
Effect Handlers for C via Coroutines
MARIO ALVAREZ-PICALLO, Huawei Research Centre, United Kingdom

TEODORO FREUND, Huawei Research Centre, United Kingdom

DAN R. GHICA,Huawei Research Centre, United Kingdom and University of Birmingham, United Kingdom

SAM LINDLEY, The University of Edinburgh, United Kingdom

Effect handlers provide a structured means for implementing user-defined, composable, and customisable

computational effects, ranging from exceptions to generators to lightweight threads. We introduce libseff,
a novel effect handlers library for C, based on coroutines. Whereas prior effect handler libraries for C are

intended primarily as compilation targets, libseff is intended to be used directly from C programs. As such,

the design of libseff parts ways from traditional effect handler implementations, both by using mutable

coroutines as the main representation of pending computations, and by avoiding closures as handlers by way

of reified effects. We show that the performance of libseff is competitive across a range of platforms and

benchmarks.

CCS Concepts: • Software and its engineering→ Control structures; Coroutines.

Additional Key Words and Phrases: Effect Handlers, Coroutines, C

ACM Reference Format:
Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley. 2024. Effect Handlers for C via

Coroutines. Proc. ACM Program. Lang. 8, OOPSLA2, Article 358 (October 2024), 31 pages. https://doi.org/10.
1145/3689798

1 Introduction
Effect handler oriented programming languages and libraries empower programmers to define

custom effectful operations whose semantics is specified later by a suitable effect handler [26].
The power of handlers lies in their ability to support fine-grained customisation (a given effectful

computation can be handled by different handlers that give it different behaviours, such as imple-

menting a different scheduling strategy), and their composability (handlers can be composed to

allow using multiple different effects in the same program).

A central aspect of effect handlers is that when handling an operation they are provided with an

explicit representation of the continuation of the code that performed the operation (that is the

rest of the computation from the operation invocation up to the point at which the handler was

installed). A continuation is a first-class object that can be resumed immediately, aborted entirely,

or delayed for later execution. In this sense, effect handlers can be seen as providing a form of

first-class resumable exceptions, and allow for the implementation of sophisticated forms of control

flow, such as async/await, exceptions, generators and varied forms of lightweight concurrency,

entirely as user-defined libraries.

Authors’ Contact Information: Mario Alvarez-Picallo, Huawei Research Centre, Edinburgh, United Kingdom, mario.alvarez.

picallo@huawei.com; Teodoro Freund, Huawei Research Centre, Edinburgh, United Kingdom, teodoro.freund@huawei.com;

Dan R. Ghica, Huawei Research Centre, Edinburgh, United Kingdom, dan.ghica@huawei.com and University of Birmingham,

Birmingham, United Kingdom, d.r.ghica@cs.bham.ac.uk; Sam Lindley, The University of Edinburgh, Edinburgh, United

Kingdom, sam.lindley@ed.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART358

https://doi.org/10.1145/3689798

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

HTTPS://ORCID.ORG/0000-0001-9843-3768
HTTPS://ORCID.ORG/0009-0006-4874-4270
HTTPS://ORCID.ORG/0000-0002-4003-8893
HTTPS://ORCID.ORG/0000-0002-1360-4714
https://doi.org/10.1145/3689798
https://doi.org/10.1145/3689798
https://orcid.org/0000-0001-9843-3768
https://orcid.org/0009-0006-4874-4270
https://orcid.org/0000-0002-4003-8893
https://orcid.org/0000-0002-1360-4714
https://doi.org/10.1145/3689798

358:2 Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

Though effect handlers are often deployed in the context of high-level functional programming

languages such as OCaml [29], lower-level languages also stand to gain much from such features.

Indeed, if one enumerates all of the features that are enabled by the introduction of effect handlers,

the only language in common use today to lack all of these is C. On the other hand, the C ecosystem

is rife with ad-hoc implementations of complex control-flow operators that are intended to support

exactly these features, often on a per-project basis.

There already exist two C effect handler libraries, libhandler [19] and libmpeff [20]. However,
both are geared towards compiler writers, being designed as compilation targets for high-level

languages with effects, rather than to be used directly from C by C programmers. In contrast,

libseff strives to provide an API that looks and feels as much as possible like idiomatic C.

The libseff library differs from prior approaches in several respects:

• Unlike libhandler which relies on stack-copying (unsafe in C as there may be pointers into

the stack) and libmpeff which relies on virtual memory (not feasible for embedded systems),

libseff implements stack resizing via segmented stacks. Stack resizing is often important

for applications such as web servers that spawn many lightweight threads, each of which

needs its own stack.

• Unlike traditional effect handler implementations libseff is based on mutable coroutines

rather than immutable continuations. This design offers a simple way of avoiding allocating

a new continuation every time an effectful operation (such as yielding to another thread)

is performed. Moreover, it provides a more familiar interface for C programmers, who may

treat libseff like a conventional coroutine library and integrate the effectful features as

necessary.

• Unlike traditional effect handler implementations there is no special mechanism for dispatch-

ing on effects. Instead performed effects are reified as request objects which are then typically

dispatched on using a standard switch statement.

Being based on mutable coroutines, one can view libseff as a modular coroutines library. We

instead prefer to view it as first and foremost an effect handlers library, given that its typical mode

of use is strongly reminiscent of traditional effect handlers. Indeed, central to our contribution is

the insight that through relatively minor extensions one can reap many of the benefits of effect

handlers, without sacrificing the performance and simplicity expected of C. Moreover, in practice

libseff effect handlers have the same expressive power as traditional effect handlers based on

immutable continuations. Fundamentally this is because any program that uses its continuations

linearly can be macro-expressed by an equivalent one that uses mutable coroutines [16].

The main contributions of this paper are the following:

• The design of libseff, illustrated through a series of examples that introduce techniques for

programming with effects and handlers in C using libseff (§2).

• The implementation of libseff, including a description which details the runtime represen-

tation, low-level primitives, and stack-management strategy (§3).

• A quantitative evaluation of libseff through a series of benchmarks, which shows that

libseff enjoys competitive performance with other systems (§4).

• A qualitative comparison between libseff and libmpeff from the point of view of a C

programmer using both libraries (§5).

§6 discusses related work and §7 concludes and outlines planned improvements for libseff.
The supplementary material includes an appendix with a formal calculus and abstract machine

that specifies the semantics of the variant of effect handlers underlying the design of libseff.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

Effect Handlers for C via Coroutines 358:3

2 Design
We introduce libseff and motivate its design by way of a series of examples that highlight the

features and common idioms of the library.

2.1 Mutable state
To illustrate the core features of the library we begin with mutable state as a simple, albeit somewhat

artificial (C has built-in support for mutable state), example. The following code declares two new

effects for reading and writing an integer state value.

1 DEFINE_EFFECT(get, 0, int64_t, {});

2 DEFINE_EFFECT(put, 1, void, { int64_t new_value; });

In order to define an effect we use the macro DEFINE_EFFECT(name, tag, ret_ty, { param_decls... }),

which takes an effect name (name), a tag (tag), a return type (ret_ty), and a possibly empty collection

of parameter declarations (param_decls). The snippet above declares effect get, which returns a value

of type int64_t and takes no parameters, and an effect put, which does not return a value and takes

a single parameter new_value of type int64_t. At this stage these effects have type signatures, but no

implementation. Together they can be thought of as providing an interface to integer state.

Tags. As C macros provide no mechanism for generating fresh numeric tags, we require the user

to manually provide a tag for each defined effect. It is the responsibility of the user to ensure that

no two effects are assigned the same tag. In fact, different effects with identical tags may be used

safely, provided that no code performs one effect in the scope of a handler for another effect that

is assigned the same tag. Due to libseff’s use of 64-bit wide bitsets to represent handled effects,

only numbers 0-63 may be used as effect tags. This limitation can easily be relaxed at the cost of

increasing the overhead of performing an effect, but for the examples we have considered so far

this has not proven necessary.

Terminology. More properly, get and put are effect operations and conceptually we might group

them together to form an interface for a single integer state effect. However, as in OCaml 5 [29]

libseff does not explicitly group such operations, and we refer to each individual effect operation

as an effect. Elsewhere effect operations are sometimes referred to as commands [4, 10].
The following code uses the get and put effects to implement a countdown loop.

5 void* counter(void* parameter) {

6 int64_t counter;

7 do {

8 counter = PERFORM(get);

9 printf("Counter is %ld\n", counter);

10 PERFORM(put, counter - 1);

11 } while (counter > 0);

12 return NULL;

13 }

As C lacks closures and parametric polymorphism, handled coroutines can only be created from

a top-level function (here counter) conforming to the prototype void* fn(void*). In order to perform

an effect, we use the PERFORM(name, {arg...}) macro, which takes an effect name and a possibly

empty collection of arguments. This macro provides a convenient wrapper over the lower-level,

untyped seff_perform primitive which we describe in detail in §3.2. From the perspective of an

end-user of libseff, an invocation of PERFORM looks much like a function call whose parameter

and return types match those declared by the corresponding DEFINE_EFFECT macro. In particular, the

parameter and return types are checked by the C compiler.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

358:4 Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

If we were to call counter directly as a normal function at the top level, then this would result

in a runtime error when line 8 is reached as it performs the get effect outside the scope of a

handler for get (analogous to raising an exception outside the scope of an exception handler). The

following code illustrates how to handle the effects inside counter by instantiating counter as a

handled coroutine and then repeatedly resuming the coroutine inside an event loop that handles

the performed effects.

14 int main(void) {

15 effect_set handles_state = HANDLES(get) | HANDLES(put);

16 seff_coroutine_t *k = seff_coroutine_new(counter, NULL);

17 seff_request_t req = seff_resume(k, NULL, handles_state);

18 int64_t state = 100;

19 bool done = false;

20 while (!done) {

21 switch (req.effect) {

22 CASE_EFFECT(req, get, { req = seff_resume(k, (void *)state, handles_state); break; })

23 CASE_EFFECT(req, put, {

24 state = payload.new_value; req = seff_resume(k, NULL, handles_state);

25 break; })

26 CASE_RETURN(req, {

27 printf("The handled code has finished executing\n"); done = true;

28 break; })

29 }

30 }

31 seff_coroutine_delete(k);

32 return 0;

33 }

The handles_state effect set encapsulates the ability to handle the get and put effects. The call

seff_coroutine_new(counter, NULL) allocates a new coroutine object pointed to by k which when

resumed will run the counter function with the argument NULL. The call seff_resume(k, NULL,

handle_state) resumes the coroutine pointed to by k and handles the get and put effects. In fact, it

only handles them to the extent that if performed, the coroutine will be suspended and they will be

packaged up in the returned request object req. The actual handling code appears in the enclosing

context, here an event loop which dispatches on req.effect. The mutable integer state is stored in

the state variable. Inside the switch statement there is one clause (expressed using the CASE_EFFECT

macro) for each of the possible effects that the coroutine may perform and a distinguished return

clause (expressed using the CASE_RETURN macro) for the case where the coroutine returns normally

without performing any effects. A get effect is handled by resuming the coroutine, passing in the

current state (recall that the return type of get is int64_t). A put effect is handled by updating the

current state and resuming the coroutine with a NULL argument (recall that the return type of put is

void). The special payload variable contains the new state passed to the put effect. If the coroutine

returns without performing an effect then a message is printed and the event loop is exited. Finally

the coroutine object is deleted using seff_coroutine_delete.

Decoupling effect interception from handling code. Formally, the handler is simply the code that

intercepts effects in the given effect set, yielding a corresponding request object. However, it is

natural to refer to the code in the surrounding context that dispatches on the request object as a

handler and we frequently do so. Conventional effect handlers fuse these two phases together, much

like exception handlers, but we opt for a decoupled approach in libseff in order to circumvent

the awkwardness of encoding a bespoke dispatch mechanism in C.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

Effect Handlers for C via Coroutines 358:5

Function signatures. Type signatures for the three primitive functions seen so far are as follows.

seff_coroutine_t *seff_coroutine_new(void *(*fn)(void*), void *arg);

void seff_coroutine_delete(seff_coroutine_t* k);

seff_request_t seff_resume(seff_coroutine_t* k, void* arg, effect_set handled);

The API does not differentiate between starting and resuming a coroutine. However, when called

on a coroutine for the first time arg is ignored (the underlying function has already been applied to

an argument supplied to seff_coroutine_new), whereas on subsequent calls the continuation of the

coroutine is applied to arg, which corresponds to the value returned by the effect.

