
Hasochism
The Pleasure and Pain of Dependently Typed Haskell Programming

Sam Lindley
University of Strathclyde
Sam.Lindley@ed.ac.uk

Conor McBride
University of Strathclyde

conor.mcbride@strath.ac.uk

Abstract
Haskell’s type system has outgrown its Hindley-Milner roots to the
extent that it now stretches to the basics of dependently typed pro-
gramming. In this paper, we collate and classify techniques for pro-
gramming with dependent types in Haskell, and contribute some
new ones. In particular, through extended examples—merge-sort
and rectangular tilings—we show how to exploit Haskell’s con-
straint solver as a theorem prover, delivering code which, as Agda
programmers, we envy. We explore the compromises involved in
simulating variations on the theme of the dependent function space
in an attempt to help programmers put dependent types to work,
and to inform the evolving language design both of Haskell and of
dependently typed languages more broadly.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.3.2 [Language Classifications]: Ap-
plicative (functional) languages; D.3.3 [Language Constructs and
Features]

Keywords dependent types; singletons; data type promotion;
proof search; invariants

1. Introduction
In the design of Standard ML, Milner and his colleagues achieved
a remarkable alignment of distinctions: [16, 17]

syntactic category terms types
phase distinction dynamic static
inference explicit implicit
abstraction simple dependent

The things you write are the things you run, namely terms,
for which abstraction (with an explicit λ) is simply typed—the
bound variable does not occur in the return type of the function.
The things which you leave to be inferred, namely polymorphic
type schemes, exist only at compile time and allow (outermost)
dependent abstraction over types, with implicit application at usage
sites instantiating the bound variables.

An unintended consequence of Milner’s achievement is that we
sometimes blur the distinctions between these distinctions. We find
it hard to push them out of alignment because we lose sight of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Haskell ’13, September 23–24, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2383-3/13/09. . . $15.00.
http://dx.doi.org/10.1145/2503778.2503786

the very possibility of doing so. For example, some have voiced
objections to the prospect of terms in types on the grounds that
efficient compilation relies on erasure to the dynamic fragment
of the language. However, renegotiating the term/type distinction
need not destroy the dynamic/static distinction, as shown by Coq’s
venerable program extraction algorithm [21], erasing types and
proofs from dependently typed constructions.

Meanwhile, Haskell’s type classes [25] demonstrate the value
of dynamic components which are none the less implicit—instance
dictionaries. Indeed, type inference seems a timid virtue once you
glimpse the prospect of program inference, yet some are made
nervous by the prospect of unwritten programs being run. Similarly,
Haskell’s combination of higher kinds and constraints means that
sometimes static types must be given explicitly, in order not only to
check them, but also to drive the generation of invisible boilerplate.

Milner’s aligned distinctions have shifted apart, but Haskell per-
sists with one dependent quantifier for implicit abstraction over
static types. What counts as a ‘type’ has begun to stretch. Our
Strathclyde Haskell Enhancement (SHE) preprocessor [13] sys-
tematized and sugared common constructions for building the type
level analogues of run time data, together with run time witnesses to
type level values. SHE then provided something which resembles a
dependent quantifier for explicit abstraction over dynamic terms—
the Π-type of dependent type theory—in domains simple enough
to admit the singleton construction. Before long, Glasgow Haskell
headquarters responded with a proper kind system for ‘promoted’
data types [27], making possible the singletons library [7]. The ar-
rival of data types at the kind level necessitated polymorphism in
kinds: Haskell is now a dependently kinded language, and although
it is a nuisance that the kind-level ∀ is compulsorily implicit, the
fresh abstractions it offers have yielded considerable simplification,
e.g., in support of generic programming [10].

So we decided to have some fun, motivated by the reliability
benefits of programming at a higher level of static precision, and the
experience of doing so in prototype dependently typed languages—
in our case, Epigram [14] and Agda [20]. There is a real sense of
comfort which comes from achieving a high level of hygiene, and
it is something which we want to bring with us into practical pro-
gramming in industrial strength languages like Haskell. Of course,
reality intervenes at this point: some desirable methods are harder
to express than one might hope, but we can also report some pleas-
ant surprises. We hope our experiments inform both programming
practice with current tools and the direction of travel for Haskell’s
evolution.

Specifically, this paper contributes

• an analysis of how to achieve dependent quantification in
Haskell, framed by the distinctions drawn above—we note that
Agda and Haskell both have room for improvement;

• practical techniques for dependently typed programming in
Haskell, with a view to minimizing explicit proof in program
texts;
• an implementation of merge-sort guaranteeing the ordering in-

variant for its output, in which the proofs are silent;
• an algebra for tiling size-indexed boxes, fitting with precision,

leading to an implementation of a screen editor.

Overview Section 2 explores variations on the theme of depen-
dent quantification, through paradigmatic examples involving nat-
ural numbers and vectors. Section 3 focuses on the implicit/explicit
distinction, whilst developing standard library functionality for
vectors, identifying areas of concern. Section 4 delivers merge-
sort, using instance inference for proof search. Section 5 explores
the use of data types to represent effective evidence. Section 6 in-
troduces an algebra of size-indexed boxes, which is used to build a
text editor in Section 7. Section 8 concludes.

Online code All of the Haskell source code for the developments
in this paper are available at https://github.com/slindley/
dependent-haskell/tree/master/Hasochism.

Acknowledgements This work was supported by EPSRC project
Haskell Types with Added Value, grant EP/J014591/1. We are grate-
ful to be part of the long running conversation about Haskell’s
type system, and in particular to Simon Peyton Jones, Stephanie
Weirich, Richard Eisenberg, Iavor Diatchki, Dimitrios Vytiniotis,
José Pedro Magalhães and our colleague Adam Gundry.

2. A Variety of Quantifiers
Haskell’s DataKinds extension [27] has the impact of duplicating
an ordinary data type, such as

data Nat = Z | S Nat deriving (Show,Eq,Ord)

at the kind level. That is, for the price of the above type declaration,
GHC silently generates a new kind, also Nat, with inhabitants
formed by type level data constructors ′Z and ′S, where the prefixed
quote may be dropped for names which do not clash with declared
types. It is pleasant to think that the same Nat is both a type and a
kind, but sadly, the current conceptual separation of types and kinds
requires the construction of a separate kind-level replica.

The Nat kind is now available as a domain for various forms of
universal quantification, classified on the one hand by whether the
quantified values are available only statically or also dynamically,
and on the other hand by whether the associated abstraction and
application are implicit or explicit in the program text. Picking
apart Milner’s alignment of distinctions, we acquire a matrix of
four dependent quantifiers for term-like things. In this section and
the next, we explore the Haskell encodings and the typical usage
of these quantifiers, tabulated here for the paradigmatic example of
natural numbers:

implicit explicit
static ∀(n :: Nat). ∀(n :: Nat).Proxy n →

dynamic ∀n.NATTY n ⇒ ∀n.Natty n →
To get to work, we must find types which involve numbers.

Generalized algebraic data types, now bearing an even stronger
resemblance to the inductive families of dependent type theories,
provide one source. The family of vectors is the traditional first
example of such a creature, and we shall resist the contrarian urge
to choose another because we shall need vectors later in the paper.

data Vec :: Nat→ ?→ ? where
V0 :: Vec Z x
(:>) :: x → Vec n x → Vec (S n) x

In Haskell, one must choose a type’s order of arguments with care,
as partial application is permitted but λ-abstraction is not. Here we

depart a little from the dependently typed tradition by giving Vec
its length index to the left of its payload type parameter, x , because
we plan to develop the functorial structure of each Vec n in the
next section.

We note that the correspondence with the inductive families of
Agda, Coq and Idris is not exact. The n in the Haskell type of (:>)
is given a static implicit quantifier and erased at run time, whereas
its type theoretic counterpart is dynamic and implicit. Idris, at least,
is clever enough to erase the run time copy of n , through Brady’s
‘forcing’ optimization [5].

Meanwhile, type level data are useful for more than just index-
ing data types. We may indeed compute with them, making use of
Haskell’s ‘type family’ extension, which allows us to define ‘fami-
lies’ (meaning merely ‘functions’) of ‘types’ in the sloppy sense of
‘things at the type level’, not just the pedantic sense of ‘things of
kind ?’.

type family (m :: Nat) :+ (n :: Nat) :: Nat
type instance Z :+ n = n
type instance S m :+ n = S (m :+ n)

In an intensional dependent type theory, such a definition extends
the normalization algorithm by which the type checker decides type
equality up to the partial evaluation of open terms. If syntactically
distinct types share a normal form, then they share the same terms.
For example, in type theory, terms inhabiting Vec (S (S Z) :+n) x
also inhabit Vec (S (S n)) x without further ado. Of course, func-
tions often satisfy laws, e.g. associativity and commutativity, which
are not directly computational: terms of type Vec (n :+ S (S Z)) x
do not inhabit Vec (S (S n)) x , even though the two coincide
for all concrete values of n . Fortunately, one can formulate ‘propo-
sitional equality’ types, whose inhabitants constitute evidence for
equations. Values can be transported between provably equal types
by explicit appeal to such evidence.

