Embedding Session Types in Haskell

Sam Lindley

J. Garrett Morris

The University of Edinburgh, UK
{Sam.Lindley,Garrett.Morris}@ed.ac.uk

Abstract

We present a novel embedding of session-typed concurrency in
Haskell. We extend an existing HOAS embedding of linear A-
calculus with a set of core session-typed primitives, using indexed
type families to express the constraints of the session typing disci-
pline. We give two interpretations of our embedding, one in terms
of GHC’s built-in concurrency and another in terms of purely func-
tional continuations. Our safety guarantees, including deadlock
freedom, are assured statically and introduce no additional runtime
overhead.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (functional) programming; D.1.3 [Program-
ming Techniques]: Concurrent programming

Keywords linear types, session types, embedded languages

1. Introduction

Many communication protocols specify not just the types or for-
mats of data or commands in the protocol, but also place restrictions
on the order in which data is to be communicated. For example, the
simple mail transfer protocol (SMTP) not only includes commands
to specify the sender, recipients, and contents of an email message,
but also requires that the sender command precede the recipient
commands, which must in turn precede the commands giving the
message body. Session types [6, 7, 20] capture such protocols in
the types of communication channels. Session types have two dis-
tinguishing features. First, the endpoints of a channel must be given
dual types: if one process expects to send a value along some chan-
nel, the process on the other end of the channel must expect to
receive it. Second, session types must evolve over the course of a
computation to prevent processes from repeating or skipping steps
of the protocol.

Much of the existing work presents session types in the context
of core concurrency-focused calculi (frequently based on either 7-
calculus or linear A-calculus). Such calculi provide a holistic view
of session types, integrating aspects of their syntax, the distinguish-
ing aspects of the types themselves (such as duality), and their con-
current interpretations. However, typically they do not address how
session types can be integrated into existing languages or the re-
lationship between the concurrency expressed using session typing

and that provided by existing concurrent primitives. We have devel-
oped a core session-typed functional calculus called GV [11, 12].
GV has strong connections to classical linear logic; consequently,
its type system guarantees deadlock freedom in addition to typical
safety properties. Our development of GV is also intended to be
modular. We build on a standard linear A-calculus, and attempt to
minimize the number of concurrent features, preferring to express
concurrent features in terms of A-calculus constructs when possi-
ble. GV’s metatheory is developed modularly as well; for example,
this allows us to show that the addition of several non-logical fea-
tures does not compromize GV’s deadlock freedom, even though
the extended calculus no longer enjoys a tight correspondence with
classical linear logic.

This paper presents a parameterized tagless embedding [1, 3] of
GV in Haskell and two implementations of that embedding. (We
will use the term parameterized tagless or just tagless in prefer-
ence to finally tagless or tagless final.) We begin by presenting the
embedding of GV, building on Polakow’s [17] embedding of lin-
ear A-calculus in Haskell. In doing so, we demonstrate the gen-
erality of Polakow’s embedding: first, we are able to extend his
core calculus with GV’s concurrent primitives, and second, we are
able to build a monadic interpretation of his embedding to support
computations with side effects. Then, we present two implementa-
tions of our embedding, one based on the concurrent primitives in
Haskell’s 10 monad and another that expresses concurrency using
continuations. The former shows that this approach has practical
applicability. We are able to wrap existing concurrent primitives
with new type information, providing additional static safety guar-
antees without introducing runtime cost. The latter validates that
our primitives also have a purely functional interpretation, follow-
ing the formal semantics of GV. It also provides general insight into
parameterized tagless embeddings and translations between them;
in particular, while we are able to implement GV in terms of a more
explicit language, Polarized GV, such an implementation requires
limitations on the modularity of our source language.

The paper proceeds as follows. We review session types and the
role of linearity in session typing (§2), and Polakow’s embedding
of linear A-calculus in Haskell (§3). In the course of the latter, we
introduce our monadic interpretation. We introduce the core GV
calculus and give its semantics (§4). We present two implementa-
tions of GV. The first uses the IO monad, and demonstrates that
GV’s static guarantees need introduce no runtime overhead. We
also show extensions of this embedding that increase its expressiv-
ity (at the cost of some of its static guarantees), demonstrating GV’s
modular nature. The second realizes the CPS semantics of GV in
the continuation monad. The CPS semantics is non-parametric in
that the translation of some term forms depends on the type at
which they are used. To restore parametricity, we introduce a po-
larized version of the calculus (§6). We then show that we can im-
plement the original language in terms of its polarized variant (§7).
These implementations show that GV concurrency can be used in a
purely functional setting (or other setting in which using 10 would

be undesirable, such as STM), and shows that our embeddings are
are suitable for metaprogramming. We conclude by discussing fu-
ture work and the difficulties we discovered in the course of our
implementation (§8).

This document is literate Haskell. An extended (albeit illiterate)
version of the code in this paper is available at the following URL:

http://github.com/jgbm/gvinhs/

2. Session Types and Linearity

Session types, originally proposed by Honda [6], are an approach to
statically verifying communicating concurrent programs. Session
types specify both the format (i.e., data type) and ordering of
messages along channels. As a simple example, we consider the
client-side protocol for a concurrent calculator. The session type
for a single binary operation on integers might be as follows:

Int (1) (Int (") (Int (?) End?))

The type T (!) S means to send a 7" and then continue as S, the
type T (?7) S means to receive a T and then continue as S, and the
type End, means to wait for the channel to close. The whole type
means send two integers, receive an integer in return, and then wait
for communication to end. We assume that (!) and (?) group to the
right and omit parentheses accordingly. Session types also include
constructs corresponding to selecting and offering a choice. For
example, our calculator might offer a choice between one binary
and one unary operation. The client-side view of its protocol would
then be captured by the following session type:

(Int () Int (1) Int (?) End2) (+) (Int (1) Int (?) End;)

The type S1 (4) S2 means to select between Sy and So.

One important feature of session types is duality: if the session
type above represents the client’s view of a communication, the
server must have dual behavior. The session type of the correspond-
ing server is as follows:

(Int (?) Int (?) Int (!) End)) (&&) (Int (?) Int (!) End)

The offer construct S; (&&) S on the server is dual to the selection
construct Sy (4+) S2 in the client: the server must be able to provide
either behavior, while the client only has to select one of the offered
behaviors. Unlike many presentations of session types, but inspired
by their logical connections, our session types represent closing
of channels explicitly. The type End; means to close the channel,
while End-» means to wait for the channel to close.

Functional session-typed calculi typically present communica-
tion primitives as transforming channels of one session type into
channels of another session type. For example, the sending prim-
itive might have a type like T — (7" (I} S) — S, reflecting that
it consumes a channel that expects an output to occur, and returns
a new channel without that expectation (i.e., with the expectation
satisfied). However, this in itself is not enough to assure that proto-
cols are followed: a process could reuse the original channel (with
type T (!) S) to send unexpected 1" values, or could discard chan-
nels without performing the expected communications. To rule out
these possibilities, session-typed calculi either rely on linear type
systems [5, 22] or on some amount of dynamic checking [14, 19].
GV is a linear calculus: its type system excludes duplication or dis-
carding of variables, and thus statically assures session fidelity, that
is, that all communication along a channel satisfies the protocol
specified by its session type.

3. Linear \-Calculus, Monadically

GV is based on extending a standard linear A-calculus with a small
set of concurrent primitives. This simplifies the metatheory of GV,

by relying on standard metatheoretic results for (linear) A-calculi.
It is also beneficial for embedding GV in Haskell. It allows us to
build on an existing embedding of linear A\-calculus in Haskell, and
thus to distinguish those aspects of the language unique to session
typing from those aspects shared by other linear A-calculi.

We build on Polakow’s [17] embedding of linear A-calculus in
Haskell. This is a parameterized tagless embedding, using higher-
order abstract syntax (HOAS) to account for the treatment of
binders. We will give a brief overview of this embedding, and
then show how it can be given a monadic interpretation. We refer
readers to Polakow [17] for a full description of the embedding and
the required type-level machinery.

Tagless embeddings use terms of the meta language to embed
terms of an object language. Parameterizing over the concrete rep-
resentation of an object term, for instance using type classes, al-
lows the same term to be given multiple interpretations. A canoni-
cal example is a parameterized tagless embedding of simply-typed
lambda calculus.

class Exp repr where
lam :: (repr a — repr b) — repr (a — b)
app :: repr (a — b) — repr a — repr b

A term of type repr a represents the type-correct construction of
a A-term of type a; each type constructor repr denotes a partic-
ular concrete interpretation of simply-typed A-calculus. Because
Haskell’s type system includes that of simply-typed A-calculus,
there is a natural correspondence between the typing of terms of the
meta language and the typing of terms of the object language. The
same is not true for embedding linear A-calculus. For reference, we
give typing rules for variables, abstraction, and application in linear
A-calculus.