Coroutines as mutable continuations. Traditional accounts of effect handlers do not take coroutines
as primitive, but rather continuations. A continuation (also sometimes called a resumption) is

an immutable object that represents the rest of a computation. A continuation amounts to an

immutable seff_coroutine_t, but in libseff we always manipulate coroutines as pointers to a

mutable seff_coroutine_t object which is updated in place whenever an effect is handled.

Handlers in libseff are sheep handlers. Traditional effect handlers are classified as deep or

shallow [14]. A deep handler implicitly wraps itself around the continuation of a suspended effect,

ensuring that all effects in a computation must be handled uniformly; a shallow handler does not.

Following WasmFX [25], handlers in libseff are a hybrid sometimes called sheep handlers. Sheep

handlers are: like shallow handlers in that the original handler need not be installed each time a

continuation is resumed; and like deep handlers in that some handler (though not necessarily the

original one) must be installed every time a continuation is resumed. In libseff this behaviour
manifests as the need to supply an effect set every time we call seff_resume on a coroutine, though

this effect set may be empty.

2.2 Lightweight concurrency
A much more compelling application of effect handlers, and the central motivation behind the

initial development of libseff, is lightweight concurrency. We begin by defining two effects.

1 DEFINE_EFFECT(fork, 2, void, { void *(*fn)(void *); void *arg; });

2 DEFINE_EFFECT(yield, 3, void, {});

The fork effect takes a function pointer (fn) and an argument to apply it to (arg); it spawns a new

thread that invokes fn(arg). (In a language with closures we would typically implement fork as a

one argument effect.) The yield effect suspends the current thread, allowing other threads to run at

the discretion of the handler.

We write a small example application that initialises a root thread which is responsible for

spawning 10 worker threads. These threads then each print 10 messages to the screen.

1 void *root(void *param) {

2 for (int64_t i = 1; i <= 10; i++) PERFORM(fork, worker, (void *)(i));

3 return NULL;

4 }

5 void *worker(void *param) {

6 int64_t tag = (int64_t)param;

7 for (int64_t iteration = 0; iteration < 10; iteration++) {

8 printf("Worker %ld, iteration %ld\n", tag, iteration);

9 PERFORM(yield);

10 }

11 return NULL;

12 }

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

358:6 Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

To run this code, we must define a handler for the yield and fork effects which amounts to

implementing a custom scheduler. The ability of effect handlers to describe APIs to communicate

with a scheduler is at the heart of effect handlers’ applications to concurrency [7, 8, 10, 25, 29, 33].

For this example, however, we will implement a toy single-threaded scheduler, which we abstract

into a function with_scheduler.

1 void with_scheduler(seff_coroutine_t *initial_coroutine) {

2 effect_set handles_scheduler = HANDLES(yield) | HANDLES(fork);

3 tl_queue_t queue;

4 tl_queue_init(&queue, 5);

5 tl_queue_push(&queue, initial_coroutine);

6 while (!tl_queue_empty(&queue)) {

7 seff_coroutine_t *next = (seff_coroutine_t *)tl_queue_steal(&queue);

8 seff_request_t req = seff_resume(next, NULL, handles_scheduler);

9 switch (req.effect) {

10 CASE_EFFECT(req, yield, { tl_queue_push(&queue, (struct task_t *)next); break; })

11 CASE_EFFECT(req, fork, {

12 tl_queue_push(&queue, (struct task_t *)next);

13 seff_coroutine_t *new = seff_coroutine_new(payload.fn, payload.arg);

14 tl_queue_push(&queue, (struct task_t *)new);

15 break; })

16 CASE_RETURN(req, { seff_coroutine_delete(next); break; })

17 }

18 }

19 }

20 int main(void) { with_scheduler(seff_coroutine_new(root, (void*)0)); return 0; }

As in §2.1, the body of the handler is a switch statement nested inside a loop. The main difference

with the state example is that now a variable number of coroutines are managed simultaneously by

the scheduler, and these are stored in the task queue queue. On each iteration, the scheduler pops

a coroutine off the head of the queue and proceeds to resume it with seff_resume. A fork or yield

request is handled by pushing the suspended coroutine to the back of the queue. The CASE_RETURN

clause is responsible for releasing the coroutine structures as they finish execution.

One-shot continuations. In performance-oriented implementations of effect handlers [25, 29] it is

common to restrict continuations to be invoked at most once. This restriction simplifies the runtime

system by precluding the duplication of continuations (which would involve creating a copy of

the stack frame captured by the continuation). A similar limitation applies in libseff, which
provides no facilities to copy stack frames. Doing so in C is inherently unsafe, as programmers often

manipulate pointers into the stack which would be invalidated if the stack was copied elsewhere.

However, in libseff there is no way to resume a continuation twice, as continuations per se are

not exposed by the API — each time we handle a coroutine its continuation changes. On the other

hand, a new kind of bug can occur if a coroutine pointer is copied accidentally (recall that we

always refer to coroutines via a seff_coroutine_t pointer). For example, in the scheduler code above,

if the programmer duplicated line 12 by accident, the coroutine next would be enqueued twice. This

would not cause an immediate crash, but would lead to surprising behaviour: every time a thread

were to yield it would subsequently be scheduled to run twice as often. However, once finished

its coroutine object would be deleted and further attempts to dereference the other copy of the

pointer in the queue would result in undefined behaviour. It is important with libseff for the

programmer to take care to manually manage the lifetime of coroutines, but this is quite standard

for heap-allocated objects in C.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

Effect Handlers for C via Coroutines 358:7

2.3 Resources
One technique supported by handlers, which we have thus far not shown, is the ability to “delay”

a computation to be performed after an effect has been handled. This can be done by having the

handler explicitly maintain a stack keeping track of all the effects that have been handled so far

which is then “unwound” after a coroutine finishes execution. A more elegant approach is to write

our handler as a recursive function, rather than a direct imperative loop, and writing additional

code after the recursive call.

As a motivating example, we implement scoped resource handling using a single defer effect,

whose purpose is to schedule a clean-up function defer_fn to be called with argument defer_arg

when the enclosing coroutine ends its execution. We will also define our own variants of resource-

allocating primitives (for this example, malloc and fopen), which immediately perform the defer

effect to ensure that the corresponding clean-up function is called in a timely fashion.

1 DEFINE_EFFECT(defer, 4, void, { void (*defer_fn)(void*); void *defer_arg; });

2 void *malloc_scoped(size_t size) {

3 void *ptr = malloc(size); PERFORM(defer, free, ptr); return ptr;

4 }

5 FILE *fopen_scoped(const char *path, const char *mode) {

6 FILE *f = fopen(path, mode); PERFORM(defer, fclose, f); return f;

7 }

These functions may be used as drop-in replacements for malloc and fopen, the only caveat being

that any code that uses them must be run inside a coroutine that handles the defer effect.

1 void *uses_resources(void *arg) {

2 ... void *ptr1 = malloc_scoped(256); ... void *ptr2 = malloc_scoped(512);

3 ... FILE *f = fopen_scoped("example", "r"); ...

4 }

Calling any of these scoped resource acquisition functions will result in the defer effect being

performed, communicating the need for resource clean-up to any installed handler. One possible

implementation for such a handler is given by the recursive function handle_defer below.

1 void *handle_defer(seff_coroutine_t *k) {

2 seff_request_t req = seff_resume(k, NULL, HANDLES(defer));

3 switch (req.effect) {

4 CASE_EFFECT(req, defer, {

5 void *result = handle_defer(k);

6 // Run the clean-up function

7 payload.defer_fn(payload.defer_arg);

8 return result; })

9 CASE_RETURN(req, { return payload.result; })

10 }

11 }

Observe that the structure is similar to a recursive version of the event loop of §2.2, with the crucial

difference that the recursive call does not take place in tail position; instead, it is followed by a call

to the deferred function. At runtime, the call stack of handle_defer will match the order in which

the different invocations of defer were performed, and the corresponding clean-up functions will

be called starting from the last.

We abstract away the creation and management of the coroutine object inside a helper function

which takes as an argument the function pointer to be run within the scope of the defer handler.

We can now run uses_resources like so:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

358:8 Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

1 void *run_with_handle_defer(void *(*fn)(void*), void *arg) {

2 seff_coroutine_t *k = seff_coroutine_new(fn, arg);

3 handle_defer(k);

4 seff_coroutine_delete(k);

5 }

6 int main(void) { run_with_handle_defer(uses_resources, NULL); }

2.4 Composition
An important property of effect handlers is their composability [14][12, Chapter 2]. This allows

different libraries to define different effects which programmers can then mix within the same

function. To illustrate effect handler composition, we use the defer effect from the previous section

together with a new effect for defining generators. Throughout the rest of this subsection we

assume that all the definitions from §2.3 are still in scope.

A generator is a function that yields a stream of multiple values, suspending its execution each

time a value is produced and resuming from the same place next time it is invoked. In languages

without native support for generators, they can be simulated by a global transformation. With

effect handlers we can implement them directly using a single effect.

1 DEFINE_EFFECT(yield_str, 5, void, { char *elt; });

In this case, the yield_str effect yields a string. As we wish to compose it with defer (whose tag is

0) we have taken care to give it the tag 1.

Any function can now be turned into a generator by having it perform the yield_str effect. For

example, we now define a generator that yields squares up to a certain number, formatted as

heap-allocated strings. We use the previously-defined malloc_scoped function to reserve memory.

1 void *squares(void *arg) {

2 int64_t limit = (size_t)arg;

3 for (int64_t i = 0; i < limit; i++) {

4 char *str = malloc_scoped(32);

5 sprintf(str, "%5lu", i * i);

6 PERFORM(yield_str, str);

7 }

8 return NULL;

9 }

To consume the elements of this generator, we must define a handler for it. A more sophisticated

generator library could provide iteration combinators. Here we simply define a print_all function

that prints each element produced by the generator in sequence.

1 void *print_all(void *arg) {

2 seff_coroutine_t *k = seff_coroutine_new(squares, arg);

3 while (true) {

4 seff_request_t req = seff_resume(k, NULL, HANDLES(yield_str));

5 switch (req.effect) {

6 CASE_EFFECT(req, yield_str, { puts(payload.elt); break; })

7 CASE_RETURN(req, { seff_coroutine_delete(k); return NULL; })

8 }

9 }

10 }

If we run print_all directly, then it crashes on the first call to malloc_scoped, as there is no handler

for defer in scope. Instead, we use the run_with_handle_defer combinator from §2.3.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

Effect Handlers for C via Coroutines 358:9

1 int main(void) { run_with_handle_defer(print_all, (void*)50); }

This code prints the squares of all integers from 0 to 50, while also ensuring that all of the memory

allocated by the underlying generator is freed. Notice that the handlers for the yield_str and defer

are independent — they can be defined in separate modules and combined freely by the programmer.

It is still necessary, however, to take care with their use: if the programmer were to nest them in

the opposite order, for example, the handler for defer would free all the generated strings as soon

as the squares generator has finished running, which can lead to use-after-free issues.

2.5 Overriding and default handlers
An effect eff is always handled by the innermost handler whose effect set includes eff. In contrast

to function calls, where the callee is determined statically at compile-time, this allows us to redefine

the handling of effects at runtime, providing a form of dynamic binding.

Consider a print effect for printing strings, along with a function print_point that formats a point

given by two coordinates and prints it, and an example function that prints two points.

