
1
Lightweight Functional Session Types

Sam Lindley and J. Garrett Morris

The University of Edinburgh, Scotland

Abstract

Row types provide an account of extensibility that combines well with para-
metric polymorphism and type inference. We discuss the integration of row
types and session types in a concurrent functional programming language,
and how row types can be used to describe extensibility in session-typed
communication.

Keywords: Row polymorphism, Subkinding, Functional programming.

1.1 Introduction

In prior work, we have developed a core linear λ -calculus with session types
called GV [13]. GV is inspired by a functional language with session types
developed by Gay and Vasconcelos [7], which we term LAST (for Linear
Asynchronous Session Types), and by the propositions-as-types correspon-
dence between session types and linear logic first introduced by Caires and
Pfenning [4] and later adapted to the classical setting by Wadler [23]. We have
given direct proofs of deadlock freedom, determinism, and termination for
GV. We have also given semantics-preserving translations between GV and
Wadler’s process calculus CP, showing a strong connection between GV’s
small-step operational semantics and cut elimination in classical linear logic.

In this article, we demonstrate that we can build practical languages based
on the primitives and properties of GV. We introduce a language, FST, that ex-
tends GV with polymorphism, row types, and subkinding, integrating linear

The Betty Book, 1–20.
c© 2017 Somebody. All rights reserved.

2 Lightweight Functional Session Types

and unlimited data types. FST, while more expressive, is still deadlock-free,
deterministic, and terminating. We consider several extensions of FST. Re-
cursion and recursive session types support the definition of long-running
services and repeated behavior. Adding recursion and recursive session types
results in a system that is no longer terminating, but is still deadlock free and
deterministic. Access points support a more flexible mechanism for session
initiation. Adding access points results in a system that is not deadlock-free,
deterministic, or terminating, but that still satisfies subject reduction and a
weak form of progress.

Outline. The article proceeds as follows. Section 1.2 presents some exam-
ples illustrating FST and its extensions. Section 1.3 gives a formal account of
FST, a linear variant of System F, incorporating polymorphism, row-typing,
subkinding, and session types.

Section 1.4 explores extensions of FST with recursion, recursive types,
and access points, and demonstrates the expressivity of access points with
encodings of state cells, nondeterministic choice, and recursion.

Section 1.5 describes a practical implementation of FST in Links, a func-
tional language for web programming, and discusses our adaptation of the
existing Links syntax and type inference mechanisms to support linearity and
session types.

Section 1.6 concludes.
In this version of the article, we focus on the FST type system, and omit

the formal semantics and statements of correctness. An extended version
including the formal semantics and correctness proofs is available online [15].

1.2 A First Look

Before giving a formal account of the syntax and type system of FST, we
present some simple examples of programming in FST. We use a desktop
calculator as a running example. Despite its simplicity, it will motivate the
features of FST.

A One-Shot Calculator Server. We begin with a process that implements
a calculator server. We specify it as a function of one channel, c, on which it

1.2 A First Look 3

will communicate with a user of the calculator.

calc c = offer c {Add c→ let 〈x,c〉= receive c in
let 〈y,c〉= receive c in
send 〈x+ y,c〉

Neg c→ let 〈x,c〉= receive c in
send 〈−x,c〉}

On receiving a channel c, the function calc offers a choice of two behaviors,
labeled Add and Neg on c. In the Add case, it then expects to read two values
from c and send their sum along c. The Neg case is similar. The session type
of channel c encodes these interactions, so the type of calc is

calc : N{Add : ?Int.?Int.!Int.End,Neg : ?Int.!Int.End}→ End

where the session type !T.S denotes sending a value of type T followed by
behavior S, ?T.S denotes reading a value of type T followed by behavior S,
and N{` : S, . . . , `n : Sn} denotes offering an n-ary choice, with the behavior
of the ith branch given by Si.

Next, we consider a client for the calculator server:

user1 c = let c = select Add c in let 〈x,c〉= receive (send 〈19,send 〈23,c〉〉) in x

Like calc, the user1 function is passed the channel on which it communicates with
the calculator. It begins by selecting the Add behavior, which is compatible with the
choice offered by calc. Its subsequent behavior is unsurprising. We could give the
channel a type dual to that provided by the calculator:

user1 :⊕{Add : !Int.!Int.?Int.End,Neg : !Int.?Int.End}→ Int

However, this type overspecifies the behavior of user1 as the Neg branch is unused
in the definition of user1. In FST, we can use row polymorphism to abstract over the
irrelevant labels in a choice, as follows:

user1 : ∀ρ.⊕{Add : !Int.!Int.?Int.End;ρ}→ Int

This type specifies that the argument to user1 may be instantiated to any session
type that offers a choice of Add with a suitable behavior along with arbitrary other
choices. FST includes explicit type abstractions and type annotations on bound vari-
ables; we omit both in the examples in order to improve readability. Our concrete
implementation of FST in Links, is able to reconstruct omitted types and type ab-
stractions using a fairly standard Hindley-Milner-style type inference algorithm.