Az:A+-M:B
AFXx.M:A—-B

r:AkFx: A

AFM:A—-B AFN:A
AWA'+FM "~ N:B

The variable rule insists that there can be no other variables in the
environment, while the application rule divides its typing environ-
ment among its hypotheses. (We write A & A’ to indicate that A
and A’ must have disjoint domains.) These do not correspond to the
treatment of variables and functions in Haskell, and so we cannot
immediately treat a Haskell term (of a type like repr a — repr b)
as a linear A-calculus term of type repr (a —o b).

To address this problem, Polakow uses representation types
which make explicit the linear variable environment as well as the
result type. Doing so allows him to capture the treatment of linear
assumptions in the types of the term constructors, and thus to define
a HOAS embedding of type-correct linear A-calculus. He gives an
alternative presentation of the typing rules for linear A-calculus,
using judgments of the form

A\A'FM:A

Intuitively, A contains the assumptions available before checking
M, while A’ contains the assumptions remaining after checking
M; their difference, then, reflects the assumptions used by M.
Once a variable has been consumed it is replaced by the special
assumption [, rather than being removed from the type environ-
ment; thus maintaining the invariant that the A and A’ always have
the same length. Finally, I" captures an unrestricted (i.e., non-linear)
environment, allowing the use of both linear and non-linear types in
linear A-calculus terms. Figure 1 gives the linear A-calculus typing
rules in this form. The rules include linear and intuitionistic abstrac-
tion and application (A — B and A — B), linear pairs (A ® B),
linear sums (A & B), and the ! modality, which can be used to

http://github.com/jgbm/gvinhs/

A z: A\A,O-M:B

DAVA'FM:A—-B T;A'\A"FN:A

A z: AAN\NAOAFz: A

A\A'FM:A T;A'\A"+N:B

TA\A'FXz.M:A—-B

A\A"FM"N:B

A\A'FM:A®B T;A,z:Ay:B\A",O0OFN:C

F;A\A”F(M7N):A®B

DA\A'FM:1 T;A\A"FN:A

;A\A" Flet (z,y) =MinN:C

A\A'FM: A IA\A'FM: B

TA\AF(): 1 T;A\A Flet)=MinN:A

A\A'FM:AeB T;A z: A\A",OFN;:C
;A y: B\A",OF Ny : C

IA\A ' FinlM : A9 B IA\A' FinrM: A9 B
A\A'FM: 1A

;- \-FM:A F,x:A;A/\A"}—N:B

;A\ A” |- case M of inlz +— Ny |inry+— Na: C

Iz: A, A\A'-M:B

D;A\ARIM 1A

;A\NA"Fletlzr=MinN:B

A\A'FM:A—-»B T;-\-FN:A

Dx: A;A\AFz: A

IA\A' FXe.M:A— B

IA\A'FMN:B

Figure 1: Linear A-calculus typing rules.

move between the linear and unrestricted contexts. We have omit-
ted several constructs included in Polakow’s embedding, namely
the additive sum A & B and its unit T. The treatment of T adds
significant complication to the overall type system (and thus to the
embedding), as it can consume arbitrary linear assumptions. As we
have no use for these constructs in our embedding of GV, we chose
a simpler type system.

We now review Polakow’s HOAS embedding of this type sys-
tem in Haskell. We begin by defining the linear types:

newtype a — b = Lolli {unLolli::a — b}

dataa® b = Tensor a b
data One = One
data a ® b =Inlallnrd

newtype a - b = Arrow {unArrow ::a — b}
newtype Bang o = Bang {unBang:: a}
infixr 5 —o, —»

Note that — is the intuitionistic function space: a — b is isomor-
phic to Bang a — b.

Next, we present the encodings of terms, as the methods of a
class LLC of interpretations of linear A-calculus. The characteri-
zation of terms includes not just their types, as in standard tag-
less embeddings, but also captures the linear environment. Po-
lakow represents the linear environment by (type-level) lists of type
Maybe Nat where Nat is a standard Peano encoding of the natural
numbers.

data Nat = Z | S Nat

Each entry in the list represents the presence of a particular vari-
able in the environment, with [J denoted by Nothing. As the types
of terms are already captured in the encoding, the encoding of the
environment can omit them. The representation is also parameter-
ized by a counter v used to generate fresh naturals.

class LLC (repr :: Nat — [Maybe Nat] — [Maybe Nat]
— * — *) where
llam :: (LVar repr v a —
repr (S v) (Just v : i) (Nothing : 0) b)
— repr v i o (a —o b)
(T)sreprvih(a—ob)—>reprvhoa—reprviobd

Linear application is a simple example of the encoding. The (™)
method takes two terms, one of type a — b and one of type a,
threading the initial environment through the types of the terms.
The result term of of type b. The fresh index v is unused as appli-

cation does not introduce binders. Linear abstraction demonstrates
the treatment of binders. The argument is a function from a lin-
ear variable (of type LVar repr v a) to a term of type b, which
is required to have used the new variable. Note that binders in the
subterm will be numbered from S v. We will return to the defini-
tion of the variable type LVar shortly. Other linear term forms are
defined similarly.

(®)::reprviha—reprvhob—reprvio(a®b)
letStar ::repr v i h (a ® b)
— (LVar repr v a — LVar repr (S v) b —
repr (S (S v))
(Just v : Just (Sw): h)
(Nothing : Nothing : 0)
c)
—reprvioc
one:: repr v i 1 One
letOne :: repr v 4 h One — repr v h o a — repr v i o a
inl::reprvioa—reprvio(a@®b)
inr::reprviob— reprvio(a®b)
letPlus ::repr v i h (a ® b)
— (LVar repr v a —
repr (S v) (Just v : h) (Nothing : 0) ¢)
— (LVar repr v b —
repr (S v) (Just v : k) (Nothing : 0) ¢)
—reprvioc

The treatment of unrestricted terms is similar. The type UVar repr a
represents an unrestricted variable of type a. In the rules for ($$)
and bang, we require that the subterm use no linear assumptions.

ilam :: (UVar repr a — repr v i o b)
— repr v i o (a —» b)
($$) :ireprvio(a—»b) > reprvooa
—reprviob
bang :: repr v i i a — repr v i i (Bang a)
letBang :: repr v i h (Bang a)
— (UVar repr a — repr v h o b)
—reprviob

We return to the encoding of variables. A linear variable
LVar repr v a for representation repr with index v and type a
is a term of type a that replaces Just v with Nothing in its envi-
ronment:

type LVar repr (v :: Nat) a =
V(w :: Nat) (7 :: [Maybe Nat]) (o :: [Maybe Nat]).
Consume v 4 0 = repr wi o a
The type class Consume implements the details of the environ-
ment transformation; we omit it here, for space reasons, but its
definition can be found in Polakow [17]. An unrestricted variable
UVar repr a has no effect on the linear environment:

type UVar repr a = V(v :: Nat) (4 :: [Maybe Nat]). repr v i i a

Polakow gives a representation of linear A-calculus terms of
type a as Haskell terms of the same type; this shows that the HOAS
encoding need introduce no run-time overhead. However, it is lim-
ited to expressing pure computations (as the representation is in
terms of pure Haskell terms). We seek a notion of side effects ex-
pressive enough to capture GV concurrency, but without requiring
changes to the signature of LLC. Our solution is to define a monadic
representation for linear A-calculus terms:

newtype RM (m :: x — %)
(v :: Nat)
(hi :: [Maybe Nat])
(ho :: [Maybe Nat])
(a::%)
=RM {unRM :: m (Mon a m)}

eval : RM m v '[]’[] a = m (Mon a m)
eval = unRM

The representation type RM is parameterized by a monad m, so
RM m v ¢ o a represents the linear A-calculus terms of type
a. However, unlike Polakow’s representation, we cannot define
RM in an entirely uniform way: the representation of an a —o b
function cannot simply be m (a — b), but must instead be
m (a — m b). We account for this by introducing a type family
Mon, which maps from the linear type constructors (such as —o
and x) to their monadic interpretations (again parameterized by the
particular monad m).

type family Mon (¢ :: %) :: (x = %) —

We can then introduce monadic versions of each of the linear type
constructors.

newtype MFun (a :: (x = %) = %) (b (x = %) = %)
(mux—*) =

MFun {unMFun ::a m — m (b m)}
type instance Mon (a — b) = MFun (Mon a) (Mon b)
type instance Mon (a — b) = MFun (Mon a) (Mon b)
newtype MProd a b (m :: % — x) =

MProd {unMProd :: (a m, b m)}
type instance Mon (a ® b) = MProd (Mon a) (Mon b)
data MOne (m :: x — x) = MOne
type instance Mon One = MOne
newtype MSum a b (m 1 x — %) =

MSum {unMSum :: Either (a m) (b m)}
type instance Mon (a @ b) = MSum (Mon a) (Mon b)
type instance Mon (Bang a) = Mon a

Finally, we can give the LLC instance for RM m; the methods are
straightforward liftings of the corresponding methods in the non-
monadic case.

instance Monad m = LLC (RM m) where
llam f =
RM § return $ MFun $ Az — unRM § f $ RM (return z)
f - z=RMS$do f’ < unRM f
z' + unRM z
unMFun f’ z’

z2®y=RM$do z’ + unRM z
y' <~ unRM y

return (MProd (z/, y))
letStar zy f = RM $ unRM zy >= unRM o f’
where f’ (MProd (z,y)) = f (RM $ return z)
(RM 8 return y)

one = RM § return MOne
letOne z y = RM (unRM z >>= const (unRM y))

The remainder of the cases are similarly routine; the details can be
found in the extended version online.