1 DEFINE_EFFECT(print, 6, void, { char *msg; });

2 void print_point(int64_t x, int64_t y) {

3 char buffer[256];

4 sprintf(buffer, "{ x: %ld, y: %ld }", x, y);

5 PERFORM(print, buffer);

6 }

7 void *example(void *arg) { print_point(0, 0); print_point(1, 2); }

If print was simply a function then the behaviour would be fixed, but because it is an effect we can

substitute in different implementation at runtime. We will give two different handlers for print.

Our first handler simply prints to standard output. It is a special default handler [8].

1 void *default_print(void *print_payload) {

2 EFF_PAYLOAD_T(print) payload = *(EFF_PAYLOAD_T(print) *)(print_payload);

3 fputs(payload.msg, stdout);

4 return NULL;

5 }

A default handler is given by a function of type void *(*)(void *) (here default_print) which handles

a given effect if no other handler is in scope. Default handlers do not interrupt normal control flow,

but instead execute as plain functions would, with control returning to the caller code immediately

after the body of the handler is executed. This is by necessity: since they are not installed by a

call to seff_resume, there is no calling context for them to return to; instead, they must resume

immediately (by returning a value) or abort the program altogether (for example, by a call to exit).

Note that the API for default handlers is not type-safe: the payload of the handled effect is passed

as a void pointer that must be manually cast to the correct type with the EFF_PAYLOAD_T macro, which

desugars to the payload type of the given effect tag.

Our second handler is a standard (non-default) handler that stores all output in a buffer.

1 void *with_output_to_buffer(char *buffer, void *(*fn)(void*), void *arg) {

2 seff_coroutine_t *k = seff_coroutine_new(fn, arg);

3 while (true) {

4 seff_request_t req = seff_resume(k, NULL, HANDLES(print));

5 switch (req.effect) {

6 CASE_EFFECT(req, print, {

7 strcpy(buffer, payload.msg); buffer += strlen(payload.msg); break; })

8 CASE_RETURN(req, { seff_coroutine_delete(k); return payload.result; })

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

358:10 Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

9 }

10 }

11 }

We install default_print as a default handler by calling seff_set_default_handler and providing the

tag of the effect to be handled. For convenience, libseff provides the EFF_ID macro which expands

to the tag (id) of the given effect.

1 int main(void) {

2 seff_set_default_handler(EFF_ID(print), default_print);

3 example(NULL);

4 char buffer[256];

5 with_output_to_buffer(buffer, example, NULL);

6 }

After installing the default handler, the direct call to example sends the output to the screen. In

contrast, the call inside with_output_to_buffer sends the output to buffer.

3 Implementation
This section provides an overview of the implementation strategy for libseff, and some of the

tradeoffs involved. Unlike other implementations [10, 18, 29] libseff does not keep a separate stack
of handlers, but instead handlers coincide with coroutines: the context that resumed a coroutine

becomes the handler for any effects that may be performed within the coroutine. As a coroutine

executes, it keeps a pointer to its parent coroutine, creating a runtime configuration where the

currently executing coroutine acts as the top of a stack of active coroutines. This list plays a role

analogous to the handler stack in other implementations, obviating the bookkeeping and additional

allocations involved in keeping track of both continuations and handlers.

3.1 Runtime Representation
During the execution of the program, any effectful computation is instantiated as an object of type

seff_coroutine_t. This object stores the execution state of the coroutine and its stack frame as well

as the set of effects that can be handled from it. In detail, each coroutine object contains:

• A coroutine state, which can be one of RUNNING, SUSPENDED or FINISHED and should be understood

as preconditions to the libseff API. A SUSPENDED coroutine can be resumed via seff_resume

. A RUNNING (active) coroutine can be suspended. A FINISHED coroutine cannot be resumed

or suspended. Multiple coroutines can be simultaneously RUNNING even in single-threaded

applications despite only one of them actually being executed at a given point in time (this

can happen when a coroutine spawns and resumes another coroutine, at which both parent

and child are RUNNING). Similarly, the child of a SUSPENDED coroutine can itself be RUNNING. These

behaviours will be illustrated later by means of a simple example.

• A set of handled effects, that is, the effects that can be handled by suspending this coroutine.

• A pointer to the parent coroutine, used to locate the appropriate handler when performing an

effect.

• A resumption context representing the execution state when the coroutine was last resumed

or suspended. When the coroutine is RUNNING, the resumption context represents the execution

state of the context in which it was last resumed, and is used for suspending the coroutine.

When the coroutine is SUSPENDED, it instead represents the execution state of the coroutine at the

moment of suspending, and is used for resuming it. The encoding of the resumption context

is architecture-dependent. For x86-64 Linux, the only architecture currently supported, it

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

Effect Handlers for C via Coroutines 358:11

consists of the instruction, stack, and frame pointers, as well as all callee-saved registers

according to the standard System V calling convention.

• A stack pointer to a region in the heap containing the allocated stack space for the coroutine.

As explained in more detail in §3.3, libseff supports different stack management modes.

Depending on the mode, the stack pointer may be a pointer to a fixed-size heap-allocated

stack, or to a linked list of heap-allocated “stacklets”.

A pointer to the coroutine being currently executed (if any), as well as a pointer to the top of

the system stack are also stored in global (more precisely, thread-local) variables. As explained

in §3.3.2, this information is used for avoiding allocating larger stack frames when calling library

code from a coroutine. For a concrete example, consider the following code.

1 DEFINE_EFFECT(eff1, 0, void, {});

2 DEFINE_EFFECT(eff2, 1, void, {});

3 void *g(void *arg) { PERFORM(eff1); PERFORM(eff2); }

4 void *f(void *arg) {

5 seff_coroutine_t *k2 = seff_coroutine_new(g, NULL);

6 seff_request_t req1 = seff_resume(k2, NULL, HANDLES(eff2));

7 seff_request_t req2 = seff_resume(k2, NULL, HANDLES(eff2));

8 }

9 void main() {

10 seff_coroutine_t *k1 = seff_coroutine_new(f, NULL);

11 seff_request_t req1 = seff_resume(k1, NULL, HANDLES(eff1) | HANDLES(eff2));

12 seff_request_t req2 = seff_resume(k1, NULL, HANDLES(eff1) | HANDLES(eff2));

13 }

It sets up two nested coroutines and performs effects eff1, eff2 from the innermost one. After both

coroutines have been created and started, and immediately before the call to PERFORM(eff1), the state

of the system is as depicted in Figure 1. Both coroutines have been instantiated and are RUNNING, with

the current_coroutine variable pointing to k2. As k1 and k2 are both RUNNING, their resumption contexts

both represent the execution state immediately before they were started (for k1 the execution state

right before the seff_resume call in line 11, and for k2 the one on line 6).

When performing eff1, the linked list of coroutines is traversed upwards, starting at k2, to locate

a suitable handler. In this case, eff1 is in the effect set of k1, so PERFORM(eff1) immediately suspends

k1 and relinquishes control to its environment, which is then responsible for handling the effect.

The system state is depicted in Figure 2: coroutine k1 is SUSPENDED and its resumption is updated

with the execution state immediately preceeding the call to PERFORM(eff1) inside the stack frame of

the call to g. Note that k2 remains unchanged and is still RUNNING.

After eff1 has been handled (in this case the request object req1 is simply ignored), execution

of k1 is resumed on line 12 and continues until the call to PERFORM(eff2). Now the stack of active

coroutines is traversed again until a handler for eff2 is found. As eff2 is in the effect set of k2, it

is suspended and control is transferred back to line 6 in f. The system state corresponds to the

diagram in Figure 3. Note that the resumption for k1 is updated with the execution state of the

now-paused coroutine.

In order to optimise the handling of effects, libseff takes particular care when passing the

payload of an effect from the coroutine that performs the effect to the context that handles it. Effect

payloads are marshalled, together with an effect tag, into a seff_request_t struct which effectively

functions as an untyped discriminated union. In many high-level languages, creating such a data

structure would involve allocating memory on the heap and thus incur a significant performance

overhead.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

358:12 Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

current_coroutine

system_stack

main

Free space

Free space

k1

k2

RUNNING

RUNNING

eff1, eff2

eff2
parent

parent

resumption

resumption

stack

stack

f

g

NULL

Fig. 1. Before PERFORM(eff1)

current_coroutine

system_stack

main

Free space

Free space

k1

k2

SUSPENDED

RUNNING

eff1, eff2

eff2
parent

parent

resumption

resumption

stack

stack

f

g

NULL

Fig. 2. After PERFORM(eff1)

current_coroutine

system_stack

main

Free space

Free space

k1

k2 SUSPENDED

RUNNING

eff1, eff2

eff2
parent

parent

resumption

resumption

stack

stack

f

g

NULL

Fig. 3. After PERFORM(eff2)

To avoid allocations, libseff uses two low-level tricks: first, the effect payload is stored directly

on the stack of the coroutine performing it, and the handler receives a pointer into this stack-

allocated payload, which also saves the overhead of copying. Second, the seff_request_t struct

consists of just two 64-bit fields: the tag and a pointer to the payload; hence it can be returned from

seff_resume directly via processor registers.

As a consequence of this, the programmer must take care not to hold on to pointers to effect

payloads past the lifetime of the coroutine, or indeed between calls to seff_resume. The safest usage

pattern is to immediately copy the payload from the stack of the child coroutine to the stack of

the handler. This is done automatically by the CASE_EFFECT macro and eliminates the risk of invalid

memory access provided that every call to seff_resume is immediately followed by CASE_EFFECT.

3.2 Primitives
So far, we have illustrated only the higher-level interface provided by libseff, which is intended

for general use and provides convenience and a degree of compiler checking of input and output

types. Internally, operations such as the PERFORM macro are implemented in terms of a lower-level

set of primitives, which we now describe.

At the lowest level, libseff has three context-switching primitives used for resuming or sus-

pending an active coroutine, which are written directly in assembly.

1 seff_request_t seff_resume(seff_coroutine_t *k, void *arg, effect_set handled);

2 void *seff_yield(seff_coroutine_t *self, effect_id effect, void *payload);

3 void seff_exit(seff_coroutine_t *self, effect_id effect, void *payload);

We have already discussed seff_resume as it is also part of the higher-level interface. The seff_yield

primitive suspends the coroutine self and returns control to the point where it was last resumed.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

Effect Handlers for C via Coroutines 358:13

The caller is responsible for ensuring that self is either the current coroutine or an ancestor of it,

otherwise the call to seff_yield will result in undefined behaviour. (It would be possible to check

this condition at runtime by traversing the list of coroutines to ensure that the coroutine being

suspended is reachable from the currently active one, but we judged the overhead to be prohibitive.)

The seff_exit primitive behaves similarly to seff_yield, with the difference that a coroutine that is

suspended via seff_exit is considered terminated and can no longer be resumed. This means that

the execution context need not be saved, so seff_exit is meant to be used as a more efficient version

of seff_yield for exception-like effects that are expected to abort execution of the performing

coroutine.

Both seff_yield and seff_exit take an effect_id argument, which is used to construct a request

object. This argument is not, however, used to locate an appropriate handler. Instead, control is

always relinquished to the last resumer of the given coroutine, whether or not it is able to handle

the given effect.

A separate collection of primitives support handler-lookup.

1 seff_coroutine_t *seff_locate_handler(effect_id effect);

2 void *seff_perform(effect_id effect, void *payload);

3 void seff_throw(effect_id effect, void *payload);

The seff_locate_handler primitive traverses the stack of currently active coroutines to the first

whose handled_effects bitset includes the effect effect. The seff_perform and seff_throw primitives

are analogous to seff_yield and seff_exit, except that they use the given effect_id to select which

coroutine to suspend. Semantically seff_perform(e, p) is equivalent to seff_yield(seff_locate_handler

(e), e, p), except that if no matching handler is found then the former will invoke a default handler,

whereas the latter will dereference a null pointer.

The PERFORMmacro (illustrated in §2) is the preferred interface for performing an effect. It is defined

as a thin wrapper over seff_perform. A call to PERFORM(eff, args...) constructs a payload object of

type EFF_PAYLOAD_T(eff) on the current stack frame, initialises it with the provided arguments, and

then calls seff_perform with the effect and a pointer to the stack-allocated payload. Unlike in other

systems with resizable stacks [19, 23, 37], libseff guarantees that coroutine’s stack always remains

at the same location; hence pointers into the stack remain valid when the coroutine is suspended.