We can plug the calculator server and the user together as follows

let c = fork calc in user1 c

yielding the number 42. The fork primitive creates a new child process and a channel
through which it can communicate with its parent process.

4 Lightweight Functional Session Types

Recursive Session Types. The one-shot calculator server allows only one oper-
ation to be performed before the communication is exhausted. If we add support for
recursive session types, then we can define a calculator that allows an arbitrary num-
ber of operations to be performed. In order to make the example more interesting,
we define a calculator server with a memory.

calcrec : Int→ (rec σ .N{Add : ?Int.?Int.!Int.σ ,
Neg : ?Int.!Int.σ ,
M+ : ?Int.σ ,
MR : !Int.σ
Stop : End})→ End

calcrec m c = offer c {Add c → let 〈x,c〉= receive c in
let 〈y,c〉= receive c in
calcrec m (send 〈x+ y,c〉)

Neg c → let 〈x,c〉= receive c in
calcrec m (send 〈−x,c〉)

M+ c → let 〈x,c〉= receive c in calcrec (m+ x) c
MR c → let c = send 〈m,c〉 in calcrec m c}
Stop c→ c}

The idea is that selecting M+ adds a number to that currently stored in memory and
MR reads the current value of the memory. A user must now explicitly select Stop
in order to terminate communication with the server.

user2 : ∀ρρ ′.⊕{Add : !Int.!Int.?Int.⊕{Stop : End;ρ};ρ ′}→ Int
user2 c = let 〈x,c〉= receive (send 〈19,send 〈23,select Add c〉〉) in

select Stop c;x

With the row variables instantiated appropriately, we can plug user2 and the recursive
calculator together

let c = fork calcrec 0 in user2 c

again yielding 42.
The examples we have seen so far could be implemented using subtyping instead

of row polymorphism. We now consider a function that cannot be implemented with
subtyping. Suppose we wish to abstract over the memory add operation. We define
a function that can be used to communicate with any calculator server that supports
M+ and arbitrary other operations.

mAdd : ∀ρ.Int→ (rec σ .⊕{M+ : !Int.σ ;ρ})→ (rec σ .⊕{M+ : !Int.σ ;ρ})
mAdd n c = send 〈n,select M+ c〉

The key feature of this function is that the row variable ρ appears both contravari-
antly (inside the second argument) and covariantly (inside the return type) in the type

1.2 A First Look 5

of mAdd. Thus, in a system with subtyping but without row typing, one would have
to explicitly instantiate ρ , ruling out an extensible calculator server implementation.
Let us use mAdd to define a client that invokes multiple calculator operations.

user3 :
∀ρρ ′ρ ′′.
⊕{M+ : !Int.⊕{M+ : !Int.⊕{MR : ?Int.⊕{Stop : End;ρ};ρ ′};ρ ′′}}→ Int

user3 c = let c = select MR (mAdd 19 (mAdd 23 c)) in
let 〈x,c〉= receive c in
select Stop c;x

We can plug user3 and the recursive calculator together as before

let c = fork calcrec 0 in user3 c

again yielding 42.

Access Points. A key limitation of the examples we have seen so far is that they
allow only one user to connect to a calculator server at a time. Access points provide
a more flexible mechanism for session initiation than the fork primitive. Intuitively,
we can think of access points as providing a matchmaking service for processes. Pro-
cesses may either accept or request connections at a given access point; accepting and
requesting processes are paired nondeterministically. We now adapt our calculator
server to synchronize on an access point instead of a fixed channel:

calcAP : ∀α.Int→ AP (N{Add : ?Int.?Int.!Int.End,
Neg : ?Int.!Int.End,
M+ : ?Int.End,
MR : !Int.End})→ α

calcAP m a = let c = accept a in
offer c {
Add c→let 〈x,c〉= receive c in

let 〈y,c〉= receive c in
let c = send 〈x+ y,c〉 in calcAP m a

Neg c→let 〈x,c〉= receive c in
let c = send 〈−x,c〉 in calcAP m a

M+ c→ let 〈x,c〉= receive c in calcAP (m+ x) a
MR c→ let c = send 〈m,c〉 in calcAP m a}

Unlike calcrec, this calculator server never stops; rather, it will persist until the access
point is no longer accessible by any client code, at which point it may be garbage
collected. As calcrec never returns, it is polymorphic in its return type. In general,
an access point a has type AP S for some session type S. The expression accept a
returns an end point of type S and request a returns an end point of type S.