In Haskell’s kernel, type equality is entirely syntactic [24], so
that kernel terms in Vec (S (S Z) :+ n) x do not also inhabit
Vec (S (S n)) x . The above ‘definition’ axiomatizes (:+) for
Haskell’s propositional equality, and every program which relies
on computing sums must be elaborated with explicit appeal to evi-
dence derived from those axioms. The translation from the surface
language to the kernel attempts to generate this evidence by a pow-
erful but inscrutable constraint solving heuristic. Experience sug-
gests that the solver computes aggressively, regardless of whether
type level programs are totally recursive, so we may confidently
type vector concatenation in terms of addition.

vappend :: Vec m x → Vec n x → Vec (m :+ n) x
vappend V0 ys = ys
vappend (x :> xs) ys = x :> vappend xs ys

Note that the numbers here play an entirely static role: the flow
of control can be determined entirely from the constructors of the
first vector. Suppose, however, that we wish to invert concatenation,
chopping a vector in two.

vchop :: Vec (m :+ n) x → (Vec m x ,Vec n x)

Unlike with vappend, we shall certainly need m at run time, and
we shall need to refer to it explicitly in order to judge where to
chop. However, Haskell’s dependent ∀·quantifier is for implicit and
exclusively static things. The standard solution is to define the run
time replica of some static data as a singleton GADT.

data Natty :: Nat→ ? where
Zy :: Natty Z
Sy :: Natty n → Natty (S n)

Each type level value n in the Nat kind has a unique representative
in the type Natty n , so analysing the latter will reveal useful
facts about the former. The ‘Π-types’, often written (x : S) →
T , of dependent type theory abstract dependently over explicit

https://github.com/slindley/dependent-haskell/tree/master/Hasochism
https://github.com/slindley/dependent-haskell/tree/master/Hasochism

dynamic things. In Haskell, we can simulate this behaviour by
abstracting dependently at the type level and non-dependently over
the singleton representative. We translate (from Agda notation to
Haskell):

(n :Nat)→ T ∀n :: Nat.Natty n → T

Thus equipped, we may write

vchop :: Natty m → Vec (m :+ n) x → (Vec m x ,Vec n x)
vchop Zy xs = (V0, xs)
vchop (Sy m) (x :> xs) = (x :> ys, zs)

where (ys, zs) = vchop m xs

There may be an argument from implementation inertia in favour
of this means of dependent quantification, but it proliferates rep-
resentations of cognate notions, which is an eccentric way to keep
things simple.

Moreover, we can only construct Π-types with domains ad-
mitting the singleton construction. Whilst Monnier and Hague-
nauer [19] have given a generic treatment of the singleton con-
struction, their result is not reproducible in current GHC because
GADTs are not promotable as kinds. We cannot form a Haskell
analogue of

(n :Nat)→ (xs :Vec n x)→ T [xs]

but we expect this gap to be plugged in the near future. Promoting
Vec n x to a kind perforce involves using numbers not only in
terms and types, but in kinds as well. In the new, more flexible
world, the type/kind distinction is increasingly inconvenient, and
a clear candidate for abolition, as Weirich, Hsu, and Eisenberg
propose [26].

Meanwhile, a further disturbance is in store if we choose to
compute only the first component returned by vchop. Cutting out
the suffix gives us

vtake :: Natty m → Vec (m :+ n) x → Vec m x -- (×)
vtake Zy xs = V0
vtake (Sy m) (x :> xs) = x :> vtake m xs

but the resulting type error

NatVec.lhs:120:44:
Could not deduce (n2 ~ (n1 :+ n0))
from the context (m ~ ’S n1)

bound by a pattern with constructor
Sy :: forall (n :: Nat). Natty n -> Natty (’S n),

in an equation for ‘vtake’
at NatVec.lhs:120:10-13

or from ((m :+ n) ~ ’S n2)
bound by a pattern with constructor

:> :: forall x (n :: Nat).
x -> Vec n x -> Vec (’S n) x,

in an equation for ‘vtake’
at NatVec.lhs:120:18-24
‘n2’ is a rigid type variable bound by

a pattern with constructor
:> :: forall x (n :: Nat).

x -> Vec n x -> Vec (’S n) x,
in an equation for ‘vtake’
at NatVec.lhs:120:18

Expected type: Vec (n1 :+ n0) x
Actual type: Vec n2 x

In the second argument of ‘vtake’, namely ‘xs’
In the second argument of ‘(:>)’, namely ‘vtake m xs’
In the expression: x :> vtake m xs

amounts to the fact that it is not clear how to instantiate n in the
recursive call. It takes sophisticated reasoning about addition to
realise that (m:+) is injective. To GHC, it is just an unknown
axiomatised function. The problem did not arise for vchop, because
relaying the suffix, zs , from the recursive output to the result makes
clear that the same n is needed in both places. This n is not needed
at run time, but without it there is no way to see that the program
makes sense.

The upshot is that there are data which, despite being static,
must be made explicit. One way to manifest them is via ‘proxy
types’, e.g.,

data Proxy :: κ→ ? where
Proxy :: Proxy i

As you can see, the only dynamic information in Proxy i is de-
finedness, which there is never the need to check. Kind polymor-
phism allows us to declare the proxy type once and for all. The
only point of a proxy is to point out that it has the same type at its
binding and its usage sites. Although it is compulsory to instantiate
quantifiers by inference, proxies let us rig the guessing game so that
GHC can win it. We repair the definition of vtake thus:

vtake :: Natty m → Proxy n → Vec (m :+ n) x → Vec m x
vtake Zy n xs = V0
vtake (Sy m) n (x :> xs) = x :> vtake m n xs

Of course, when calling vtake, we need to get a proxy
from somewhere. If we do not already have one, we can write
(Proxy :: Proxy t) for the relevant type level expression t . The
ScopedTypeVariables extension allows us to write open types. If
we already have some other value with the same index, e.g. a sin-
gleton value, we can erase it to a proxy with

proxy :: f i → Proxy i
proxy = Proxy

The vtake example shows that Haskell’s ∀·quantifier supports ab-
straction over data which play a relevant and computational role in
static types but have no impact on run time execution and are thus
erasable. Most dependently typed languages, with ATS [6] being
a notable exception, do not offer such a quantifier, which seems
to us something of an oversight. Coq’s program extraction [21]
and Brady’s compilation method [4] both erase components whose
types show that they cannot be needed in computation, but they do
not allow us to make the promise that ordinary data in types like
Nat will not be needed at run time.

Meanwhile, Agda has an ‘irrelevant’ quantifier [1], abstracting
over data which will even be ignored by the definitional equality of
the type system. In effect, the erasure induced by ‘irrelevance’ is
static as well as dynamic, and is thus more powerful but less appli-
cable. The Agda translation of vtake cannot make n an irrelevant
argument, because it is needed to compute the length of the input,
which most certainly is statically relevant. In contemporary Agda,
it seems that this n must be present at run time.

A further example, showing implicit quantification over data
used statically to compute a type but erased at run time, applies
an n-ary operator to an n-vector of arguments.

type family Arity (n :: Nat) (x :: ?) :: ?
type instance Arity Z x = x
type instance Arity (S n) x = x → Arity n x

varity :: Arity n x → Vec n x → x
varity x V0 = x
varity f (x :> xs) = varity (f x) xs

Here, pattern matching on the vector delivers sufficient informa-
tion about its length to unfold the Arity computation. Once again,
Agda would allow n to remain implicit in source code, but insist on
retaining n at run time. Meanwhile, Brady’s ‘detagging’ optimiza-
tion [5] would retain n but remove the constructor tag from the
representation of vectors, compiling the above match on the vector
to match instead on n then project from the vector.

Miquel’s implicit calculus of constructions (ICC) [18] extends
type theory with a static implicit quantifier, the “implicit product”,
which erases like a System F ∀·quantifier. Barras and Bernado’s
ICC∗ [3] adds a static explicit quantifier to restore decidable type
checking. Adding something like the static explicit quantifier (and a

Pollack-style implicit synthesis mechanism) to Agda would restore
to Agda the missing static half of our quantifier matrix.

To sum up, we have distinguished Haskell’s dependent static
implicit ∀·quantifier from the dependent dynamic explicit Π-types
of dependent type theory. We have seen how to make ∀· static and
explicit with a Proxy, and how to make it dynamic and explicit
whenever the singleton construction is possible. However, we have
noted that whilst Haskell struggles to simulate Π with ∀·, the
reverse is the case in type theory. What is needed, on both sides,
is a more systematic treatment of the varieties of quantification.