3.3 Stack Management
One of the most important technical decisions when implementing stackful coroutines is how stack

frames are allocated and, most importantly, resized. When designing libseff, we considered four

different approaches, which we detail below. Currently, the first two (fixed and segmented stacks)

are implemented and can be selected via a build flag (but should not be mixed together in the same

project). The third approach (overcommiting) is planned but currently unimplemented. The last

(stack copying) is unsuitable for C as pointers into the stack are pervasive.

3.3.1 Fixed-Size Stacks. The simplest approach to stack management is to reserve a fixed-size block

of memory to hold the coroutine stack. This has the dual advantages of being easy to implement and

introducing no additional runtime overhead. However, it can lead to a significant waste of memory.

As it is hard to determine in advance how much stack space a given program will eventually need,

the programmer must preemptively allocate larger stacks than necessary in order to mitigate the

risk of stack overflow.

3.3.2 Segmented Stacks. Segmented stacks, also known as split stacks, replace the traditional

contiguous fixed-size stack area by a linked list of stack segments or “stacklets”. The compiler

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

358:14 Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

1 lea -0x108(%rsp),%r11

2 cmp SEFF_CURRENT_STACK_TOP,%r11

3 ja 8

4 mov $0x108,%r10d

5 mov $0x0,%r11d

6 call <__morestack>

7 ret

8 push %rbp

9 mov %rsp,%rbp

10 ...

11 pop %rbp

12 ret

Stack overflow check

Segment and argument size

1 void split_stack() {
2 char buffer[256];
3 ...
4 }

Fig. 4. Segmented Stack Prelude in Clang-12

instruments every function with a small prelude which checks whether the current stack is large

enough to accommodate a new stack frame for the function; if not, a new stacklet is allocated.

Conveniently, both GCC and Clang support segmented stacks via the -fsplit-stack flag, which

adds stack overflow checks to every function preamble. As depicted in Figure 4, the compiler-

generated prelude checks for a potential stack overflow and, if required, calls a routine __morestack

which is responsible for allocating a new segment, copying any parameters that were passed through

the stack, and setting the return address to point to an epilogue that frees the newly-allocated

stacklet. A basic default implementation of __morestack is offered by both compilers, but libseff
defines its own version in order to obtain finer-grained control over memory allocation.

Segmented stacks allow programmers to write code without being concerned about stack frame

sizes. However, segmented stacks are not without disadvantages. If no memory needs to be allocated,

the overhead of the function prelude is mostly negligible, but it is possible for a function call inside

a tight loop to require the repeated allocation and deallocation of a large segment, resulting in

a significant slowdown. This phenomenon is sometimes known as the “hot split” problem and

motivated the Go designers to move away from segmented stacks [23]. The libseff library

mitigates this issue by holding its stacklets in a doubly-linked list; when a stacklet is no longer

necessary, instead of being released immediately it is simply kept at the end of this list. If a

subsequent function call requires the allocation of additional stack memory then this stacklet can

be recycled, avoiding an additional allocation. As we shall see in §4.1.2, with this optimisation, the

worst-case cost of calling a function inside a hot split loop is 11x the cost of a normal function call.

This may sound excessive, but in practice is not a significant problem: if the cost of the hot split

overhead dominates the execution time of the called function, then the function is small and so

will be inlined by the compiler. Nonetheless, there is a plenty of scope for further improvement:

micro-optimisations such as lowering the segment reuse code path to assembly, analysis-based

optimisations like preemptively inlining functions that are likely to cause a hot split, or even more

sophisticated runtime detection of such cases [22].

Another concern about code using segmented stacks is interoperability with library code. The

use of segmented stacks relies on instrumenting every function with an overflow check, but any

functions that are compiled separately (including the standard library, unless rebuilt from scratch

with support for segmented stacks enabled) will lack this prelude and any stack overflow will cause

a crash, or worse, silent memory corruption. To avoid this issue, Clang and GCC’s implementation

of segmented stacks conservatively requests a much larger amount of stack space if a function calls

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

Effect Handlers for C via Coroutines 358:15

any other functions that have been compiled without segmented stack support. This is a pragmatic

compromise, but can lead to significantly higher memory consumption than necessary.

When using libseff, the space overhead can usually be avoided: a function not compiled

with segmented stacks enabled cannot make use of the context-switching features of libseff, and

therefore can be run directly on the system stack instead of the stack of whichever coroutine

happens to be executing. This obviates the need to preemptively allocate a larger segment. For this

purpose, libseff defines the MAKE_SYSCALL_WRAPPER macro, which wraps a given function in code

that handles switching to and from the system stack.

1 MAKE_SYSCALL_WRAPPER(int, puts, const char *s);

2 // Expands to:

3 int __attribute__((no_split_stack)) puts_syscall_wrapper(const char *c);

4 __asm__("puts_syscall_wrapper:"

5 "movq SEFF_CURRENT_STACK_TOP, %rax;"

6 "testq %rax, %rax;"

7 "jz puts;"

8 "movq %rsp, %fs:_seff_paused_coroutine_stack@TPOFF;"

9 "movq %fs:_seff_system_stack@TPOFF, %rsp;"

10 "movq %rax, %fs:_seff_paused_coroutine_stack_top@TPOFF;"

11 "movq $0, SEFF_CURRENT_STACK_TOP;"

12 "callq puts;"

13 "movq %fs:_seff_paused_coroutine_stack@TPOFF, %rsp;"

14 "movq %fs:_seff_paused_coroutine_stack_top@TPOFF, %rcx;"

15 "movq %rcx, SEFF_CURRENT_STACK_TOP;"

16 "retq;");

(Incidentally, Chez Scheme effectively works the same way for foreign calls, detangling them

from Scheme’s first-class continuations that are often used to implement coroutines and that are

implemented with segmented stacks.)

In the example above, a new function puts_syscall_wrapper is defined which has the same interface

as the standard library function puts, but will check the calling context and switch to the system

stack instead of allocating a stack segment if it was called from a coroutine. This macro can generate

a wrapper for any function that passes all arguments and its return value through processor registers.

The programmer must take care to avoid using it if the calling wrapped function would need to

pass parameters or return values via the stack.

3.3.3 Overcommiting. Another approach to avoid stack overflow without the need to physically

resize a coroutine’s stack is to overcommit a large amount of (virtual) memory for each coroutine,

leaving it to the operating system to allocate physical memory as necessary. This approach is used

by libmprompt, striking a judicious balance between performance and convenience in systems

that support it. However, we intend libseff to be also deployable in embedded systems, which do

not always support virtual memory or a large address space. Thus, while we plan to eventually

provide virtual memory-based stack management for libseff, it is not a top priority.

3.3.4 Stack Copying. A popular approach in managed languages is stack copying: coroutines are
initialised with a small, fixed-size stack and dynamic checks for stack overflow are inserted (much

like in the case of segmented stacks). However, whenever a coroutine requires more stack space

than is available, instead of initialising a new segment, an entire contiguous region is allocated to

serve as the new stack and the contents of the old stack are copied onto it. This approach avoids

the hot split problem, although it incurs the extra cost of copying the stack when resizing. Alas,

stack copying is unsuitable for a low-level language like C as the process of copying the stack

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

358:16 Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

necessarily invalidates any pointers into it. This is not an insurmountable obstacle in some systems,

for instance Go automatically rewrites any pointers into the stack as part of stack copying, but

such rewriting relies on a degree of runtime information unavailable to a compiled C program.

4 Performance
We evaluate libseff on a range of benchmarks, comparing it to other effect handler implementa-

tions as well as other concurrency mechanisms. All benchmarks were run on an Intel
®
Xeon

®
Gold

6154 x86-64 running Ubuntu 20.04, compiled with the clang 12.0.0 compiler. Except when stated

otherwise we used libseff with segmented stacks.

4.1 Microbenchmarks
All benchmarks in this section are single-threaded.

4.1.1 State. Our first microbenchmark is based on the mutable state example of §2.1.

1 void *stateful(void *depth) {

2 if (depth == 0){ for (int i = PERFORM(get); i > 0; i = PERFORM(get)) PERFORM(put, i - 1);

3 } else {

4 seff_coroutine_t *k = seff_coroutine_new(stateful, (void *)(uintptr_t)(depth - 1));

5 seff_resume(k, NULL, HANDLES(error)); seff_coroutine_delete(k);

6 }

7 return NULL;

8 }

The stateful function recursively builds a stack of nested handlers for the error effect up to a

specified depth. In the base case a counter, implemented using get and put, is decremented in a loop.

The error effect is never actually performed, it is only used to construct the nested handlers sitting

between the code performing the get and put effects and the code handling it.

In any effect handler framework, performing an effect involves two steps: (a) locating the

appropriate handler; and (b) transferring control to the handler. This benchmark measures the cost

of both steps and how they scale depending on the number of times an effect is performed and the

depth of the target handler.

To separate out the cost of locating the handler from that of transferring control to the handler,

we implement two versions of the benchmark. The first is the one above, where every execution

of an effect triggers a search for its handler. The second is an optimised version that arises from

observing that the handlers for get and put never change during execution of the loop, which allows

us to locate the handlers once and then yield directly to the coroutine that handles them. This

is shown in the code below, where YIELD wraps seff_yield, in the same way that PERFORM wraps

seff_perform. If libseff were used as a backend for a higher-level language with effects, a compiler

could systematically apply this optimisation.

3 seff_coroutine_t *put_handler = seff_locate_handler(EFF_ID(put));

4 seff_coroutine_t *get_handler = seff_locate_handler(EFF_ID(get));

5 for (int i = YIELD(get_handler, get); i > 0; i = YIELD(get_handler, get))

6 YIELD(put_handler, put, i - 1);

We compare against several libraries. For each library we implement a general case and an

optimal case to compare against both of our implementations: native is plain C without effect

handlers or any kind of dynamic dispatching of operations; cpp-effects [10] is a C++ effect

handlers library; libhandler [18, 19] and libmpeff [20] are other C effect handlers libraries.

The cpp-effects optimal case avoids handler lookups in a similar fashion to libseff, but also
eliminates context switching by requiring that the handler for get and put resumes immediately

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

Effect Handlers for C via Coroutines 358:17

(a) General case (b) Optimal case (c) Optimal case, depths up to 10

Fig. 5. State Benchmark Results

Multiplications 0 5 10 15 20

native 1.27 1.00 1.00 1.00 1.00

libseff baseline 1.08 1.00 1.00 1.00 1.00

libseff fixed 1.00 1.00 1.00 1.00 1.00

libseff hot split 10.92 2.25 1.29 1.00 1.00

libseff dealloc 33.94 6.91 3.83 2.69 2.17

(a) Relative execution time of the hot split benchmark
(b)

Fig. 6. Hot Split Results

and does not need to capture a continuation. The libmpeff and libhandler optimal cases also

similarly avoid context switches, but they do not allow for caching handler lookups.

Figure 5a shows the general case. All effect handler implementations degrade significantly as

the number of installed handlers increases, with libseff being consistently the fastest. Figure 5b

shows the optimal case. The elimination of traversing the stack of handlers gives libseff and

cpp-effects a distinct advantage. Remarkably, libseff is asymptotically the fastest implemen-

tation despite not being able to optimise away the context switching when performing an effect.

For both libhandler and libmpeff the optimal case is still affected by recursion depth. Whereas

libhandler speeds up by avoiding copying the stack in this case, libmpeff shows little improve-

ment over the general implementation when nested handlers are introduced. Figure 5c shows the

optimal case with recursion depth less than 10. Whereas, libmpeff and libhandler are initially
faster than both cpp-effects and libseff, the cost of searching for handlers quickly becomes

a bottleneck, being slower than libseff beyond recursion depth 3. Surprisingly, cpp-effects
performs better beyond a certain depth. Some preliminary testing indicates that this is due to cache

alignment effects.

