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We study the fundamental efficiency of delimited control. Specifically, we show that effect handlers enable an

asymptotic improvement in runtime complexity for a certain class of functions. We consider the generic count
problem using a pure PCF-like base language λ

b
and its extension with effect handlers λ

h
. We show that λ

h

admits an asymptotically more efficient implementation of generic count than any λ
b
implementation. We

also show that this efficiency gap remains when λ
b
is extended with mutable state.

To our knowledge this result is the first of its kind for control operators.

1 INTRODUCTION
In today’s programming languages we find a wealth of powerful constructs and features — excep-

tions, higher-order store, dynamic method dispatch, coroutines, explicit continuations, concurrency

features, Lisp-style ‘quote’ and so on — which may be present or absent in various combinations

in any given language. There are of course many important pragmatic and stylistic differences

between languages, but here we are concerned with whether languages may differ more essentially

in their expressive power, according to the selection of features they contain.

One can interpret this question in various ways. For instance, Felleisen [1991] considers the

question of whether a language L admits a translation into a sublanguage L ′ in a way which

respects not only the behaviour of programs but also aspects of their (global or local) syntactic

structure. If the translation of some L-program into L ′ requires a complete global restructuring,

we may say that L ′ is in some way less expressive than L. In the present paper, however, we

have in mind even more fundamental expressivity differences that would not be bridged even if

whole-program translations were admitted. These fall under two headings.

(1) Computability: Are there operations of a given type that are programmable in L but not

expressible at all in L ′?

(2) Complexity: Are there operations programmable in L with some asymptotic runtime bound

(e.g. ‘O(n2)’) that cannot be achieved in L ′?

We may also ask: are there examples of natural, practically useful operations that manifest such

differences? If so, this might be considered as a significant advantage of L over L ′.

If the ‘operations’ we are asking about are ordinary first-order functions— that is, both their inputs

and outputs are of ground type (strings, arbitrary-size integers etc.) — then the situation is easily

summarised. At such types, all reasonable languages give rise to the same class of programmable

functions, namely the Church-Turing computable ones. As for complexity, the runtime of a program

is typically analysed with respect to some cost model for basic instructions (e.g. one unit of time per

array access). Although the realism of such cost models in the asymptotic limit can be questioned

(see, e.g., [Knuth 1997, Section 2.6]), it is broadly taken as read that such models are equally

applicable whatever programming language we are working with, and moreover that all respectable

languages can represent all algorithms of interest; thus, one does not expect the best achievable
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asymptotic run-time for a typical algorithm (say in number theory or graph theory) to be sensitive

to the choice of programming language, except perhaps in marginal cases.

The situation changes radically, however, if we consider higher-order operations: programmable

operations whose inputs may themselves be programmable operations. Here it turns out that both

what is computable and the efficiency with which it can be computed can be highly sensitive to the

selection of language features present. This is in fact true more widely for abstract data types, of
which higher-order types can be seen as a special case: a higher-order value will be represented

within the machine as ground data, but a program within the language typically has no access to

this internal representation, and can interact with the value only by applying it to an argument.

Most work in this area to date has focused on computability differences. One of the best known

examples is the parallel if operation which is computable in a language with parallel evaluation

but not in a typical ‘sequential’ programming language [Plotkin 1977]. It is also well known that

the presence of control features or local state enables observational distinctions that cannot be

made in a purely functional setting: for instance, there are programs involving ‘call/cc’ that detect

the order in which a (call-by-name) ‘+’ operation evaluates its arguments [Cartwright and Felleisen

1992]. Such operations are ‘non-functional’ in the sense that their output is not determined solely

by the extension of their input (seen as a mathematical function N⊥ × N⊥ → N⊥); however, there
are also programs with ‘functional’ behaviour that can be implemented with control or local state

but not without them [Longley 1999]. More recent results have exhibited differences lower down

in the language expressivity spectrum: for instance, in a purely functional setting à la Haskell, the
expressive power of recursion increases strictly with its type level [Longley 2018], and there are

natural operations computable by low-order recursion but not by high-order iteration [Longley

2019]. Much of this territory, including the mathematical theory of some of the natural notions of

higher-order computability that arise in this way, is mapped out by Longley and Normann [2015].

Relatively few results of this character have so far been established on the complexity side.

Pippenger [1996] gives an example of an ‘online’ operation on infinite sequences of atomic symbols

(essentially a function from streams to streams) such that the first n output symbols can be produced

within time O(n) if one is working in an ‘impure’ version of Lisp (in which mutation of ‘cons’

pairs is admitted), but with a worst-case runtime no better than Ω(n log n) for any implementation

in pure Lisp (without such mutation). This example was reconsidered by Bird et al. [1997] who

showed that the same speedup can be achieved in a pure language by using lazy evaluation. Another

candidate is the familiar log n overhead involved in implementing maps (supporting lookup and

extension) in a pure functional language [Okasaki 1999], although to our knowledge this situation

has not yet been subjected to theoretical scrutiny. Jones [2001] explores the approach of manifesting

expressivity and efficiency differences between certain languages by artificially restricting attention

to ‘cons-free’ programs; in this setting, the classes of representable first-order functions for the

various languages are found to coincide with some well-known complexity classes.

The purpose of the present paper is to give a clear example of such an inherent complexity

difference higher up in the expressivity spectrum. Specifically, we consider the following generic
count problem, parametric in n: given a boolean-valued predicate P on the space Bn of boolean
vectors of length n, return the number of such vectors q for which P q = true. We shall consider

boolean vectors of any length to be represented by the type Nat→ Bool; thus for each n, we are
asking for an implementation of a certain third-order operation

countn : ((Nat→ Bool) → Bool) → Nat

A naïve implementation strategy, supported by any reasonable language, is simply to apply P to

each of the 2
n
vectors in turn. A much less obvious, but still purely ‘functional’, approach due

to Berger [1990] achieves the effect of ‘pruned search’ where the predicate allows it (serving as
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a warning that counter-intuitive phenomena can arise in this territory). Nonetheless, under a

mild condition on P (namely that it must inspect all n components of the given vector before

returning), both these approaches will have a Ω(n2n) runtime. Moreover, we shall show that in

a typical call-by-value language without advanced control features, one cannot improve on this:

any implementation of countn must necessarily take time Ω(n2n) on any predicate P . On the other

hand, if we extend our language with a feature such as effect handlers (see Section 2 below), it

becomes possible to bring the runtime down to O(2n): an asymptotic gain of a factor of n.
The generic search problem is just like the generic count problem, except rather than counting

the vectors q such that P q = true, it returns the list of all such vectors. The Ω(n2n) runtime for

purely functional implementations transfers directly to generic search, as generic count reduces to

generic search composed with computing the length of the resulting list. In Section 7.2 we illustrate

that the O(2n) runtime for generic count with effect handlers also transfers to generic search.

The idea behind the speedup is easily explained and will already be familiar, at least informally,

to programmers who have worked with multi-shot continuations. Suppose for example n = 3, and

suppose that the predicate P always inspects the components of its argument in the order 0, 1, 2. A
naïve implementation of count3 might start by applying the given P to q0 = (true, true, true), and
then to q1 = (true, true, false). Clearly there is some duplication here: the computations of P q0 and
P q1 will proceed identically up to the point where the value of the final component is requested.

What we would like to do, then, is to record the state of the computation of P q0 at just this point,
so that we can later resume this computation with false supplied as the final component value in

order to obtain the value of P q1. (Similarly for all other internal nodes in the evident binary tree

of boolean vectors.) Of course, this ‘backup’ approach would be standardly applied if one were

implementing a bespoke search operation for some particular choice of P (corresponding, say, to

the n-queens problem); but to apply this idea of resuming previous subcomputations in the generic
setting (that is, uniformly in P) requires some special language feature such as effect handlers or

multi-shot continuations. One could also obviate the need for such a feature by choosing to present

the predicate P in some other way, but from our present perspective this would be to move the

goalposts: our intention is precisely to show that our languages differ in an essential way as regards
their power to manipulate data of type (Nat→ Bool) → Bool.
This idea of using first-class control to achieve ‘backtracking’ has been exploited before and is

fairly widely known (see e.g. [Kiselyov et al. 2005]), and there is a clear programming intuition

that this yields a speedup unattainable in languages without such control features. Our main

contribution in this paper is to provide, for the first time, a precise mathematical theorem that pins

down this fundamental efficiency difference, thus giving formal substance to this intuition. Since

our goal is to give a realistic analysis of the efficiency achievable in various settings without getting

bogged down in inessential implementation details, we shall work concretely and operationally

with the languages in question, using a CEK-style abstract machine semantics as our basic model

of execution time, and with some specific programs in these languages. In the first instance, we

formulate our results as a comparison between a purely functional base language (a version of

call-by-value PCF) and an extension with first-class control; we then indicate how these results can

be extended to base languages with other features such as mutable state.

In summary, our purpose is to exhibit an efficiency gap which, in our view, manifests a funda-

mental feature of the programming language landscape, challenging a common assumption that all

real-world programming languages are essentially ‘equivalent’ from an asymptotic point of view.

We believe that such results are important not only for a rounded understanding of the relative

merits of existing languages, but also for informing future language design.

For their convenience as structured delimited control operators we adopt effect handlers as our

universal control abstraction of choice, but our results adapt mutatis mutandis to other first-class
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control abstractions such as ‘call/cc’ [Sperber et al. 2009], ‘control’ (F ) and ’prompt’ (#) [Felleisen
1988], or ‘shift’ and ‘reset’ [Danvy and Filinski 1990].

The rest of the paper is structured as follows.

• Section 2 provides an introduction to effect handlers as a programming abstraction.

• Section 3 presents a PCF-like language λb and its extension λh with effect handlers.

• Section 4 defines abstract machines for λb and λh, yielding a runtime cost model.

• Section 5 introduces generic count and some associated machinery, and presents an imple-

mentation in λh with runtime O(2n).

• Section 6 establishes that any generic count implementation in λb must have runtime Ω(n2n).
• Section 7 shows that our results scale to richer settings including support for a wider class of

predicates, the adaptation from generic count to generic search, and an extension of the base

language with state.

• Section 8 evaluates implementations of generic search based on λb and λh in Standard ML.

• Section 9 concludes.

The languages λb and λh are rather minimal versions of previously studied systems — we only

include the machinery needed for illustrating the generic search efficiency phenomenon. Auxiliary

results are included in the appendices of the extended version of the paper [Hillerström et al. 2020b].

2 EFFECT HANDLERS PRIMER
Effect handlers were originally studied as a theoretical means to provide a semantics for exception

handling in the setting of algebraic effects [Plotkin and Power 2001; Plotkin and Pretnar 2013].

Subsequently they have emerged as a practical programming abstraction for modular effectful

programming [Bauer and Pretnar 2015; Convent et al. 2020; Dolan et al. 2015; Hillerström et al. 2020a;

Kammar et al. 2013; Kiselyov et al. 2013; Leijen 2017]. In this section we give a short introduction to

effect handlers. For a thorough introduction to programming with effect handlers, we recommend

the tutorial by Pretnar [2015], and as an introduction to the mathematical foundations of handlers,

we refer the reader to the founding paper by Plotkin and Pretnar [2013] and the excellent tutorial

paper by Bauer [2018].

Viewed through the lens of universal algebra, an algebraic effect is given by a signature Σ
of typed operation symbols along with an equational theory that describes the properties of the

operations [Plotkin and Power 2001]. An example of an algebraic effect is nondeterminism, whose

signature consists of a single nondeterministic choice operation: Σ := {Branch : Unit → Bool}.
The operation takes a single parameter of type unit and ultimately produces a boolean value. The

pragmatic programmatic view of algebraic effects differs from the original development as no

implementation accounts for equations over operations yet.

As a simple example, let us use the operation Branch to model a coin toss. Suppose we have a

data type Toss := Heads | Tails, then we may implement a coin toss as follows.

toss : Unit→ Toss
toss ⟨⟩ = if do Branch ⟨⟩ then Heads else Tails

From the type signature it is clear that the computation returns a value of type Toss. It is not clear
from the signature of toss whether it performs an effect. However, from the definition, it evidently

performs the operation Branch with argument ⟨⟩ using the do-invocation form. The result of the

operation determines whether the computation returns either Heads or Tails. Systems such as

Frank [Convent et al. 2020; Lindley et al. 2017], Helium [Biernacki et al. 2019, 2020], Koka [Leijen

2017], and Links [Hillerström and Lindley 2016; Hillerström et al. 2020a] include type-and-effect

systems which track the use of effectful operations, whilst current iterations of systems such as
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Eff [Bauer and Pretnar 2015] and Multicore OCaml [Dolan et al. 2015] elect not to track effects in

the type system. Our language is closer to the latter two.

We may view an effectful computation as a tree, where the interior nodes correspond to operation

invocations and the leaves correspond to return values. The computation tree for toss is as follows.

Branch

Heads

true

Tails

false

It models interaction with the environment. The operation Branch can be viewed as a query for

which the response is either true or false. The response is provided by an effect handler. As an

example, consider the following handler which enumerates the possible outcomes of a coin toss.

handle toss ⟨⟩ with
val x 7→ [x]
Branch ⟨⟩ r 7→ r true ++ r false

The handle-construct generalises the exceptional syntax of Benton and Kennedy [2001]. This

handler has a success clause and an operation clauses. The success clause determines how to interpret

the return value of toss, or equivalently how to interpret the leaves of its computation tree. It lifts

the return value into a singleton list. The operation clause determines how to interpret occurrences

of Branch in toss. It provides access to the argument of Branch (which is unit) and its resumption,

r . The resumption is a first-class delimited continuation which captures the remainder of the toss
computation from the invocation of Branch up to its nearest enclosing handler.

Applying r to true resumes evaluation of toss via the true branch, returning Heads and causing

the success clause of the handler to be invoked; thus the result of r true is [Heads]. Evaluation
continues in the operation clause, meaning that r is applied again, but this time to false, which
causes evaluation to resume in toss via the false branch. By the same reasoning, the value of r false
is [Tails], which is concatenated with the result of the true branch; hence the handler ultimately

returns [Heads, Tails].

3 CALCULI
In this section, we present our base language λb and its extension with effect handlers λh.

3.1 Base Calculus
The base calculus λb is a fine-grain call-by-value [Levy et al. 2003] variation of PCF [Plotkin 1977].

Fine-grain call-by-value is similar to A-normal form [Flanagan et al. 1993] in that every intermediate

computation is named, but unlike A-normal form is closed under reduction.

The syntax of λb is as follows.

Types A,B,C,D ∈ Type ::= Nat | Unit | A→ B | A × B | A + B
Type Environments Γ ∈ Ctx ::= · | Γ, x : A
Values V ,W ∈ Val ::= x | k | c | λxA.M | rec f A→B x .M

| ⟨⟩ | ⟨V ,W ⟩ | (inlV )B | (inrW )A

Computations M,N ∈ Comp ::= V W | let ⟨x, y⟩ = V in N
| case V {inl x 7→ M; inr y 7→ N }
| return V | let x ← M in N

The ground types are Nat and Unit which classify natural number values and the unit value,

respectively. The function type A→ B classifies functions that map values of type A to values of

type B. The binary product type A × B classifies pairs of values whose first and second components
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Values
T-Var

x : A ∈ Γ

Γ ⊢ x : A

T-Unit

Γ ⊢ ⟨⟩ : Unit

T-Nat

k ∈ N

Γ ⊢ k : Nat

T-Const

c : A→ B

Γ ⊢ c : A→ B

T-Lam

Γ, x : A ⊢ M : B

Γ ⊢ λxA.M : A→ B

T-Rec

Γ, f : A→ B, x : A ⊢ M : B

Γ ⊢ rec f A→B x .M : A→ B

T-Prod

Γ ⊢ V : A Γ ⊢ W : B

Γ ⊢ ⟨V ,W ⟩ : A × B

T-Inl

Γ ⊢ V : A

Γ ⊢ (inlV )B : A + B

T-Inr

Γ ⊢ W : B

Γ ⊢ (inrW )A : A + B

Computations
T-App

Γ ⊢ V : A→ B Γ ⊢ W : A

Γ ⊢ V W : B

T-Split

Γ ⊢ V : A × B Γ, x : A, y : B ⊢ N : C

Γ ⊢ let ⟨x, y⟩ = V in N : C

T-Case

Γ ⊢ V : A + B Γ, x : A ⊢ M : C Γ, y : B ⊢ N : C

Γ ⊢ case V {inl x 7→ M; inr y 7→ N } : C

T-Return

Γ ⊢ V : A

Γ ⊢ return V : A

T-Let

Γ ⊢ M : A Γ, x : A ⊢ N : C

Γ ⊢ let x ← M in N : C

Fig. 1. Typing Rules for λ
b

have types A and B respectively. The sum type A + B classifies tagged values of either type A or B.
Type environments Γ map term variables to their types.