6 Lightweight Functional Session Types

We can connect our original user to calcAP. We use the new operator to create a
fresh access point and the spawn operator to create child threads (without any shared
channels).

let a = new in spawn (λ 〈〉.calcAP 0 a);user1 (request a)

The result of evaluation is again 42. More interestingly, we can connect multiple
clients to the same server concurrently.

let a = new in
let mAdd n a = send 〈n,select M+ (request a)〉 in
let mRecall a = let 〈x,c〉= receive (select M+ (request a)) in
spawn (λ 〈〉.calcAP 0 a);
spawn (λ 〈〉.mAdd 19 (request a));
spawn (λ 〈〉.mAdd 23 (request a));
mRecall a

The result of evaluating this code is non-deterministic. Depending on the scheduler
it may yield 0, 19, 23, or 42.

1.3 The Core Language

The calculus we present in this section, FST (F with Session Types), is a call-by-
value linear variant of System F with subkinding, row types, and session types. It
combines a variant of GV, our session-typed linear λ -calculus [13], with the row
typing and subkinding of our previous core language for Links [11], and the similar
approach to subkinding for linearity of Mazurak et al’s lightweight linear types [17].

As our focus is programming with session types rather than their logical con-
nections, we make some simplifications compared to our earlier work [13]. Specifi-
cally, we have a single unlimited self-dual type of closed channels, and we omit the
operation for linking channels together.

1.3.1 Syntax

To avoid duplication and keep the concurrent semantics of FST simple, we strive to
implement as much as possible in the functional core of FST, and limit the session
typing constructs to the essentials. The only session type constructors are for output,
input, and closed channels, and no special typing rules are needed for the primitives,
which are specified as constants. Other features such as choice and selection can be
straightforwardly encoded using features of the functional core.

Types. The syntax of types and kinds is given in Figure 1.1. The function type
A→Y B takes an argument of type A and returns a value of type B and has linearity

1.3 The Core Language 7

Ordinary Types A,B ::= A→Y B
| 〈R〉 | [R]
| ∀αK(Y,Z).A | α | α
| S

Session Types S ::= !A.S | ?A.S
| End | σ | σ

Row Types R ::= · | ` : P;R | ρ | ρ
Presence Types P ::= Abs | Pre(A) | θ | θ
Types T ::= A | R | P

Labels `
Label Sets L ::= {`1, . . . , `k}
Kinds J ::= K(Y,Z)
Primary Kinds K ::= Type

| RowL

| Presence
Linearity Y ::= • | ◦
Restriction Z ::= π | ?
Type Variables α,σ ,ρ,θ

Figure 1.1 Syntax of Types and Kinds

Y . (We write A→ B as an abbreviation for A→• B.) The record type 〈R〉 has fields
given by the labels of row R. The variant type [R] admits tagged values given by the
labels of row R. The polymorphic type ∀αK(Y,Z).A is parameterized over the type
variable α of kind K(Y,Z).

The input type ?A.S receives an input of type A and proceeds as the session type
S. Dually, the output type !A.S sends an output of type A and proceeds as the session
type S. The type End terminates a session; it is its own dual. We let σ range over
session type variables and the dual of session type variable σ is σ .

Row Types. Records and variants are defined in terms of row types. Intuitively, a
row type represents a mapping from labels to ordinary types. In fact, rows also track
absent labels, which are, for instance, needed to type polymorphic record extension
(a record can only be extended with labels that are not already present). A row type
includes a list of distinct labels, each of which is annotated with a presence type.
The presence type indicates whether the label is present with type A (Pre(A)), absent
(Abs), or polymorphic in its presence (θ).

Row types are either closed or open. A closed row type ends in ·. An open row
type ends in a row variable ρ or its dual ρ; the latter are only meaningful for session-
kinded rows. The mapping from labels to ordinary types represented by a closed row
type is defined only on the labels that are explicitly listed in the row type, and cannot
be extended. In contrast, the row variable in an open row type can be instantiated in
order to extend the row type with additional labels. As usual, we identify rows up to
reordering of labels.