Our construction of a monadic interpretation of linear A-
calculus is (unsurprisingly) similar to the construction Carette et
al. [3] for a CPS interpretations of their tagless embedding of A-
calculus. The primary difference is in the details of our treatment
of functions. Our introduction of the Mon type family follows from
their observation that the treatment of functions and other values
of base type cannot be uniform. However, unlike Carette et al., we
do not limit the domain of types that can appear in our represen-
tations; in particular, we will later want to extend the grammar of
linear types with session types. Instead, we explicitly wrap values
of base type, and extend the linear calculus to permit application of
base functions to base values.

newtype Base a = Base {unBase:: a}
class LLC (repr :: Nat — [Maybe Nat] — [Maybe Nat]
— % — *) where

constant:: a — repr v i i (Base a)
($$9) :: repr v i h (Base (a — b))
— repr v h o (Base a)

— repr v i o (Base b)

The interpretation of these methods in the monadic representation
is straightforward.

newtype MBase a m = MBase {unMBase :: a }
type instance Mon (Base a) = MBase a

instance Monad m = LLC (RM m) where

constant x = RM (return (MBase z))
RM m $$$ RM n = RM $
do MBase f < m
MBase z < n
return $ MBase (f z)

4. The GV Calculus

GV [11, 12] draws on a line of research on session types in func-
tional languages. Vasconcelos et al. [22] and Gay and Vasconce-
los [5] initially explored the integration of session types and func-
tional programming. Building on work by Caires and Pfenning [2],
Wadler [23] presented a correspondence between classical linear
logic (CLL) and a session-typed process calculus; he also demon-
strated a type-preserving translation from a simple functional lan-
guage (inspired by the work of Gay and Vasconcelos) and his pro-
cess calculus. Drawing on its correspondence to CLL, Wadler’s cal-
culi guarantee deadlock freedom as well as session fidelity. GV
is based on Wadler’s functional calculus; in our work, we have
focused on distinguishing its functional and concurrent features,
have given it a direct semantics (with semantics-preserving transla-
tions to and from Wadler’s CLL-based process calculus), and have
shown extensions of GV that increase its expressivity without (nec-
essarily) giving up its metatheoretic properties. This section will
introduce GV’s types, show how they extend linear A-calculus, and
present our tagless embedding of GV.

GV session types S are given by the following grammar, in
which 7' can range over arbitrary (Haskell) types:

S:T<7>S | Sl <&8&> SQ ‘ End?
‘ T<'>S | S1 <‘H‘>SQ ‘ End,

A session type on a channel captures the expected communication
along that channel. Types 7" (?) S and T' (!) S denote receiving and
sending values of type 7', with the remaining communication cap-
tured by S. Types S1 (&&) Sz and S1 (4+) Sa reflect offering and
making a choice between expectations S and S’. Finally, End- and
End: reflect closing a channel (where the End- endpoint will wait
for the End: endpoint to close). We introduce Haskell types corre-
sponding to each session type constructor; as we intend them to be
used as indices in the representation of GV, we do not introduce
data constructors for these types.

data t (7) s;data s1 (&&) s2;data End-
data ¢ (!) s; data s; (++) s2; data End,

We have intentionally chosen not to define session types by data
type promotion, so that the grammar of session types admits fur-
ther extensions. We will take advantage of this openness later when
we introduce a notion of polarized session types (§6); our previous
work [11, 12], discusses extending GV session types with poly-
morphism, unrestricted channels, and recursion. A central feature
of session types is duality: if the process on one end of a channel
expects to send a value of type 7, the process on the other end
should expect to receive a value of type 7. We write S to denote
the dual of session type .S, defined as follows:

THS=T"5 THS=T("5
S1 (&) S2 = S1 () S2 S1 (4) Sa = Sy (&) So

End7 = End; End! = End7
We realize duality directly in Haskell, using an indexed type family.
type family Dual s Dk
type instance Dual (¢ (?) s) =t (!) Dual s
type instance Dual (¢ (!) s) =t (?) Dual s

type instance Dual (s1 (&&) s2) = Dual s1 (++) Dual s
type instance Dual (s1 (++) s2) = Dual s1 (&&) Dual s
type instance Dual End- = End,
type instance Dual End; = End,

We also introduce a type class characterizing session types, captur-
ing that duality for session types must be involutive.

class (Dual (Dual s)~s) = Session s

instance Session s = Session (¢ (?7) s)
instance Session s = Session (¢ (!) s)
instance Session End-
instance Session End,
instance (Session s;, Session s2) = Session (s1 (&&) s2)
instance (Session s1, Session s2) = Session (s1 (++) s2)

type DualSession (s :: x) = (Session s, Session (Dual s))

Our session types differ from Honda’s original specification [6]
only in the treatment of closed channels: he provides a single, self-
dual session type End which imposes no expectations on processes,
where we require an explicit channel-closing synchronization. This
change stems from Wadler’s identification of session types with
the propositions of CLL: linear logic has no self-dual proposition
to stand in for End.

The concurrent portion of GV is defined by a collection of poly-
morphic constants, corresponding to the introduction and elimina-
tion of session types:

fork :: (S — Endy) — S
send : T — (T (1) S) — S
recv i (T (?)S) =T ®S
wait :: End? — 1
chooseleft :: (S1 (#) S2) — S1
chooseRight :: (S1 (#) S2) — Sa
offer :: (S1 (&&) S2) — (S1 —T) — (S2 —T) —- T

The only introduction form for session types is fork; the remaining
operations eliminate session types by performing communication.

The operation fork f creates a fresh channel, forks a new thread
which invokes f with one endpoint of the channel, and returns the
other endpoint of the channel. The operation send v z sends value
v through endpoint z, returning the updated endpoint. Correspond-
ingly, the operation recv z receives a value through endpoint z,
returning a pair of the value and the updated endpoint. The opera-
tion wait x synchronizes on the endpoint z, waiting for the corre-
sponding forked thread to terminate and hence close the other end
of the channel. The operations chooseleft z and chooseRight z
each make a choice on endpoint z. Correspondingly, the operation
offer = | r receives a choice along endpoint z and proceeds ac-
cordingly with either [or r applied to the updated endpoint.

We define a class of GV representations, extending our class of
linear \-calculus representations.

class GV (ch :: x — x)
(repr :: Nat — [Maybe Nat] — [Maybe Nat]
— x — %) | repr — ch where
send :: DualSession s
= reprviht
— repr v h o (ch (t(!) s))
— repr v i o (ch s)
recv :: DualSession s
= repr v i o (ch (t(?) s))
— repr v i o (t ® ch s)
An instance of GV fixes both a representation type repr and a
channel type constructor ch, parameterized by session types. We
require that the representation type determine the channel type. The
majority of the method signatures are straightforward translations
of their type signatures above. The DualSession constraint for the
continuation type s is sufficient to assure that the initial types (¢(!) s
and t (7) s) are session types as well.

fork :: DualSession s
= repr v i o (ch s — ch End,)
— repr v 4 o (ch (Dual s))
wait :: repr v i o (ch End?)
— repr v ¢ 0 One
The fork primitive both constructs a new channel (before calling its
argument function) and closes the End,-typed channel its argument
returns. The process holding the other endpoint must wait for the
channel to close. The signatures and interpretation of the choice
constants is unsurprising.

chooseleft :: (DualSession s1, DualSession s2)
= repr v i o (ch (s1 (+H) s2))
— repr v i o (ch s1)
chooseRight :: (DualSession s1, DualSession s2)
= repr v i o (ch (s1 (++) s2))
— repr v i o (ch s2)
offer :: (DualSession s1, DualSession s)
= repr v i h (ch (s1 (&&) s2))
— repr v h o (ch s1 —o t)
— repr v h o (ch s2 — t)
—reprviot
We present a short example of a GV program embedded in
Haskell, implementing a simple concurrent calculator. First, we
define a process that receives two integers along a channel ¢, and
returns their product along the same channel:

multiplier = defnGV $ llam $ Ac — recv ¢ ‘bind* (llp $ Az ¢ —
recv ¢ ‘bind‘ (llp$ Ay ¢ —
send (times ~ z " y) ¢))
The times function lifts Haskell multiplication to apply to linear
terms; it has the following type signature.
times :: (Num b, LLC repr) =
repr v o o (Bang (Base b) — Bang (Base b) — Bang (Base b))

The Base constructors lift Haskell types to linear types (as dis-
cussed in the previous section), while the Bang constructors are
necessary because we have no guarantee that the Haskell function
(%) uses its arguments linearly. The implementation of times is en-
tirely unsurprising. The bind, llIp, and ||z functions allow us to write
GV code in a logical order and simplify the plumbing of channels.

bindef=f"¢e¢

ret e =e€

llp f = llam (Ap — letStar p f)
lz f = llam (Az — letOne z f)

The defnGV function assures that the term gives rise to no unsatis-
fiable constraints (which would indicate type errors), equivalently
to the defn function in Polakow’s embedding.

type DefnGV ch a = Vrepr i v.