4.1.2 Hot Split. The next benchmark is designed to quantify the cost of the hot split problem, as

discussed in §3.3.2. It forces a function call to require more stack space than available in the current

segment, and therefore request a larger one every time it is called. This function is then repeatedly

called from a tight loop executing 10
8
times.

We compare four different configurations for libseff against the optimal case in plain C without

segmented stacks, where a function call translates to exactly one assembly call operation. We vary

the called function slightly to include a number of floating point multiplications, ranging from 0 to

20. Figure 7 shows the resulting compiled code for the native case, where the movsd instructions

are only present if there is at least one multiplication and in between there is a fixed number of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

358:18 Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

mulsd operations. Lines 1 and 9 reserve and release a large array on the stack. When using libseff
with segmented stacks, this function includes runtime checks similar to those of Figure 4.

1 sub $0x788,%rsp

2 movsd 0x191(%rip),%xmm0

3 movsd 0x2099(%rip),%xmm1

4 mulsd %xmm0,%xmm1

5 ...

6 mulsd %xmm0,%xmm1

7 movsd %xmm1,0x2041(%rip)

8 lea -0x80(%rsp),%rax

9 add $0x788,%rsp

10 retq

Repeated m times

Only present when m > 0

Fig. 7. Hot Split Function Body in Assembly (𝑚 is
the number of multiplications)

Table 6a shows the results, comparing native
with four different variations of libseff. The base-
line variation performs the same function call,

repeatedly checking that there is enough space

but never requesting a larger segment; fixed uses

libseffwith a fixed-size stack (§3.3), which yields
exactly the code in Figure 7; hot split is the case we
are most interested in, where a new segment is re-

quested every time the function is called; and deal-
loc is a special case where each segment is freed

after it is used instead of being recycled (§3.3.2).

The results show that the hot split problem is

observable in libseff, causing a call to an empty

function to be 11 times slower. However, as we

increase the number of operations executed by, the function the relative overhead incurred by

the segment switching rapidly diminishes. The cost of a mere 13 multiplications dominates this

overhead, and the difference in cost of the function call becomes negligible, as shown in Figure

6b. The results for dealloc illustrate the significant performance difference that recycling segments

provides.

When no multiplications are inserted, we observed that changing the position of the functions

in the compiled code, by adding nop instructions, could affect performance by up to 40%, which

explains why both fixed and baseline are faster than native. A similar behaviour was noted in [29].

when evaluating the cost of low level operations.

The hot split problem is only observable at all if functions are not inlined or completely optimised

away. Modern compilers invariably do inline functions that are simple enough that the call is the

dominant cost. Indeed, to force the compiler to generate the code from Figure 7 without writing

the assembly instructions by hand it was necessary to deliberately disable inlining and introduce

empty inline assembly blocks.

4.2 Macrobenchmarks
In this section we benchmark libseff against other systems running whole applications.

4.2.1 HTTP Server. Our first macrobenchmark is a simple HTTP server similar to the one used to

benchmark OCaml 5 (formerly Multicore OCaml) [29, 35] and to the Plaintext benchmark from

TechEmpower [36]. The server must receive GET requests and respond to them asynchronously

with a constant text/plain message.

The libseff implementation uses a single coroutine per connection that is kept alive until the

connection is closed; it is based on a multithreaded work-stealing scheduler backed by a number of

OS threads which we set to 1, 8, and 16. We use asynchronous I/O functions built on top of our

scheduler and a small but complete HTTP request parser [24].

We used the wrk2 tool [38] to generate the workload and record the results; 32 OS threads were

dedicated to the clients, while varying the requests per second and the connections as shown in

the figures. Each experiment was run for 30 seconds.

We compare four implementations:

• nethttp_go is built using Go’s net/http package, that is part of the standard library of the

language.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

Effect Handlers for C via Coroutines 358:19

(a) 1 OS thread (b) 8 OS threads (c) 16 OS threads

Fig. 8. Requests Per Second Served Per Offered (with 1000 live connections)

(a) 1 OS thread (b) 8 OS threads (c) 16 OS threads

Fig. 9. Maximum Memory Consumed (with 1000000 requests offered per second)

• rust_hyper is a server built on top of Hyper, a highly performant HTTP library for Rust for

the Tokio runtime, a state of the art runtime for Rust async/await concurrency.

• cohttp_eio is a server implemented for OCaml 5 over an effect based I/O library [33] and an

HTTP library built on top of it [34].

• nginx is a server based on the Nginx framework.

The first two are the ones used to compare against the original implementation of effect handlers

in OCaml [29]. The third is an updated version of the OCaml code used in that comparison. The

fourth is one of the most widely used industry-standard web servers.

Figure 8 shows the throughput when running on 1, 8, and 16 OS threads. libseff and rust_hyper
perform consistently better than nethttp_go, cohttp_eio, and nginx, regardless of the number of OS

threads. However, nginx, does not scale aswell as any of the other frameworkswhen extra OS threads

are added. Figure 9 shows maximum memory consumption. We observed the maximum memory

used by each implementation by varying the number of live connections, which coincides with the

maximum number of coroutines spawned by the libseff implementation. Both nethttp_go and
cohttp_eio have the most memory consumption of all frameworks. Again, rust_hyper and libseff
are comparable whereas nginx is consistently better, which we expect is due to it being based on

an event-driven architecture rather than coroutines.

Fig. 10. Prefetch Benchmark Results
(large shapes mark the fastest exe-
cution for each framework)

4.2.2 Prefetching. Our last macrobenchmark, inspired by

Jonathan et al. [13], uses C++’s coroutines to improve perfor-

mance in memory-bound applications by alternating multiple

concurrent runs and prefetching memory locations to cache be-

fore executing reads. The application executes multiple binary

searches of different values over the same array. The array is big

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

358:20 Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

enough to not fit entirely in cache, and accesses to memory are

not linear, making cache misses a significant part of the cost.

The naïve version executes searches sequentially; both the

C++ coroutine implementation and the libseff implementation

interleave multiple searches. Each search hints to the CPU to

prefetch some address from memory and then, in a round-robin

manner, moves on to the next search. Before execution returns to

the coroutine that requested the prefetch, the values will already

be stored in the cache and ready to be read, minimising cache

misses. By varying the number of concurrent searches we can minimise the waiting time between

execution returning to the search and the read being completed.

Whereas the C++ coroutine implementation is explicit about prefetching, then yielding execution,

and finally reading the memory upon return, the libseff version treats dereferencing a memory

location as an effect; it is the responsibility of the handler to prefetch the memory location, suspend

the coroutine for some time, and eventually provide it with the contents of the memory.

1 bool seff_binary_search(int const *first, size_t len, int val) {

2 while (len > 0) {

3 size_t half = len / 2; int x = PERFORM(deref, first + half);

4 if (x < val) { first += half + 1; len = len - half - 1; }

5 else { len = half; }

6 if (x == val) return true;

7 }

8 return false;

9 }

The code above is a simplified version of binary search from the libseff benchmark. The main

difference from regular binary search is the effectful computation of the dereference operation

PERFORM(deref, first + half). Figure 10 shows the results: libseff incurs an overhead over the

naïve sequential implementation whenever too few or too many streams are used but significantly

improves upon it in the best case, taking around 2/3 of the time. The version with C++ coroutines

is noticeably faster and allows for more concurrent searches to be executed simultaneously; this

is unsurprising as C++ stackless coroutines have full compiler support and leverage a smaller

memory footprint and stack allocation for better cache locality. Nonetheless, these results show

that libseff effects are lightweight and efficient enough to materialise performance gains from

cache prefetching, without these being obscured by context-switching overhead.

4.3 Effect Handlers Benchmark Suite
In order to compare libseff against a range of other effect handlers implementations and libraries,

we used the Effect Handlers Benchmark Suite [3]. This suite comprises a somewhat ad hoc collection

of small programs contributed by the creators of various effect handler frameworks. Many of them

are specifically designed to test features and optimisations that are not directly aligned with the

goals of libseff. Nonetheless, we still include results for those benchmarks which are directly

implementable in libseff using effect handlers.

The results are presented in Table 11. We omit those benchmarks that use multishot continuations

as (like OCaml) libseff does not support them. We also omit benchmarks that make no use of

effect handlers at all. Some benchmarks (marked n/d for “no data”) are unimplemented or failed for

certain frameworks.

We divide the benchmarks into three groups, based on on how the handlers make use of the

continuations. The first group (countdown, iterator, sieve) tests the case where continuations are

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

Effect Handlers for C via Coroutines 358:21

Name countdown iterator sieve parsing product generator resume

libseff 5.97 0.38 6.71 1.85 0.15 0.66 0.32

libmpeff 2.68 0.18 36.08 1.40 0.14 4.92 1.37

OCaml 5.44 0.64 4.96 4.18 0.15 1.16 0.77

eff 0.21 4.08 15.68 1.58 0.80 3.33 0.52

effekt 0.12 0.14 n/d 0.28 0.43 n/d 0.39

koka 3.79 0.43 4.50 6.48 3.28 20.79 n/d

Fig. 11. Effect Handler Benchmark Suite results. Times in seconds

always resumed in tail position. In other words, they really only make use of dynamic binding, and

all effects could just as well be implemented as plain functions without capturing any continuations

at all. Several other frameworks explicitly optimise for this scenario, either by directly avoiding

continuation capture altogether, or by performing aggressive inlining of handlers, or both; the

libseff library does not. The second group (parsing, product), tests the case where continuations

are either resumed in tail position or not resumed at all (i.e. exceptions). Again, several other

frameworks explicitly optimise for exceptions; the libseff library does not. The third group

(generator, resume) tests the case where a continuation must be captured. This is the most relevant

group as it represents the pattern of use required in order to implement the kind of concurrency

feature that libseff is designed to support.

Tail-resumptive handlers. The countdown benchmark is similar to our state benchmark with

a fixed depth of 0. As with the state benchmark, libmpeff performs better on the countdown

benchmark than libseff, as libmpeff optimises tail-resumptive handlers by avoiding capturing a

continuation, whereas libseff does not. The eff, effekt, and koka languages also significantly

outperform libseff here as they each apply similarly aggressive optimisations. The iterator and

sieve benchmarks see similar results, though the aggressive optimisations do not always succeed

(notably in the case of the somewhat more complex sieve benchmark). Intriguingly, OCaml, which
does not specifically optimise for this case, slightly outperforms libseff in the countdown and

sieve benchmarks.

Exception handlers. The parsing benchmark uses both tail-resumptive and exception handlers.

Again, other frameworks which aggressively optimise for the case of tail-resumptive handlers (es-

pecially effekt) enjoy significant speedups from such optimisations. The product benchmark uses

only exception handlers. Here libseff performs on a par with the fastest frameworks libmpeff
and OCaml. This is despite libmpeff explicitly optimising for exceptions and OCaml using its built-in
native exceptions.

Handlers that capture continuations. In the two benchmarks that actually require capturing

continuations, representing the kind of use-case that libseff is designed for, libseff outperforms

all other frameworks.

4.4 C/C++ Coroutine Libraries
Thoughwe view libseff as first and foremost an effect handlers library, we see its primary use-case

as a means for implementing concurrency features such as those provided by more conventional

coroutine libraries. With that in mind, we include some further microbenchmarks that compare

libseff with existing C/C++ coroutine frameworks.

Taking inspiration from the Effect Handler Benchmark Suite, we implemented iterators and

generators using both C++20 coroutines (via Lewis Baker’s cppcoro [2] library) and Tencent’s

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

358:22 Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

libco [37]. These benchmarks also coincide with the tree iterator and lazy streams benchmarks

of Prokopec and Liu [27] in their study of coroutines in Scala. We show the results in Table 12.

For the iterator benchmark, cppcoro is significantly faster than the other libraries. By analysing

the binary generated by cppcorowe observed that the compiler removes any trace of the coroutine,

essentially compiling the code to a for loop without context switches. This optimisation is reminis-

cent of the kind of aggressive optimisations performed by effekt in the countdown and iterator

benchmarks of §4.3. The libseff is around 4x faster than libco on the iterator benchmark.