We let k range over natural numbers and c range over primitive operations on natural numbers

(+,−,=). We let x, y, z range over term variables. For convenience, we also use f , g, and h for

variables of function type, i and j for variables of type Nat, and r to denote resumptions. The value

terms are standard.

We will occasionally blur the distinction between object and meta language by writing A for

the meta level type of closed value terms of type A. All elimination forms are computation terms.

Abstraction is eliminated using application (V W ). The product eliminator (let ⟨x, y⟩ = V in N )
splits a pair V into its constituents and binds them to x and y, respectively. Sums are eliminated by

a case split (case V {inl x 7→ M; inr y 7→ N }). A trivial computation (return V ) returns value V .
The sequencing expression (let x ← M in N ) evaluates M and binds the result value to x in N .

The typing rules are given in Figure 1. We require two typing judgements: one for values and

the other for computations. The judgement Γ ⊢ □ : A states that a □-term has type A under type

environment Γ, where □ is either a value term (V ) or a computation term (M). The constants have

the following types.

{(+), (−)} : Nat × Nat→ Nat (=) : Nat × Nat→ Unit + Unit

We give a small-step operational semantics for λb with evaluation contexts in the style of Felleisen

[1987]. The reduction rules are given in Figure 2. We write M[V/x] for M with V substituted for x
and ⌜c⌝ for the usual interpretation of constant c as a meta-level function on closed values. The

reduction relation { is defined on computation terms. The statement M { N reads: term M
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S-App (λxA.M)V { M[V/x]
S-App-Rec (rec f A x .M)V { M[(rec f A x .M)/f ,V/x]
S-Const c V { return (⌜c⌝ (V ))
S-Split let ⟨x, y⟩ = ⟨V ,W ⟩ in N { N [V/x,W/y]
S-Case-inl case (inlV )B {inl x 7→ M; inr y 7→ N } { M[V/x]
S-Case-inr case (inrV )A {inl x 7→ M; inr y 7→ N } { N [V/y]
S-Let let x ← return V in N { N [V/x]
S-Lift E[M]{ E[N ], if M { N

Evaluation contexts E ::= [ ] | let x ← E in N

Fig. 2. Contextual Small-Step Operational Semantics

reduces to term N in one step. We write R+ for the transitive closure of relation R and R∗ for the
reflexive, transitive closure of relation R.

Notation. We elide type annotations when clear from context. For convenience we often write

code in direct-style assuming the standard left-to-right call-by-value elaboration into fine-grain

call-by-value [Flanagan et al. 1993; Moggi 1991]. For example, the expression f (hw) + g ⟨⟩ is
syntactic sugar for:

let x ← hw in let y ← f x in let z ← g ⟨⟩ in y + z
We define sequencing of computations in the standard way.

M;N := let x ← M in N , where x < FV (N )

We make use of standard syntactic sugar for pattern matching. For instance, we write

λ⟨⟩.M := λxUnit.M, where x < FV (M)

for suspended computations, and if the binder has a type other than Unit, we write:

λ_A.M := λxA.M, where x < FV (M)

We use the standard encoding of booleans as a sum:

Bool := Unit + Unit true := inl ⟨⟩ false := inr ⟨⟩

if V then M else N := case V {inl ⟨⟩ 7→ M; inr ⟨⟩ 7→ N }

3.2 Handler Calculus
We now define λh as an extension of λb.

Operation symbols ℓ ∈ L

Signatures Σ ::= · | {ℓ : A→ B} ∪ Σ
Handler types F ::= C ⇒ D
Computations M,N ::= · · · | do ℓ V | handle M with H
Handlers H ::= {val x 7→ M} | {ℓ p r 7→ N } ⊎ H

We assume a countably infinite set L of operation symbols ℓ. An effect signature Σ is a map from

operation symbols to their types, thus we assume that each operation symbol in a signature is

distinct. An operation type A→ B classifies operations that take an argument of type A and return

a result of type B. We write dom(Σ) ⊆ L for the set of operation symbols in a signature Σ. A handler

type C ⇒ D classifies effect handlers that transform computations of type C into computations of

type D. Following Pretnar [2015], we assume a global signature for every program. Computations

are extended with operation invocation (do ℓ V ) and effect handling (handle M with H ). Handlers

are constructed from one success clause ({val x 7→ M}) and one operation clause ({ℓ p r 7→ N })
for each operation ℓ in Σ. Following Plotkin and Pretnar [2013], we adopt the convention that a
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Computations
T-Do

(ℓ : A→ B) ∈ Σ Γ ⊢ V : A

Γ ⊢ do ℓ V : B

T-Handle

Γ ⊢ M : C Γ ⊢ H : C ⇒ D

Γ ⊢ handle M with H : D

Handlers
T-Handler

Hval = {val x 7→ M} [H ℓ = {ℓ p r 7→ Nℓ}]ℓ∈dom(Σ)
Γ, x : C ⊢ M : D [Γ, p : Aℓ , r : Bℓ → D ⊢ Nℓ : D](ℓ:Aℓ→Bℓ )∈Σ

Γ ⊢ H : C ⇒ D

Fig. 3. Additional Typing Rules for λ
h

handler with missing operation clauses (with respect to Σ) is syntactic sugar for one in which all

missing clauses perform explicit forwarding:

{ℓ p r 7→ let x ← do ℓ p in r x}

The typing rules for λh are those of λb (Figure 1) plus three additional rules for operations,

handling, and handlers given in Figure 3. The T-Do rule ensures that an operation invocation is

only well-typed if the operation ℓ appears in the effect signature Σ and the argument typeAmatches

the type of the provided argument V . The result type B determines the type of the invocation.

The T-Handle rule types handler application. The T-Handler rule ensures that the bodies of the

success clause and the operation clauses all have the output type D. The type of x in the success

clause must match the input type C. The type of the parameter p (Aℓ) and resumption r (Bℓ → D)
in operation clause H ℓ

is determined by the type of ℓ; the return type of r is D, as the body of the

resumption will itself be handled by H . We write H ℓ
and Hval

for projecting success and operation

clauses.

Hval
:= {val x 7→ M}, where {val x 7→ M} ∈ H

H ℓ
:= {ℓ p r 7→ M}, where {ℓ p r 7→ M} ∈ H

We extend the operational semantics to λh. Specifically, we add two new reduction rules: one for

handling return values and another for handling operation invocations.

S-Ret handle (return V ) with H { N [V/x], where Hval = {val x 7→ N }
S-Op handle E[do ℓ V ] with H { N [V/p, (λy.handle E[return y] with H )/r],

where H ℓ = {ℓ p r 7→ N }

The first rule invokes the success clause. The second rule handles an operation via the corresponding

operation clause. If we were naïvely to extend evaluation contexts with the handle construct then

our semantics would become nondeterministic, as it may pick an arbitrary handler in scope. In

order to ensure that the semantics is deterministic, we instead add a distinct form of evaluation

context for effectful computation, which we call handler contexts.

Handler contexts H ::= [ ] | handle H with H | let x ←H in N

We replace the S-Lift rule with a corresponding rule for handler contexts.

H[M] { H[N ], if M { N

The separation between pure evaluation contexts E and handler contextsH ensures that the S-Op

rule always selects the innermost handler.

We now characterise normal forms and state the standard type soundness property of λh.

Definition 3.1 (Computation normal forms). A computation term N is normal with respect to Σ, if
N = return V for some V or N = E[do ℓW ] for some ℓ ∈ dom(Σ), E, and W .
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Theorem 3.2 (Type Soundness). If ⊢ M : C, then either there exists ⊢ N : C such that M {∗ N
and N is normal with respect to Σ, or M diverges.

3.3 The Role of Types
Readers familiar with backtracking search algorithms may wonder where types come into the

expressiveness picture. Types will not play a direct role in our proofs but rather in the characterisa-

tion of which programs can be meaningfully compared. In particular, types are used to rule out

global approaches such as continuation passing style (CPS): without types one could obtain an

efficient pure generic count program by CPS transforming the entire program.

Readers familiar with effect handlers may wonder why our handler calculus does not include an

effect type system. As types frame the comparison of programs between languages, we require

that types be fixed across languages; hence λh does not include effect types. Future work includes

reconciling effect typing with our approach to expressiveness.

4 ABSTRACT MACHINE SEMANTICS
Thus far we have introduced the base calculus λb and its extension with effect handlers λh. For
each calculus we have given a small-step operational semantics which uses a substitution model

for evaluation. Whilst this model is semantically pleasing, it falls short of providing a realistic

account of practical computation as substitution is an expensive operation. We now develop a more

practical model of computation based on an abstract machine semantics.

4.1 Base Machine
We choose a CEK-style abstract machine semantics [Felleisen and Friedman 1987] for λb based on

that of Hillerström et al. [2020a]. The CEK machine operates on configurations which are triples of

the form ⟨M | γ | σ ⟩. The first component contains the computation currently being evaluated. The

second component contains the environment γ which binds free variables. The third component

contains the continuation which instructs the machine how to proceed once evaluation of the

current computation is complete. The syntax of abstract machine states is as follows.

Configurations C ∈ Conf ::= ⟨M | γ | σ ⟩
Environments γ ∈ Env ::= ∅ | γ [x 7→ v]
Machine values v,w ∈ MVal ::= x | n | c | ⟨⟩ | ⟨v,w⟩

| (γ , λxA.M) | (γ , rec f A→B x .M) | (inl v)B | (inrw)A

Pure continuations σ ∈ PureCont ::= [] | (γ , x,N ) :: σ

Values consist of function closures, constants, pairs, and left or right tagged values. We refer to

continuations of the base machine as pure. A pure continuation is a stack of pure continuation

frames. A pure continuation frame (γ , x,N ) closes a let-binding let x ← [ ] in N over environment

γ . We write [] for an empty pure continuation and ϕ :: σ for the result of pushing the frame ϕ onto

σ . We use pattern matching to deconstruct pure continuations.

The abstract machine semantics is given in Figure 4. The transition relation (−→) makes use of the

value interpretation (J−K) from value terms to machine values. The machine is initialised by placing

a term in a configuration alongside the empty environment (∅) and identity pure continuation ([]).

The rules (M-App), (M-Rec), (M-Const), (M-Split), (M-CaseL), and (M-CaseR) eliminate values.

The (M-Let) rule extends the current pure continuation with let bindings. The (M-RetCont) rule

extends the environment in the top frame of the pure continuation with a returned value. Given an

input of a well-typed closed computation term ⊢ M : A, the machine will either diverge or return a

value of type A. A final state is given by a configuration of the form ⟨return V | γ | []⟩ in which

case the final return value is given by the denotation JV Kγ of V under environment γ .
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Transition relation
M-App ⟨V W | γ | σ ⟩ −→ ⟨M | γ ′[x 7→ JW Kγ ] | σ ⟩,

if JV Kγ = (γ ′, λxA.M)
M-Rec ⟨V W | γ | σ ⟩ −→ ⟨M | γ ′[f 7→ (γ ′, rec f A→B x .M),

x 7→ JW Kγ ] | σ ⟩,
if JV Kγ = (γ ′, rec f A→B x .M)

M-Const ⟨V W | γ | σ ⟩ −→ ⟨return (⌜c⌝ (JW Kγ )) | γ | σ ⟩,
if JV Kγ = c

M-Split ⟨let ⟨x, y⟩ = V in N | γ | σ ⟩ −→ ⟨N | γ [x 7→ v, y 7→ w] | σ ⟩,
if JV Kγ = ⟨v;w⟩

M-CaseL

⟨case V {inl x 7→ M;

inr y 7→ N } | γ | σ ⟩ −→ ⟨M | γ [x 7→ v] | σ ⟩,

if JV Kγ = inl v

M-CaseR

⟨case V {inl x 7→ M;

inr y 7→ N } | γ | σ ⟩ −→ ⟨N | γ [y 7→ v] | σ ⟩,

if JV Kγ = inr v
M-Let ⟨let x ← M in N | γ | σ ⟩ −→ ⟨M | γ | (γ , x,N ) :: σ ⟩
M-RetCont ⟨return V | γ | (γ ′, x,N ) :: σ ⟩ −→ ⟨N | γ ′[x 7→ JV Kγ ] | σ ⟩

Value interpretation

JxKγ = γ (x)
J⟨⟩Kγ = ⟨⟩

JnKγ = n
JcKγ = c

JλxA.MKγ = (γ , λxA.M)
Jrec f A→B x .MKγ = (γ , rec f A→B x .M)

J⟨V ,W ⟩Kγ = ⟨JV Kγ , JW Kγ ⟩ J(inlV )BKγ = (inl JV Kγ )B

J(inrV )AKγ = (inr JV Kγ )A

Fig. 4. Abstract Machine Semantics for λ
b

Correctness. The base machine faithfully simulates the operational semantics for λb; most tran-

sitions correspond directly to β-reductions, butM-Let performs an administrative step to bring

the computation M into evaluation position. We formally state and prove the correspondence in

Appendix A, relying on an inverse map L−M from configurations to terms [Hillerström et al. 2020a].

4.2 Handler Machine
We now enrich the λb machine to a λh machine. We extend the syntax as follows.

Configurations C ∈ Conf ::= ⟨M | γ | κ⟩
Resumptions ρ ∈ Res ::= (σ , χ )
Continuations κ ∈ Cont ::= [] | ρ :: κ
Handler closures χ ∈ HClo ::= (γ ,H )
Machine values v,w ∈ MVal ::= · · · | ρ

The notion of configurations changes slightly in that the continuation component is replaced by

a generalised continuation κ ∈ Cont [Hillerström et al. 2020a]; a continuation is now a list of

resumptions. A resumption is a pair of a pure continuation (as in the base machine) and a handler

closure (χ ). A handler closure consists of an environment and a handler definition, where the

former binds the free variables that occur in the latter. The identity continuation is a singleton list

containing the identity resumption, which is an empty pure continuation paired with the identity

handler closure:

κ0 := [([], (∅, {val x 7→ x}))]
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Transition relation
M-Resume ⟨V W | γ | κ⟩ −→ ⟨return W | γ | (σ , χ ) :: κ⟩,

if JV Kγ = (σ , χ )
M-Let ⟨let x ← M in N | γ | (σ , χ ) :: κ⟩ −→ ⟨M | γ | ((γ , x,N ) :: σ , χ ) :: κ⟩
M-RetCont ⟨return V | γ | ((γ ′, x,N ) :: σ , χ ) :: κ⟩ −→ ⟨N | γ ′[x 7→ JV Kγ ] | (σ , χ ) :: κ⟩
M-Handle ⟨handle M with H | γ | κ⟩ −→ ⟨M | γ | ([], (γ ,H )) :: κ⟩
M-RetHandler ⟨return V | γ | ([], (γ ′,H )) :: κ⟩ −→ ⟨M | γ ′[x 7→ JV Kγ ] | κ⟩,

if Hval = {val x 7→ M}
M-Handle-Op ⟨do ℓ V | γ | (σ , (γ ′,H )) :: κ⟩ −→ ⟨M | γ ′[p 7→ JV Kγ ,

r 7→ (σ , (γ ′,H ))] | κ⟩,
if ℓ : A→ B ∈ Σ
and H ℓ = {ℓ p r 7→ M}

Fig. 5. Abstract Machine Semantics for λ
h

Machine values are augmented to include resumptions as an operation invocation causes the

topmost frame of the machine continuation to be reified (and bound to the resumption parameter

in the operation clause).