(LLC repr, GV ch repr) = repr v i i a
defnGV :: DefnGV ch a — DefnGV ch a
defnGV z =z

We can use multiplier in the context of a larger process, which
offers both multiplication and negation behaviors:

negater = defnGV $ llam $ A\¢c —
recv ¢ ‘bind‘ (llp $ Az ¢ —
send (times ~ (bang (constant (—1))) " z) ¢)

calculator = defnGV $ llam $ A¢ — offer ¢ multiplier negater

Finally, we can use the calculator to perform a simple arithmetic
operation.

answer =
defnGV § fork calculator ‘bind* (llam $ Ac —
chooseLeft ¢ ‘bind* (llam $ Ac —
send (bang (constant 6)) ¢
‘bind‘ (llam $ Ac —
send (bang (constant 7)) ¢
‘bind (llam $ Ac¢ —

recv ¢ ‘bind (Ilp$ Az ¢ —
wait ¢ ‘bind‘ (llz $
ret z

)

One concern with embeddings like ours is the legibility of error
messages. One of the strengths of Polakow’s technique is that it
yields relatively readable error messages resulting from misuse of
linear assumptions. The situation is even better for violations of
session types. For example, the following term fails to provide the
multiplier:

wrongAnswer =
defnGV $ fork calculator ‘bind‘ (llam $ Ac —
chooseLeft ¢ ‘bind* (Illam $ Ac —
send (bang (constant 6)) ¢
‘bind (llam $ Ae¢ —

recv ¢ ‘bind* (llp$ Az ¢ —
wait ¢ ‘bind‘ (llz $
ret z

M)

The resulting error message correctly identifies that the type of
calculator, which requires two arguments, does not align with its
use in wrongAnswer, which only supplies one:

gvhs.1lhs:921:17:
Couldn’t match type ‘a <7> EndIn’
with ‘Bang (Base Integer)
<!> (Bang (Base Integer)
<?> EndIn)’

Remark Prior accounts of GV typically include an additional
constant link for linking two dual endpoints together.

link :: (S ® §) —o End

Communication is forwarded between the two end points. We
chose not to include link here as we rarely need it in practice.
It is in fact admissible, and one way to define it is to add a link
method to the Session type class.

4.1 A CPS semantics for GV

Before giving concrete implementations, we present a formal se-
mantics of GV through a CPS translation, following our previous
work [12]. This serves two purposes. First, it captures our intuitive
understanding of GV. Second, it motivates our CPS-based imple-
mentation of GV, and our introduction of polarized session types.

Our CPS translation C[—] is a call-by-value CPS translation
into simply-typed lambda calculus. The translation on functional
types and terms is standard. The important part is the translation on
function types:

K[A — B] =K[A] = (K[B] = R) = R

where R is a fixed return type. The translation on all of the other
type constructors is homomorphic. The key idea is that rather than
returning a value, each function is augmented with a continuation
argument which is supplied with the return value of the function.
As observed by Kobayashi et al. [10] and Dardha et al. [4],
choice in session types can be encoded in terms of the input and
output session types and (linear) sums. We will take advantage of
this operation to simplify our CPS translation. We begin by defin-
ing a translation Q[—] that implements the choice primitives. On
types, it is defined as the homomorphic extension of the equations:

Q[S1 (4) S2] = (Q[S1] & Q[S=]) (!) End,
Q[S1 (&&) S2] = (Q[S1] @ Q[S=]) (?) End-

These translations preserve the expected duality requirement:
O[S1 (#) S2] = Q[S: (&&) S2]. The translation of terms is
directed by the type translation:

QJchooseLeft M| = fork (Az.send (inl z) Q[M])
Q[chooseRight M] = fork (Az.send (inr x) Q[M])
Oloffer M N1 N3] = let (z,¢) = recv Q[M] in

let () = waitcin
casezof inlz — Q[N z
lintz — Q[N]2x

We now define the CPS translation for session types on the
image of Q[—]. The intuition for translating session types is as
follows: communication between two endpoints of a channel is
modelled as function application in which the function represents
the input endpoint and the argument represents the output endpoint.
The translation on input and output types is as follows.

]C[[Endg]] =R
K[End-]=R— R
K[A (1) S] = K[A] = K[S] — R
K[A (?) S] = (K[A] — K[S] = R) = R

The central property that captures the notion of communication as
function application is that if S is an output type then KC[S] =
K[S] — R (equivalently, if S is an input type then K[S] =
K[S] — R).

Given the translation on types, there is little choice in the trans-
lation on terms. A subtlety is that for send and fork the translation
depends on the particular session type at which they are instanti-
ated. We write send, for send if the continuation is an output type
and send- if it is an input type. Similarly, we write fork, for fork if
the body of its argument takes an output type and fork- if it takes

an input type.

Klsendi]x ck = (cx) k
Klsend-]z c k =k (c)

Kl[receive]c k = ¢ (Az d.k (z,d))

Kfforki]f k =k (Az.f z id)
K[fork:]f k= (Az.f zid) k

Klwait]c k =c (k ())

The reason for the non-uniformity in the translation is that
duality is symmetric whereas function application is asymmetric.
Notice that despite the non-uniformity the only difference between
the two translations of send and fork is the order in which the
outer application occurs (we deliberately introduce a /3 expansion
in translation of fork- in order to emphasize this point). One way
of avoiding the non-uniformity is to switch to a polarized variant
of GV. We implement polarization in Haskell (§6) and give a
translation from GV to polarized GV (§7).

In prior work [11], we give a direct concurrent semantics for
GV, and show that it corresponds to cut elimination in Wadler’s
process calculus CP [23]. The CPS translation agrees with the di-
rect semantics, but in order to simulate all possible reduction paths
of GV in the direct semantics, it is necessary to reduce under \-
abstractions. Interpreting the translation under call-by-name reduc-
tion rules, as in Haskell, amounts to choosing a canonical reduction
strategy (in which reduction is always driven by the continuation of
a fork; or the body of a fork-). Note that GV is confluent, so this
restriction does not affect the results of GV programs.

5. A Primitive Interpretation

One immediate approach to interpreting GV is to use the concur-
rency primitives provided in the 10 monad, which include primi-
tives for thread creation and synchronization. The obstacle to doing
so is the typing of the synchronization primitives. For example, the
synchronous-channels package [21] provides a type Chan a of
synchronous channels between threads; but, all values communi-
cated on the channel must be of type a. This is exactly the restric-
tion that session types are designed to lift: a session typed channel
may by used to communicate values of arbitrary types safely. For
our implementation, we will rely on the boxing of Haskell values
giving them a uniform runtime representation, regardless of type.

First we define a dummy channel representation STC s and set
its monadic translation to be a synchronous channel.

data STC (s :: %)
type instance Mon (STC s) = 10Chan s
newtype I0Chan s (m :: x = x) = |OChan (Chan Int)

The use of Int in the definition of IOChan is essentially arbitrary:
any (boxed) Haskell type would do as well.

The instance of GV for the 10 monad is shown in Figure 2.
GV’s primitives wrap the underlying Haskell primitives; we use
unsafeCoerce to make the types appear uniform. The final wait
synchronization is accomplished by transmitting a unit value,
while choice is implemented by transmitting booleans. Safety of
unsafeCoerce is guaranteed by type safety of GV, which we have
proved independently [11].