Name iterator generator

libseff 0.38 0.66

cppcoro 0.01 1.15

libco 1.55 1.33

Fig. 12. libseff compared to other coroutine libraries. Times in seconds

For the generator benchmark, libseff is 1.7x faster than cppcoro and 2x faster than libco. The
performance degradation in cppcoro is caused by its use of stackless coroutines, which, depending

on the implementation strategy and optimisations involved, can incur additional overhead from

context-switching across deeply nested chains of coroutines [10].

5 Usability
In this section we briefly compare the experience of writing programs directly in libseff and

libmpeff. Whereas we explicitly set out to design libseff to support C programmers to write

effect handlers directly, libmpeff is aimed at compiler backends.

We implement mutable state as an effect in both libseff and libmpeff. The libseff code is
from Section 2.1 and the libmpeff version from its test suite.

Effectful operations and their signatures are defined similarly in both libraries.

libseff

1 DEFINE_EFFECT(get, 0, int64_t, {});

2 DEFINE_EFFECT(put, 1, void, {

3 int64_t new_value; });

libmpeff

1 MPE_DEFINE_EFFECT2(state, get, set)

2 MPE_DEFINE_OP0(state, get, int)

3 MPE_DEFINE_VOIDOP1(state, set, int)

However, whereas libseff defines effects individually, libmpeff groups them together. Moreover,

libseff requires the programmer to provide an explicit effect tag.

We implement an effectful computation, counter, using the mutable state operations (Figure 13).

The code is essentially the same in both cases, the only difference being that libmpeff generates
C functions state_set and state_get, whereas effects in libseff are all performed via the PERFORM

macro, which the programmer is free to manually wrap in a function. Where the libraries are most

different is in the way in which effect handlers are written (Figure 14 and 15).

The libseff approach is based on reified effects and mutable coroutines. The more standard

libmpeff approach is based on families of closures that take the resumption as a parameter.

Representation of control. The libmpeff library follows the traditional approach of managing

control by means of resumptions, which are allocated whenever an effect is performed and can be

later resumed by the handler. Such allocations can sometimes be optimised away, for example if

they never escape the scope of the handler. This design also offers some degree of safety in garbage-

collected languages, where resumptions can be updated after the first time they are resumed to

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

Effect Handlers for C via Coroutines 358:23

5 void* counter(void* parameter) {

6 int64_t counter;

7 do {

8 counter = PERFORM(get);

9 printf("Counter is %ld\n", counter);

10 PERFORM(put, counter - 1);

11 } while (counter > 0);

12 return NULL;

13 }

(a) libseff

4 void* counter(void* parameter) {

5 int64_t counter;

6 do {

7 counter = state_get();

8 printf("Counter is %ld\n", counter);

9 state_set(counter - 1);

10 } while (counter > 0);

11 return NULL;

12 }

(b) libmpeff

Fig. 13. A Counter in libseff and libmpeff

14 int main(void) {

15 effect_set handles_state = HANDLES(get) | HANDLES(put);

16 seff_coroutine_t *k = seff_coroutine_new(counter, NULL);

17 seff_request_t req = seff_resume(k, NULL, handles_state);

18 int64_t state = 100;

19 while (true) {

20 switch (req.effect) {

21 CASE_EFFECT(req, get, {

22 req = seff_resume(k, (void *)state, handles_state);

23 break;

24 })

25 CASE_EFFECT(req, put, {

26 state = payload.new_value;

27 req = seff_resume(k, NULL, handles_state);

28 break;

29 })

30 CASE_RETURN(req, {

31 printf("The handled code has finished executing\n");

32 seff_coroutine_delete(k);

33 return 0;

34 })

35 }

36 }

37 }

Fig. 14. State Handler in libseff

indicate that they should not be resumed again, enforcing that their usage is linear at runtime. On

the other hand it is not such a natural fit for a language like C with manual memory management.

In contrast, libseff’s approach ensures that heap allocation is only necessary when a coroutine

is first created. Subsequently when effects are performed the same coroutine object is reused. (At the

cost of some implementation complexity it is possible to mitigate the downsides of the traditional

approach using a representation based on a sequence counter and fat pointers [25].)

Handler dispatch. Typical implementations of effect handlers, including libmpeff, encode a

handler as a closure stored in an operation-indexedmap.When performing an effect, the appropriate

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

358:24 Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

13 static void* _state_get(mpe_resume_t* r, void* local, void* arg) {

14 return mpe_resume_tail(r, local, local);

15 }

16 static void* _state_set(mpe_resume_t* r, void* local, void* arg) {

17 return mpe_resume_tail(r, arg, NULL);

18 }

19 static const mpe_handlerdef_t state_hdef = { MPE_EFFECT(state), NULL, {

20 { MPE_OP_SCOPED_ONCE, MPE_OPTAG(state,get), &_state_get },

21 { MPE_OP_SCOPED_ONCE, MPE_OPTAG(state,set), &_state_set },

22 { MPE_OP_NULL, mpe_op_null, NULL }

23 }};

24 static void* state_handle(mpe_actionfun_t action, int init, void* arg) {

25 return mpe_handle(&state_hdef, mpe_voidp_int(init), action, arg);

26 }

27 int main(void) {

28 int res = mpe_int_voidp(state_handle(&counter, 100, NULL));

29 printf("The handled code has finished executing\n");

30 return 0;

31 }

Fig. 15. State Handler in libmpeff

handler closure is selected and invoked with an operation and a resumption as parameters. This

scheme is particularly convenient for implementing deep handlers, since handler code, and any

data it references, may outlive and escape the lexical scope in which it was defined.

An important advantage of this representation is that handler code, stored as a closure, can

be executed in any given scope. However, such representations introduces significant accidental

complexity to a C program. As the language has no native support for closures, the programmer has

to effectively closure-convert their code “by hand”. In Figure 15, the closures that handle get and

set in libmpeff must take an additional, untyped local parameter which contains the state that

is shared across them. In our example, this is just an integer stored as a void*, but to share richer

complex state, for example a reference to a scheduler when implementing light-weight concurrency,

the programmer would need to define and allocate an ad-hoc structure to store it.

In contrast, libseff implements shallow (more properly, sheep [25]) handlers. As a consequence
of this, there is no need to reify or store handler code, as every time a coroutine is resumed a

new handler is installed. Instead, we implement effects as requests which are returned from a call

to seff_resume and can be inspected by an explicit switch statement. This eliminates the need for

manual closure-conversion and allows state to be shared across different clauses of the handler:

observe that in Figure 14 the state variable is directly used in clauses for get and put operations.

Performance tuning. Due in part to the more sophisticated encoding, libmpeff’s handlers offer
more opportunities for manual performance tuning. In the example above, the user can control

the trade-off between expressiveness and performance by tuning the kind of resumption that is

passed to the handler (we use MPE_OP_SCOPED_ONCE, which indicates that the resumption will only

be used once, and only within the scope of the handler) and the way it is resumed (we specify

mpe_resume_tail, which precludes any code in the handler from executing after the resumption).

This flexibility is a good fit for libmpeff’s role as a backend for an optimising compiler, which

can safely select all the relevant parameters based on static analysis of higher-level code. However,

when used directly from C, the many options is a potential source of bugs, as the programmer is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

Effect Handlers for C via Coroutines 358:25

now responsible for enforcing the restrictions assumed by the configuration options and Violating

them may result in undefined behaviour.

When designing libseff, we focused on one particular use case which roughly corresponds

to libmpeff’s non-scoped linear resumptions (MPE_OP_ONCE) and regular non-tail-recursive resume

(mpe_resume), as more restrictive configurations are too limited to implement lightweight concurrency

and application-specific schedulers. This allowed us to drastically simplify the library and optimise

for this particular usage, obtaining comparable performance even when competing in unfavourable

conditions against libmpeff, as shown in Figure 5b.

Defining effects. Like OCaml, libseff defines each effect operation individually and allows

handlers to handle arbitrary combinations of operations. In contrast, libmpeff requires effect

operations to be grouped together, with each handler handling exactly one such group of effects.

Although this design choice is largely orthogonal to other characteristics of both libraries, it has

one important implication: libseff uses bit sets to encode which effects are handled by a handler,

and therefore needs 1 bit per effect; since this value is stored in a 64-bit integer, there is a hard limit

of 64 operations (which could straightforwardly be extended to a larger, but fixed, amount).

By grouping operations and forcing a handler to handle exactly one such group, libmpeff
can allot a tag to each group. With 64-bit integers, this means that up to 2

64
different families of

operations can be in use at the same time in the same program. This also allows tags to be generated

automatically by allocating a global variable per family of operations and using its address in

memory as the corresponding tag.

We have not found libseff’s limitations to cause a problem with our experiments so far.

However, we speculate that the additional convenience and expressiveness gained by grouping

operations together may be worth trading for the flexibility of handling arbitrary sets of operations,

and we will consider switching libseff to a similar system in future.

6 Related Work
Effect handlers for C and C++. Unlike libseff, the existing libhandler [18, 19] and libmpeff [20]

libraries are designed as targets for compiler writers rather than for writing code directly in C. Each

of these uses a different stack-management strategy: libhandler copies stacks into a temporary

structure before restoring them on resumption and libmpeff uses virtual memory to allow stacks

to grow without moving in memory, whereas libseff can use segmented or fixed-size stacks. The

cpp-effects library [10] is a C++ effect handlers library which heavily relies on C++ features

both in its implementation and its API. It is implemented on top of the Boost.Context library [32],

which provides low-level for undelimited continuations.

Coroutines in C/C++. There exist many different coroutine libraries for C and C++, including

Boost coroutines [31], libco [37], libmill [30], and C++20 stackless coroutines.

WasmFX. WasmFX [25] is an extension of WebAssembly (Wasm) with effect handlers. Though

Wasm is intended as a language-agnostic bytecode whereas C is first and foremost a source

language, the design of libseff does take inspiration from WasmFX. Like libseff, WasmFX

provides sheep handlers in which the handler can be replaced each time a continuation is resumed.

Like libseff, WasmFX does not statically check that continuations are used linearly. On the other

hand, the designs do also diverge in various ways. Unlike libseff, WasmFX’s continuations are

immutable (albeit optimised implementations use a mutable representation with fat pointers under

the hood). Unlike libseff, WasmFX checks linearity dynamically, which relies on continuations

being semantically immutable. Unlike libseff, WasmFX is not restricted to 64 effects. Unlike

libseff, WasmFX does not support default handlers. Unlike libseff, WasmFX depends on a

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

358:26 Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

bespoke handling construct for matching against effects and their payloads (libseff just uses

switch). Unlike libseff, WasmFX does not (yet) support multithreading (because Wasm does not

either). Unlike libseff, WasmFX cannot support the optimisation described in §4.1.1, as yielding

and locating of handlers are necessarily coupled. In future, we plan to drill down on the costs and

benefits of relaxing the restriction to 64 effects in libseff as well as offering an interface based on

immutable continuations.

Varieties of coroutines. de Moura and Ierusalimschy [6] give a comprehensive classifications of

the different notions of coroutine. The kind of coroutines provided by libseff are asymmetric
first-class stackful coroutines. Moreover, libseff provides stacks that are guaranteed not to be

moved and coroutines that can migrate between system threads.

Effect handlers as coroutines. A distinctive aspect of effect handlers in libseff is their foundation
on mutable asymmetric coroutines rather than immutable continuations. Nonetheless, the close

connections between asymmetric coroutines and effect handlers have been exploited, in a somewhat

different way, elsewhere. Kawahara and Kameyama [16] show how to translate one-shot effect

handlers into asymmetric coroutines. Phipps-Costin et al. [25] exploit essentially the same encoding

to implement effect handlers on top of the Wasmtime Fiber API [5], which implements coroutines

for the Wasmtime engine for WebAssembly.