The handler machine adds transition rules for handlers, and modifies (M-Let) and (M-RetCont)

from the base machine to account for the richer continuation structure. Figure 5 depicts the new

and modified rules. The (M-Handle) rule pushes a handler closure along with an empty pure

continuation onto the continuation stack. The (M-RetHandler) rule transfers control to the

success clause of the current handler once the pure continuation is empty. The (M-Handle-Op)

rule transfers control to the matching operation clause on the topmost handler, and during the

process it reifies the handler closure. Finally, the (M-Resume) rule applies a reified handler closure,

by pushing it onto the continuation stack. The handler machine has two possible final states: either

it yields a value or it gets stuck on an unhandled operation.

Correctness. The handler machine faithfully simulates the operational semantics of λh. Extending
the result for the base machine, we formally state and prove the correspondence in Appendix B.

4.3 Realisability and Asymptotic Complexity
As witnessed by the work of Hillerström and Lindley [2018] the machine structures are readily real-

isable using standard persistent functional data structures. Pure continuations on the base machine

and generalised continuations on the handler machine can be implemented using linked lists with a

time complexity of O(1) for the extension operation (_ :: _). The topmost pure continuation on the

handler machine may also be extended in time O(1), as extending it only requires reaching under

the topmost handler closure. Environments, γ , can be realised using a map, with a time complexity

of O(log |γ |) for extension and lookup [Okasaki 1999].

The worst-case time complexity of a single machine transition is exhibited by rules which

involve operations on the environment, since any other operation is constant time, hence the worst-

time complexity of a transition is O(log |γ |). The value interpretation function J−Kγ is defined

structurally on values. Its worst-time complexity is exhibited by a nesting of pairs of variables

J⟨x1, . . . , xn⟩Kγ which has complexity O(n log |γ |).

Continuation copying. On the handler machine the topmost continuation frame can be copied in

constant time due to the persistent runtime and the layout of machine continuations. An alternative

design would be to make the runtime non-persistent in which case copying a continuation frame

((σ , _) :: _) would be a O(|σ |) time operation.
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Primitive operations on naturals. Our model assumes that arithmetic operations on arbitrary

natural numbers take O(1) time. This is common practice in the study of algorithms when the main

interest lies elsewhere [Cormen et al. 2009, Section 2.2]. If desired, one could adopt a more refined

cost model that accounted for the bit-level complexity of arithmetic operations; however, doing so

would have the same impact on both of the situations we are wishing to compare, and thus would

add nothing but noise to the overall analysis.

5 PREDICATES, DECISION TREES AND GENERIC COUNT
We now come to the crux of the paper. In this section and the next, we prove that λh supports

implementations of certain operations with an asymptotic runtime bound that cannot be achieved

in λb (Section 6). While the positive half of this claim essentially consolidates a known piece of

folklore, the negative half appears to be new. To establish our result, it will suffice to exhibit a

single ‘efficient’ program in λh, then show that no equivalent program in λb can achieve the same

asymptotic efficiency. We take generic search as our example.

Generic search is a modular search procedure that takes as input a predicate P on some multi-

dimensional search space, and finds all points of the space satisfying P . Generic search is agnostic

to the specific instantiation of P , and as a result is applicable across a wide spectrum of domains.

Classic examples such as Sudoku solving [Bird 2006], the n-queens problem [Bell and Stevens 2009]

and graph colouring can be cast as instances of generic search, and similar ideas have been explored

in connection with Nash equilibria and exact real integration [Daniels 2016; Simpson 1998].

For simplicity, we will restrict attention to search spaces of the form Bn, the set of bit vectors
of length n. To exhibit our phenomenon in the simplest possible setting, we shall actually focus

on the generic count problem: given a predicate P on some Bn, return the number of points of Bn

satisfying P . However, we shall explain why our results are also applicable to generic search proper.

We shall view Bn as the set of functions Nn → B, where Nn := {0, . . . , n − 1}. In both λb and
λh we may represent such functions by terms of type Nat→ Bool. We will often informally write

Natn in place of Nat to indicate that only the values 0, . . . , n − 1 are relevant, but this convention
has no formal status since our setup does not support dependent types.

To summarise, in both λb and λh we will be working with the types

Point := Nat→ Bool Pointn := Natn → Bool
Predicate := Point→ Bool Predicaten := Pointn → Bool

and will be looking for programs

countn : Predicaten → Nat

such that for suitable terms P representing semantic predicates Π : Bn → B, countn P finds the

number of points of Bn satisfying Π.
Before formalising these ideas more closely, let us look at some examples, which will also illustrate

the machinery of decision trees that we will be using.

5.1 Examples of Points, Predicates and Trees
Consider first the following terms of type Point:

q0 := λ_.true q1 := λi.i = 0 q2 := λi. if i = 0 then true else if i = 1 then false else ⊥

(Here ⊥ is the diverging term (rec f i.f i) ⟨⟩.) Then q0 represents ⟨true, . . . , true⟩ ∈ Bn for any n;
q1 represents ⟨true, false, . . . , false⟩ ∈ Bn for any n ≥ 1; and q2 represents ⟨true, false⟩ ∈ B2.

Next some predicates. First, the following terms all represent the constant true predicate B2 → B:

T0 := λq.true T1 := λq.(q 1; q 0; true) T2 := λq.(q 0; q 0; true)
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!true

(a) T0

?0

?0

!true !false

!false

(b) I2

?0

?1

!false !true

?1

!true !false

(c) Odd2

Fig. 6. Examples of Decision Trees

These illustrate that in the course of evaluating a predicate term P at a point q, for each i < n the

value of q at i may be inspected zero, one or many times.

Likewise, the following all represent the ‘identity’ predicate B1 → B (here && is shortcut ‘and’):

I0 := λq.q 0 I1 := λq. if q 0 then true else false I2 := λq.(q 0)&& (q 0)

Slightly more interestingly, for each n we have the following program which determines whether

a point contains an odd number of true components:

Oddn := λq. fold ⊗ false (map q [0, . . . , n − 1])

Here fold and map are the standard combinators on lists, and ⊗ is exclusive-or. Applying Odd2 to
q0 yields false; applying it to q1 or q2 yields true.

We can think of a predicate term P as participating in a ‘dialogue’ with a given point Q : Pointn.
The predicate may query Q at some coordinate k; Q may respond with true or false and this returned
value may influence the future course of the dialogue. After zero or more such query/response

pairs, the predicate may return a final answer (true or false).
The set of possible dialogues with a given term P may be organised in an obvious way into an

unrooted binary decision tree, in which each internal node is labelled with a query ?k (with k < n),
and with left and right branches corresponding to the responses true, false respectively. Any point

will thus determine a path through the tree, and each leaf is labelled with an answer !true or !false
according to whether the corresponding point or points satisfy the predicate.

Decision trees for a sample of the above predicate terms are depicted in Figure 6; the relevant

formal definitions are given in the next subsection. In the case of I2, one of the !false leaves will be
‘unreachable’ if we are working in λb (but reachable in a language supporting mutable state).

We think of the edges in the tree as corresponding to portions of computation undertaken by P
between queries, or before delivering the final answer. The tree is unrooted (i.e. starts with an edge

rather than a node) because in the evaluation of P Q there is potentially some ‘thinking’ done by P
even before the first query or answer is reached. For the purpose of our runtime analysis, we will

also consider timed variants of these decision trees, in which each edge is labelled with the number

of computation steps involved.

It is possible that for a given P the construction of a decision tree may hit trouble, because at

some stage P either goes undefined or gets stuck at an unhandled operation. It is also possible

that the decision tree is infinite because P can keep asking queries forever. However, we shall be

restricting our attention to terms representing total predicates: those with finite decision trees in

which every path leads to a leaf.

In order to present our complexity results in a simple and clear form, we will give special

prominence to certain well-behaved decision trees. For n ∈ N, we shall say a tree is n-standard if it
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is total (i.e. every maximal path leads to a leaf labelled with an answer) and along any path to a

leaf, each coordinate k < n is queried once and only once. Thus, an n-standard decision tree is a

complete binary tree of depth n + 1, with 2
n − 1 internal nodes and 2

n
leaves. However, there is

no constraint on the order of the queries, which indeed may vary from one path to another. One

pleasing property of this notion is that for a predicate term with an n-standard decision tree, the

number of points in Bn satisfying the predicate is precisely the number of !true leaves in the tree.

Of the examples we have given, the tree for T0 is 0-standard; those for I0 and I1 are 1-standard;
that for Oddn is n-standard; and the rest are not n-standard for any n.

5.2 Formal Definitions
We now formalise the above notions. We will present our definitions in the setting of λh, but
everything can clearly be relativised to λb with no change to the meaning in the case of λb terms.

For the purpose of this subsection we fix n ∈ N, set Nn := {0, . . . , n − 1}, and use k to range over

Nn. We write B for the set of booleans, which we shall identify with the (encoded) boolean values

of λh, and use b to range over B.
As suggested by the foregoing discussion, we will need to work with both syntax and semantics.

For points, the relevant definitions are as follows.

Definition 5.1 (n-points). A closed value Q : Point is said to be a syntactic n-point if:

∀k ∈ Nn. ∃b ∈ B. Q k {∗ return b

A semantic n-point π is simply a mathematical function π : Nn → B. (We shall also write π ∈ Bn.)
Any syntactic n-point Q is said to denote the semantic n-point JQK given by:

∀k ∈ Nn, b ∈ B. JQK(k) = b ⇔ Q k {∗ return b

Any two syntactic n-points Q and Q′ are said to be distinct if JQK , JQ′K.

By default, the unqualified term n-point will from now on refer to syntactic n-points.
Likewise, we wish to work with predicates both syntactically and semantically. By a semantic

n-predicate we shall mean simply a mathematical function Π : Bn → B. One slick way to define

syntactic n-predicates would be as closed terms P : Predicate such that for every n-point Q, P Q
evaluates to either return true or return false. For our purposes, however, we shall favour an
approach to n-predicates via decision trees, which will yield more information on their behaviour.

We will model decision trees as certain partial functions from addresses to labels. An address will

specify the position of a node in the tree via the path that leads to it, while a label will represent

the information present at a node. Formally:

Definition 5.2 (untimed decision tree). (i) The address set Addr is simply the set B∗ of finite lists
of booleans. If bs, bs′ ∈ Addr, we write bs ⊑ bs′ (resp. bs ⊏ bs′) to mean that bs is a prefix (resp.

proper prefix) of bs′.
(ii) The label set Lab consists of queries parameterised by a natural number and answers parame-

terised by a boolean:

Lab := {?k | k ∈ N} ∪ {!b | b ∈ B}

(iii) An (untimed) decision tree is a partial function τ : Addr⇀ Lab such that:

• The domain of τ (written dom(τ )) is prefix closed.
• Answer nodes are always leaves: if τ (bs) = !b then τ (bs′) is undefined whenever bs ⊏ bs′.

As our goal is to reason about the time complexity of generic count programs and their predicates,

it is also helpful to decorate decision trees with timing data that records the number of machine

steps taken for each piece of computation performed by a predicate:
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Definition 5.3 (timed decision tree). A timed decision tree is a partial function τ : Addr⇀ Lab×N
such that its first projection bs 7→ τ (bs).1 is a decision tree. We write labs(τ ) for the first projection
(bs 7→ τ (bs).1) and steps(τ ) for the second projection (bs 7→ τ (bs).2) of a timed decision tree.

Here we think of steps(τ )(bs) as the computation time associated with the edge whose target is
the node addressed by bs.
We now come to the method for associating a specific tree with a given term P . One may

think of this as a kind of denotational semantics, but here we shall extract a tree from a term by

purely operational means using our abstract machine model. The key idea is to try applying P to a

distinguished free variable q : Point, which we think of as an ‘abstract point’. Whenever P wants to

interrogate its argument at some index i, the computation will get stuck at some term q i: this both
flags up the presence of a query node in the decision tree, and allows us to explore the subsequent

behaviour under both possible responses to this query.

The core of our definition is couched in terms of abstract machine configurations. We write

Confq for the set of λh configurations possibly involving q (but no other free variables). We write

a ≃ b for Kleene equality: either both a and b are undefined or both are defined and a = b.
It is convenient to define the timed tree and then extract the untimed one from it:

Definition 5.4. (i) Define T : Confq → Addr ⇀ (Lab × N) to be the minimal family of partial

functions satisfying the following equations:

T(⟨return W | γ | []⟩) [] = (!b, 0), if JW Kγ = b
T(⟨z V | γ | κ⟩) [] = (?JV Kγ , 0), if γ (z) = q

T(⟨z V | γ | κ⟩) (b :: bs) ≃ T (⟨return b | γ | κ⟩) bs, if γ (z) = q
T(⟨M | γ | κ⟩) bs ≃ inc (T (⟨M ′ | γ ′ | κ ′⟩) bs), if ⟨M | γ | κ⟩ −→ ⟨M ′ | γ ′ | κ ′⟩

Here inc(ℓ, s) = (ℓ, s + 1), and in all of the above equations γ (q) = γ ′(q) = q. Clearly T(C) is a
timed decision tree for any C ∈ Confq.

(ii) The timed decision tree of a computation term is obtained by placing it in the initial configu-

ration: T(M) := T(⟨M, ∅[q 7→ q],κ0⟩).
(iii) The timed decision tree of a closed value P : Predicate is T(P q). Since q plays the role of a

dummy argument, we will usually omit it and write T(P) for T(P q).
(iv) The untimed decision treeU(P) is obtained fromT(P) via first projection:U(P) = labs(T (P)).

If the execution of a configuration C runs forever or gets stuck at an unhandled operation, then

T(C)(bs) will be undefined for all bs. Although this is admitted by our definition of decision tree,

we wish to exclude such behaviours for the terms we accept as valid predicates. Specifically, we

frame the following definition:

Definition 5.5. A decision tree τ is an n-predicate tree if it satisfies the following:
• For every query ?k appearing in τ , we have k ∈ Nn.

• Every query node has both children present:

∀bs ∈ Addr, k ∈ Nn, b ∈ B. τ (bs) = ?k ⇒ bs ++ [b] ∈ dom(τ )

• All paths in τ are finite (so every maximal path terminates in an answer node).

A closed term P : Predicate is a (syntactic) n-predicate ifU(P) is an n-predicate tree.

If τ is an n-predicate tree, clearly any semantic n-point π gives rise to a path b0b1 . . . through τ ,
given inductively by:

∀j. if τ (b0 . . . bj−1) = ?kj then bj = π (kj)

This path will terminate at some answer node b0b1 . . . br−1 of τ , and we may write τ • π ∈ B for

the answer at this leaf.
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Proposition 5.6. If P is an n-predicate and Q is an n-point, then P Q {∗ return b where
b = U(P) • JQK.