Our implementation of channels is quite similar to that of Pu-
cella and Tov [18]. In particular, they also rely on untyped channels
(defined using unsafeCoerce), and prove safety by appeal to the
safety of a core session-typed calculus A¥’ I Nevertheless, GV is
quite different from their embedding. A key difference is the treat-
ment of delegation, or transmitting channels along channels. Here
is a (slightly contrived) example of delegation.

instance GV STC (RM IO) where
send (RM mv) (RM mc) = RM §
do v < mv
10Chan ¢ < mc
writeChan ¢ (unsafeCoerce v)
return (I0Chan c)
recv (RM mc) = RM §
do I0Chan ¢ + mc
v <~ readChan ¢
return (MProd (unsafeCoerce v, |0Chan ¢))
wait (RM mc) = RM §
do I0Chan ¢ + mc
v < readChan c
case unsafeCoerce v of () — return MOne
fork (RM mf) = RM §
do MFun f + mf
¢ + newChan
forkIO (do (I0Chan ¢) + f (I0Chan ¢)
writeChan ¢ (unsafeCoerce ()))
return (I0Chan ¢)
chooseLeft (RM mc) = RM $§
do I0Chan ¢ < mc
writeChan ¢ (unsafeCoerce False)
return (I0Chan c¢)
chooseRight (RM mc¢) = RM $
do IOChan ¢ < mc
writeChan ¢ (unsafeCoerce True)
return (I0Chan c¢)
offer (RM mc) (RM mleft) (RM mright) = RM $
do IOChan ¢ < mc
MFun left < mleft
MFun right <— mright
v < readChan c
if unsafeCoerce v then right (I0Chan ¢)
else left (I0Chan c)

Figure 2: 10 Implementation of GV

sender n =
defnGV $ llam
Ac — recv ¢ ‘bind* (Ilp$ \d ¢ —
send (bang (constant n)) d
‘bind* (Ilam $ A\d —
send d ¢
)
answer’ =
defnGV § fork (sender 6) ‘bind* (llam $ Ad —
fork multiplier ‘bind* (llam $ Ac —
send ¢ d ‘bind* (Ilam $ Ad —
recv d ‘bind‘ (llp$ Ac d —
send (bang (constant 7)) ¢
‘bind‘ (llam $ A¢ —

recv ¢ ‘bind (Ilp$ Az ¢ —
wait ¢ ‘bind* (llz $

wait d ‘bind* (llz $

ret x

)

Evaluating answer’ yields 42, but relies on a subprocess to provide
the multiplicand to the calculator. Note that sending and receiving
channels ¢ and d is handled identically to sending and receiving
values; in contrast, in Pucella and Tov’s system, capabilities to use
channels must be sent independently of the channels themselves,
and using special primitive operators. We believe that our approach

is more compositional; for example, arbitrary values containing
multiple channels can be sent without sending the corresponding
capabilities separately.

5.1 Access Points

GV has a close connection to classical linear logic: in our previ-
ous work [11], we showed semantics-preserving translations be-
tween GV and Wadler’s calculus CP, whose typing and evaluation
rules are precisely the proof formation and normalization rules of
CLL. This means that GV has strong metatheoretic properties, such
as deadlock freedom, but correspondingly limits its expressive-
ness. Previous work on session-typed functional languages [5, 22]
uses a more expressive session initiation mechanism, called access
points [20], that avoids these limitations, at the cost of allowing
deadlock. We can easily extend our embedding of GV with access
points.

class GVX (ap :: x — %) (ch i % — *)
(repr :: Nat — [Maybe Nat] — [Maybe Nat]
— x> %)
| repr — ch ap where
spawn ::repr v i o (One —o One)
— repr v i o One
close :repr v i o (ch End))
— repr v i 0 One
new :: DualSession s
= reprvio (aps—t)
—reprviot
accept :: DualSession s
= repr vio (ap s)
— repr v i o (ch s)
request :: DualSession s
= repr v i o (ap s)
— repr v 4 o (ch (Dual s))

In addition to the repr and ch types, which serve the same roles
they did for the GV class, the GVX class includes a new type
constructor for access points, ap. Access points are introduced
by new; note that in the argument to new, the new access point
does not have to be used linearly. Processes initiate communication
by calling accept or request on a given access point. Channels
are constructed for pairs of accepting and requesting processes,
with no guarantee as to which accepters will be paired with which
requesters. With this model of communication, we can present a
simplified model of process creation, spawn, and allow channels
of type EndOut to be closed explicitly with close. It is easy
to implement our previous model in terms of this model; fork is
defined by

fork’ f =
new (ilam $ Aap —
spawn (llam $ Az — f (accept ap) ‘bind‘ (llam $ Ac —
close ¢ ‘bind‘ (1lz $
ret z))) ‘bind‘ (llz $
request ap))

We can also see that this model of communication is more
expressive than that of pure GV; for example, here is a simple
deadlocked term:

stuck = new (ilam $ Aap — close (accept ap))

There can clearly never be a requester for ap, so this code must be
stuck. Despite the loss of deadlock freedom, and the non-logical
character of this extension, we do not lose session fidelity. This il-
lustrates the modularity of GV. It is straightforward to define an in-
stance of GVX in terms of existing Haskell concurrency constructs
in a similar manner to the instance of GV in Figure 2. Due to lack
of space we omit the code.

6. A Polarizing Development

The previous sections develop an implementation of GV based on
GHC'’s concurrency primitives. However, these primitives are more
expressive than GV’s concurrency. In particular, as we have shown
previously [11], GV is terminating and confluent. We now take
advantage of that observation to give another, purely functional,
implementation of GV.

Our starting point is the CPS interpretation of GV given ear-
lier (§4.1). However, that definition is type directed: negative (or
input-like) session types are translated differently from positive (or
output-like) session types. To reflect this distinction, we begin by
considering a polarized variant of session types, making explicit
the distinction between input and output types and requiring coer-
cions (or shifts) between them. We give a polarized version of GV
and an implementation using continuations (via the Cont monad).
In the next section, we show how to interpret our tagless embed-
ding of GV as the tagless embedding of polarized GV in Haskell.
Composing the continuation with this interpretation we obtain an
implementation of GV in terms of continuations.

We define polarized session types as follows.

S7 ::= Shift, S | T <7> S» | S <&&> S; | End-
Sy ::= Shift, S~ | T <'> S | S <+I~> Sll | End,

The existing types for input, output, choice, and closed channels
are classified as expected. We add two session types, Shift.Si and
Shift: S>, to explicitly shift output to input session types and vice
versa. These constructors have the expected duality relationship:

Shift; Sy = Shift, Sy Shift; S» = Shift, S~

We can add these type to our embedding following the pattern of
the other session type constructors:

data Shift; s
data Shifty s
type instance Dual (Shift; s) = Shift; (Dual s)
type instance Dual (Shift; s) = Shift, (Dual s)

We must also introduce new constants to our polarized GV lan-
guage that inhabit the shift types, typed as follows.

I' = M : Shift; S, I' = M : Shift, S»
I'Fosh M : S I'kish M : S,

As with our other communication primitives, these serve as elimi-
nators; fork remains the only term to introduce session types. The
naming of these constants follows from their role as eliminators
of the corresponding session types; for example, osh eliminates a
shift to input, yielding a channel of output type. We now present
the embedding of polarized GV.

class PGV
(08 :ix — %) (is 11 % — %)
(repr :: Nat — [Maybe Nat] — [Maybe Nat] — * — x)
| repr — os is where

sendp reprviht
— repr v h o (0s (t () s))
— repr v i o (0s s)
recvp orepr v i oo (is (t(?) s))
— reprvio (t®is s)
waitp = repr v 1 o (is Endo)
— repr v ¢ 0 One
forkp :: Dual (Dual s)~s
= repr v i o (0s s — os End,)
— repr v % o (is (Dual s))
osh = repr v i o (is (Shifty s))
— repr v i o (0s s)
ish = repr v i o (os (Shifty s))
— repr v i o (is s)

chooseleftp :: repr v i o (0s (s1 (+) s2))
— repr v i o (0s s1)
chooseRightp :: repr v i o (0s (s1 (+) s2))
— repr v i o (0s $2)
offerp :: (Dual (Dual s1)~s1, Dual (Dual s2)~s2)
= repr v i h (is (s1 (&&) s2))
— repr v h o (is s1 — t)
— repr v h o (is s2 — t)
—reprviot
type DefnPGV os is a = Vrepr i v.
(LLC repr, PGV os is repr) = repr v i i a
defnPGV :: DefnPGV os is a — DefnPGV os is a
defnPGV z =z

The key difference from GV is that PGV is parameterized by two
channel constructors, one (0s) for channels of output session type
and the other (is) for channels of input session type. The types
of the familiar primitives reflect this distinction: sendp acts on
and returns output channels, for instance, while recvp acts on and
returns input channels.

Programs in polarized GV closely resemble those in GV, but
with the addition of explicit shift operations each time a channel
switches from being used for input to being used for output or vice
versa. For instance, here is a simplified adaptation of the calculator
example (§4) in which only multiplication is supported.

multiplierp =
defnPGV $ llam $
Ac —ish ¢ ‘bind (llam $ Ac —

recvp ¢ ‘bind* (Ilp$ Az ¢ —
recvp ¢ ‘bind‘ (llp$ Ay ¢ —
osh ¢ ‘bind‘ (llam $ Ac —
sendp (times ~z " y) ¢
)
answerp =
defnPGV §
forkp multiplierp ‘bind* (llam $ Ac —
osh ¢ ‘bind‘ (llam $ A¢c —
sendp (bang (constant 6)) ¢ ‘bind* (Ilam $ Ac —
sendp (bang (constant 7)) c ‘bind‘ (Ilam $ Ac —

ish ¢ ‘bind‘ (llam $ A¢ —
recvp ¢ ‘bind‘ (llp$ Az ¢ —
waitp ¢ ‘bind‘ (llz $
ret z

D)

In this case, the explicit shifts may seem to only add adminis-
trative overhead. However, Pfenning and Griffith [16] and Paykin
and Zdancewic [15] observe that polarized calculi provide precise
control over execution strategy that is left either undetermined, in
purely concurrent presentations, or is fixed a priori, as in our CPS
translation (§4.1).

