sterling and Ehud Shapiro. The art of Prolog (2nd ed.): advanced
programming techniques. MIT Press, Cambridge, MA, USA, 1994.
ISBN 0-262-19338-8.

Peter Thiemann. A typed representation for HTML and XML documents
in Haskell. J. Funct. Program., 12(4&5):435–468, 2002.

Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic
Computation, 8(4):343–355, 1995.

Hongwei Xi. Dependent ML an approach to practical programming with
dependent types. J. Funct. Program., 17(2):215–286, 2007.

Hongwei Xi and Frank Pfenning. Dependent types in practical
programming. In POPL, pages 214–227, 1999.

Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype
constructors. In POPL, pages 224–235, 2003.

Zhe Yang. Encoding types in ML-like languages. In ICFP, pages
289–300, 1998.

Zhe Yang. Encoding types in ML-like languages. Theor. Comput. Sci., 315
(1):151–190, 2004.

Christoph Zenger. Indexed types. Theor. Comput. Sci., 187(1-2):147–165,
1997.

9 2008/7/28