3. Explicit and Implicit Π-Types
We have already seen that singletons like Natty simulate a depen-
dent dynamic explicit quantifier, corresponding to the explicit Π-
type of type theory: Agda’s (x :S) → T . Implementations of type
theory, following Pollack’s lead [22], often support a dependent
dynamic implicit quantifier, the {x : S} → T of Agda, allowing
type constraints to induce the synthesis of useful information. The
method is Milner’s—substitution arising from unification problems
generated by the typechecker—but the direction of inference runs
from types to programs, rather than the other way around.

The Haskell analogue of the implicit Π is constructed with sin-
gleton classes. For example, the following NATTY type class de-
fines a single method natty, delivering the Natty singleton corre-
sponding to each promoted Nat. A NATTY number is known at
run time, despite not being given explicitly.

class NATTY (n :: Nat) where
natty :: Natty n

instance NATTY Z where
natty = Zy

instance NATTY n ⇒ NATTY (S n) where
natty = Sy natty

For example, we may write a more implicit version of vtake:

vtrunc :: NATTY m ⇒ Proxy n → Vec (m :+ n) x → Vec m x
vtrunc = vtake natty

The return type determines the required length, so we can leave the
business of singleton construction to instance inference.

> vtrunc Proxy (1 :> 2 :> 3 :> 4 :> V0) :: Vec (S (S Z)) Int
1 :> 2 :> V0

3.1 Instances for Indexed Types
It is convenient to omit singleton arguments when the machine can
figure them out, but we are entitled to ask whether the additional
cost of defining singleton classes as well as singleton types is
worth the benefit. However, there is a situation where we have
no choice but to work implicitly: we cannot abstract an instance
over a singleton type, but we can constrain it. For example, the
Applicative instance [15] for vectors requires a NATTY constraint.

instance NATTY n ⇒ Applicative (Vec n) where
pure = vcopies natty
(<?>) = vapp

where vcopies needs to inspect a run time length to make the right
number of copies—we are obliged to define a helper function:

vcopies :: ∀n x .Natty n → x → Vec n x
vcopies Zy x = V0
vcopies (Sy n) x = x :> vcopies n x

Meanwhile, vapp is pointwise application, requiring only static
knowledge of the length.

vapp :: ∀n s t .Vec n (s → t)→ Vec n s → Vec n t
vapp V0 V0 = V0
vapp (f :> fs) (s :> ss) = f s :> vapp fs ss

We note that simply defining (<?>) by pattern matching in place

instance NATTY n ⇒ Applicative (Vec n) where -- (×)
pure = vcopies natty
V0 <?> V0 = V0
(f :> fs) <?> (s :> ss) = f s :> (fs <?> ss)

yields an error in the step case, where n ∼ S m but NATTY m
cannot be deduced. We know that the NATTY n instance must be a
NATTY (S m) instance which can arise only via an instance dec-
laration which presupposes NATTY m . However, such an argu-
ment via ‘inversion’ does not explain how to construct the method
dictionary for NATTY m from that of NATTY (S m). When we
work with Natty explicitly, the corresponding inversion is just what
we get from pattern matching. The irony here is that (<?>) does
not need the singleton at all!

Although we are obliged to define the helper functions, vcopies
and vapp, we could keep them local to their usage sites inside the
instance declaration. We choose instead to expose them: it can be
convenient to call vcopies rather than pure when a Natty n value
is to hand but a NATTY n dictionary is not; vapp needs neither.

To finish the Applicative instance, we must ensure that Vec n
is a Functor. In fact, vectors are Traversable, hence also Foldable
Functors in the default way, without need for a NATTY constraint.

instance Traversable (Vec n) where
traverse f V0 = pure V0
traverse f (x :> xs) = (:>) <$> f x <?> traverse f xs

instance Foldable (Vec n) where
foldMap = foldMapDefault

instance Functor (Vec n) where
fmap = fmapDefault

3.2 Matrices and a Monad
It is quite handy that Vec n is both Applicative and Traversable.
If we define a Matrix as a vertical vector of height h containing
horizontal vectors of width w , thus (arranging Matrix’s arguments
conveniently for the tiling library later in the paper),

data Matrix :: ?→ (Nat,Nat)→ ? where
Mat :: {unMat :: Vec h (Vec w a)} → Matrix a ′(w , h)

we get transposition cheaply, provided we know the width.

transpose :: NATTY w ⇒ Matrix a ′(w , h)→ Matrix a ′(h,w)
transpose = Mat ◦ sequenceA ◦ unMat

The width information really is used at run time, and is otherwise
unobtainable in the degenerate case when the height is Z: transpose
must know how many V0s to deliver.

Completists may also be interested to define the Monad in-
stance for vectors whose join is given by the diagonal of a matrix.
This fits the Applicative instance, whose (<?>) method more di-
rectly captures the notion of ‘corresponding positions’.

vtail :: Vec (S n) x → Vec n x
vtail (:> xs) = xs

diag :: Matrix x ′(n,n)→ Vec n x
diag (Mat V0) = V0
diag (Mat ((x :>) :> xss)) = x :> diag (Mat (fmap vtail xss))

instance NATTY n ⇒ Monad (Vec n) where
return = pure
xs >>= f = diag (Mat (fmap f xs))

Gibbons (in communication with McBride and Paterson [15]) notes
that the diag construction for unsized lists does not yield a monad,
because the associativity law fails in the case of ‘ragged’ lists of
lists. By using sized vectors, we square away the problem cases.

3.3 Exchanging Explicit and Implicit
Some interplay between the explicit and implicit Π-types is in-
evitable. Pollack wisely anticipated situations where argument syn-
thesis fails because the constraints are too difficult or too few, and
provides a way to override the default implicit behaviour manually.
In Agda, if f : {x :S} → T , then one may write f {s} to give the
argument.

The Hindley-Milner type system faces the same issue: even
though unification is more tractable, we still encounter terms like
const True ⊥ :: Bool where we do not know which type to give
⊥—parametric polymorphism ensures that we don’t need to know.
As soon as we lose parametricity, e.g. in show◦read, the ambiguity
of the underconstrained type is a problem and rightly yields a type
error. The ‘manual override’ takes the form of a type annotation,
which may need to refer to type variables in scope.

As we have already seen, the natty method allows us to extract
an explicit singleton whenever we have implicit run time knowl-
edge of a value. Occasionally, however, we must work the other
way around. Suppose we have an explicit Natty n to hand, but
would like to use it in a context with an implicit NATTY n type
class constraint. We can cajole GHC into building us a NATTY n
dictionary as follows:

natter :: Natty n → (NATTY n ⇒ t)→ t
natter Zy t = t
natter (Sy n) t = natter n t

This may look like an obfuscated identity function, but its type tells
us otherwise. The t being passed along recursively is successively
but silently precomposed with the dictionary transformer generated
from the instance NATTY n ⇒ NATTY (S n) declaration.
Particularly galling, however, is the fact that the dictionary thus
constructed contains just an exact replica of the Natty n value
which natter has traversed.

We have completed our matrix of dependent quantifiers involv-
ing the kind Nat and two ways (neither of which is the type Nat)
to give its inhabitants run time representation, NATTY and Natty,
which are only clumsily interchangeable despite the former wrap-
ping the latter. We could (and indeed SHE does) provide a more
pleasing notation to make the dynamic quantifiers look like Π-types
and their explicit instantiators look like ordinary data, but the awk-
wardness is more than skin deep.

3.4 The NATTY-in-Natty Question
Recall that we defined the singleton representation of natural num-
bers as follows.

data Natty :: Nat→ ? where
Zy :: Natty Z
Sy :: Natty n → Natty (S n)

Another possible design choice is to insert a NATTY constraint
in the successor case, effectively storing two copies of the prede-
cessor. This is the choice taken by Eisenberg and Weirich in the
Singletons library [7].

data Natty :: Nat→ ? where
Zy :: Natty Z
Sy :: NATTY n ⇒ Natty n → Natty (S n)

Each choice has advantages and disadvantages. The unconstrained
version clearly makes for easier construction of singletons, whilst
the constrained version makes for more powerful elimination.

Without the NATTY constraint on Sy, we can write a function
to compute the length of a vector as follows:

vlength :: Vec n x → Natty n
vlength V0 = Zy
vlength (x :> xs) = Sy (vlength xs)

However, with the NATTY constraint on Sy, the construction be-
comes more complex, and we must write:

vlength :: Vec n x → Natty n
vlength V0 = Zy
vlength (x :> xs) = natter n (Sy n) where n = vlength xs

in order to bring the appropriate NATTY constraint into scope for
the inductive case.