Proof. By interleaving the computation for the relevant path throughU(P) with computations

for queries to Q, and appealing to the correspondence between the small-step reduction and abstract

machine semantics. We omit the routine details. □

It is thus natural to define the denotation of an n-predicate P to be the semantic n-predicate JPK
given by JPK(π ) = U(P) • π .
As mentioned earlier, we shall also be interested in a more constrained class of trees and

predicates:

Definition 5.7 (n-standard trees and predicates). An n-predicate tree τ is said to be n-standard if

the following hold:

• The domain of τ is precisely Addrn, the set of bit vectors of length ≤ n.
• There are no repeated queries along any path in τ :

∀bs, bs′ ∈ dom(τ ), k ∈ Nn. bs ⊑ bs′ ∧ τ (bs) = τ (bs′) = ?k ⇒ bs = bs′

A timed decision tree τ is n-standard if its underlying untimed decision tree (bs 7→ τ (bs).1) is so.
An n-predicate P is n-standard if T(P) is n-standard.

Clearly, in an n-standard tree, each of the n queries ?0, . . . , ?(n − 1) appears exactly once on the

path to any leaf, and there are 2
n
leaves, all of them answer nodes.

5.3 Specification of Counting Programs
We can now specify what it means for a program K : Predicate→ Nat to implement counting.

Definition 5.8. (i) The count of a semantic n-predicate Π, written ♯Π, is simply the number of

semantic n-points π ∈ Bn for which Π(π ) = true.
(ii) If P is any n-predicate, we say that K correctly counts P if K P {∗ return m, where m = ♯JPK.

This definition gives us the flexibility to talk about counting programs that operate on various

classes of predicates, allowing us to state our results in their strongest natural form. On the positive

side, we shall shortly see that there is a single ‘efficient’ program in λh that correctly counts all

n-standard λh predicates for every n; in Section 7.1 we improve this to one that correctly counts

all n-predicates of λh. On the negative side, we shall show that an n-indexed family of counting

programs written in λb, even if only required to work correctly on n-standard λb predicates, can
never compete with our λh program for asymptotic efficiency even in the most favourable cases.

5.4 Efficient Generic Count with Effects
We now present the simplest version of our effectful implementation of counting: one that works

on n-standard predicates.

Our program uses a variation of the handler for nondeterministic computation that we gave

in Section 2. The main idea is to implement points as ‘nondeterministic computations’ using

the Branch operation such that the handler may respond to every query twice, by invoking the

provided resumption with true and subsequently false. The key insight is that the resumption

restarts computation at the invocation site of Branch, which means that prior computation need

not be repeated. In other words, the resumption ensures that common portions of computations

prior to any query are shared between both branches.
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We assert that Branch : Unit→ Bool ∈ Σ is a distinguished operation that may not be handled

in the definition of any input predicate (it has to be forwarded according to the default convention).

The algorithm is then as follows.

effcount : ((Nat→ Bool) → Bool) → Nat
effcount pred := handle pred (λ_.do Branch ⟨⟩) with

val x 7→ if x then return 1 else return 0

Branch ⟨⟩ r 7→ let xtrue ← r true in
let xfalse ← r false in xtrue + xfalse

The handler applies predicate pred to a single ‘generic point’ defined using Branch. The boolean
return value is interpreted as a single solution, whilst Branch is interpreted by alternately supplying

true and false to the resumption and summing the results. The sharing enabled by the use of the

resumption is exactly the ‘magic’ we need to make it possible to implement generic count more

efficiently in λh than in λb. A curious feature of effcount is that it works for all n-standard predicates
without having to know the value of n. This is because the generic point (λ_.do Branch ⟨⟩)
informally serves as a ‘superposition’ of all possible points.

We may now articulate the crucial correctness and efficiency properties of effcount.

Theorem 5.9. The following hold for any n ∈ N and any n-standard predicate P of λh:
(1) effcount correctly counts P.
(2) The number of machine steps required to evaluate effcount P is

©«
∑

bs∈Addrn

steps(T (P))(bs)ª®¬ + O(2n)
Proof Outline. Suppose bs ∈ Addrn, with |bs | = j. From the construction of T(P), one may

easily read off a configuration Cbs whose execution is expected to compute the count for the subtree

below node bs, and we can explicitly describe the form Cbs will have. We write Hyp(bs) for the
claim that Cbs correctly counts this subtree, and does so within the following number of steps:

©«
∑

bs′∈Addrn, bs′⊐bs

steps(T (P))(bs′)ª®¬ + 9 ∗ (2n−j − 1) + 2 ∗ 2n−j

The 9 ∗ (2n−j − 1) expression is the number of machine steps contributed by the Branch-case inside
the handler, whilst the 2 ∗ 2n−j expression is the number of machine steps contributed by the

val-case. We prove Hyp(bs) by a laborious but routine downwards induction on the length of bs.
The proof combines counting of explicit machine steps with ‘oracular’ appeals to the assumed

behaviour of P as modelled by T(P). Once Hyp([]) is established, both halves of the theorem follow

easily. Full details are given in Appendix C. □

The above formula can clearly be simplified for certain reasonable classes of predicates. For

instance, suppose we fix some constant c ∈ N, and let Pn,c be the class of all n-standard predicates P
for which all the edge times steps(T (P))(bs) are bounded by c. (Clearly, many reasonable predicates

will belong to Pn,c for some modest value of c.) Since the number of sequences bs in question is

less than 2
n+1

, we may read off from the above formula that for predicates in Pn,c , the runtime of

effcount is O(c2n).
Alternatively, should we wish to use the finer-grained cost model that assigns an O(log |γ |)

runtime to each abstract machine step (see Section 4.3), we may note that any environment γ
arising in the computation contains at most n entries introduced by the let-bindings in effcount, and
(if P ∈ Pn,c) at most O(cn) entries introduced by P . Thus, the time for each step in the computation

remains O(log c + log n), and the total runtime for effcount is O(c2n(log c + log n)).
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One might also ask about the execution time for an implementation of λh that performs gen-

uine copying of continuations, as in systems such as MLton [2020]. As MLton copies the entire

continuation (stack), whose size is O(n), at each of the 2
n
branches, continuation copying alone

takes time O(n2n) and the effectful implementation offers no performance benefit (Table 2). More

refined implementations [Farvardin and Reppy 2020; Flatt and Dybvig 2020] that are able to take

advantage of delimited control operators or sharing in copies of the stack can bring the complexity

of continuation copying back down to O(2n).

Finally, one might consider another dimension of cost, namely the space used by effcount.
Consider a class Qn,c,d of n-standard predicates P for which the edge times in T(P) never exceed c
and the sizes of pure continuations never exceed d. If we consider any P ∈ Qn,c,d then the total

number of environment entries is bounded by cn, taking up space O(cn(log cn)). We must also

account for the pure continuations. There are n of these, each taking at most d space. Thus the

total space is O(n(d + c(log c + log n))).

6 PURE GENERIC COUNT: A LOWER BOUND
We have shown that there is an implementation of generic count in λh with a runtime bound of

O(2n) for certain well-behaved predicates. We now prove that no implementation in λb can match

this: in fact, we establish a lower bound of Ω(n2n) for the runtime of any counting program on any
n-standard predicate. This mathematically rigorous characterisation of the efficiency gap between

languages with and without first-class control constructs is the central contribution of the paper.

One might ask at this point whether the claimed lower bound could not be obviated by means of

some known continuation passing style (CPS) or monadic transform of effect handlers [Hillerström

et al. 2017; Leijen 2017]. This can indeed be done, but only by dint of changing the type of our

predicates P — which, as noted in the introduction, would defeat the purpose of our enquiry.

Our intention is precisely to investigate the relative power of various languages for manipulating

predicates that are given to us in a certain way which we do not have the luxury of choosing.

To get a feel for the issues that our proof must address, let us consider how one might construct

a counting program in λb. The naïve approach, of course, would be simply to apply the given

predicate P to all 2
n
possible n-points in turn, keeping a count of those on which P yields true. It is

a routine exercise to implement this approach in λb, yielding (parametrically in n) a program

naivecountn : ((Natn → Bool) → Bool) → Nat

Since the evaluation of an n-standard predicate on an individual n-point must clearly take time

Ω(n), we have that the evaluation of naivecountn on any n-standard predicate P must take time

Ω(n2n). If P is not n-standard, the Ω(n) lower bound need not apply, but we may still say that the

evaluation of naivecountn on any predicate P (at level n) must take time Ω(2n).
One might at first suppose that these properties are inevitable for any implementation of generic

count within λb, or indeed any purely functional language: surely, the only way to learn something

about the behaviour of P on every possible n-point is to apply P to each of these points in turn? It

turns out, however, that the Ω(2n) lower bound can sometimes be circumvented by implementations

that cleverly exploit nesting of calls to P . The germ of the idea may be illustrated within λb itself.
Suppose that we first construct some program

bestshotn : ((Natn → Bool) → Bool) → (Natn → Bool)

which, given a predicate P , returns some n-point Q such that P Q evaluates to true, if such a point

exists, and any point at all if no such point exists. (In other words, bestshotn embodies Hilbert’s

choice operator ε on predicates.) It is once again routine to construct such a program by naïve

means; and we may moreover assume that for any P , the evaluation of bestshotn P takes only

constant time, all the real work being deferred until the argument of type Natn is supplied.
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Now consider the following program:

lazycountn := λpred. if pred (bestshotn pred) then naivecountn pred else return 0

Here the term pred (bestshotn pred) serves to test whether there exists an n-point satisfying pred:
if there is not, our count program may return 0 straightaway. It is thus clear that lazycountn is
a correct implementation of generic count, and also that if pred is the predicate λq.false then

lazycountn pred returns 0 within O(1) time, thus violating the Ω(2n) lower bound suggested above.

This might seem like a footling point, as lazycountn offers this efficiency gain only on (certain

implementations of) the constantly false predicate. However, it turns out that by a recursive

application of this nesting trick, we may arrive at a generic count program that spectacularly

defies the Ω(2n) lower bound for an interesting class of (non-n-standard) predicates, and indeed

proves quite viable for counting solutions to ‘n-queens’ and similar problems. We shall refer to this

program as BergerCount, as it is modelled largely on Berger’s PCF implementation of the so-called

fan functional [Berger 1990; Longley and Normann 2015]. This program is of interest in its own

right and is briefly presented in Appendix D. It actually requires a mild extension of λb with a

‘memoisation’ primitive to achieve the effect of call-by-need evaluation; but such a language can

still be seen as purely ‘functional’ in the same sense as Haskell.

In the meantime, however, the moral is that the use of nesting can lead to surprising phenomena

which sometimes defy intuition (Escardó [2007] gives some striking further examples). What we

now wish to show is that for n-standard predicates, the naïve lower bound of Ω(n2n) cannot in fact

be circumvented. The example of BergerCount both highlights the need for a rigorous proof of

this and tells us that such a proof will need to pay particular attention to the possibility of nesting.

We now proceed to the proof itself. We here present the argument in the basic setting of λb; later
we will see how a more delicate argument applies to languages with mutable state (Section 7.3).

As a first step, we note that where lower bounds are concerned, it will suffice to work with the

small-step operational semantics of λb rather than the more elaborate abstract machine model

employed in Section 4.1. This is because, as observed in Section 4.1, there is a tight correspondence

between these two execution models such that for the evaluation of any closed term, the number

of abstract machine steps is always at least the number of small-step reductions. Thus, if we are

able to show that the number of small-step reductions for any generic program program in λb on
any n-standard predicate is Ω(n2n), this will establish the desired lower bound on the runtime.

Let us suppose, then, that K is a program of λb that correctly counts all n-standard predicates of

λb for some specific n. We now establish a key lemma, which vindicates the naïve intuition that if

P is n-standard, the only way for K to discover the correct value for ♯JPK is to perform 2
n
separate

applications P Q (allowing for the possibility that these applications need not be performed ‘in

turn’ but might be nested in some complex way).

Lemma 6.1 (No shortcuts). Suppose K correctly counts all n-standard predicates of λb. If P is an
n-standard predicate, then K applies P to at least 2n distinct n-points. More formally, for any of the 2n

possible semantic n-points π : Nn → B, there is a term E[P Q] appearing in the small-step reduction
of K P such that Q is an n-point and JQK = π .

Proof. Suppose for a contradiction that π is some semantic n-point such that no application P Q
with JQK = π ever arises in the course of computing K P . Let τ be the untimed decision tree for P .
Let l be the maximal path through τ associated with π : that is, the one we construct by responding

to each query ?k with π (k). Then l is a leaf node such that τ (l) = !(τ • π ). We now let τ ′ be the tree
obtained from τ by simply negating this answer value at l.

It is a simple matter to construct a λb n-standard predicate P ′ whose decision tree is τ ′. This may

be done just by mirroring the structure of τ ′ by nested if statements; we omit the easy details.
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Since the numbers of true-leaves in τ and τ ′ differ by 1, it is clear that if K indeed correctly

counts all n-standard predicates, then the values returned by K P and K P ′ will have an absolute

difference of 1. On the other hand, we shall argue that if the computation of K P never actually

‘visits’ the leaf l in question, then K will be unable to detect any difference between P and P ′.
The situation is reminiscent of Milner’s context lemma [Milner 1977], which (loosely) says that

essentially the only way to observe a difference between two programs is to apply them to some

argument on which they differ. Traditional proofs of the context lemma reason by induction on

length of reduction sequences, and our present proof is closely modelled on these.

We shall make frequent use of term contexts M[−] with a hole of type Predicate (which may

appear zero, one or more times in M) in order to highlight particular occurrences of P within a

term. The following definition enables us to talk about computations that avoid the critical point π :

Definition 6.2 (Safe terms). If M[−] is such a context of ground type, let us say M[−] is safe if

• M[P] is closed, and M[P] {∗ return W for some closed ground type value W ;

• For any term E[P Q] appearing in the reduction of M[P], where the applicand P in P Q is a

residual of one of the abstracted occurrences in M[P], we have that JQK , π .

We may express this as ‘M[P] is safe’ when it is clear which occurrences of P we intend to abstract.

For example, our current hypotheses imply that K P is safe (formally, K ′[−] := K − is safe).

We may now prove the following:

Lemma 6.3. (i) Suppose Q[−] : Point and k : Nat are values such that Q[P] k is safe, and suppose
Q[P] k {m return b where m ∈ N. Then also Q[P ′] k {∗ return b.

(ii) Suppose P Q[P] is safe and P Q[P] {m return b. Then also P ′ Q[P ′] {∗ return b.

We prove these claims by simultaneous induction on the computation length m. Both claims are

vacuous when m = 0 as neither Q[P] k nor P Q[P] is a return term. We therefore assume m > 0

where both claims hold for all m′ < m.

(i) Let p : Predicate be a distinguished free variable, and consider the behaviour of Q[p] k.
If this reduces to a value returnW , then also Q[P] k {∗ returnW , whence W = b and also

Q[P ′] k { return b as required. Otherwise, the reduction of Q[p] k will get stuck at some term

M0 = E0[p Q0[p], p]. Here the first hole in E0[−,−] is in the evaluation position, and the second

hole abstracts all remaining occurrences of p within M0. We may also assume that Q0[−] abstracts

all occurrences of p in Q0[p].
Correspondingly, the reduction of Q[P] k will reach E0[P Q0[P], P] and then proceed with the

embedded reduction of P Q0[P]. Note that P Q0[P] will be safe because Q[P] k is. So let us suppose

that P Q0[P] {∗ return b0, whence Q[P] k {∗ E0[return b0, P].
We may now investigate the subsequent reduction behaviour of Q[P] k by considering the

reduction of E0[return b0, p]. Once again, this may reduce to a value return W , in which case

W = b and our computation is complete. Otherwise, the reduction of E0[return b0, p] will get
stuck at some M1 = E1[p Q1[p], p], and we may again proceed as above.