We now give a CPS implementation of polarized GV, derived
from the CPS semantics of (unpolarized) GV (§4.1). Our imple-
mentation relies on two features of the CPS interpretation. First,
while the CPS interpretations of output session types vary, the CPS
interpretations of input session types are uniform in terms of the
interpretation of the output types. Second, because of polarization,
we now know whether the continuation of a channel has input or
output type statically, even if we do not know its exact session type.

We begin by introducing type families CPSO and CPSI for the
CPS translations of input and output session types, respectively. We
define types COutput ¢ s » and CEndOut r, the CPS translations
of t (!) s and End, respectively. Note that those translations refer
to the result type r explicitly, and so it appears as a parameter of
their translations. We also define a type for the translation of all of
the input session types, Clnput s r, defined in terms of the output
translation CPSO.

type family CPSO (s :: %) i1 % — %
type family CPSI (s :: %) i % — *
newtype COutput ¢ s r =

COutput {unCOutput :: t (Cont 1) = s — 1}
newtype CEndOut r = CEndOut {unCEndOut :: r}
type instance CPSO (¢ (!) s) = COutput (Mon t)

(CPSI (Dual s))

type instance CPSO End; = CEndOut

newtype Clnput s » = CIn {unCln :: CPSO (Dual s) r — r}
type instance CPSI s = Clnput s

We define wrapper types for input and output session types, as
targets of the Mon type family.

type family Ret (m :: x — x) where

Ret (Cont 1) = r
data OutC (s :: %) (m :: x — %) where

OutC :: Dual (Dual s)~s = CPSO s (Ret m) — OutC s m
data InC (s :: %) (m :: x — x) where

InC :: Dual (Dual s)~s = CPSl s (Ret m) — InC s m
data ICH (s :: %)
data OCH (s :: x)
type instance Mon (ICH s) = InC s
type instance Mon (OCH s) = OutC s
type instance CPSO (s1 (+) s2) =

CPSO ((ICH (Dual s1) @ ICH (Dual s2)) (!) Endy)
type instance CPSO (Shift; s) =

CPSO (OCH (Dual s) (!) Endy)

The dummy types ICH and OCH represent input and output chan-
nels, and are implemented by InC and OutC. We introduce type
family Ret to give us access to the result type of the continuation
monad. We have not provided implementations of the choice or
shift types. To do so, we rely on an extension of the Q[—] transla-
tion (§4.1), as follows:

Q[Shift, S7] = S7 () End, Q[Shift, Si] = Si (?) End-

We give instances of CPSO for (++) and Shift; in terms of the
interpretation of (!) and End,; the translations of (&&) and Shift;
are obtained generically as for the other input session types.

We can now implement the polarized communication primi-
tives. We begin with a helper routine comm that implements com-
munication; that we can do so parametrically in s is the core imple-
mentation benefit of the polarized presentation.

comm :: (Clnput s r — r) — (CPSO (Dual s) r — 1) = r
comm ¢ d = ¢ (Cln d)

We also define another simple helper routine rid for unwrapping
boxed return values.

rid :: OutC End, (Cont r) — r
rid (OutC (CEndOut z)) =z

The CPS interpretation of polarized GV is given in Figure 3.
We can implement sendp, recvp, waitp and forkp following the
CPS interpretation of GV (§4.1); our implementation differs from
the formal presentation only in the introduction and elimination
of wrapper types. The implementations of the shift primitives
ish and osh echo the implementations of recvp and sendp. The
implementation of choice is somewhat more complicated. Fol-
lowing the Q[—] translation, we expect the implementation of
chooseLeftp m to be (the expansion of) the term:

osh $ forkp $ llam (Az — sendp (inl (ish z)) m)

The shifts are necessary because the result of chooseleftp should
be an output session, but the result of forkp is always an input
session. The difficulty we encounter in implementing this is that
CPSO is not injective, and thus the type of an application of comm

instance PGV OCH ICH (RM (Cont r)) where

sendp (RM m) (RM n) = RM $ cont $ \k — runCont m $ Az — runCont n $ A\(OutC (COutput f)) — comm (f z) (k o OutC)

recvp (RM m) = RM § cont $ Ak — runCont m $ A(InC (CIn f)) — f (COutput (Az y — k (MProd (z,InC y))))
waitp (RM m) = RM § cont $ Ak — runCont m $ A(InC (ClIn f)) — f (CEndOut (kK MOne))

forkp (RM m) = RM § cont $ Ak — runCont m $ A(MFun f) — comm (k o InC) (Az — runCont (f (OutC z)) rid)
osh (RM m) = RM § cont $ \k — runCont m $ A(InC (ClIn f)) — f (COutput (Az (Cln g) — g (CEndOut (k z))))

ish (RM m) =RM § cont $ \k — runCont m $ A\(OutC (COutput f)) — comm (k o InC) (Az — comm (f (OutC z)) (rid o OutC))

chooseleftp (RM m) =
RM § cont $ A(k :: OutC s; (Cont) — 7) — runCont m $ A(OutC (COutput f)) —
(comm :: (Clnput (Shift s1) r — r) — (CPSO (Shift; (Dual s1)) r = r) — r)
(A(CIn y) = y (COutput (Az (Cln g) — g (CEndOut (k z)))))
(A(COutput g) = comm (Az’ — f (MSum (Left (InC z’))) (Cln (A(CEndOut z) — z)))
(Az — comm (g (OutC z)) (Az — rid (OutC z))))

chooseRightp (RM m) =

RM § cont $ A(k :: OutC sz (Cont 7) — 7) — runCont m $ A(OutC (COutput f)) —
(comm :: (Clnput (Shifty s2) 7 — r) — (CPSO (Shift; (Dual s2)) r = 7) — r)
(A(CIn y) = y (COutput (Az (Cln g) — g (CEndOut (k z)))))

(A(COutput g) — comm

offerp (RM m) (RM n1) (RM ng) =
RM § cont $ Ak — runCont m $ A(InC (Cln f)) —

(Az" — f (MSum (Right (InC z'))) (Cln (A(CEndOut z) — z)))
(Az — comm (g (OutC z)) (Az — rid (OutC z))))

f (COutput (Az y — case z of MSum (Left 1) — runCont n1 (AM(MFun f1) — runCont (f1 z1) k)
MSum (Right z2) — runCont na (A(MFun f2) — runCont (f2 z2) k)))

Figure 3: CPS Interpretation of Polarized GV

may not be uniquely determined by its arguments. Nevertheless,
other than specifying the type of comm, the remainder of the
implementation follows the expansion of the term above.

7. A Polarizing Interpretation

In this section we define a representation that allows us to interpret
(unpolarized) GV as polarized GV in GHC. Doing so gives a
concrete implementation of our formal semantics of GV, in a pure
setting, and demonstrates that our GV type class admits multiple
implementations. We are able to draw more general lessons about
the tradeoffs necessary for translating between tagless embeddings.

Our key observation is that for any unpolarized session type,
we can compute a minimal set of shifts to produce a correspond-
ing polarized session type, and can introduce corresponding shifts
to interpret communication on the unpolarized channel as commu-
nication on the polarized channel. We begin by introducing a data
type to represent polarity explicitly.

data Polarity = O | |

We can now define translations from unpolarized session types to
input and output polarized session types. We begin with a type
family Pol that classifies session types according to their polarity.

type family Pol s :: Polarity

type instance Pol (¢ (!) s) =0
type instance Pol End, =0
type instance Pol (¢ (?) s) =1
type instance Pol End- =1
type instance Pol (s1 (+) s2) = O
type instance Pol (s1 (&&) s2) = |

We now define the translations, taking advantage of Pol to avoid
repetition.

type family SToO (s :: %) i1 %

type instance SToO s = SToOShift (Pol s) s

type family STol (s:: %) = %
type instance STol s = STolShift (Pol s) s

type family SToOShift (p :: Polarity) (s :: %) :: %

type instance SToOShift O s = OSToO s

type instance SToOShift | s = Shift, (ISTol s)

type family OSToO (s :: %) 1 %

type instance OSToO (¢ (!) s) =t (!) SToO s

type instance OSToO End, = End,

type instance OSToO (s1 (++) s2) = SToO s1 (+) SToO s2

type family STolShift (p :: Polarity) (s :: %) 2 %

type instance STolShift | s = ISTol s

type instance STolShift O s = Shift; (OSToO s)

type family I1STol (s :: %) @2

type instance ISTol (¢ (?) s) =1t (?)STol s

type instance ISTol End- = End-

type instance I1STol (s1 (&&) s2) = STol s1 (&&) STol s2

These type families simply insert shifts where appropriate.