Let us write a function to construct an identity matrix of size
n . Here, we are eliminating a singleton. Without the NATTY
constraint on Sy, we must use natter to enable the use of the
relevant Applicative structure.

idMatrix :: Natty n → Matrix Int ′(n,n)
idMatrix (Sy n) = natter n $

Mat ((1 :> pure 0) :> ((0:>) <$> unMat (idMatrix n)))
idMatrix Zy = Mat V0

However, with the NATTY constraint on Sy, we can omit
natter, because the required constraint is brought into scope by
pattern matching.

idMatrix :: Natty n → Matrix Int ′(n,n)
idMatrix (Sy n) =

Mat ((1 :> pure 0) :> ((0:>) <$> unMat (idMatrix n)))
idMatrix Zy = Mat V0

For constructions like vlength it is most convenient to omit
the NATTY constraint from the successor constructor. For elim-
inations like idMatrix, it is most convenient to attach the NATTY
constraint to the successor constructor. It is hard to predict which
polarity is more likely to dominate, but the issue with elimination
happens only when we have the explicit witness but need the im-
plicit one.

There is also a time/space trade-off, as including the constraint
effectively requires storing the same information twice at each
node, but allows for an implementation of natter by one step of
case analysis, rather than a full recursion.

natter :: Natty n → (NATTY n ⇒ t)→ t
natter Zy t = t
natter (Sy n) t = t

SHE has vacillated between the two: the first implementation did
not add the constraint; a tricky example provoked us to add it, but
it broke too much code, so we reverted the change. Our experience
suggests that omitting the constraint is more convenient more of the
time. We should, however, prefer to omit the entire construction.

4. An Ordered Silence
We turn now to a slightly larger example—a development of merge-
sort which guarantees by type alone to produce outputs in order.
The significant thing about this construction is what is missing
from it: explicit proofs. By coding the necessary logic using type
classes, we harness instance inference as an implicit proof search
mechanism and find it quite adequate to the task.

Let us start by defining 6 as a ‘type’ class, seen as a relation.

class LeN (m :: Nat) (n :: Nat) where
instance LeN Z n where
instance LeN m n ⇒ LeN (S m) (S n) where

If we wanted to close this class, we could use the module abstrac-
tion method of Kiselyov and Shan [9] which uses a non-exported
superclass. We leave this elaboration to the interested reader. The
LeN class has no methods, but it might make sense to deliver at
least the explicit evidence of ordering in the corresponding GADT,
just as the NATTY class method delivers Natty evidence.

In order to sort numbers, we need to know that any two numbers
can be ordered one way or the other (OWOTO). Let us say what it
means for two numbers to be so orderable.

data OWOTO :: Nat→ Nat→ ? where
LE :: LeN x y ⇒ OWOTO x y
GE :: LeN y x ⇒ OWOTO x y

Testing which way round the numbers are is quite a lot like the
usual Boolean version, except with evidence. The step case re-
quires unpacking and repacking because the constructors are used
at different types (OWOTO m n versus OWOTO (S m) (S n)).
However, instance inference is sufficient to deduce the logical goals
from the information revealed by testing.

owoto :: ∀m n.Natty m → Natty n → OWOTO m n
owoto Zy n = LE
owoto (Sy m) Zy = GE
owoto (Sy m) (Sy n) = case owoto m n of

LE → LE
GE→ GE

Now we know how to put numbers in order, let us see how to
make ordered lists. The plan is to describe what it is to be in order
between loose bounds [11]. Of course, we do not want to exclude
any elements from being sortable, so the type of bounds extends
the element type with bottom and top elements.

data Bound x = Bot | Val x | Top deriving (Show,Eq,Ord)

We extend the notion of 6 accordingly, so that instance inference
can manage bound checking.

class LeB (a :: Bound Nat) (b :: Bound Nat) where
instance LeB Bot b where
instance LeN x y ⇒ LeB (Val x) (Val y) where
instance LeB (Val x) Top where
instance LeB Top Top where

And here are ordered lists of numbers: an OList l u is a sequence
x1 :<x2 :<... :<xn :<ONil such that l 6 x1 6 x2 6 ... 6 xn 6 u .
The x :< checks that x is above the lower bound, then imposes x as
the lower bound on the tail.

data OList :: Bound Nat→ Bound Nat→ ? where
ONil :: LeB l u ⇒ OList l u
(:<) :: ∀l x u.LeB l (Val x)⇒

Natty x → OList (Val x) u → OList l u

We can write merge for ordered lists just the same way we would if
they were ordinary. The key invariant is that if both lists share the
same bounds, so does their merge.

merge :: OList l u → OList l u → OList l u
merge ONil lu = lu
merge lu ONil = lu
merge (x :< xu) (y :< yu) = case owoto x y of

LE → x :<merge xu (y :< yu)
GE→ y :<merge (x :< xu) yu

The branches of the case analysis extend what is already known
from the inputs with just enough ordering information to satisfy
the requirements for the results. Instance inference acts as a basic
theorem prover: fortunately (or rather, with a bit of practice) the
proof obligations are easy enough.

Now that we can combine ordered lists of singleton numbers,
we shall need to construct singletons for the numbers we intend to
sort. We do so via a general data type for existential quantification.

data Ex (p :: κ→ ?) where
Ex :: p i → Ex p

A ‘wrapped Nat’ is then a Natty singleton for any type-level
number.

type WNat = Ex Natty

We can translate a Nat to its wrapped version by writing what
is, morally, another obfuscated identity function between our two
types of term level natural numbers.

wrapNat :: Nat→WNat
wrapNat Z = Ex Zy
wrapNat (S m) = case wrapNat m of Ex n → Ex (Sy n)

You can see that wrapNat delivers the WNat corresponding to the
Nat it receives, but that property is sadly not enforced by type—
an inevitable consequence of separating Nat from its singletons.
However, once we have WNats, we can build merge-sort in the
usual divide-and-conquer way.

deal :: [x]→ ([x], [x])
deal [] = ([], [])
deal (x : xs) = (x : zs, ys) where (ys, zs) = deal xs

sort :: [Nat]→ OList Bot Top
sort [] = ONil
sort [n] = case wrapNat n of Ex n → n :< ONil
sort xs = merge (sort ys) (sort zs) where (ys, zs) = deal xs

The need to work with WNat is a little clunky compared to what
one might do in Agda where a single Nat type serves for Nat and its
promotion, Natty, NATTY and WNat, but Agda does not have the
proof search capacity of Haskell’s constraint solver, and so requires
the theorem proving to be more explicit. There is certainly room for
improvement in both settings.

5. What are the Data that Go with Proofs?
In the previous section we gave ordering proofs as instances of the
OWOTO data type. In this section, and even more so in the next,
we will be concerned not only with the fact of ordering, but also
the degree of it.

Let us consider the operation of comparing two singleton nat-
ural numbers. We refine the standard Haskell Ordering type to be
indexed by the natural numbers under comparison.

As a naı̈ve first attempt, we might copy the following definition
from McBride and McKinna [14]:

data Cmp :: Nat→ Nat→ ? where
LTNat :: Cmp m (m :+ S z)
EQNat :: Cmp m m
GTNat :: Cmp (n :+ S z) n

If m < n , then there exists some z such that n = m + (z + 1).
Similarly if m > n then there exists some z such that m =
n+ (z + 1).

Following a comparison, it can be useful to be able to inspect
the difference between two numbers. In the EQNat case, this is
simply 0. In the other two cases it is z + 1, thus in each case we
store a singleton representation of z as a witness.

data Cmp :: Nat→ Nat→ ? where
LTNat :: Natty z → Cmp m (m :+ S z)
EQNat :: Cmp m m
GTNat :: Natty z → Cmp (n :+ S z) n

Note that in more conventional dependently typed programming
languages, such as Agda, it is not possible to write an equivalent of
our naive definition of Cmp—the value of z must be provided as
an argument to the LTNat and GTNat constructors.

We can now write a comparison function that constructs a suit-
able proof object:

cmp :: Natty m → Natty n → Cmp m n
cmp Zy Zy = EQNat
cmp Zy (Sy n) = LTNat n
cmp (Sy m) Zy = GTNat m
cmp (Sy m) (Sy n) = case cmp m n of

LTNat z → LTNat z
EQNat → EQNat
GTNat z → GTNat z

The procrustes function fits a vector of length m into a vector of
length n , by padding or trimming as necessary. (Procrustes was a
mythical Greek brigand who would make his unfortunate guests
fit into an iron bed either by stretching their limbs or by chopping
them off.)

procrustes :: a → Natty m → Natty n → Vec m a → Vec n a
procrustes p m n xs = case cmp m n of

LTNat z → vappend xs (vcopies (Sy z) p)
EQNat → xs
GTNat z → vtake n (proxy (Sy z)) xs

In both the less-than and greater-than cases, we need the evidence
z provided by the Cmp data type; in the former, we even compute
with it.