By continuing in this way, we may analyse the reduction of Q[P] k as follows.

Q[P] k {∗ E0[P Q0[P], P] {∗ E0[return b0, P] {∗ E1[P Q1[P], P] {∗ E1[return b1, P]
{∗ . . . {∗ Er−1[P Qr−1[P], P] {∗ Er−1[return br−1, P] { return b

Here the terms P Qj[P] will be safe, and the reductions P Qj[P] {∗ return bj each have

length < m. We may therefore apply part (ii) of the induction hypothesis and conclude that also

P ′ Qj[P ′] {∗ return bj . Furthermore, the remaining segments of the above computation are all

obtained as instantiations of ‘generic’ reduction sequences involving p, so these segments will
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remain valid if p is instantiated to P ′. Reassembling everything, we have a valid reduction sequence:

Q[P ′] k {∗ E0[P ′ Q0[P ′], P ′] {∗ E0[return b0, P ′] {∗ E1[P ′ Q1[P ′], P ′] {∗ E1[return b1, P ′]
{∗ . . . {∗ Er−1[P ′ Qr−1[P ′], P ′] {∗ Er−1[return br−1, P ′] { return b

This establishes the induction step for part (i).

(ii) We may apply a similar analysis to the computation of P Q[P] to detect the places where

Q[P] is applied to an argument. We do this by considering the reduction behaviour of P q, where
q : Point is the distinguished variable that featured in Definition 5.4. In this way we may analyse

the computation of P Q[P] as:

P Q[P] {∗ E0[Q[P] k0,Q[P]] {∗ E0[return b0,Q[P]] {∗ E1[Q[P] k1,Q[P]] {∗ . . .
{∗ Er−1[Q[P] kr−1,Q[P]] {∗ Er−1[return br−1,Q[P]] { return b

where for each j, the first hole in Ej[−,−] is in evaluation position, the term Q[P] kj is safe, the
reduction Q[P] kj {∗ return bj has length < m, and the remaining portions of computation are

instantiations of generic reductions involving q. By part (i) of the induction hypothesis we may

conclude that also Q[P ′] kj {∗ return bj for each j, and for the remaining segments of computation

we may instantiate q to Q[P ′]. We thus obtain a computation exhibiting that P Q[P ′] {∗ return b.
It remains to show that the applicand P may be replaced by P ′ here without affecting the result.

The idea here is that the booleans b0, . . . , br−1 trace out a path through the decision tree for P ; but
since P Q[P] is safe, we have that JQ[P]K , π , and so this path does not lead to the critical leaf l.
We now have everything we need to establish that P ′ Q[P ′] {∗ return b as required.

More formally, in view of the correspondence between small-step reduction and abstract machine

semantics, wemay readily correlate the above computation of P Q[P]with an exploration of the path
bs = b0 . . . br−1 in τ = U(P), leading to a leaf with label !b. Since P is n-standard, this correlation
shows that r = n, that for each j we have τ (b0 . . . bj−1) = ?kj , and that {k0, . . . , kr−1} = {0, . . . , n−1}.
Furthermore, we have already ascertained that the values ofQ[P] andQ[P ′] at kj are both bj , whence
JQ[P]K = JQ[P ′]K = π ′where π ′(kj) = bj for all j. But P Q[P] is safe, so in particular π ′ = JQ[P]K , π .
We therefore also have τ ′(b0 . . . bj−1) = ?kj for each j ≤ r and τ ′(b0 . . . br−1) = b. Since τ ′ = U(P ′)
and JQ[P ′]K = π ′, we may conclude by Proposition 5.6 that P ′ Q[P ′] {∗ return b. This completes

the proof of Lemma 6.3.

To finish off the proof of Lemma 6.1, we apply the same analysis one last time to the reduction

of K P itself. This will have the form

K P {∗ E0[P Q0[P], P] {∗ E0[return b0, P] {∗ . . .
{∗ Er−1[P Qr−1[P], P] {∗ Er−1[return br−1, P] {∗ return c

where, by hypothesis, each P Qj[P] is safe. Using Lemma 6.3 we may replace each subcomputation

P Qj[P] {∗ return bj with P ′ Qj[P ′] {∗ return bj , and so construct a computation exhibiting

that K P ′ {∗ return c.
This gives our contradiction, as the values of K P and K P ′ are supposed to differ by 1. □

Corollary 6.4. Suppose K and P are as in Lemma 6.1. For any semantic n-point π and any natural
number k < n, the reduction sequence for K P contains a term F [Q k], where F is an evaluation
context and JQK = π .

Proof. Suppose π ∈ Bn. By Lemma 6.1, the computation of K P contains some E[P Q] where
JQK = π , and the above analysis of the computation of P Q shows that it contains a term E ′[Q k]
for each k < n. The corollary follows, taking F [−] := E[E ′[−]]. □

This gives our desired lower bound. Since our n-points Q are values, it is clearly impossible that

F [Q k] = F ′[Q′ k′] (where F ,F ′ are evaluation contexts) unless Q = Q′ and k = k′. We may
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therefore read off π from F [Q k] as JQK. There are thus at least n2n distinct terms in the reduction

sequence for K P , so the reduction has length ≥ n2n. We have thus proved:

Theorem 6.5. If K is a λb program that correctly counts all n-standard λb predicates, and P is any
n-standard λb predicate, then the evaluation of K P must take time Ω(n2n). □

Although we shall not go into details, it is not too hard to apply our proof strategy with minor

adjustments to certain richer languages: for instance, an extension of λb with exceptions, or one

containing the memoisation primitive required for BergerCount (Appendix D). A deeper adaptation

is required for languages with state: we will return to this in Section 7.

It is worth noting where the above argument breaks down if applied to λh. In λb, in the course of

computing K P , every Q to which P is applied will be a self-contained closed term denoting some

specific point π . This is intuitively why we may only learn about one point at a time. In λh, this
is not the case, because of the presence of operation symbols. For instance, our effcount program
from Section 5.4 will apply P to the ‘generic point’ λ_.do Branch ⟨⟩. Thus, for example, in our

treatment of Lemma 6.3(i), it need no longer be the case that the reduction of Q[p] k either yields a

value or gets stuck at some E0[p Q0[p], p]: a third possibility is that it gets stuck at some invocation

of ℓ, so that control will then pass to the effect handler.

7 EXTENSIONS AND VARIATIONS
Our complexity result is robust in that it continues to hold in more general settings. We outline

here how it generalises: beyond n-standard predicates, from generic count to generic search, and

from pure λb to stateful λs.

7.1 Beyond n-Standard Predicates
The n-standard restriction on predicates serves to make the efficiency phenomenon stand out as

clearly as possible. However, we can relax the restriction by tweaking effcount to handle repeated

queries and missing queries. The trade off is that the analysis of effcount becomes more involved.

The key to relaxing the n-standard restriction is the use of state to keep track of which queries

have been computed. We can give stateful implementations of effcount without changing its type
signature by using parameter-passing [Kammar et al. 2013; Pretnar 2015] to internalise state within

a handler. Parameter-passing abstracts every handler clause such that the current state is supplied

before the evaluation of a clause continues and the state is threaded through resumptions: a

resumption becomes a two-argument curried function r : B→ S → D, where the first argument of

type B is the return type of the operation and the second argument is the updated state of type S.

Repeated queries. We can generalise effcount to handle repeated queries by memoising previous

answers. First, we generalise the type of Branch such that it carries an index of a query.

Branch : Nat→ Bool

We assume a family of natural number to boolean maps, Mapn with the following interface.

emptyn : Mapn
addn : (Natn × Bool) → Mapn → Mapn

lookupn : Natn → Mapn → (Unit + Bool)

Invoking lookup i map returns inl ⟨⟩ if i is not present in map, and inr ans if i is associated
by map with the value ans : Bool. Allowing ourselves a few extra constant-time arithmetic

operations, we can realise suitable maps in λb such that the time complexity of addn and lookupn is
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O(log n) [Okasaki 1999]. We can then use parameter-passing to support repeated queries as follows.

effcount′n : ((Natn → Bool) → Bool) → Nat
effcount′n pred := let h← handle pred (λi.do Branch i) with

val x 7→ λs.if x then 1 else 0

Branch i r 7→ λs.case lookupn i s {
inl ⟨⟩ 7→ let xtrue ← r true (addn ⟨i, true⟩ s) in

let xfalse ← r false (addn ⟨i, false⟩ s) in
(xtrue + xfalse);

inr x 7→ r x s }
in h emptyn

The state parameter smemoises query results, thus avoiding double-counting and enabling effcount′n
to work correctly for predicates performing the same query multiple times.

Missing queries. Similarly, we can use parameter-passing to support missing queries.

effcount′′n : ((Natn → Bool) → Bool) → Nat
effcount′′n pred := let h← handle pred (λi.do Branch ⟨⟩) with

val x 7→ λd.let result ← if x then 1 else 0 in result × 2n−d

Branch ⟨⟩ r 7→ λd.let xtrue ← r true (d + 1) in
let xfalse ← r false (d + 1) in
(xtrue + xfalse)

in h 0

The parameter d tracks the depth and the returned result is scaled by 2
n−d

accounting for the

unexplored part of the current subtree. This enables effcount′′n to operate correctly on predicates

that inspect n points at most once. We leave it as an exercise for the reader to combine effcount′n
and effcount′′n in order to handle both repeated queries and missing queries.

7.2 From Generic Count to Generic Search
We can generalise the problem of generic counting to generic searching. The main operational

difference is that a generic search procedure must materialise a list of solutions, thus its type is

searchn : ((Natn → Bool) → Bool) → ListNatn→Bool

where ListA is the type of cons-lists whose elements have type A. We modify effcount to return a

list of solutions rather than the number of solutions by lifting each result into a singleton list and

using list concatenation instead of addition to combine partial results xstrue and xsfalse as follows.

effsearchn : ((Natn → Bool) → Bool) → ListNatn→Bool
effsearchn pred := let f ← handle pred (λi.do Branch i) with

val x 7→ λq.if x then singleton q else nil
Branch i r 7→ λq.let xstrue ← r true (λj.if i = j then true else q j) in

let xsfalse ← r false (λj.if i = j then false else q j) in
concat ⟨xstrue, xsfalse⟩

in toConsList (f (λj.⊥))

The Branch operation is now parameterised by an index i. The handler is now parameterised by the

current path as a point q, which is output at a leaf iff it is in the predicate. A little care is required

to ensure that effsearchn has runtime O(2n); naïve use of cons-list concatenation would result in

O(n2n) runtime, as cons-list concatenation is linear in its first operand. In place of cons-lists we use

Hughes lists [Hughes 1986], which admit constant time concatenation: HListA := ListA → ListA.
The empty Hughes list nil : HListA is defined as the identity function: nil := λxs.xs.

singletonA : A→ HListA concatA : HListA × HListA → HListA toConsListA : HList→ ListA
singletonA x := λxs.x :: xs concatA f g := λxs.g (f xs) toConsListA f := f []
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We use the function toConsList to convert the final Hughes list to a standard cons-list at the end;

this conversion has linear time complexity (it just conses all of the elements of the list together).

7.3 From Pure λb to Stateful λs
Mutable state is a staple ingredient of many practical programming languages. We now outline

how our main lower bound result can be extended to a language with state. We will not give full

details, but merely point out the respects in which our earlier treatment needs to be modified.

We have in mind an extension λs of λb with ML-style reference cells: we extend our grammar

for types with a reference type (Ref A), and that for computation terms with forms for creating

references (letref x = V in N ), dereferencing (!x), and destructive update (x := V ), with the

familiar typing rules. We also add a new kind of value, namely locations lA, of type Ref A. We adopt

a basic Scott-Strachey [1971] model of store: a location is a natural number decorated with a type,

and the execution of a stateful program allocates locations in the order 0, 1, 2, . . ., assigning types to
them as it does so. A store s is a type-respecting mapping from some set of locations {0, . . . , l−1} to
values. For the purposes of small-step operational semantics, a configuration will be a triple (M, l, s),
where M is a computation, l is a ‘location counter’, and s is a store with domain {0, . . . , l − 1}. A
reduction relation{ on configurations is defined in a familiar way (again we omit the details).

Certain aspects of our setup require care in the presence of state. For instance, there is in general

no unique way to assign an (untimed) decision tree to a closed value P : Predicaten, since the
behaviour of P on a value q : Pointn may depend both on the initial state when P is invoked, and

on the ways in which the associated computations q V {∗ return W modify the state. In this

situation, there is not even a clear specification for what an n-count program ought to do.

The simplest way to circumvent this difficulty is to restrict attention to predicates P within the
sublanguage λb. For such predicates, the notions of decision tree, counting and n-standardness are
unproblematic. Our result will establish a runtime lower bound of Ω(n2n) for programs K ∈ λs
that correctly count predicates P of this kind. On the other hand, since K itself may be stateful, we

cannot exclude the possibility that K P will apply P to a term Q that is itself stateful. Such a Q will

no longer unambiguously denote a semantic point π , hence the proof of Section 6 must be adapted.

To adapt our proof to the setting of λs, some more machinery is needed. If K is an n-count
program and P an n-standard predicate, we expect that the evaluation of K P will feature terms

E[P Q] which are then reduced to some E[return b], via a reduction sequence which, modulo

E[−], has the following form:

P Q {∗ E0[Q k0] {∗ E0[return b0] {∗ · · · {∗ En−1[Q kn−1] {∗ En−1[return bn−1] {∗ return b

(For notational clarity, we suppress mention of the location and store components here.) Informally

we think of this as a dialogue in which control passes back and forth between P and Q. We shall

refer to the portions Ej[Q kj] {∗ Ej[return bj] of the above reduction as Q-sections, and to the

remaining portions (including the first and the last) as P-sections. We refer to the totality of these

P-sections and Q-sections as the thread arising from the given occurrence of the application P Q.
An important point to note is that since Q may contain other occurrences of P , it is quite possible
for the Q-sections above to contain further threads corresponding to other applications P Q′.
Since P is n-standard, we know that each thread will consist of n + 1 P-sections separated by n

Q-sections. Indeed, it is clear that this computation traces the path b0 . . . bn−1 through the decision

tree for P , with k0, . . . , kn−1 the corresponding internal node labels. We may now, ‘with hindsight’,

construe this as a semantic point π : Nn → B (where π (kj) = bj for each j), and call it the semantic

point associated with (the thread arising from) the application occurrence P p.
The following lemma now serves as a surrogate for Lemma 6.1:



Effects for Efficiency 25

Table 1. SML/NJ: Runtime Relative to Effectful Implementation

Queens Integration
First solution All solutions Id Squaring Logistic

Parameter 20 24 28 8 10 12 20 14 17 20 1 2 3 4 5

Naïve − − − 217.74 − − 12.89 45.04 57.80 69.86 − − − − −

Berger 11.24 15.70 − 2.06 2.86 3.64 5.18 20.62 22.37 23.46 22.51 28.97 30.14 29.30 27.94

Pruned 2.13 2.54 2.91 1.04 1.24 1.39 2.07 3.78 4.05 4.24 4.10 5.44 6.42 7.26 7.94

Bespoke 0.12 0.12 0.12 0.13 0.13 0.12

Table 2. MLton: Runtime Relative to Effectful Implementation

Queens Integration
First solution All solutions Id Squaring Logistic

Parameter 20 24 28 8 10 12 20 14 17 20 1 2 3 4 5

Naïve − − − 17.31 − − 1.45 4.51 5.13 5.82 − − − − −

Berger 0.52 0.66 − 0.19 0.22 0.20 0.43 2.02 1.95 1.92 2.17 3.59 4.24 4.34 4.28

Pruned 0.11 0.11 0.13 0.10 0.10 0.08 0.14 0.39 0.35 0.35 0.39 0.63 0.86 1.03 1.21

Bespoke 0.005 0.004 0.004 0.01 0.009 0.006

Lemma 7.1. Let P be an n-standard predicate. For any semantic point π ∈ Bn, the evaluation of
K P involves an application occurrence P Q with which π is associated.