Next, we define a similar translation on terms. We do so by
introducing a new representation type, RP, which will define a GV
representation in terms of the PGV class.

newtype RP (0s :: % —) (is 11 % — %)
(repr :: Nat — [Maybe Nat] — [Maybe Nat] — * — *)
(v :: Nat) (¢ :: [Maybe Nat]) (o :: [Maybe Nat]) a =
RP {unRP :: (LLC repr, PGV os is repr, Conv repr) =
repr v i o a}

evalPolCont :: RP OCH ICH (RM (Cont 7)) v '[]/[] @ —
RM (Cont r) v '[]'[] @
evalPolCont = unRP

It is parameterized by type constructors for output and input
session types, the underlying representation type, and the usual
parameters of an LLC representation. The LLC instance for RP is
straightforwardly defined in terms of that for RM. We also define
a dummy type for representing unpolarized channels in terms of a
pair of polarized channel representations:

data STP (0s ::x — %) (is::%x — x) (s:: %)

class Conv (repr :: Nat — [Maybe Nat] — [Maybe Nat] — x — x) where
stoo :: Pol s~O = repr v i o (STP os is s) — repr v i o (os (SToO s))
stoi :: Pol s~ = repr v i o (STP os is s) — repr v i o (is (STol s))
otos :: Pol s~O = repr v ¢ 0 (0s (SToO s)) — repr v i o (STP os is s)
itos :: Pol s~ = repr v i o (is (STol s)) — repr vi o (STP os is s)

Figure 4: Interface for Converting between Polarized and Unpolarized Representations

We introduce an monadic interpretation of STP channels, relying
on the Pol class to choose the underlying channel representation.

type instance Mon (STP os is s) = Mon’ (Pol s) (STP os is s)

type family Mon’ (p :: Polarity) (a :: %) i1 (x = x) — *
type instance Mon’ O (STP os is s) = Mon (os (SToO s))
type instance Mon’ | (STP os is s) = Mon (is (STol s))

The Conv type class Figure 4 is used to mediate between polarized
and unpolarized representations of channels, relying on type fami-
lies SToO and STol for translating between unpolarized and polar-
ized session types. For the RM type, this translation is straightfor-
ward, as the channel representations are all dummy types.

instance Conv (RM m) where
stoo = RM o unRM
stoi = RM o unRM
otos = RM o unRM
itos = RM o unRM

To obtain the constraints we need for polarized GV we will need
to generate equations that state that dualization commutes with the
transformations on types. We reify these equations using a GADT:

data DualTrans (s :: x) where
DualTrans :: (Dual (STol s)~SToO (Dual s),
Dual (SToO s)~STol (Dual s),
Dual (STol (Dual s))~SToO s,
Dual (SToO (Dual s))~STol s) = DualTrans s

Alas, the proof of these equations in general is by induction over the
structure of session types. One way of capturing such an inductive
proof is to build the constraints into the Session type class. This
has the advantage that session types can remain open, but it has
the disadvantage that it requires us to change Session to refer to
additional type families that have nothing to do with unpolarized
GV. Instead, we will augment the Session class to compute a
closed singleton type representation of session types, which we
can subsequently use to define proofs by induction. This has the
disadvantage of being closed, but the advantage of not needing to
hard-wire information which is not relevant to unpolarized GV.
We define a singleton representation ST s for session types s.

data ST (s :: x) where

SOutput :: Session s = Proxy t — ST s — ST (¢ (!) s)
SEndOut :: ST End,
Slnput :: Session s = Proxy t — ST s — ST (¢ (?) s)
SEndIn :: ST End-
SChoose :: (Session s1, Session s2) =

ST s1 — ST s2 — ST (s1 (++) s2)
SOffer :: (Session s1, Session s2) =

ST 81 — ST 82 — ST (81 <&&> 82)

We define a singleton type that reifies the polarity of a session type
in terms of the Pol type family.

data SPolarity s where
SO :: Pol s~O = SPolarity s
Sl ::Pol s~ = SPolarity s

We can now augment the Session class to compute singleton ses-
sion type and polarity witnesses.

class (Dual (Dual s)~s, Flip (Pol s)~Pol (Dual s)) =
Session (s :: x) where
polarity :: SPolarity s
sing :: ST s
instance Session s = Session (¢ (!) s) where
polarity = SO
sing = SOutput Proxy sing
instance Session End; where
polarity = SO
sing = SEndOut
instance Session s = Session (¢ (?) s) where
polarity = SI
sing = Slnput Proxy sing
instance Session End» where
polarity = Sl
sing = SEndIn
instance (Session sy, Session s3) = Session (s1 (++) s2) where
polarity = SO
sing = SChoose sing sing
instance (Session s;, Session s2) = Session (s1 (&&) s2) where
polarity = Sl
sing = SOffer sing sing

The second class constraint expresses the relationship between
polarity and duality, and relies on a type family to flip polarities.

type family Flip (p :: Polarity) :: Polarity where
FlipO =1
Flipl =0

Now we can build a proof of the commutation equations for any
session type. The witnesses are unsurprisingly trivial.

dualTrans :: ST s — DualTrans s
dualTrans (SOutput _ s) = case dualTrans s of
DualTrans — DualTrans
dualTrans SEndOut = DualTrans
dualTrans (Slnput _ s) = case dualTrans s of
DualTrans — DualTrans
dualTrans SEndIn = DualTrans
dualTrans (SChoose s1 s3) =
case (dualTrans s1,dualTrans s2) of
(DualTrans, DualTrans) — DualTrans
dualTrans (SOffer s1 s2) =
case (dualTrans s1,dualTrans s2) of
(DualTrans, DualTrans) — DualTrans

As a convenience, we define functions for converting from po-
larized to unpolarized session types of a specified polarity. This
allows us to invert a translation in the other direction which may
have flipped the polarity by inserting a shift.

otosShift :: (PGV os is repr, Conv repr) = SPolarity s —
repr v 1 o (0os (SToO s)) — repr v i o (STP os is s)

otosShift SO = otos

otosShift S| = itos o ish

itosShift :: (PGV os is repr, Conv repr) = SPolarity s —
repr v i o (is (STol s)) — repr v i o (STP os is s)

itosShift SO = otos o osh

itosShift S| = itos

instance (LLC repr, PGV os is repr, Conv repr) = GV (STP os is) (RP os is repr) where

send (RP m) (RP n) = RP (otosShift polarity (sendp m (stoo n)))

recv (RP m) = RP (letStar (recvp (stoi m)) (Az y — = ® itosShift polarity y))

wait (RP m) = RP (waitp (stoi m))

fork (RP (m :: (PGV os is repr, Conv repr) = repr v i o (STP os is s — STP os is Endy))) =

case (dualTrans (sing :: ST s), dualTrans (sing :: ST (Dual s))) of
(DualTrans, DualTrans) — RP (itosShift polarity (forkp m'))

where m’ = compose ~ llam stoo ~ (compose = m ~ (llam (Az — otosShift polarity z)))
chooseLeft (RP m) = RP (otosShift polarity (chooseLeftp (stoo m)))
chooseRight (RP m) = RP (otosShift polarity (chooseRightp (stoo m)))
offer (RP (m :: (PGV os is repr, Conv repr) = repr v i h (STP os is (s1 (&&) s2)))) (RP n1) (RP ng) =

case (dualTrans (sing :: ST s1),dualTrans (sing :: ST s2)) of

(DualTrans, DualTrans) — RP (offerp (stoi m) n1 n2)

where n1 = compose ~ n1 ~ llam (Az1 — itosShift polarity 1)
ng = compose ~ nz ~ llam (Azz — itosShift polarity z2)

Figure 5: Unpolarized GV as Polarized GV

‘We now have all of the ingredients in place to define the full inter-
pretation of GV as polarized GV, which is given in Figure 5. Each
case amounts to calling the underlying polarized operator, incorpo-
rating shifts as necessary. We make use of a compose operator for
linear lambdas in order to perform coercions in the object language.

Perhaps the most important general lesson we have learnt in
this section is that if we wish to translate between two typed
embedded languages then we are faced with a choice: we can either
prime the source language with some knowledge about the type
system of the target language (in our case the equations captured by
DualTrans), or we can insist that the types of the source language
inhabit a closed universe (in our case captured by the singleton
type ST). Both choices hurt modularity. An interesting research
question is whether it is possible to augment GHC with a richer
constraint language in order to support open translations from a
source embedded language with an open universe of types into
another embedded language.

8. Discussion

We have presented a tagless embedding of GV, a session-typed
functional calculus, in Haskell. We have presented two interpre-
tations of our embedding, a concurrent one in terms of the prim-
itives of the 10 monad and a purely functional one in terms of
continuation-passing style. We have also presented extensions to
the core calculus: namely access points and polarization.

There have been several recent embedding of session types in
mainstream programming languages: including those of Pucella
and Tov [18], Imai et al. [8], and Orchard and Yoshida [13] for
Haskell; Scalas and Yoshida’s 1sessions library for Scala [19],
Jespersen et al.’s library for Rust [9], and Padovani’s FuSe library
for OCaml [14]. We will briefly compare their approaches to ours.