Dependently typed programming often combines testing with
the acquisition of new data that is justified by the test—the differ-
ence, in this case—and the refinement of the data being tested—the
discovery that one number is the other plus the difference. We make
sure that every computation which analyses data has a type which
characterizes what we expect to learn.

6. Boxes
Here we introduce our main example, an algebra for building size-
indexed rectangular tilings, which we call simply boxes.

6.1 Two Flavours of Conjunction
In order to define size indexes we introduce some kit which turns
out to be more generally useful. The type of sizes is given by the
separated conjunction [23] of Natty with Natty.

type Size = Natty :∗∗: Natty

data (p :: ι→ ?) :∗∗: (q :: κ→ ?) :: (ι, κ)→ ? where
(:&&:) :: p ι→ q κ→ (p :∗∗: q) ′(ι, κ)

In general, the separating conjunction (:∗∗:) of two indexed type
constructors is an indexed product whose index is also a product,
in which each component of the indexed product is indexed by the
corresponding component of the index.

We also define a non-separating conjunction.

data (p :: κ→ ?) :∗: (q :: κ→ ?) :: κ→ ? where
(:&:) :: p κ→ q κ→ (p :∗: q) k

The non-separating conjunction (:∗:) is an indexed product in
which the index is shared across both components of the product.

We will use both separating and non-separating conjunction
extensively in Section 7.2.

6.2 The Box Data Type
We now introduce the type of boxes.

data Box :: ((Nat,Nat)→ ?)→ (Nat,Nat)→ ? where
Stuff :: p wh → Box p wh
Clear :: Box p wh
Hor :: Natty w1 → Box p ′(w1, h)→

Natty w2 → Box p ′(w2, h)→ Box p ′(w1 :+ w2, h)
Ver :: Natty h1 → Box p ′(w , h1)→

Natty h2 → Box p ′(w , h2)→ Box p ′(w , h1 :+ h2)

A box b with content of size-indexed type p and size wh has type
Box p wh . Boxes are constructed from content (Stuff), clear boxes
(Clear), and horizontal (Hor) and vertical (Ver) composition. Given
suitable instantiations for the content, boxes can be used as the
building blocks for arbitrary graphical user interfaces. In Section 7
we instantiate content to the type of character matrices, which we
use to implement a text editor.

Though Box clearly does not have the right type to be an in-
stance of the Monad type class, it is worth noting that it is a per-
fectly ordinary monad over a slightly richer base category than the

category of Haskell types used by the Monad type class. The ob-
jects in this category are indexed. The morphisms are inhabitants
of the following :→ type.

type s :→ t = ∀i .s i → t i

Let us define a type class of monads over indexed types.

class MonadIx (m :: (κ→ ?)→ (κ→ ?)) where
returnIx :: a :→ m a
extendIx :: (a :→ m b)→ (m a :→ m b)

The returnIx method is the unit, and extendIx is the Kleisli exten-
sion of a monad over indexed types. It is straightforward to provide
an instance for boxes.

instance MonadIx Box where
returnIx = Stuff
extendIx f (Stuff c) = f c
extendIx f Clear = Clear
extendIx f (Hor w1 b1 w2 b2) =

Hor w1 (extendIx f b1) w2 (extendIx f b2)
extendIx f (Ver h1 b1 h2 b2) =

Ver h1 (extendIx f b1) h2 (extendIx f b2)

The extendIx operation performs substitution at Stuff constructors,
by applying its first argument to the content.

Monads over indexed sets, in general, are explored in depth in
the second author’s previous work [12].

6.3 Juxtaposition
A natural operation to define is the one that juxtaposes two boxes
together, horizontally or vertically, adding appropriate padding if
the sizes do not match up. Let us consider the horizontal version
juxH. Its type signature is:

juxH :: Size ′(w1, h1)→ Size ′(w2, h2)→
Box p ′(w1, h1)→ Box p ′(w2, h2)→

Box p ′(w1 :+ w2,Max h1 h2)

where Max computes the maximum of two promoted Nats:

type family Max (m :: Nat) (n :: Nat) :: Nat
type instance Max Z n = n
type instance Max (S m) Z = S m
type instance Max (S m) (S n) = S (Max m n)

As well as the two boxes it takes singleton representations of their
sizes, as it must compute on these.

We might try to write a definition for juxH as follows:

juxH (w1 :&&: h1) (w2 :&&: h2) b1 b2 =
case cmp h1 h2 of

LTNat n →
Hor w1 (Ver h1 b1 (Sy n) Clear) w2 b2 -- (×)

EQNat →
Hor w1 b1 w2 b2 -- (×)

GTNat n →
Hor w1 b1 w2 (Ver h2 b2 (Sy n) Clear) -- (×)

Unfortunately, this code does not type check, because GHC has no
way of knowing that the height of the resulting box is the maximum
of the heights of the component boxes.

6.4 Pain
One approach to resolving this issue is to encode lemmas, given
by parameterised equations, as Haskell functions. In general, such
lemmas may be encoded as functions of type:

∀x1 ... xn.Natty x1 → ...→ Natty xn → ((l ∼ r)⇒ t)→ t

where l and r are the left- and right-hand-side of the equation, and
x1, . . . , xn are natural number variables that may appear free in the
equation. The first n arguments are singleton natural numbers. The
last argument represents a context that expects the equation to hold.

For juxH, we need one lemma for each case of the comparison:

juxH (w1 :&&: h1) (w2 :&&: h2) b1 b2 =
case cmp h1 h2 of

LTNat z → maxLT h1 z $
Hor w1 (Ver h1 b1 (Sy z) Clear) w2 b2

EQNat → maxEQ h1 $
Hor w1 b1 w2 b2

GTNat z → maxGT h2 z $
Hor w1 b1 w2 (Ver h2 b2 (Sy z) Clear)

Each lemma is defined by a straightforward induction:

maxLT :: ∀m z t .Natty m → Natty z →
((Max m (m :+ S z) ∼ (m :+ S z))⇒ t)→ t

maxLT Zy z t = t
maxLT (Sy m) z t = maxLT m z t

maxEQ :: ∀m t .Natty m → ((Max m m ∼ m)⇒ t)→ t
maxEQ Zy t = t
maxEQ (Sy m) t = maxEQ m t

maxGT :: ∀n z t .Natty n → Natty z →
((Max (n :+ S z) n ∼ (n :+ S z))⇒ t)→ t

maxGT Zy z t = t
maxGT (Sy n) z t = maxGT n z t

Using this pattern, it is now possible to use GHC as a theorem
prover. As GHC does not provide anything in the way of direct
support for theorem proving (along the lines of tactics in Coq, say),
we would like to avoid the pain of explicit theorem proving as much
as possible, so we now change tack.

6.5 Pleasure
In order to avoid explicit calls to lemmas we would like to obtain
the type equations we need for free as part of the proof object. As
a first step, we observe that this is essentially what we are already
doing in the proof object to encode the necessary equations con-
cerning addition. One can always rephrase a GADT as an existen-
tial algebraic data type with suitable type equalities. For our basic
Cmp data type, this yields:

data Cmp :: Nat→ Nat→ ? where
LTNat :: ((m :+ S z) ∼ n) ⇒ Natty z → Cmp m n
EQNat :: (m ∼ n) ⇒ Cmp m n
GTNat :: (m ∼ (n :+ S z))⇒ Natty z → Cmp m n

Now the fun starts. As well as the equations that define the proof
object, we can incorporate other equations that encapsulate further
knowledge implied by the result of the comparison. For now, we
add equations for computing the maximum of m and n in each
case.

data Cmp :: Nat→ Nat→ ? where
LTNat :: ((m :+ S z) ∼ n, Max m n ∼ n) ⇒

Natty z → Cmp m n
EQNat :: (m ∼ n, Max m n ∼ m)⇒

Cmp m n
GTNat :: (m ∼ (n :+ S z),Max m n ∼ m)⇒

Natty z → Cmp m n

Having added these straightforward equalities, our definition of
juxH now type checks without the need to explicitly invoke any
lemmas.

juxH :: Size ′(w1, h1)→ Size ′(w2, h2)→
Box p ′(w1, h1)→ Box p ′(w2, h2)→

Box p ′(w1 :+ w2,Max h1 h2)
juxH (w1 :&&: h1) (w2 :&&: h2) b1 b2 =

case cmp h1 h2 of
LTNat z →

Hor w1 (Ver h1 b1 (Sy z) Clear) w2 b2
EQNat →

Hor w1 b1 w2 b2
GTNat z →

Hor w1 b1 w2 (Ver h2 b2 (Sy z) Clear)

The juxV function is defined similarly.
As we shall see in Section 6.6, it can be useful to attach further

equational constraints to the Cmp constructors. A limitation of our
current formulation is that we have to go back and modify the
Cmp data type each time we wish to extract new evidence from the
cmp function. The code of cmp remains the same, and typechecks
without explicit proof provided the induction which establishes the
evidence fits with the recursion pattern. Ideally we would have
some way to abstract Cmp and cmp over properties, but it seems
hard to deliver the same implicit checking of ‘fitting the pattern’
without higher-order constraints, which are currently unsupported
in Haskell. We leave a proper investigation to future work.