The proof of this lemma is not too different from that of Lemma 6.1: if π were a point with no

associated thread, there would be an unvisited leaf in the decision tree, and we could manufacture

an n-standard predicate P ′ whose tree differed from that of P only at this leaf. We can then show,

by induction on length of reductions, that any portion of the evaluation of K P can be suitably

mimicked with P replaced by P ′. Naturally, this idea now needs to be formulated at the level of

configurations rather than plain terms: in the course of reducing (K P, 0, []), we may encounter

configurations (M, l, s) in which residual occurrences of P have found their way into s as well as M ,

so in order to replace P by P ′ we must abstract on all these occurrences via an evident notion of

configuration context. With this adjustment, however, the argument of Lemma 6.1 goes through.

A further argument is then needed to show that any two threads are indeed ‘disjoint’ as regards

their P-sections, so that there must be at least n2n steps in the overall reduction sequence.

8 EXPERIMENTS
The theoretical efficiency gap between realisations of λb and λh manifests in practice. We observe

it empirically on instantiations of n-queens and exact real number integration, which can be cast as

generic search. Table 1 shows the speedup of using an effectful implementation of generic search

over various pure implementations. We discuss the benchmarks and results in further detail below.

Methodology. We evaluated an effectful implementation of generic search against three “pure”

implementations which are realisable in λb extended with mutable state:

• Naïve: a simple, and rather naïve, functional implementation;

• Pruned: a generic search procedure with space pruning based on Longley’s technique [Longley

1999] (uses local state);

• Berger: a lazy pure functional generic search procedure based on Berger’s algorithm.

Each benchmark was run 11 times. The reported figure is the median runtime ratio between the

particular implementation and the baseline effectful implementation. Benchmarks that failed to

terminate within a threshold (1 minute for single solution, 8 minutes for enumerations), are reported

as −. The experiments were conducted in SML/NJ [2020] v110.97 64-bit with factory settings on an

Intel Xeon CPU E5-1620 v2 @ 3.70GHz powered workstation running Ubuntu 16.04. The effectful
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Table 3. MLton: Runtime Relative to SML/NJ
Queens Integration

First solution All solutions Id Squaring Logistic
Parameter 20 24 28 8 10 12 20 14 17 20 1 2 3 4 5

Naïve − − − 0.49 − − 0.55 0.35 0.35 0.35 − − − − −

Berger 0.62 0.64 − 0.73 0.65 0.68 0.41 0.35 0.34 0.34 0.37 0.37 0.37 0.37 0.37

Pruned 0.70 0.68 0.71 0.74 0.70 0.71 0.34 0.36 0.35 0.35 0.36 0.35 0.35 0.35 0.36

Effectful 12.87 13.99 14.90 8.00 8.60 12.19 4.93 3.53 3.95 4.20 3.80 3.00 2.62 2.46 2.37

Bespoke 0.56 0.56 0.56 0.69 0.63 0.59

implementation uses an encoding of delimited control akin to effect handlers based on top of

SML/NJ’s call/cc. The complete source code for the benchmarks is available at:

https://github.com/dhil/effects-for-efficiency-code

Queens. We phrase the n-queens problem as a generic search problem. As a control we include a

bespoke implementation hand-optimised for the problem. We perform two experiments: finding

the first solution for n ∈ {20, 24, 28} and enumerating all solutions for n ∈ {8, 10, 12}. The speedup
over the naïve implementation is dramatic, but less so over the Berger procedure. The pruned

procedure is more competitive, but still slower than the baseline. Unsurprisingly, the baseline is

slower than the bespoke implementation.

Exact Real Integration. The integration benchmarks are adapted from Simpson [1998]. We inte-

grate three different functions with varying precision in the interval [0, 1]. For the identity function
(Id) at precision 20 the speedup relative to Berger is 5.18×. For the squaring function the speedups

are larger at higher precisions: at precision 14 the speedup is 3.78× over the pruned integrator,

whilst it is 4.24× at precision 20. The speedups are more extreme against the naïve and Berger

integrators. We also integrate the logistic map x 7→ 1 − 2x2 at a fixed precision of 15. We make

the function harder to compute by iterating it up to 5 times. Between the pruned and effectful

integrator the speedup ratio increases as the function becomes harder to compute.

MLton. SML/NJ is compiled into CPS, thus providing a particularly efficient implementation

of call/cc. MLton [2020], a whole program compiler for SML, implements call/cc by copying the

stack. We repeated our experiments using MLton 20180207. Table 2 shows the results. The effectful

implementation performs much worse under MLton than SML/NJ, being surpassed in nearly every

case by the pruned search procedure and in some cases by the Berger search procedure. Table 3

summarises the runtime of MLton relative to SML/NJ. Berger, Pruned, and Bespoke run between 1

and 3 times as fast with MLton compared to SML/NJ. However, the effectful implementation runs

between 2 and 14 times as fast with SML/NJ compared with MLton.

9 CONCLUSIONS AND FUTUREWORK
We presented a PCF-inspired language λb and its extension with effect handlers λh. We proved that

λh supports an asymptotically more efficient implementation of generic search than any possible

implementation in λb. We observed its effect in practice on several benchmarks. We also proved

that our Ω(n2n) lower bound applies to a language λs which extends λb with state.

Our positive result for λh extends to other control operators by appeal to existing results on

interdefinability of handlers and other control operators [Forster et al. 2019; Piróg et al. 2019]. The

result no longer applies directly if we add an effect type system to λh, as the implementation of the

counting program would require a change of type for predicates to reflect the ability to perform

effectful operations. In future we plan to investigate how to account for effect type systems.

We have verified that our Ω(n2n) lower bound also applies to a language λe with (Benton-

Kennedy style [Benton and Kennedy 2001]) exceptions and handlers. The lower bound also applies

https://github.com/dhil/effects-for-efficiency-code
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to the combined language λse with both state and exceptions — this seems to bring us close to the

expressive power of real languages such as Standard ML, Java, and Python, strongly suggesting

that the speedup we have discussed is unattainable in these languages.

In future work, we hope to establish the more general result that our Ω(n2n) applies to a language
with affine effect handlers (handlers which invoke the resumption r at most once). This would not

only subsume our present results (since state and exceptions are examples of affine effects), but

would also apply e.g. to a richer language with coroutines. However, it appears that our present
methods do not immediately adapt to this more general situation, as our arguments depend at

various points on an orderly nesting of subcomputations which coroutining would break.

One might object that the efficiency gap we have analysed is of merely theoretical interest, since

an Ω(2n) runtime is already ‘infeasible’. We claim, however, that what we have presented is an

example of a much more pervasive phenomenon, and our generic count example serves merely

as a convenient way to bring this phenomenon into sharp formal focus. Suppose, for example,

that our programming task was not to count all solutions to P , but to find just one of them. It is

informally clear that for many kinds of predicates this would in practice be a feasible task, and also

that we could still gain our factor n speedup here by working in a language with first-class control.

However, such an observation appears less amenable to a clean mathematical formulation, as the

runtimes in question are highly sensitive to both the particular choice of predicate and the search

order employed.
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Configurations

L⟨M | γ | σ ⟩M = LσM(LMMγ )

Pure continuations
L[]MM = M

L(γ , x,N ) :: σMM = LσM(let x ← M in LN M(γ\{x}))
Computation terms

LV W Mγ = LV Mγ LW Mγ
Llet ⟨x; y⟩ = V in N Mγ = let ⟨x; y⟩ = LV Mγ in LN M(γ\{x, y})

Lcase V {inl x 7→ M; inr y 7→ N }Mγ = case LV Mγ {inl x 7→ LMM(γ\{x});
inr y 7→ LN M(γ\{y})}

Lreturn V Mγ = return LV Mγ
Llet x ← M in N Mγ = let x ← LMMγ in LN M(γ\{x})

Value terms and values

LxMγ = LvM, if γ (x) = v
LxMγ = x, if x < dom(γ )
LnMγ = n

LλxA.MMγ = λxA.LMM(γ\{x})
Lrec f xA.MMγ = rec f xA.LMM(γ\{f , x})

L⟨⟩Mγ = ⟨⟩
L⟨V ,W ⟩Mγ = ⟨LV Mγ , LW Mγ ⟩

L(inl V )BMγ = (inl LV Mγ )B

L(inr W )AMγ = (inr LW Mγ )A

LnM = n
L(γ , λxA.M)M = λxA.LMM(γ\{x})

L(γ , rec f xA.M)M = rec f xA.LMM(γ\{f , x})
L⟨⟩M = ⟨⟩

L⟨v;w⟩M = ⟨LvM; LwM⟩
L(inl v)BM = (inl LvM)B

L(inr w)AM = (inr LwM)A

LσAM = λxA.LσM(return x)

Fig. 7. Mapping from Base Machine Configurations to Terms

A CORRECTNESS OF THE BASE MACHINE
We now show that the base abstract machine is correct with respect to the operational semantics,

that is, the abstract machine faithfully simulates the operational semantics. Initial states provide a

canonical way to map a computation term onto the abstract machine. A more interesting question

is how to map an arbitrary configuration to a computation term. Figure 7 describes such a mapping

L−M from configurations to terms via a collection of mutually recursive functions defined on

configurations, continuations, computation terms, value terms, and machine values. The mapping

makes use of two operations on environments, γ , which we define now.

Definition A.1. We write dom(γ ) for the domain of γ , and γ\{x1, . . . , xn} for the restriction of

environment γ to dom(γ )\{x1, . . . , xn}.

The L−M function enables us to classify the abstract machine reduction rules according to how

they relate to the operational semantics. The rule (M-Let) is administrative in the sense that L−M is
invariant under this rule. This leaves the β-rules (M-App), (M-Split), (M-Case), and (M-RetCont).

Each of these corresponds directly with performing a reduction in the operational semantics.

Definition A.2 (Auxiliary reduction relations). We write −→a for administrative steps (M-Let)

and ≃a for the symmetric closure of −→∗
a
. We write −→β for β-steps (all other rules) and =⇒ for a

sequence of steps of the form −→∗
a
−→β .

The following lemma describes how we can simulate each reduction in the operational semantics

by a sequence of administrative steps followed by one β-step in the abstract machine.

Lemma A.3. Suppose M is a computation and C is configuration such that LCM = M, then if M { N
there exists C′ such that C =⇒ C′ and LC′M = N, or if M ̸{ then C ≠⇒.

Proof. By induction on the derivation of M { N . □
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Configurations

L⟨M | γ | κ⟩M = LκM(LMMγ )

Continuations
L[]MM = M

L(σ , χ ) :: κMM = LκM(LχM(LσM(M)))
Handler Closures and Definitions

L(γ ,H )MM = handle M with LHMγ L{val x 7→ M}Mγ = {val x 7→ LMM(γ\{x})}
L{ℓ x r 7→ M} ⊎ HMγ = {ℓ x r 7→ LMM(γ\{x, r})} ⊎ LHMγ

Computation Terms and Machine Values

Lhandle M with HMγ = handle LMMγ with LHMγ
Ldo ℓ V Mγ = do ℓ LV Mγ

L(γ ,H )DMγ = λxD .L(γ ,H )M(return x)

Fig. 8. Mapping from Handler Machine Configurations to Terms

The correspondence here is rather strong: there is a one-to-onemapping between{ and=⇒ / ≃a
(where we write R/S for the quotient of relation R by relation S). The inverse of the lemma is

straightforward as the semantics is deterministic. Notice that Lemma A.3 does not require that M
be well-typed. We have chosen here not to perform type-erasure, but the results can be adapted to

semantics in which all type annotations are erased.

Theorem A.4 (Base simulation). If ⊢ M : A and M {+ N such that N is normal, then
⟨M | ∅ | []⟩ −→+ C such that LCM = N, or M ̸{ then ⟨M | ∅ | []⟩ ̸−→.

Proof. By repeated application of Lemma A.3. □

B CORRECTNESS OF THE HANDLER MACHINE
The correctness result for the base machine can mostly be repurposed for the handler machine as

we need only recheck the cases for (M-Let) and (M-RetCont) and check the cases for handlers.

Figure 8 shows the necessary changes to the L−M function.

Lemma B.1. Suppose M is a computation and C is configuration such that LCM = M, then if M { N
there exists C′ such that C =⇒ C′ and LC′M = N, or if M ̸{ then C ≠⇒.

Proof. By induction on the derivation of M { N . □

Theorem B.2 (Handler simulation). If ⊢ M : A and M {+ N such that N is normal, then
⟨M | ∅ | κ0⟩ −→+ C such that LCM = N, or M ̸{ then ⟨M | ∅ | κ0⟩ ̸−→.

Proof. By repeated application of Lemma B.1. □

C PROOF DETAILS FOR THE COMPLEXITY OF EFFECTFUL GENERIC COUNT
In this appendix we give proof details and artefacts for Theorem 5.9. Throughout this section we

let Hcount denote the handler definition of count, that is

Hcount :=


val x 7→ if x then return 1 else return 0

Branch ⟨⟩ r 7→ let xtrue ← r true in
let xfalse ← r false in
xtrue + xfalse


The timed decision tree model embeds timing information. For the proof we must also know the

abstract machine environment and the pure continuation. Thus we decorate timed decision trees

with this information.

Definition C.1 (decorated timed decision trees). A decorated timed decision tree is a partial function

τ : Addr⇀ (Lab × Nat) × Confq such that its first projection bs 7→ τ (bs).1 is a timed decision tree.
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We extend the projections labs and steps in the obvious way to work over decorated timed

decision trees. We define three further projections. The first comp(τ ) := bs 7→ τ (bs).2.1 projects
the computation component of the configuration, the second env(τ ) := bs 7→ τ (bs).2.2 projects the
environment, and finally the third pure(τ ) := bs 7→ head(t(bs).2.3).1 projects the pure continuation.

The following definition gives a procedure for constructing a decorated timed decision tree. The

construction is analogous to that of Definition 5.4.

Definition C.2. (i) Define D : Confq ⇀ Addr⇀ (Lab × Nat) × Confq to be the minimal family

of partial functions satisfying the following equations:

D(⟨return W | γ | []⟩) [] = ((!b, 0), ⟨return W | γ | []⟩), if JW Kγ = b
D(⟨z V | γ | κ⟩) [] = ((?JV Kγ , 0), ⟨z V | γ | κ⟩), if γ (z) = q

D(⟨z V | γ | κ⟩) (b :: bs) ≃ D(⟨return b | γ | κ⟩) bs, if γ (z) = q
D(⟨M | γ | κ⟩) bs ≃ inc (D(⟨M ′ | γ ′ | κ ′⟩) bs), if ⟨M | γ | κ⟩ −→ ⟨M ′ | γ ′ | κ ′⟩

Here inc((ℓ, s),C) = ((ℓ, s + 1),C), and in all of the above equations γ (q) = γ ′(q) = q. ClearlyD(C)
is a decorated timed decision tree for any C ∈ Confq.
(ii) The decorated timed decision tree of a computation term is obtained by placing it in the

initial configuration: D(M) := D(⟨M, ∅[q 7→ q],κ0⟩).
(iii) The decorated timed decision tree of a closed value P : Predicate isD(P q). Since q plays the

role of a dummy argument, we will usually omit it and write D(P) for D(P q).