Optimising effect handlers. Much of the research on effect handlers has focused on programming

and reasoning with them. Nonetheless, there have also been various attempts to compile effect

handlers to efficient code. Kammar et al. [14] take advantage of Haskell’s aggressive inlining of

type classes to speed up an implementation based on a continuation monad. Wu and Schrijvers [39]

explain the essence of this optimisation as an instance of fusion. Kiselyov and Ishii [17] introduce

so-called “Freer monads” as another means to speed up implementations of effect handlers in

Haskell. Karachalias et al. [15] optimise effect handler code by aggressively inlining as many

handlers as possible. Schuster et al. [28] achieve a similar end by way of staged computation. Xie

and Leijen [40] and Ghica et al. [10] apply an instance of the optimisation we describe in Section 4

to avoid searching the handler stack, or indeed context-switching at all, when a handler is known to

be “tail-resumptive” meaning that it immediately invokes the continuation in tail-position. Another

optimisation performed by both of the latter two systems is for the case in which the continuation

is never invoked (as in exception handlers).

7 Conclusion and Future Work
We have described the design and implementation of libseff, a library for effect handlers in

C. While other effect handlers for C exist, these are primarily designed as targets for compilers,

whereas libseff offers a more idiomatic interface for programming with effect handlers in C.

The key challenge we had to overcome is C’s lack of high-level features, especially closures and

generics. This led us to a design based on sheep handlers, coroutines, and explicit request objects,

which enables writing handlers as simple, direct-style loops that should be familiar to C developers.

Our benchmarks demonstrate that effect handler programs, even without special compiler

support, can be compiled to efficient code that is competitive with other state-of-the-art approaches,

notably Rust’s stackless coroutines. The libseff library outperforms most other libraries in this

space due to simpler handler dispatch logic and hand-written context-switching code. It is also, to

our knowledge, the first such C library to offer a choice of stack management strategies, currently

supporting both segmented and fixed-size stacks, with planned support for a third approach

based on overcommitting of virtual memory as well as some form of arena allocation. We are

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

Effect Handlers for C via Coroutines 358:27

currently actively working on porting libseff to other architectures including ARM and 32-bit

Intel processors.

Unsurprisingly for a C library, the interface provided by libseff is prone to certain kinds of

errors: using coroutines non-linearly or performing unhandled effects can crash the program at

runtime. The C type system is not rich enough to encode the necessary constraints to avoid these

errors, but (though this was not the original intention of the library) it would be interesting to

develop a set of Rust bindings on top of libseff that leverage Rust’s rich type system and borrow

checker to ensure safety at compile time.

We posit that libseff offers not only a usable implementation of effect handlers, but also an ideal

playground for exploring different implementation strategies (e.g. segmented versus contiguous

stacks) and their effect on performance. We plan to explore further low-level improvements to

the libseff implementation. A common optimisation in other effect handler libraries is to avoid

creating new continuations or stack frames for certain effects where the continuation is either

never invoked (such as exceptions) or invoked immediately at the end of the handler (such as

mutable state or dynamic binding). This optimisation promises additional performance for such

use-cases allowing us to efficiently take fuller advantage of the expressive power of effect handlers.

Finally, as we remarked in Section 5, one limitation of libseff is its restriction to at most 64

different operations, represented by tags that must be chosen by the programmer. This limits expres-

siveness but, more importantly, introduces the potential for insidious bugs when different libraries

introduce distinct operations that share the same tag. For subsequent versions of libseff, we
intend to experiment with an API based on grouped operations, more similar to that of libmprompt
or libhandler. This promises to allow us to generate non-overlapping tags automatically without

programmer intervention, eliminating any risk of clashes. We expect applications where the extra

flexibility of individual operations is necessary, or where grouped operations cause degraded perfor-

mance, are likely rare in practice. This approach would also enable libseff to support generative
effects, wherein a family of operations can be instantiated locally and handled as a distinct effect,

independently of any other such instantiation.

Data-Availability Statement
The library and benchmarks reviewed by the OOPSLA 2024 artifact evaluation commitee are

available together as an artifact [1]. The latest version of libseff is maintained as an open-source

project in a GitHub repository at https://github.com/effect-handlers/libseff.

References
[1] Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley. 2024. Effect Handlers for C via Coroutines -

Artifact. https://doi.org/10.5281/zenodo.13485897

[2] Lewis Baker. 2024. cppcoro. https://github.com/lewissbaker/cppcoro.

[3] Effect Handlers Community. 2024. Effect handlers benchmarks suite. https://github.com/effect-handlers/effect-

handlers-bench.

[4] Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin. 2020. Doo bee doo bee doo. J. Funct. Program. 30
(2020), e9.

[5] Alex Crichton. 2021. Wasmtime Fiber API. https://docs.wasmtime.dev/api/wasmtime_fiber/index.html. Accessed

2023-11-15.

[6] Ana Lúcia de Moura and Roberto Ierusalimschy. 2009. Revisiting coroutines. ACM Trans. Program. Lang. Syst. 31, 2
(2009), 6:1–6:31.

[7] KC Sivaramakrishnan Deepali Ande, Sudha Parimala. 2023. Effectively Composing Concurrency Libraries. Draft. https:

//kcsrk.info/papers/composable_concurrency.pdf.

[8] Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, KC Sivaramakrishnan, and Leo White.

2017. Concurrent System Programming with Effect Handlers. In TFP (Lecture Notes in Computer Science, Vol. 10788).
Springer, 98–117.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

https://github.com/effect-handlers/libseff
https://doi.org/10.5281/zenodo.13485897
https://github.com/lewissbaker/cppcoro
https://github.com/effect-handlers/effect-handlers-bench
https://github.com/effect-handlers/effect-handlers-bench
https://docs.wasmtime.dev/api/wasmtime_fiber/index.html
https://kcsrk.info/papers/composable_concurrency.pdf
https://kcsrk.info/papers/composable_concurrency.pdf

358:28 Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

[9] Matthias Felleisen and Daniel P. Friedman. 1986. Control Operators, the SECD-machine, and the 𝜆-Calculus. In Formal
Description of Programming Concepts III. Elsevier, 193–217.

[10] Dan R. Ghica, Sam Lindley, Marcos Maroñas Bravo, and Maciej Piróg. 2022. High-level effect handlers in C++. Proc.
ACM Program. Lang. 6, OOPSLA2 (2022), 1639–1667.

[11] Daniel Hillerström, Sam Lindley, and Robert Atkey. 2020. Effect handlers via generalised continuations. J. Funct.
Program. 30 (2020), e5.

[12] Daniel Hillerström. 2021. Foundations for Programming and Implementing Effect Handlers. Ph. D. Dissertation. School
of Informatics, The University of Edinburgh, Scotland, UK.

[13] Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin J. Levandoski, and Gor V. Nishanov. 2018. Exploiting

Coroutines to Attack the "Killer Nanoseconds". Proc. VLDB Endow. 11, 11 (2018), 1702–1714. https://doi.org/10.14778/

3236187.3236216

[14] Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In ICFP. ACM, 145–158.

[15] Georgios Karachalias, Filip Koprivec, Matija Pretnar, and Tom Schrijvers. 2021. Efficient compilation of algebraic effect

handlers. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1–28.

[16] Satoru Kawahara and Yukiyoshi Kameyama. 2020. One-Shot Algebraic Effects as Coroutines. In TFP (Lecture Notes in
Computer Science, Vol. 12222). Springer, 159–179.

[17] Oleg Kiselyov and Hiromi Ishii. 2015. Freer monads, more extensible effects. In Haskell. ACM, 94–105.

[18] Daan Leijen. 2017. Implementing Algebraic Effects in C — "Monads for Free in C". In APLAS (Lecture Notes in Computer
Science, Vol. 10695). Springer, 339–363.

[19] Daan Leijen. 2019. libhandler. https://github.com/koka-lang/libhandler.

[20] Daan Leijen and KC Sivamarakrishnan. 2023. libmprompt and libmpeff. https://github.com/koka-lang/libmprompt.

[21] Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Modelling environments in call-by-value programming

languages. Inf. Comput. 185, 2 (2003), 182–210.
[22] Zhiyao Ma and Lin Zhong. 2023. Bringing Segmented Stacks to Embedded Systems. In Proceedings of the 24th

International Workshop on Mobile Computing Systems and Applications, HotMobile 2023, Newport Beach, California,
February 22-23, 2023. ACM, 117–123. https://doi.org/10.1145/3572864.3580344

[23] Daniel Morsing. 2014. How Stacks are Handled in Go. https://blog.cloudflare.com/how-stacks-are-handled-in-go/.

[24] Kazuho Oku, Tokuhiro Matsuno, Daisuke Murase, and Shigeo Mitsunari. 2024. PicoHTTPParser. https://github.com/

h2o/picohttpparser.

[25] Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerström, KC Sivaramakrishnan, Matija

Pretnar, and Sam Lindley. 2023. Continuing WebAssembly with Effect Handlers. Proc. ACM Program. Lang. 7, OOPSLA2
(2023), 460–485.

[26] Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4
(2013).

[27] Aleksandar Prokopec and Fengyun Liu. 2018. Theory and Practice of Coroutines with Snapshots. https://doi.org/10.

4230/LIPIcs.ECOOP.2018.3

[28] Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. 2020. Compiling effect handlers in capability-

passing style. Proc. ACM Program. Lang. 4, ICFP (2020), 93:1–93:28.

[29] KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting

effect handlers onto OCaml. In PLDI. ACM, 206–221.

[30] Martin Sustrik. 2021. libmill. https://github.com/sustrik/libmill.

[31] Boost team. 2021. Boost.coroutine library. https://www.boost.org/doc/libs/1_83_0/libs/coroutine/doc/html/index.html.

[32] Boost team. 2024. Boost.context library. https://github.com/boostorg/context.

[33] Eio team. 2024. Eio. https://github.com/ocaml-multicore/eio.

[34] Mirage team. 2024. Mirage. https://github.com/mirage/ocaml-cohttp.

[35] OCaml Multicore team. 2021. Multicore OCaml HTTP benchmarks. https://github.com/ocaml-multicore/retro-httpaf-

bench.

[36] TechEmpower. 2023. Web Framework Benchmarks. https://www.techempower.com/benchmarks.

[37] Tencent. 2020. libco. https://github.com/Tencent/libco.

[38] wrk2 team. 2024. wrk2. https://github.com/giltene/wrk2.

[39] Nicolas Wu and Tom Schrijvers. 2015. Fusion for Free - Efficient Algebraic Effect Handlers. In MPC (Lecture Notes in
Computer Science, Vol. 9129). Springer, 302–322.

[40] Ningning Xie and Daan Leijen. 2021. Generalized evidence passing for effect handlers: efficient compilation of effect

handlers to C. Proc. ACM Program. Lang. 5, ICFP (2021), 1–30.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

https://doi.org/10.14778/3236187.3236216
https://doi.org/10.14778/3236187.3236216
https://github.com/koka-lang/libhandler
https://github.com/koka-lang/libmprompt
https://doi.org/10.1145/3572864.3580344
https://blog.cloudflare.com/how-stacks-are-handled-in-go/
https://github.com/h2o/picohttpparser
https://github.com/h2o/picohttpparser
https://doi.org/10.4230/LIPIcs.ECOOP.2018.3
https://doi.org/10.4230/LIPIcs.ECOOP.2018.3
https://github.com/sustrik/libmill
https://www.boost.org/doc/libs/1_83_0/libs/coroutine/doc/html/index.html
https://github.com/boostorg/context
https://github.com/ocaml-multicore/eio
https://github.com/mirage/ocaml-cohttp
https://github.com/ocaml-multicore/retro-httpaf-bench
https://github.com/ocaml-multicore/retro-httpaf-bench
https://www.techempower.com/benchmarks
https://github.com/Tencent/libco
https://github.com/giltene/wrk2

Effect Handlers for C via Coroutines 358:29

A Semantics
In this appendix we give an abstract characterisation of the variant of effect handlers that libseff
is based on. Following the approach of Hillerström et al. [11] we do so by way of a CEK [9] abstract

machine for a fine-grain call-by-value [21] lambda calculus. Our calculus is untyped whereas theirs

is simply-typed. Other than that, the only substantive difference between our account and that of

Hillerström et al. [11] is the treatment of effects and handlers. We return to these differences after

presenting our calculus and abstract machine. Again following Hillerström et al. [11], we diverge

somewhat from libseff by basing the effect handlers in this section on continuations rather than

coroutines. We make no attempt here to prevent continuations from being invoked more than once

in the abstract machine, but it would be entirely straightforward to do so.