6.6 Cutting
For cutting up boxes, and two-dimensional entities in general, we
introduce a type class Cut.

class Cut (p :: (Nat,Nat)→ ?) where
horCut :: Natty m → Natty n →

p ′(m :+ n, h)→ (p ′(m, h), p ′(n, h))
verCut :: Natty m → Natty n →

p ′(w ,m :+ n)→ (p ′(w ,m), p ′(w ,n))

We can cut horizontally or vertically by supplying the width or
height of the two smaller boxes we wish to cut a box into. Thus
horCut takes natural numbers m and n , an indexed thing of width
m + n and height h, and cuts it into two indexed things of height
h , one of width m , and the other of width n . The verCut function
is similar.

In order to handle the case in which we horizontally cut the hori-
zontal composition of two boxes, we need to perform a special kind
of comparison. In general, we wish to compare natural numbers a
and c given the equation a+ b = c+ d, and capture the constraints
on a, b, c, and d implied by the result of the comparison. For in-
stance, if a < c then there must exist some number z, such that
b = (z + 1) + d and c = a+ (z + 1).

We encode proof objects for cut comparisons using the follow-
ing data type.

data CmpCuts :: Nat→ Nat→ Nat→ Nat→ ? where
LTCuts :: (b ∼ (S z :+ d), c ∼ (a :+ S z))⇒

Natty z → CmpCuts a b c d
EQCuts :: (a ∼ c, b ∼ d)⇒

CmpCuts a b c d
GTCuts :: (a ∼ (c :+ S z), d ∼ (S z :+ b))⇒

Natty z → CmpCuts a b c d

We can straightforwardly define a cut comparison function.

cmpCuts :: ((a :+ b) ∼ (c :+ d))⇒
Natty a → Natty b →
Natty c → Natty d →

CmpCuts a b c d
cmpCuts Zy b Zy d = EQCuts
cmpCuts Zy b (Sy c) d = LTCuts c
cmpCuts (Sy a) b Zy d = GTCuts a
cmpCuts (Sy a) b (Sy c) d = case cmpCuts a b c d of

LTCuts z → LTCuts z
EQCuts → EQCuts
GTCuts z → GTCuts z

Now we define cuts for boxes.

instance Cut p ⇒ Cut (Box p) where
horCut m n (Stuff p) = (Stuff p1,Stuff p2)

where (p1, p2) = horCut m n p
horCut m n Clear = (Clear,Clear)

horCut m n (Hor w1 b1 w2 b2) =
case cmpCuts m n w1 w2 of

LTCuts z → let (b11, b12) = horCut m (Sy z) b1
in (b11,Hor (Sy z) b12 w2 b2)

EQCuts → (b1, b2)
GTCuts z → let (b21, b22) = horCut (Sy z) n b2

in (Hor w1 b1 (Sy z) b21, b22)
horCut m n (Ver h1 b1 h2 b2) =
(Ver h1 b11 h2 b21,Ver h1 b12 h2 b22)
where (b11, b12) = horCut m n b1
(b21, b22) = horCut m n b2

verCut m n b = ...

The interesting case occurs when horizontally cutting the hori-
zontal composition of two sub-boxes. We must identify which sub-
box the cut occurs in, and recurse appropriately. Note that we rely
on being able to cut content. The definition of vertical box cutting
is similar.

6.7 Boxes as Monoids
As well as monadic structure, boxes also have monoidal structure.

instance Cut p ⇒ Monoid (Box p wh) where
mempty = Clear
mappend b Clear = b
mappend Clear b′ = b′

mappend b@(Stuff) = b
mappend (Hor w1 b1 w2 b2) b′ =

Hor w1 (mappend b1 b1 ′) w2 (mappend b2 b2 ′)
where (b1 ′, b2 ′) = horCut w1 w2 b′

mappend (Ver h1 b1 h2 b2) b′ =
Ver h1 (mappend b1 b1 ′) h2 (mappend b2 b2 ′)

where (b1 ′, b2 ′) = verCut h1 h2 b′

The multiplication operation b‘mappend‘b′ overlays b on top of b′.
It makes essential use of cutting to handle the Hor and Ver cases.

6.8 Cropping = Clipping + Fitting
We can crop a box to a region. First we need to specify a suitably
indexed type of regions. A point identifies a position inside a
box, where (Zy,Zy) represents the top-left corner, counting top-
to-bottom, left-to-right.

type Point = Natty :∗∗: Natty

A region identifies a rectangular area inside a box by a pair of the
point representing the top-left corner of the region, and the size of
the region.

type Region = Point :∗∗: Size

We decompose cropping into two parts, clipping and fitting.
Clipping discards everything to the left and above the specified

point. The type signature of clip is:

clip :: Cut p ⇒ Size ′(w , h)→ Point ′(x , y)→
Box p ′(w , h)→ Box p ′(w :− x , h :− y)

where :− is type level subtraction:

type family (m :: Nat) :− (n :: Nat) :: Nat
type instance Z :−n = Z
type instance S m :−Z = S m
type instance S m :− S n = (m :−n)

In order to account for the subtraction in the result, we need to
augment the Cmp data type to include the necessary equations.

data Cmp :: Nat→ Nat→ ? where
LTNat :: ((m :+ S z) ∼ n, Max m n ∼ n, (m :−n) ∼ Z) ⇒

Natty z → Cmp m n
EQNat :: (m ∼ n, Max m n ∼ m, (m :−n) ∼ Z) ⇒

Cmp m n

GTNat :: (m ∼ (n :+ S z),Max m n ∼ m, (m :−n) ∼ S z)⇒
Natty z → Cmp m n

To clip in both dimensions, we first clip horizontally, and then clip
vertically.

In order to define clipping we first lift subtraction on types :−
to subtract on singleton naturals /−/.

(/−/) :: Natty m → Natty n → Natty (m :−n)
Zy /−/n = Zy
Sy m/−/Zy = Sy m
Sy m/−/Sy n = m/−/n

In general one needs to define each operation on naturals three
times: once for Nat values, once for Nat types, and once for Natty
values. The pain can be somewhat alleviated using the singletons
library [7], which provides a Template Haskell extension to auto-
matically generate all three versions from a single definition.

Let us now define clipping.

clip (w :&&: h) (x :&&: y) b =
clipV (w/−/x :&&: h) y (clipH (w :&&: h) x b)

clipH :: Cut p ⇒ Size ′(w , h)→ Natty x →
Box p ′(w , h)→ Box p ′(w :− x , h)

clipH (w :&&: h) x b = case cmp w x of
GTNat d → snd (horCut x (Sy d) b)

→ Clear

clipV :: Cut p ⇒ Size ′(w , h)→ Natty y →
Box p ′(w , h)→ Box p ′(w , h :− y)

clipV (w :&&: h) y b = case cmp h y of
GTNat d → snd (verCut y (Sy d) b)

→ Clear

Fitting pads or cuts a box to the given size. To fit in both dimen-
sions, we first fit horizontally, and then fit veritcally.

fit :: Cut p ⇒ Size ′(w1, h1)→ Size ′(w2, h2)→
Box p ′(w1, h1)→ Box p ′(w2, h2)

fit (w1 :&&: h1) (w2 :&&: h2) b = fitV h1 h2 (fitH w1 w2 b)

fitH :: Cut p ⇒ Natty w1 → Natty w2 →
Box p ′(w1, h)→ Box p ′(w2, h)

fitH w1 w2 b = case cmp w1 w2 of
LTNat d → Hor w1 b (Sy d) Clear
EQNat → b
GTNat d → fst (horCut w2 (Sy d) b)

fitV :: Cut p ⇒ Natty h1 → Natty h2 →
Box p ′(w , h1)→ Box p ′(w , h2)

fitV h1 h2 b = case cmp h1 h2 of
LTNat d → Ver h1 b (Sy d) Clear
EQNat → b
GTNat d → fst (verCut h2 (Sy d) b)

Observe that fitH and fitV do essentially the same thing as the
procrustes function, but on boxes rather than vectors, and always
using Clear boxes for padding.