We define some functions, that given a list of booleans and a n-standard predicate, compute

configurations of the effectful abstract machine at particular points of interest during evaluation of

the given predicate. Let χcount(V ) := (∅[pred 7→ JV K∅],Hcount) denote the handler closure of Hcount.

Notation. For an n-standard predicate P wewrite |P | = n for the size of the predicate. Furthermore,

we define χid for the identity handler closure (∅, {val x 7→ x}).

Definition C.3 (computing machine configurations). For any n-standard predicate P and a list of

booleans bs, such that |bs | ≤ n, we can compute machine configurations at points of interest during

evaluation of count P .
To make the notation slightly simpler we use the following conventions whenever n, τ , and c

appear free: n = |P |, τ = D(P), and c(bs) = ♯(bs′ 7→ JPK (bs ++ bs′)). The definitions are presented
in a top-down manner.

• The function arrive either computes the configuration at a query node, if |bs | < n, or the
configuration at an answer node.

arrive : Addr × Val⇀ Conf
arrive(bs, P) := ⟨z V | γ | (σ , χcount(P)) :: residual(bs, P)⟩, if |bs | < n
where z V = comp(τ )(bs),γ = env(τ )(bs),γ (z) = (env⊥(P), λ_.do Branch ⟨⟩)

?k = labs(τ )(bs), JV Kγ = k, and σ = pure(τ )(bs)
arrive(bs, P) := ⟨return W | γ | ([], χcount(P)) :: residual(bs, P)⟩, if |bs | = n
where return W = comp(τ )(bs),γ = env(τ )(bs), !b = labs(τ )(bs), and JW Kγ = b
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• Correspondingly, the depart function computes the configuration either after the completion

of a query or handling of an answer.

depart : Addr × Val⇀ Conf
depart(bs, P) := ⟨return m | γ | residual(bs, P)⟩, if |bs | < n

where γ = env↑false(bs, P) and m = c(bs)
depart(bs, P) := ⟨return m | γ | residual(bs, P)⟩, if |bs | = n

where m = c(bs), b =

{
true if m = 1

false if m = 0

, and γ = env⊥(P)[x 7→ b]

The two clauses of depart yield slightly different configurations. The first clause com-

putes a configuration inside the operation clause of Hcount. The configuration is exactly

tail-configuration after summing up the two respective values returned by the two invoca-

tions of resumption. Whilst the second clause computes the tail-configuration inside of the

success clause of Hcount after handling a return value of the predicate.

• The residual function computes the residual continuation structure which contains the bits

of computations to perform after handling a complete path in a decision tree.

residual : Addr × Val⇀ Cont
residual(bs, P) := [(purecont(bs, P), χid)]

• The function purecont computes the pure continuation.

purecont : Addr × Val⇀ PureCont
purecont([], P) := []

purecont(bs ++ [true], P) := (γ , xtrue, let xfalse ← r false in xtrue + xfalse) :: purecont(bs, P),
where γ = env↓true(bs ++ [true], P)

purecont(bs ++ [false], P) := (γ , xfalse, xtrue + xfalse) :: purecont(bs, P),
where γ = env↓false(bs ++ [false], P)

• The function env⊥ computes the initial environment of the handler. The family of functions

env↓b∈B contains two functions, one for each instantiation of b, which describe how to compute

the environment prior descending down a branch as the result of invoking a resumption with

b. Analogously, the functions in the family env↑b∈B describe how to compute the environment

after ascending from the resumptive exploration of a branch.

env⊥ : Val→ Env
env⊥(P) := ∅[pred 7→ JPK∅]

env↓true : Addr × Val⇀ Env
env↓true(bs, P) := env⊥(P)[r 7→ (σ , χcount(P))],

where σ = pure(τ )(bs)

env↑true : Addr × Val⇀ Env
env↑true(bs, P) := γ [xtrue 7→ i],

where γ = env↓true(bs, P)
and i = c(bs ++ [true])

env↓false : Addr × Val⇀ Env
env↓false(bs, P) := env↑true

env↑false : Addr × Val⇀ Env
env↑false(bs, P) := γ [xfalse 7→ j],

where γ = env↓false(bs, P)
and j = c(bs ++ [false])

The proof of Theorem 5.9 works by alternating between two different modes of reasoning:

intensional and extensional. The former is used to reason directly about the steps taken by effcount
program and the latter is used to reason about steps taken by the provided predicate. The number
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of steps taken by an n-standard predicate is readily available by constructing its corresponding

decorated timed decision tree model. The model is constructed using a distinguished free variable q
to denote a point. The following lemma lets us reason about the number of steps taken by a predicate

between its initial application and its first query, between subsequent queries, and between final

query and answer when q is instantiated to λ_.do Branch ⟨⟩.

Lemma C.4. Suppose P is an n-standard predicate, bs ∈ Addr is a list of booleans, and for all
χ ∈ HClo and κ ∈ Cont. Let q denote the distinguished free variable used to construct the decorated
timed decision tree τ of P.
(1) If |bs | = 0 then

⟨pred q | env⊥(P)[q 7→ q] | ([], χ ) :: κ⟩
−→ steps(τ )([])

⟨z V | γ [q 7→ q] | (σ , χ ) :: κ⟩
where z V = comp(τ )([]), γ = env(τ )([]), ?k = labs(τ )([]), JV Kγ = k, γ (z) = q, and σ =
pure(τ )([]); implies

⟨pred (λ_.do Branch ⟨⟩) | env⊥(P) | ([], χ ) :: κ⟩
−→ steps(τ )([])

⟨z V | γ [z 7→ (env⊥(P), λ_.do Branch ⟨⟩)] | (σ , χ ) :: κ⟩

(2) If |bs | < n − 1 then for all b ∈ B and W ∈ Val

⟨return W | env↓b(bs, P) | (σ , χ ) :: κ⟩
−→ steps(τ )(bs++[b])

⟨z V | γ [q 7→ q] | (σ ′, χ ) :: κ⟩

where JW K(env↓b(bs, P)) = b, σ = pure(τ )(bs), z V = comp(τ )(bs ++ [b]), γ = env(τ )(bs ++ [b]),
γ (z) = q, ?k = labs(τ )(bs ++ [b]), JV Kγ = k, and σ ′ = pure(τ )(bs ++ [b]); implies

⟨return W | env↓b(bs, P) | (σ , χ ) :: κ⟩
−→ steps(τ )(bs++[b])

⟨z V | γ [z 7→ (env⊥(P), λ_.do Branch ⟨⟩)] | (σ ′, χ ) :: κ⟩

(3) If |bs | = n − 1 then for all b ∈ B and W ∈ Val

⟨return W | env↓b(bs, P) | (σ , χ ) :: κ⟩
−→ steps(τ )(bs++[b])

⟨return W ′ | γ [q 7→ q] | ([], χ ) :: κ⟩

where JW K(env↓b(bs, P)) = b, σ = pure(τ )(bs), return W ′ = comp(τ )(bs ++ [b]), γ =
env(τ )(bs ++ [b]), !b′ = labs(τ )(bs ++ [b]), and JW ′Kγ = b′; implies

⟨return W | env↓b(bs, P) | (σ , χ ) :: κ⟩
−→ steps(τ )(bs++[b])

⟨return W ′ | γ | ([], χ ) :: κ⟩

Proof. By unfolding Definition C.2. □

Let control : Conf ⇀ Val denote a partial function that hoists a value out of a given machine

configuration, that is

control(⟨M | γ | κ⟩) :=

{
JV Kγ if M = return V
⊥ otherwise
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Notation. For a given predicate P we write χcount(P)val to mean χcount(P)val = (∅[pred 7→
JPK∅],Hcount)

val = Hval
count, that is the projection of the success clause of Hcount.

The following lemma performs most of the heavy lifting for the proof of Theorem 5.9.

Lemma C.5. Suppose P is an n-standard predicate, then for any list of booleans bs ∈ Addr such that
|bs | ≤ n

arrive(bs, P) {T (bs,n) depart(bs, P),

and control(depart(bs, P)) ≤ 2
n−|bs | with the function T defined as

T (bs, n) =

{
9 ∗ (2n−|bs | − 1) + 2n−|bs |+1 +

∑
1≤ |bs′ | ≤n−|bs |
bs′∈Addr steps(τ )(bs ++ bs′) if |bs | < n

2 if |bs | = n

Proof. By downward induction on bs.

Base step We have that |bs | = n. Since the predicate is n-standard we further have that n ≥ 1.

We proceed by direct calculation.

arrive(bs, P)
= (definition of arrive when n = |bs |)
⟨return W | γ | ([], χcount(P)) :: residual(bs, P)⟩

where return W = comp(τ )(bs),γ = env(τ )(bs), !b = labs(τ )(bs), and JW Kγ = b
−→ (M-RetHandler, χcount(P)val = {val x 7→ · · · })
⟨if x then return 1 else return 0 | γ ′[x 7→ JbKγ ′] | residual(bs, P)⟩

where γ ′ = χcount(P).1

The value b can assume either of two values. We consider first the case b = true.

= (assumption b = true, definition of J−K (2 value steps))
⟨if x then return 1 else return 0 | γ ′[x 7→ true] | residual(bs, P)⟩

−→ (M-Case-inl (and log |γ ′[x 7→ true]| = 1 environment operations))

⟨return 1 | γ ′[x 7→ true] | residual(bs, P)⟩
= (definition of depart when n = |bs |)
depart(bs, P)

We have that control(depart(bs, P)) = 1 ≤ 2
0 = 2

n−|bs |
. Next, we consider the case when

b = false.

= (assumption b = false, definition of J−K (2 value steps))
⟨if x then return 1 else return 0 | γ ′[x 7→ false] | residual(bs, P)⟩

−→ (M-Case-Inl (and log |γ ′[x 7→ false]| = 1 environment operations))

⟨return 0 | γ ′[x 7→ false] | residual(bs, P)⟩
= (definition of depart when n = |bs |)
depart(bs, P)

Again, we have that control(depart(bs, P)) = 0 ≤ 2
0 = 2

n−|bs |
.

Step analysis. In either case, the machine uses exactly 2 transitions. Thus we get that

2 = T (bs, n), when |bs | = n

Inductive step The induction hypothesis states that for all b ∈ B and |bs | < n

arrive(bs ++ [b], P) {T (bs++[b],n) depart(bs ++ [b], P),
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such that control(depart(bs ++ [b], P)) ≤ 2
n−|bs++[b] |

. We proceed by direct calculation.

arrive(bs, P)
= (definition of arrive when n < |bs |)
⟨z V | γ | (σ , χcount(P)) :: residual(bs, P)⟩

where z V = comp(τ )(bs),γ = env(τ )(bs)[z 7→ (env⊥(P), λ_.do Branch ⟨⟩)],
?k = labs(τ )(bs), JV Kγ = k, and σ = pure(τ )(bs)

−→ (M-App)

⟨do Branch ⟨⟩ | γ ′[_ 7→ k] | (σ , χcount(P)) :: residual(bs, P)⟩
where γ ′ = env⊥(P)
−→ (M-Handle-Op, χcount(P)Branch = {Branch ⟨⟩ r 7→ · · · })〈let xtrue ← r true in

let xfalse ← r false in
xtrue + xfalse

| γ [r 7→ J(σ , χcount(P))Kγ ] | residual(bs, P)

〉
where γ = env⊥(P)
= (definition of J−K (1 value step))〈let xtrue ← r true in

let xfalse ← r false in
xtrue + xfalse

| γ ′ | residual(bs, P)

〉
where γ ′ = γ [r 7→ (σ , χcount(P))]
−→ (M-Let, definition of residual)
⟨r true | γ ′ | residual(bs ++ [true]bs, P)⟩

−→ (M-Resume, JrKγ ′ = (σ , χcount(P)) (log |γ ′ | = 1 environment operations))

⟨return true | γ ′ | (σ , χcount(P)) :: residual(bs ++ [true], P)⟩

We now use Lemma C.4 to reason about the progress of the predicate computation σ . There
are two cases consider, either 1 + |bs | < n or 1 + |bs | = n.
Case 1 + |bs | < n. We obtain the following internal node configuration.

−→ steps(τ )(bs++[true]) (by Lemma C.4)

⟨z V | γ ′′ | (σ ′, χcount(P)) :: residual(bs ++ [true], P)⟩
where z V = comp(τ )(bs),γ ′′ = env(τ )(bs ++ [true])[z 7→ (env⊥(P), λ_.do Branch ⟨⟩)],

?k = labs(τ )(bs ++ [true]), JV Kγ ′′ = k, and σ ′ = pure(τ )(bs ++ [true])
= (definition of arrive when 1 + |bs | < n)
arrive(bs ++ [true], P)

−→ T (bs++[true],n) (induction hypothesis)

depart(bs ++ [true], P)
= (definition of depart when 1 + |bs | < n)
⟨return i | γ | residual(bs ++ [true], P)⟩

where i = c(bs ++ [true] ++ [true]) + c(bs ++ [true] ++ [false]) and γ = env↑false(bs ++ [true], P)
= (definition of residual and purecont)
⟨return i | γ | [((γ ′, xtrue, let xfalse ← r false in xtrue + xfalse) :: purecont(bs, P), χid)]⟩

where γ ′ = env↓true(bs, P)
−→ (M-RetCont)

⟨let xfalse ← r false in xtrue + xfalse | γ ′′ | [(purecont(bs, P), χid)]⟩
where γ ′′ = γ ′[xtrue 7→ JiKγ ′]
−→ (M-Let)

⟨r false | γ ′′ | [((γ ′′, xfalse, xtrue + xfalse) :: purecont(bs, P), χid)]⟩
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= (definition of purecont and residual)
⟨r false | γ ′′ | residual(bs ++ [false], P)⟩

−→ (M-Resume)

⟨return false | γ ′′ | (σ , χcount(P)) :: residual(bs ++ [false], P)⟩
where σ = pure(τ )(bs)
−→ steps(τ )(bs++[false]) (by Lemma C.4)

⟨z V | γ | (σ , χcount(P)) :: residual(bs ++ [false], P)⟩
where z V = comp(τ )(bs),γ = env(τ )(bs ++ [false])[q 7→ (env⊥(P), λ_.do Branch ⟨⟩)],

?k = labs(τ )(bs ++ [false]), JV Kγ = k, and σ = pure(τ )(bs ++ [false])
= (definition of arrive when 1 + |bs | < n)
arrive(bs ++ [false], P)

−→ T (bs++[false],n) (induction hypothesis)

depart(bs ++ [false], P)
= (definition of depart when 1 + |bs | < n)
⟨return j | γ | residual(bs ++ [false], P)⟩

where j = c(bs ++ [false] ++ [true]) + c(bs ++ [false] ++ [false]) and γ = env↑false(bs ++ [false], P)
= (definition of residual and purecont)
⟨return j | γ | [((γ ′′, xfalse, xtrue + xfalse) :: purecont(bs, P), χid)]⟩

−→ (M-RetCont)

⟨xtrue + xfalse | γ ′′[xfalse 7→ JjKγ ′′] | residual(bs, P)⟩
−→ (M-Plus)

⟨return m | γ ′′[xfalse 7→ JjKγ ′′] | residual(bs, P)⟩
where m = c(bs ++ [true] ++ [true]) + c(bs ++ [true] ++ [false])

+c(bs ++ [false] ++ [true]) + c(bs ++ [false] ++ [false])
= c(bs ++ [true]) + c(bs ++ [false]) = c(bs) ≤ 2

n−|bs |

= (definition of depart when |bs | < n)
depart(bs, P)

Step analysis. The total number of machine steps is given by

9 + steps(τ )(bs ++ [true]) + T (bs ++ [true], n) + steps(τ )(bs ++ [false]) + T (bs ++ [false], n)
= (reorder)