Pucella and Tov [18] target Haskell and use similar mechanisms
to ours to account for duality. Their implementation also relies on
(potentially unsafe) use of channels in the 10 monad. However,
where we rely on an embedding of linear A-calculus to capture the
linearity of channels, they track channel capabilities using a param-
eterized monad. On the one hand, this means that their approach
requires less wrapping when interacting with other Haskell code;
for example, they do not require a wrapper like our Base class, or
introduction and elimination of the Bang modality. On the other
hand, this makes manipulation of channels themselves more com-
plicated in their approach; for example, they cannot simply send or
receive channels, but require additional primitives (and some im-
pressive type-level machinery) to transfer channel capabilities inde-

pendently of the channels themselves. Imai et al [8] describe an al-
ternative approach to representing channel types in a parameterized
monads, identifying channels using de Bruijn indexing. Their ap-
proach avoids some of the difficulties in that of Pucella and Tov; for
example, they are able to send and receive channels directly, rather
than separating channels and their capabilities. However, their ap-
proach still relies on distinct primitives (and indeed distinct session
types) for transmitting channels instead of other forms of data. Fi-
nally, Orchard and Yoshida [13] present an embedding of session
types in Haskell as an instance of a general approach for encoding
effects using parameterized monads. Their approach to channels
differs from both those of Pucella and Tov and Imai et al., using
names rather than indexing. While more convenient to use, this de-
feats type inference for many processes.

Scalas and Yoshida [19] provide a library implementing session
types in Scala. They rely on a CPS-like interpretation of session-
types in terms of one-shot (or linear) channels, which they can im-
plement using Scala’s Future type. Consequently, their channels
do not rely on underlying unsafe operations, but still benefit from
using primitive concurrency mechanisms. However, they do not at-
tempt to express linearity in the Scala type system, instead relying
on the run-time behavior of the Promise and Future types to pre-
vent reuse of channels. As a result, erroneous programs may not
be detected until run-time, where our approach would reject them
statically.

Jespersen et al. [9] give an implementation of session types in
Rust making use of Rust’s affine types. A value of affine type can
be used no more than once, but it may not be used at all. Thus, the
Rust encoding guarantees that if a protocol proceeds then it will
comply with its session type, but does not prevent a program from
simply discarding a channel half way through a protocol.

Padovani [14] implements session types in OCaml. As in Pu-
cella and Tov’s implementation, he uses an underlying implemen-
tation of simply-typed channels and potentially unsafe conversions;
as in Scalas and Yoshida’s approach, he defers linearity checking to
runtime. This means that his approach is more smoothly integrated
with other OCaml code, but that it may not detect until execution
errors our approach would have rejected at compilation.

Acknowledgments

Thanks to Jeff Polakow for providing his Haskell embedding of
linear A-calculus and for discussions of this work. Thanks for
Dominic Orchard for helpful feedback. This work was funded by
EPSRC grant number EP/K034413/1.

References

[1] R. Atkey, S. Lindley, and J. Yallop. Unembedding domain-specific
languages. In S. Weirich, editor, Proceedings of the 2nd ACM SIG-
PLAN Symposium on Haskell, Haskell 2009, Edinburgh, Scotland,
UK, 3 September 2009, pages 37-48. ACM, 2009.

L. Caires and F. Pfenning. Session types as intuitionistic linear propo-
sitions. In P. Gastin and F. Laroussinie, editors, CONCUR 2010 -
Concurrency Theory, 21th International Conference, CONCUR 2010,
Faris, France, August 31-September 3, 2010. Proceedings, volume
6269 of Lecture Notes in Computer Science, pages 222-236. Springer,
2010.

J. Carette, O. Kiselyov, and C. Shan. Finally tagless, partially evalu-
ated: Tagless staged interpreters for simpler typed languages. J. Funct.
Program., 19(5):509-543, 2009.

O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited.
In D. D. Schreye, G. Janssens, and A. King, editors, Principles and
Practice of Declarative Programming, PPDP’12, Leuven, Belgium -
September 19 - 21, 2012, pages 139-150. ACM, 2012.

[5] S.J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous
session types. J. Funct. Program., 20(1):19-50, 2010.

[6] K. Honda. Types for dyadic interaction. In E. Best, editor, CON-
CUR 93, 4th International Conference on Concurrency Theory,
Hildesheim, Germany, August 23-26, 1993, Proceedings, volume 715
of Lecture Notes in Computer Science, pages 509-523. Springer, 1993.

[2

—

[3

=

[4

=

[7

—

K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and
type discipline for structured communication-based programming. In
C. Hankin, editor, Programming Languages and Systems - ESOP’98,
7th European Symposium on Programming, Held as Part of the Eu-
ropean Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings,
volume 1381 of Lecture Notes in Computer Science, pages 122—138.
Springer, 1998.

[8] K. Imai, S. Yuen, and K. Agusa. Session type inference in haskell.
In K. Honda and A. Mycroft, editors, Proceedings Third Work-
shop on Programming Language Approaches to Concurrency and
communication-cEntric Software, PLACES 2010, Paphos, Cyprus,
21st March 2010., volume 69 of EPTCS, pages 74-91, 2010.

T. B. L. Jespersen, P. Munksgaard, and K. F. Larsen. Session types for
rust. In P. Bahr and S. Erdweg, editors, Proceedings of the 11th ACM
SIGPLAN Workshop on Generic Programming, WGP@ICFP 2015,
Vancouver, BC, Canada, August 30, 2015, pages 13-22. ACM, 2015.

[10] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-
calculus. ACM Trans. Program. Lang. Syst., 21(5):914-947, 1999.

[11] S. Lindley and J. G. Morris. A semantics for propositions as ses-
sions. In J. Vitek, editor, Programming Languages and Systems - 24th
European Symposium on Programming, ESOP 2015, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume
9032 of Lecture Notes in Computer Science, pages 560-584. Springer,
2015.

[9

—

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

S. Lindley and J. G. Morris. Talking bananas: Structural recursion for
session types. In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 19-21, 2016. ACM, 2016.

D. A. Orchard and N. Yoshida. Effects as sessions, sessions as effects.
In R. Bodik and R. Majumdar, editors, Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22,
2016, pages 568-581. ACM, 2016.

L. Padovani. Fuse - a simple library implementation of binary ses-
sions. http://www.di.unito.it/~padovani/Software/FuSe/
FuSe.html, 2016.

J. Paykin and S. Zdancewic. Linear Ay is CP (more or less). In
S. Lindley, C. McBride, P. W. Trinder, and D. Sannella, editors, A List
of Successes That Can Change the World - Essays Dedicated to Philip
Wadler on the Occasion of His 60th Birthday, volume 9600 of Lecture
Notes in Computer Science, pages 273-291. Springer, 2016.

F. Pfenning and D. Griffith. Polarized substructural session types. In
A. M. Pitts, editor, Foundations of Software Science and Computation
Structures - 18th International Conference, FoSSaCS 2015, Held as
Fart of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
volume 9034 of Lecture Notes in Computer Science, pages 3-22.
Springer, 2015.

J. Polakow. Embedding a full linear lambda calculus in Haskell. In
B. Lippmeier, editor, Proceedings of the 8th ACM SIGPLAN Sympo-
sium on Haskell, Haskell 2015, Vancouver, BC, Canada, September
3-4, 2015, pages 177-188. ACM, 2015.

R. Pucella and J. A. Tov. Haskell session types with (almost) no class.
In A. Gill, editor, Proceedings of the 1st ACM SIGPLAN Symposium
on Haskell, Haskell 2008, Victoria, BC, Canada, 25 September 2008,
pages 25-36. ACM, 2008.

A. Scalas and N. Yoshida. Lightweight session programming in
scala. In S. Krishnamurthi and B. S. Lerner, editors, 30th European
Conference on Object-Oriented Programming, ECOOP 2016, July 18-
22, 2016, Rome, Italy, volume 56 of LIPIcs, pages 21:1-21:28. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language
and its typing system. In C. Halatsis, D. G. Maritsas, G. Philokyprou,
and S. Theodoridis, editors, PARLE ’94: Parallel Architectures and
Languages Europe, 6th International PARLE Conference, Athens,
Greece, July 4-8, 1994, Proceedings, volume 817 of Lecture Notes
in Computer Science, pages 398—413. Springer, 1994.

J. Tov. The synchronous-channels package. https://hackage.
haskell.org/package/synchronous-channels, 2015.

V. T. Vasconcelos, S. J. Gay, and A. Ravara. Type checking a multi-
threaded functional language with session types. Theor. Comput. Sci.,
368(1-2):64-87, 2006.

P. Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384—
418, 2014.

http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html
http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html
https://hackage.haskell.org/package/synchronous-channels
https://hackage.haskell.org/package/synchronous-channels

	Introduction
	Session Types and Linearity
	Linear -Calculus, Monadically
	The GV Calculus
	A CPS semantics for GV

	A Primitive Interpretation
	Access Points

	A Polarizing Development
	A Polarizing Interpretation
	Discussion