The syntax of our calculus is given by the following grammar.

Values 𝑉 ,𝑊 ::= 𝑥 | 𝑘 | 𝑐 | 𝜆𝑥. 𝑀 | rec 𝑓 𝑥 .𝑀 | ⟨⟩ | ⟨𝑉 ,𝑊 ⟩ | injℓ 𝑉
Computations 𝑀, 𝑁 ::= 𝑉 𝑊 | let ⟨𝑥,𝑦⟩ = 𝑉 in 𝑁 | case 𝑉 {injℓ 𝑥 ↦→ 𝑀 ;𝑦 ↦→ 𝑁 }

| return 𝑉 | let 𝑥 ← 𝑀 in 𝑁

| newcont 𝑉 | resume L 𝑉 𝑊 | perform ℓ 𝑉

We let𝑉 range over value terms,𝑀 range of computation terms, 𝑥 range over value term variables,

𝑘 range of literals, 𝑐 range of primitive operations (e.g. addition), ℓ range over individual effects,

and L range over sets of effects. Being fine-grained, there are different productions for value and

computation terms. Apart from newcont, resume, and perform computation term constructors,

everything else is standard.

The term newcont 𝑉 converts a function value 𝑉 into a continuation value. It is an idealised

analogue of seff_coroutine_new(f, NULL), where 𝑉 represents f. The term resume L 𝑉 𝑊 resumes

continuation 𝑉 with argument𝑊 handling effects L. It is an idealised analogue of seff_resume(k,

arg, effs) where L represents effs, 𝑉 represents k, and𝑊 represents arg. The term perform ℓ 𝑉

performs effect ℓ with argument 𝑉 . It is an idealised analogue of seff_perform(eff, arg) where ℓ

represents eff and 𝑉 represents arg.

Before giving the transition relation for the machine we spell out the grammar for abstract

machine syntax.

Configurations C ::= ⟨𝑀 | 𝛾 | 𝜅⟩
Environments 𝛾 ::= ∅ | 𝛾 [𝑥 ↦→ 𝑣]
Machine values 𝑣,𝑤 ::= 𝑥 | 𝑘 | 𝑐 | (𝛾, 𝜆𝑥 . 𝑀) | (𝛾, rec 𝑓 𝑥 . 𝑀) | ⟨⟩ | ⟨𝑣,𝑤⟩ | injℓ 𝑣 | (𝜅, 𝜎)
Continuations 𝜅 ::= [] | (𝜎,L) :: 𝜅
Pure continuations 𝜎 ::= [] | (𝛾, 𝑥, 𝑁) :: 𝜎
The configurations (C) of a CEK machine are triples: C (here ranged over by𝑀, 𝑁) stands for

control (the program, that is, current computation term), E (here ranged over by 𝛾) for environment

(a mapping from variables to machine values), K (here ranged over by 𝜅) for kontinuation (what to

do next).

The machine values are mostly quite standard, including corresponding forms for each basic

term value form. Indeed, we define an interpretation J𝑉 K𝛾 for value term 𝑉 as a machine value,

where free variables are given by the environment 𝛾 .

J𝑥K𝛾 = 𝛾 (𝑥)
J𝑘K𝛾 = 𝑘

J𝑐K𝛾 = 𝑐

J𝜆𝑥 .𝑀K𝛾 = (𝛾, 𝜆𝑥 .𝑀)
Jrec 𝑓 𝑥 .𝑀K𝛾 = (𝛾, rec 𝑓 𝑥 .𝑀)

J⟨⟩K𝛾 = ⟨⟩
J⟨𝑉 ,𝑊 ⟩K𝛾 = ⟨J𝑉 K𝛾, J𝑊 K𝛾⟩
Jinjℓ 𝑉 K𝛾 = injℓ (J𝑉 K𝛾)

In particular, anonymous function terms and named recursive function terms are interpreted using

closures. The final machine value form (𝜅, 𝜎) is used to represent a continuation value (as returned

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

358:30 Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

by newcont or when performing an effect). Let us defer explaining why continuation values are

represented this way to the point at which we consider the transition rules.

Following Hillerström et al. [11] a continuation (𝜅) is a list (stack) of pairs of pure continuations

𝜎 and handlers L (here actually effects sets which denote the effects handled by a handler). A pure

continuation (𝜎) is a list (stack) of let-binding closures. (A traditional CEK machine for coarse-

grained call-by-value would need many more. The advantage of fine-grain call-by-value — or ANF

or SSA or CPS — is that because the result of every intermediate step must be explicitly named we

know that pure computation can only proceed through another let-binding.)

Now we present the transition relation for the abstract machine.

M-Lam ⟨𝑉 𝑊 | 𝛾 | 𝜅⟩ −→ ⟨𝑀 | 𝛾 ′ [𝑥 ↦→ J𝑊 K𝛾] | 𝜅⟩,
if J𝑉 K𝛾 = (𝛾 ′, 𝜆𝑥 . 𝑀)

M-Rec ⟨𝑉 𝑊 | 𝛾 | 𝜅⟩ −→ ⟨𝑀 | 𝛾 ′ [𝑓 ↦→ (𝛾 ′, rec 𝑓 𝑥 .𝑀),
𝑥 ↦→ J𝑊 K𝛾] | 𝜅⟩,

if J𝑉 K𝛾 = (𝛾 ′, rec 𝑓 𝑥 .𝑀)
M-Const ⟨𝑉 𝑊 | 𝛾 | 𝜅⟩ −→ ⟨return (⌜𝑐⌝ (J𝑊 K𝛾)) | 𝛾 | 𝜅⟩,

if J𝑉 K𝛾 = 𝑐

M-Split ⟨let ⟨𝑥,𝑦⟩ = 𝑉 in 𝑁 | 𝛾 | 𝜅⟩ −→ ⟨𝑁 | 𝛾 [𝑥 ↦→ 𝑣,𝑦 ↦→ 𝑤] | 𝜅⟩,
if J𝑉 K𝛾 = ⟨𝑣,𝑤⟩

M-CaseMatch case 𝑉 {injℓ 𝑥 ↦→ 𝑀 ;𝑦 ↦→ 𝑁 } | 𝛾 | 𝜅 −→ ⟨𝑀 | 𝛾 [𝑥 ↦→ 𝑣] | 𝜅⟩,
if J𝑉 K𝛾 = injℓ 𝑣

M-CaseDef case 𝑉 {injℓ 𝑥 ↦→ 𝑀 ;𝑦 ↦→ 𝑁 } | 𝛾 | 𝜅 −→ ⟨𝑁 | 𝛾 [𝑦 ↦→ injℓ ′ 𝑣] | 𝜅⟩,
if J𝑉 K𝛾 = injℓ ′ 𝑣 and ℓ ≠ ℓ ′

M-Let ⟨let 𝑥 ← 𝑀 in 𝑁 | 𝛾 | (𝜎,L) :: 𝜅⟩ −→ ⟨𝑀 | 𝛾 | ((𝛾, 𝑥, 𝑁) :: 𝜎,L) :: 𝜅⟩
M-RetCont ⟨return 𝑉 | 𝛾 | ((𝛾 ′, 𝑥, 𝑁) :: 𝜎,L) :: 𝜅⟩ −→ ⟨𝑁 | 𝛾 ′ [𝑥 ↦→ J𝑉 K𝛾] | (𝜎,L) :: 𝜅⟩

M-NewCont ⟨newcont 𝑉 | 𝛾 | 𝜅⟩ −→ ⟨return 𝑥 | 𝛾 [𝑥 ↦→ ([], [(𝛾,𝑦,𝑉 𝑦)])] | 𝜅⟩
M-Resume ⟨resume L 𝑉 𝑊 | 𝛾 | 𝜅⟩ −→ ⟨return𝑊 | 𝛾 | 𝜅′ ++ [(𝜎 ′,L)] ++ 𝜅⟩,

if J𝑉 K𝛾 = (𝜅′, 𝜎 ′)
M-Perform ⟨perform ℓ 𝑉 | 𝛾 | 𝜅⟩ −→ ⟨return (injℓ ⟨𝑉 , 𝑥⟩) | 𝛾 [𝑥 ↦→ (𝜅′, 𝜎 ′)] | 𝜅′′⟩

if 𝜅 handles ℓ at ((𝜅′, 𝜎 ′), 𝜅′′)
M-RetHandler ⟨return 𝑉 | 𝛾 | ([],L) :: 𝜅⟩ −→ ⟨return (injret 𝑉) | 𝛾 | 𝜅⟩

The first six rules are routine. We write ⌜𝑐⌝ for the function that implements 𝑐 on machine values.

TheM-Let rule reifies a let-binding at the head of the current pure continuation. TheM-RetCont

rule binds a returned value in the body of the reified let-binding at the head of the current pure

continuation.

TheM-NewCont rule allocates a new continuation value, binding it in the environment. This

continuation value simply applies the function 𝑉 to its argument. The M-Resume rule resumes

a continuation value by concatenating it onto the front of the continuation component of the

configuration. It is now that we see why a continuation value comprises a pair of a continuation

and a pure continuation. Really (𝜅′, 𝜎 ′) represents a continuation 𝜅′ ++ [(𝜎 ′, 𝑋)] with a hole 𝑋 in it

that is here replaced by the effect set L. The M-Perform rule performs an effect by reifying it as a

labelled variant value containing a pair of the payload and the continuation. The auxiliary relation

𝜅 handles ℓ at ((𝜅′, 𝜎 ′), 𝜅′′) splits the current continuation 𝜅 into two parts where (𝜅′, 𝜎 ′) is the
continuation object up to the handler for ℓ and 𝜅′′ is the remainder of the continuation.

ℓ ∈ L
(𝜎,L) :: 𝜅 handles ℓ at (([], 𝜎), 𝜅)

ℓ ∉ L 𝜅 handles ℓ at ((𝜅′, 𝜎 ′), 𝜅′′)
(𝜎,L) :: 𝜅 handles ℓ at ((𝜎,L) :: 𝜅′, 𝜎 ′), 𝜅′′)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

Effect Handlers for C via Coroutines 358:31

The M-RetHandler rule reifies a top-level return as a labelled variant value with a special ret
label which denotes that the computation returned normally.

Comparison with standard effect handler calculi and abstract machines. Whereas the calculus

of Hillerström et al. [11] includes both deep and shallow handlers ours provides hybrid sheep

handlers [25]. A deep handler automatically wraps the original handler around the body of each

suspended continuation. A shallow handler does not. A sheep handler does not automatically

wrap the original handler around the body of each continuation, but does require a handler to be

explicitly installed whenever the continuation is resumed. Sheep handlers guarantee that some

handler must be installed whenever a continuation is resumed, but not necessarily the original one.

The other substantive difference between our calculus and more classical ones like that of

Hillerström et al. [11] is that although resume specifies the effect set for a handler, there is no

special construct for specifying a handler by dispatching on the effect. Instead the result of resume
(either a normal return or a performed effect) is wrapped up in a variant value and the dispatch is

implemented using case.

Received 2024-04-05; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 358. Publication date: October 2024.

	Abstract
	1 Introduction
	2 Design
	2.1 Mutable state
	2.2 Lightweight concurrency
	2.3 Resources
	2.4 Composition
	2.5 Overriding and default handlers

	3 Implementation
	3.1 Runtime Representation
	3.2 Primitives
	3.3 Stack Management

	4 Performance
	4.1 Microbenchmarks
	4.2 Macrobenchmarks
	4.3 Effect Handlers Benchmark Suite
	4.4 C/C++ Coroutine Libraries

	5 Usability
	6 Related Work
	7 Conclusion and Future Work
	References
	A Semantics