To crop a box to a region, we simply clip then fit.

crop :: Cut p ⇒ Region ′(′(x , y), ′(w , h))→ Size ′(s, t)→
Box p ′(s, t)→ Box p ′(w , h)

crop ((x :&&: y) :&&: (w :&&: h)) (s :&&: t) b =
fit ((s/−/x) :&&: (t/−/y)) (w :&&: h)

(clip (s :&&: t) (x :&&: y) b)

A convenient feature of our cropping code is that type-level
subtraction is confined to the clip function. This works because in
the type of fit the output box is independent of the size of the input
box.

In an earlier version of the code we experimented with a more
refined cropping function of type:

Cut p ⇒ Region ′(′(x , y), ′(w , h))→ Size ′(s, t)→
Box p ′(s, t)→ Box p ′(Min w (s :− x),Min h (t :− y))

where Min is minimum on promoted Nats. This proved consider-
ably more difficult to use as we had to reason about interactions
between subtraction, addition, and minimum. Moreover, the less-
refined version is often what we want in practice.

7. An Editor
We outline the design of a basic text editor, which represents the
text buffer as a size-indexed box. Using this representation guar-
antees that manipulations such as cropping the buffer to generate
screen output only generate well-formed boxes of a given size. We
will also need to handle dynamic values coming from the outside
world. We convert these to equivalent size-indexed values using
existentials, building on the Ex data type of Section 4 and the sep-
arating and non-separating conjunction operators of Section 6.1.

7.1 Character Boxes
A character box is a box whose content is given by character
matrices.

type CharMatrix = Matrix Char
type CharBox = Box CharMatrix

Concretely, we will use a character box to represent a text buffer.
We can fill an entire matrix with the same character.

matrixChar :: Char→ Size wh → CharMatrix wh
matrixChar c (w :&&: h) = Mat (vcopies h (vcopies w c))

We can render a character box as a character matrix.

renderCharBox ::
Size wh → CharBox wh → CharMatrix wh

renderCharBox (Stuff css) = css
renderCharBox wh Clear =

matrixChar ’ ’ wh
renderCharBox (w :&&:) (Ver h1 b1 h2 b2) =

Mat (unMat (renderCharBox (w :&&: h1) b1)
‘vappend‘ unMat (renderCharBox (w :&&: h2) b2))

renderCharBox (:&&: h) (Hor w1 b1 w2 b2) =
Mat (vcopies h vappend

‘vapp‘ unMat (renderCharBox (w1 :&&: h) b1)
‘vapp‘ unMat (renderCharBox (w2 :&&: h) b2))

Ideally, we would prefer to use the standard Applicative interface,
but here we use vcopies h for pure and vapp for (<?>) to avoid
the overhead of appealing to natter h .

We can display a character matrix as a list of strings.

stringsOfCharMatrix :: CharMatrix wh → [String]
stringsOfCharMatrix (Mat vs) =

foldMap ((:[]) ◦ foldMap (:[])) vs

In order to be able to cut (and hence crop) boxes with matrix
content we instantiate the Cut type class for matrices.

instance Cut (Matrix e) where
horCut m (Mat ess) =
(Mat (fst <$> ps),Mat (snd <$> ps)) where
ps = vchop m <$> ess

verCut m (Mat ess) = (Mat tess,Mat bess) where
(tess, bess) = vchop m ess

7.2 Existentials
In Section 4 we introduced existentially quantified singletons as a
means for taking dynamic values and converting them into equiva-
lent singletons.

We now present combinators for constructing existentials over
composite indexes. For the editor, we will need to generate a region,
that is, a pair of pairs of singleton naturals from a pair of pairs of
natural numbers.

wrapPair :: (a → Ex p)→ (b → Ex q)→ (a, b)→ Ex (p :∗∗: q)
wrapPair w1 w2 (x1, x2) =
case (w1 x1,w2 x2) of
(Ex v1 ,Ex v2)→ Ex (v1 :&&: v2)

The wrapPair function wraps a pair of dynamic objects in a suitable
existential package using a separating conjunction.

type WPoint = Ex Point
type WSize = Ex Size
type WRegion = Ex Region

intToNat :: Int→ Nat
intToNat 0 = Z
intToNat n = S (intToNat (n − 1))

wrapInt = wrapNat ◦ intToNat
wrapPoint = wrapPair wrapInt wrapInt
wrapSize = wrapPair wrapInt wrapInt
wrapRegion = wrapPair wrapPoint wrapSize

We might wish to wrap vectors, but the Vec type takes the length
index first, so we cannot use it as is with Ex. Thus we can define
and use a Flip combinator, which reverses the arguments of a two
argument type-operator.

newtype Flip f a b = Flip {unFlip :: f b a }

type WVec a = Ex (Flip Vec a)

wrapVec :: [a]→WVec a
wrapVec [] = Ex (Flip V0)
wrapVec (x : xs) = case wrapVec xs of

Ex (Flip v)→ Ex (Flip (x :> v))

In fact, we wish to wrap a vector up together with its length.
This is where the non-separating conjunction comes into play. The
Natty representing the length of the vector and the Flip Vec a
representing the vector itself should share the same index.

type WLenVec a = Ex (Natty :∗: Flip Vec a)

wrapLenVec :: [a]→WLenVec a
wrapLenVec [] = Ex (Zy :&: Flip V0)
wrapLenVec (x : xs) = case wrapLenVec xs of

Ex (n :&: Flip v)→ Ex (Sy n :&: Flip (x :> v))

Similarly, we use non-separating conjunction to wrap a box with its
size.

type WSizeCharBox = Ex (Size :∗: CharBox)

Given a string of length w , we can wrap it as a character box of size
(w , 1).

wrapString :: String→WSizeCharBox
wrapString s = case wrapLenVec s of

Ex (n :&: Flip v)→
Ex ((n :&&: Sy Zy) :&: Stuff (Mat (pure v)))

Given a list of h strings of maximum length w , we can wrap it as a
character box of size (w , h)

wrapStrings :: [String]→WSizeCharBox
wrapStrings [] = Ex ((Zy :&&: Zy) :&: Clear)
wrapStrings (s : ss) =

case (wrapString s,wrapStrings ss) of
(Ex ((w1 :&&: h1) :&: b1),
Ex ((w2 :&&: h2) :&: b2))→

Ex (((w1 ‘maxn‘ w2) :&&: (h1/+/h2)) :&:
juxV (w1 :&&: h1) (w2 :&&: h2) b1 b2)

where maxn is maximum and (/+/) is addition on singleton natural
numbers:

maxn :: Natty m → Natty n → Natty (Max m n)
maxn Zy n = n

maxn (Sy m) Zy = Sy m
maxn (Sy m) (Sy n) = Sy (maxn m n)

(/+/) :: Natty m → Natty n → Natty (m :+ n)
Zy /+/n = n
Sy m /+/n = Sy (m/+/n)

Curiously, the singletons library does not appear to provide any
special support for existential quantification over singletons. It
should be possible to automatically generate the code for wrap-
ping dynamic objects in existentials.

We note also that the tendency to use stock data type compo-
nents, e.g., Ex, Flip, :∗ : and :∗∗ :, causes extra layering of wrap-
ping constructors in patterns and expressions. We could use a be-
spoke GADT for each type we build in this way, but that would
make it harder to develop library functionality. Ordinary ‘let’ al-
lows us to hide the extra layers in expressions, but is no help for
patterns, which are currently peculiar in that they admit no form
of definitional abstraction [2]. This basic oversight would be read-
ily remedied by pattern synonyms—linear, constructor-form defi-
nitions which expand like macros either side of the = sign.

7.3 Cursors
We use a zipper structure [8] to represent a cursor into a text buffer.
We make no attempt to statically track the size of the buffer as a
cursor, but do so when we wish to manipulate the whole buffer.

A cursor is a triple consisting of: a backwards list of elements
before the current position, the object at the current position, and a
forward list of elements after the current position.

type Cursor a m = ([a],m, [a])

The elements of a StringCursor are characters.

type StringCursor = Cursor Char ()

The elements of a TextCursor are strings. The object at the current
position is a StringCursor.

type TextCursor = Cursor String StringCursor

The deactivate and activate functions convert between a unit cur-
sor and a pair of a list and its length.

deactivate :: Cursor a ()→ (Int, [a])
deactivate c = outward 0 c where

outward i ([], (), xs) = (i , xs)
outward i (x : xz , (), xs) = outward (i + 1) (xz , (), x : xs)

activate :: (Int, [a])→ Cursor a ()
activate (i , xs) = inward i ([], (), xs) where

inward c@(, (), []) = c
inward 0 c = c
inward i (xz , (), x : xs) = inward (i − 1) (x : xz , (), xs)

The whatAndWhere function uses deactivate and wrapStrings
to generate a well-formed existentially quantified box from a
TextCursor.

whatAndWhere :: TextCursor→ (WSizeCharBox, (Int, Int))
whatAndWhere (czz , cur , css) = (wrapStrings strs, (x , y))

where
(x , cs) = deactivate cur
(y, strs) = deactivate (czz , (), cs : css)

7.4 The Inner Loop
We give a brief overview of the editor’s inner loop. The full code is
available as literate Haskell at https://github.com/slindley/
dependent-haskell/tree/master/Hasochism/Editor.lhs

The current position in the text buffer is represented using a zip-
per structure over an unindexed list of strings. The current position
and size of the screen is represented as two pairs of integers. On a
change to the buffer, the inner loop proceeds as follows.