9 + T (bs ++ [true], n) + steps(τ )(bs ++ [false]) + steps(τ )(bs ++ [true]) + steps(τ )(bs ++ [false])
= (definition of T )
9 + 9 ∗ (2n−|bs++[true] | − 1) + 9 ∗ (2n−|bs++[false] | − 1) + 2n−|bs++[true] |+1 + 2n−|bs++[false] |+1

+

1≤ |bs′ | ≤n−|bs++[true] |∑
bs′∈Addr

steps(τ )(bs ++ [true] ++ bs′) +
1≤ |bs′ | ≤n−|bs++[false] |∑

bs′∈Addr

steps(τ )(bs ++ [false] ++ bs′)

+steps(τ )(bs ++ [true]) + steps(τ )(bs ++ [false])
= (simplify)

9 + 9 ∗ (2n−|bs++[true] | − 1) + 9 ∗ (2n−|bs++[false] | − 1) + 2n−|bs |+1

+

1≤ |bs′ | ≤n−|bs++[true] |∑
bs′∈Addr

steps(τ )(bs ++ [true] ++ bs′) +
1≤ |bs′ | ≤n−|bs++[false] |∑

bs′∈Addr

steps(τ )(bs ++ [false] ++ bs′)

+steps(τ )(bs ++ [true]) + steps(τ )(bs ++ [false])
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= (merge sums)

9 + 9 ∗ (2n−|bs++[true] | − 1) + 9 ∗ (2n−|bs++[false] | − 1) + 2n−|bs |+1

+

(
2≤ |bs′ | ≤n−|bs |∑

bs′∈Addr

steps(τ )(bs ++ bs′)

)
+ steps(τ )(bs ++ [true]) + steps(τ )(bs ++ [false])

= (rewrite binary sum)

9 + 9 ∗ (2n−|bs++[true] | − 1) + 9 ∗ (2n−|bs++[false] | − 1) + 2n−|bs |+1

+

2≤ |bs′ | ≤n−|bs |∑
bs′∈Addr

steps(τ )(bs ++ bs′) +
1≤ |bs′ | ≤1∑
bs′∈Addr

steps(τ )(bs ++ bs′)

= (merge sums)

9 + 9 ∗ (2n−|bs++[true] | − 1) + 9 ∗ (2n−|bs++[true] | − 1) + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈Addr

steps(τ )(bs ++ bs′)

= (factoring)

9 + 2 ∗ 9 ∗ (2n−|bs |−1 − 1) + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈Addr

steps(τ )(bs ++ bs′)

= (distribute)

9 + 9 ∗ (2n−|bs | − 2) + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈Addr

steps(τ )(bs ++ bs′)

= (distribute)

9 + 9 ∗ 2n−|bs | − 18 + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈Addr

steps(τ )(bs ++ bs′)

= (simplify)

9 ∗ 2n−|bs | − 9 + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈Addr

steps(τ )(bs ++ bs′)

= (factoring)

9 ∗ (2n−|bs | − 1) + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈Addr

steps(τ )(bs ++ bs′)

= (definition of T )
T (bs, n)
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Case 1 + |bs | = n. We obtain the following configuration.

−→ steps(τ )(bs++[true]) (by Lemma C.4)

⟨return W | γ ′′ | ([], χcount(P)) :: residual(bs ++ [true], P)⟩
where return W = comp(τ )(s ++ [true]), !b = labs(τ )(bs ++ [true]),

γ ′′ = env(τ )(bs ++ [true]), and JW Kγ ′′ = b
= (definition of arrive when 1 + |bs | = n)
arrive(bs ++ [true], P)

−→ T (bs++[true],n) (induction hypothesis)

depart(bs ++ [true], P)
= (definition of depart when 1 + |bs | = n)
⟨return i | γ | residual(bs ++ [true], P)⟩

where i = c(bs ++ [true]) ≤ 2
n−|bs++[true] | = 1 and γ = env⊥(P)

= (definition of residual and purecont)
⟨return i | γ | [((γ ′, xtrue, let xfalse ← r false in xtrue + xfalse) :: purecont(bs, P), χid)]⟩

−→ (M-RetCont)

⟨let xfalse ← r false in xtrue + xfalse | γ ′[xtrue 7→ JiKγ ′] | [(purecont(bs, P), χid)]⟩
= (definition of J−K (1 value step))
⟨let xfalse ← r false in xtrue + xfalse | γ ′′ | [(purecont(bs, P), χid)]⟩

where γ ′′ = γ ′[xtrue 7→ i]
−→ (M-Let, definition of residual)
⟨r false | γ ′′ | residual(bs ++ [false], P)⟩

−→ (M-Resume)

⟨return false | γ ′′ | (σ , χcount(P)) :: residual(bs ++ [false], P)⟩
where σ = pure(τ )(bs)
−→ steps(τ )(bs++[false]) (by Lemma C.4)

⟨return W | γ | ([], χcount(P)) :: residual(bs ++ [false], P)⟩
where return W = comp(τ )(bs ++ [false]), !b = labs(τ )(bs ++ [false]),

γ = env(τ )(bs ++ [false]), and JW Kγ = b
= (definition of arrive when 1 + |bs | = n)
arrive(bs ++ [false], P)

−→ T (bs++[false],n) (induction hypothesis)

depart(bs ++ [false], P)
= (definition of depart when 1 + |bs | = n)
⟨return j | γ | residual(bs ++ [false], P)⟩

where j = c(bs ++ [false]) ≤ 2
n−|bs++[false] | = 1 and γ = env⊥(P)

= (definition of residual and purecont)
⟨return j | γ | [((γ ′, xfalse, xtrue + xfalse) :: purecont(bs, P), χid)]⟩

where γ ′ = env↓false(bs, P)
−→ (M-RetCont)

⟨xtrue + xfalse | γ ′′ | [(purecont(bs, P), χid)]⟩
where γ ′′ = γ ′[xfalse 7→ JjKγ ′] = γ ′[xfalse 7→ j]
−→ (M-Plus)

⟨return m | γ ′′ | [(purecont(bs, P), χid)]⟩
where m = c(bs ++ [true]) + c(bs ++ [false]) ≤ 2

n−|bs |

= (definition of residual and depart when |bs | < n)
depart(bs, P)
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Step analysis. The total number of machine steps is given by

9 + steps(τ )(bs ++ [true]) + T (bs ++ [true], n) + steps(τ )(bs ++ [false]) + T (bs ++ [false], n)
= (reorder)

9 + T (bs ++ [true], n) + T (bs ++ [false], n) + steps(τ )(bs ++ [true]) + steps(τ )(bs ++ [false])
= (definition of T when |bs | + 1 = n)
9 + 2 + 2 + steps(τ )(bs ++ [true]) + steps(τ )(bs ++ [false])
= (simplify)

9 + 22 + steps(τ )(bs ++ [true]) + steps(τ )(bs ++ [false])
= (rewrite 2 = n − |bs | + 1)
9 + 2n−|bs |+1 + steps(τ )(bs ++ [true]) + steps(τ )(bs ++ [false])
= (multiply by 1)

9 ∗ (2n−|bs | − 1) + 2n−|bs |+1 + steps(τ )(bs ++ [true]) + steps(τ )(bs ++ [false])
= (rewrite binary sum)

9 ∗ (2n−|bs | − 1) + 2n−|bs | +

1≤ |bs′ | ≤n−|bs |∑
bs′∈Addr

steps(τ )(bs ++ bs′)

= (definition of T )
T (bs, n)

□

The following theorem is a copy of Theorem 5.9.

Theorem C.6. For all n > 0 and any n-standard predicate P it holds that

(1) The program effcount is a generic count program
(2) The runtime complexity of effcount P is given by the following formula:

|bs | ≤n∑
bs∈Addr

steps(T (P))(bs) + O(2n)

Proof. The proof begins by direct calculation.

⟨effcount P | ∅ | [([], χid)]⟩
= (definition of residual)
⟨effcount P | ∅ | residual([], P)⟩

−→ (M-App, JeffcountK∅ = (∅, λpred. · · · ))
⟨handle pred (λ_.do Branch ⟨⟩) with Hcount | γ | residual([], P)⟩

where γ = env⊥(P)
−→ (M-Handle)

⟨pred (λ_.do Branch ⟨⟩) | γ | ([], (γ ,Hcount)) :: residual([], P)⟩
= (definition of χcount)
⟨pred (λ_.do Branch ⟨⟩) | γ | ([], χcount(P)) :: residual([], P)⟩

−→ steps(τ )([]) (by Lemma C.4)

⟨z V | γ ′ | (σ , χcount(P)) :: residual([], P)⟩
where z V = comp(τ )(bs),γ ′ = env(τ )([])[q 7→ (env⊥(P), λ_.do Branch ⟨⟩)],

?k = labs(τ )([]), JV Kγ ′ = k, and σ = pure(τ )([])
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= (definition of arrive)
arrive([], P)

−→ T ([],n) (by Lemma C.5)

depart([], P)
= (definition of depart)
⟨return m | γ | residual([], P)⟩

where γ = env⊥(P) and m = c([]) ≤ 2
n−|bs | = 2

n

= (definition of residual)
⟨return m | γ | [([], χid)]⟩

−→ (M-Handle-Ret, H val
id = {val x 7→ return x})

⟨return x | ∅[x 7→ m] | []⟩

Analysis. The machine yields the valuem. By Lemma C.5 it follows thatm ≤ 2
n−|bs | = 2

n−|[] | = 2
n
.

Furthermore, the total number of transitions used were

3 + steps(τ )([]) + T ([], n)
= (definition of T )

3 + steps(τ )([]) + 9 ∗ 2n + 2n+1 +
1≤ |bs′ | ≤n∑
bs′∈B∗

steps(τ )(bs′)

= (simplify)

3 + steps(τ )([]) + 9 ∗ 2n + 2n+1 +
1≤ |bs′ | ≤n∑
bs′∈B∗

steps(τ )(bs′)

= (reorder)

3 +

(
1≤ |bs′ | ≤n∑
bs′∈B∗

steps(τ )(bs′)

)
+ steps(τ )([]) + 9 ∗ 2n + 2n+1

= (rewrite as unary sum)

3 +

(
1≤ |bs′ | ≤n∑
bs′∈B∗

steps(τ )(bs′) +
0≤ |bs′ | ≤0∑
bs′∈Addr

steps(τ )(bs′)

)
+ 9 ∗ 2n + 2n+1

= (merge sums)

3 +

(
0≤ |bs′ | ≤n∑
bs′∈B∗

steps(τ )(bs′)

)
+ 9 ∗ 2n + 2n+1

= (definition of O)(
0≤ |bs′ | ≤n∑
bs′∈B∗

steps(τ )(bs′)

)
+ O(2n)

□

D BERGER COUNT
Here we present the BergerCount program alluded to in Section 6, in order to fill out our overall

picture of the relationship between language expressivity and potential program efficiency.

Berger’s original program [Berger 1990] introduced a remarkable search operator for predicates

on infinite streams of booleans, and has played an important role in higher-order computability

theory [Longley and Normann 2015]. What we wish to highlight here is that if one applies the algo-

rithm to predicates on finite boolean vectors, the resulting program, though no longer interesting

from a computability perspective, still holds some interest from a complexity standpoint: indeed,
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it yields what seems to be the best available implementation of generic count within a PCF-style

‘functional’ language (provided one accepts the use of a primitive for call-by-need evaluation).

We give the gist of an adaptation of Berger’s search algorithm on finite spaces.

bestshotn : Predicaten → Pointn
bestshotn pred := bestshot′n pred []

bestshot′n : Predicaten → ListBool → Pointn
bestshot′n pred start := let f ← memoise (λ⟨⟩.bestshot′′n pred start) in

return (λi.if i < |start | then start.i else (f ⟨⟩).i)

bestshot′′n : Predicaten → ListBool → ListBool
bestshot′′n pred start := if |start | = n then return start

else let f ← bestshot′n pred (append start [true]) in
if pred f then return [f 0, . . . , f (n − 1)]
else bestshot′′n pred (append start [false])

Given any n-standard predicate P the function bestshotn returns a point satisfying P if one exists,

or dummy point λi.false if not. It is implemented by via two mutually recursive auxiliary functions

whose workings are admittedly hard to elucidate in a few words. The function bestshot′n is a

generalisation of bestshotn that makes a best shot at finding a point π satisfying given predicate

andmatching some specified list start in some initial segment of its components [π (0), . . . ,π (i−1)]. It
works ‘lazily’, drawing its values from start wherever possible, and performing an actual search only

when required. This actual search is undertaken by bestshot′′n , which proceeds by first searching

for a solution that extends the specified list with true; but if no such solution is forthcoming, it

settles for false as the next component of the point being constructed. The whole procedure relies

on a subtle combination of laziness, recursion and implicit nesting of calls to the provided predicate

which means that the search is self-pruning in regions of the binary tree where the predicate only

demands some initial segment q 0,. . . ,q (i − 1) of its argument q.
The above program makes use of an operation

memoise : (Unit→ List Bool) → (Unit→ List Bool)

which transforms a given thunk into an equivalent ‘memoised’ version, i.e. one that caches its

value after its first invocation and immediately returns this value on all subsequent invocations.

Such an operation may readily be implemented in λs, or alternatively may simply be added as a

primitive in its own right. The latter has the advantage that it preserves the purely ‘functional’

character of the language, in the sense that every program is observationally equivalent to a λb
program, namely the one obtained by replacing memoise by the identity.

We now show how the above idea may be exploited to yield a generic count program (this

development appears to be new).

BergerCountn : Predicaten → Nat
BergerCountn pred := count′n pred [] 0

count′n : Predicaten → ListBool → Nat→ Nat
count′n pred start acc := if |start | = n then acc + (if pred (λi.start.i) then return 1 else return 0)

else let f ← bestshot′n pred start in
if pred f then count′′n start [f 0, . . . , f (n − 1)] acc else return acc

count′′n : Predicaten → ListBool → ListBool → Nat→ Nat
count′′n pred start leftmost acc := if |start | = n then acc + 1

else let b← leftmost.|start | in
let acc′ ← count′′n pred (append start [b]) leftmost acc in
if b then count′n pred (append start [false]) acc′ else return acc′
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Again, BergerCountn is implemented by means of two mutually recursive auxiliary functions. The

function count′n counts the solutions to the provided predicate pred that start with the specified

list of booleans, adding their number to a previously accumulated total given by acc. The function
count′′n does the same thing, but exploiting the knowledge that a best shot at the ‘leftmost’ solution

to P within this subtree has already been computed. (We are visualising n-points as forming a

binary tree with true to the left of false at each fork.) Thus, count′′n will not re-examine the portion

of the subtree to the left of this candidate solution, but rather will start at this solution and work

rightward.

This gives rise to an n-count program that can work efficiently on predicates that tend to ‘fail

fast’: more specifically, predicates P that inspect the components of their argument q in order q 0,

q 1, q 2, . . . , and which are frequently able to return false after inspecting just a small number of

these components. Generalising our program from binary to k-ary branching trees, we see that

the n-queens problem provides a typical example: most points in the space can be seen not to be

solutions by inspecting just the first few components. Our experimental results in Section 8 attest

to the viability of this approach and its overwhelming superiority over the naïve functional method.

By contrast, the above program is not able to exploit parts of the tree where our predicate

‘succeeds fast’, i.e. returns true after seeing just a few components. Unlike the effectful count

program of Section 5.4, which may sometimes add 2
n−d

to the count in a single step, the Berger

approach can only count solutions one at a time. Thus, supposing P is an n-standard predicate the

evaluation of countn P that returns a natural number c must take time Ω(c). These observations
informally indicate the likely extent of the efficiency gap between effectful and purely functional

computation when it comes to non-n-standard predicates.
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