• Wrap the current screen position and size as a singleton region
using wrapRegion.
• Unravel the zipper structure using whatAndWhere to reveal the

underlying structure of the buffer as a list of strings.
• This invokes wrapStrings to wrap the list of strings as an

existential over a suitably indexed CharBox.
• Crop the wrapped CharBox according to the wrapped singleton

region.
• Render the result as a list of strings using stringsOfCharMatrix◦

renderCharBox.

We take advantage of dependent types to ensure that cropping
yields boxes of the correct size. The rest of the editor does not use
dependent types. The wrapping functions convert non-dependent
data into equivalent dependent data. Rendering does the opposite.

We expect that converting back and forth between raw and
indexed data every time something changes is expensive. We leave
a full performance evaluation to future work. One might hope to use
indexed data everywhere. This is infeasible in practice, because of
the need to interact with the outside world, and in particular foreign
APIs (including the curses library we use for our text editor).

8. Conclusion
We have constructed and explored the use of the static-versus-
dynamic/explicit-versus-implicit matrix of value-dependent quan-
tifiers in Haskell. We have observed the awkwardness, but enjoyed
the mere possibility, of dynamic quantification and used it to build
substantial examples of sorting and box-tiling, where the establish-
ment and maintenance of invariants is based not just on propagation
of static indices, but on dynamic generation of evidence.

After some fairly hairy theorem proving, the worst of which
we have spared you, we learned how to package proofs which
follow a similar pattern inside GADTs of useful evidence. GHC’s
constraint solver is a good enough automatic theorem prover to
check the proof steps corresponding to the recursion structure of
the evidence-generating program. Case analysis on the resulting
evidence is sufficient to persuade GHC that sorting invariants hold
and that boxes snap together. In this respect, Haskell handles simple
proofs much more neatly than Agda, where proving is as explicit
as programming because it is programming. There is still room for
improvement: we do not yet have a compositional way to express
just the fact that properties follow by a common proof pattern in a
way that GHC will silently check.

There is room for improvement also in the treatment of de-
pendent quantification, both in Haskell and in dependently typed
programming languages. Haskell naturally gives good support for
quantifying over data which are purely static, whilst Agda insists
on retaining these data at run time. Meanwhile, the singletons
shenanigans required to support the dynamic quantifiers are re-
ally quite painful, both conceptually—with the explosion of Nat,
Natty, NATTY and WNat—and in the practicalities of shuffling
between them, spending effort on converting values into singletons
and singletons into dictionaries containing exact copies of those
singletons. If we want to build a scalable technology with the pre-
cision of indexing we have shown in our examples, we had better
look for foundations which allow the elimination of this complex-
ity, not just the encoding of it.

The key step which we must take is to move on from Milner’s
alignment of coincidences and stop working as if a single depen-
dent static implicit quantifier over types is all we need. We have
encoded quantification over the same type in different ways by ab-
stracting over different types in the same way, and the result is
predictably and, we hope, preventably unpleasant. The Strathclyde
team are actively exploring the remedy—generalizing the quanti-

https://github.com/slindley/dependent-haskell/tree/master/Hasochism/Editor.lhs
https://github.com/slindley/dependent-haskell/tree/master/Hasochism/Editor.lhs

fier to reflect its true diversity, and allowing each type to be used
unduplicated wherever it is meaningful. The best thing about bang-
ing your head off a brick wall is stopping.

References
[1] A. Abel and G. Scherer. On irrelevance and algorithmic equality in

predicative type theory. Logical Methods in Computer Science, 8(1),
2012.

[2] W. Aitken and J. Reppy. Abstract value constructors. Technical Report
TR 92-1290, Cornell University, 1992.

[3] B. Barras and B. Bernardo. The implicit calculus of constructions as
a programming language with dependent types. In FoSSaCS, volume
4962 of LNCS, pages 365–379, 2008.

[4] E. Brady. Practical Implementation of a Dependently Typed Func-
tional Programming Language. PhD thesis, University of Durham,
2005.

[5] E. Brady, C. McBride, and J. McKinna. Inductive families need not
store their indices. In TYPES, volume 3085 of LNCS, pages 115–129.
Springer, 2003.

[6] S. Cui, K. Donnelly, and H. Xi. ATS: A language that combines
programming with theorem proving. In FroCoS, volume 3717 of
LNCS, pages 310–320. Springer, 2005.

[7] R. A. Eisenberg and S. Weirich. Dependently typed programming with
singletons. In Haskell, pages 117–130. ACM, 2012.

[8] G. P. Huet. The Zipper. J. Funct. Program., 7(5):549–554, 1997.
[9] O. Kiselyov and C.-c. Shan. Lightweight static resources: Sexy types

for embedded and systems programming. In TFP, 2007.
[10] J. P. Magalhães. The right kind of generic programming. In WGP,

pages 13–24. ACM, 2012.
[11] C. McBride. A Case For Dependent Families. Seminar at LFCS, Ed-

inburgh. http://www.strictlypositive.org/a-case/, 2000.
[12] C. McBride. Kleisli arrows of outrageous fortune, 2011. Accepted

for publication.
https://personal.cis.strath.ac.uk/conor.mcbride/
Kleisli.pdf.

[13] C. McBride. The Strathclyde Haskell Enhancement. https:
//personal.cis.strath.ac.uk/conor.mcbride/pub/she/,
2013.

[14] C. McBride and J. McKinna. The view from the left. J. Funct.
Program., 14(1):69–111, 2004.

[15] C. McBride and R. Paterson. Applicative programming with effects.
J. Funct. Program., 18(1):1–13, 2008.

[16] R. Milner. A theory of type polymorphism in programming. J.
Comput. Syst. Sci., 17(3):348–375, 1978.

[17] R. Milner, M. Tofte, and R. Harper. The Definition of standard ML.
MIT Press, 1990.

[18] A. Miquel. The implicit calculus of constructions. In TLCA, LNCS,
pages 344–359. Springer, 2001.

[19] S. Monnier and D. Haguenauer. Singleton types here, singleton types
there, singleton types everywhere. In PLPV, pages 1–8. ACM, 2010.

[20] U. Norell. Towards a practical programming language based on de-
pendent type theory. PhD thesis, Department of Computer Science and
Engineering, Chalmers University of Technology, September 2007.

[21] C. Paulin-Mohring. Extracting Fω’s programs from proofs in the
Calculus of Constructions. In POPL. ACM, 1989.

[22] R. Pollack. Implicit syntax. Informal Proceedings of First Workshop
on Logical Frameworks, Antibes, 1990.

[23] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, pages 55–74. IEEE Computer Society, 2002.

[24] M. Sulzmann, M. M. T. Chakravarty, S. L. P. Jones, and K. Donnelly.
System F with type equality coercions. In TLDI, pages 53–66. ACM,
2007.

[25] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-
hoc. In POPL, pages 60–76. ACM, 1989.

[26] S. Weirich, J. Hsu, and R. A. Eisenberg. Towards dependently typed
Haskell: System FC with kind equality. In ICFP. ACM, 2013.

[27] B. A. Yorgey, S. Weirich, J. Cretin, S. L. Peyton Jones, D. Vytiniotis,
and J. P. Magalhães. Giving Haskell a promotion. In TLDI, pages
53–66. ACM, 2012.

http://www.strictlypositive.org/a-case/
https://personal.cis.strath.ac.uk/conor.mcbride/Kleisli.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/Kleisli.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/
https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/

	Introduction
	A Variety of Quantifiers
	Explicit and Implicit -Types
	Instances for Indexed Types
	Matrices and a Monad
	Exchanging Explicit and Implicit
	The NATTY-in-Natty Question

	An Ordered Silence
	What are the Data that Go with Proofs?
	Boxes
	Two Flavours of Conjunction
	The Box Data Type
	Juxtaposition
	Pain
	Pleasure
	Cutting
	Boxes as Monoids
	Cropping = Clipping + Fitting

	An Editor
	Character Boxes
	Existentials
	Cursors
	The Inner Loop

	Conclusion