`1 : P1;`2 : P2;R = `2 : P2;`1 : P1;R

Furthermore, absent labels in closed rows are redundant:

` : Abs;`1 : P1, . . . ;`n : Pn; ·= `1 : P1, . . . ;`n : Pn; ·

8 Lightweight Functional Session Types

Duality. The syntactic duality operation on type variables extends to a semantic
duality operation on session types and is lifted homomorphically to session row
types, and session presence types:

?A.S = !A.S
!A.S = ?A.S
End = End

α = α

· = ·
` : P;R = ` : P;R

ρ = ρ

Abs = Abs

Pre(S) = Pre(S)
θ = θ

Kinds. Types are classified by kinds. Ordinary types have kind Type. Row types
R have kind RowL where L is a set of labels not allowed in R. Presence types have
kind Presence.

The three primary kinds are refined with a simple subkinding discipline, simi-
lar to the system described in our previous work on Links [11] and the system of
Mazurak et al. on lightweight linear types [17]. A primary kind K is parameterized
by a linearity Y and a restriction Z. The linearity can be either unlimited (•) or linear
(◦). The restriction can be session typed (π) or unconstrained (?). The interpretation
of these parameters on row and presence kinds is pointwise on the ordinary types
contained within the row or presence types inhabiting those kinds. For instance,
the kind RowL (◦,π) is inhabited by row types of linear session type and the kind
Presence(•,?) by presence types of unlimited unconstrained ordinary types.

By convention we use α for ordinary type variables or for type variables of
unspecified kind, ρ for type variables of row kind, and θ for type variables of pres-
ence kind. We sometimes omit the primary kind, either inferring it from context or
assuming a default of Type. For instance, we write α•,? instead of αType(•,?).

Subkinding. The two sources of subkinding are the linearity and restriction pa-
rameters.

` • ≤ ◦ ` π ≤ ?

` Y ≤ Y ′ ` Z ≤ Z′

` K(Y,Z)≤ K(Y ′,Z′)

Our notion of linearity corresponds to usage, not alias freedom. Thus, any unlimited
type can be used linearly, but not vice versa.

Kind and Type Environments.

Kind Environments ∆ ::= · | ∆,α : K(Y,Z)
Type Environments Γ ::= · | Γ,x : A

Kind environments map type variables to kinds. Type environments map term vari-
ables to types.

1.3 The Core Language 9

Terms L,M,N ::= x | c
| λYxA.M | L M
| ΛαJ .V |M T
| 〈〉 | 〈`= M;N〉
| let 〈〉 ←M in N
| let 〈`= x;y〉 ←M in N
| (` M)R | case L {` x→M;y→ N}
| case⊥ L

Values V,W ::= x
| λYxA.M
| ΛαK(Y,Z).V
| 〈〉 | 〈`=V ;W 〉
| (` V)R

Constants c ::= send | receive | fork

Figure 1.2 Syntax of Terms and Values

Terms. The syntax of terms and values is given in Figure 1.2. We let x range
over term variables and c range over constants. Lambda abstractions λYxA.M are
annotated with linearity Y . Type abstractions ΛαJ .V are annotated with kind J. Note
that the body of a type abstraction is restricted to be a syntactic value in the spirit of
the ML value restriction (in order to avoid problems with polymorphic linearity and
with polymorphic session types). Records are introduced with the unit record 〈〉 and
record extension 〈`= M;N〉 constructs. They are eliminated with the binding forms
let 〈〉 ← M in N and let 〈`= x;y〉 ← M in N, the latter of which binds the value
labeled by ` to x and the remainder of the record to y. Conventional projections M.`
are definable using this form, but note that because projection discards the remainder
of the record, its applicability to records with linear components is limited. Variants
are introduced with the injection ` M and eliminated with case L {` x→M;y→ N}.
Hypothetical empty variants are eliminated with case⊥ L.

Concurrency. The concurrency features of FST are provided by special con-
stants. The term send 〈V,W 〉 sends V along channel W , returning the updated chan-
nel. The term receive W receives a value along channel W , and returns a pair of the
value and the updated channel. The term fork (λx.M) returns one end of a channel
and forks a new process M in which x is bound to the other end of the channel.

Notation. We use the following abbreviations:

let x = M in N def
= (λx.N) M

M;N def
= let x = M in N, x fresh

` : A def
= ` : Pre(A)

〈A1, . . . ,Ak〉
def
= 〈1 : A1; . . . ;k : Ak; ·〉

#»

`
def
= `1, . . . , `k

»

` : P def
= `1 : P1, . . . , `k : Pk

10 Lightweight Functional Session Types

We interpret n-ary record and case extension at the type and term levels in the
standard way. For instance

〈 # »

` : P;R〉 def
= 〈`1 : P1;〈. . . ;〈`n : Pn;R〉 . . .〉〉

and
case L {·} def

= case⊥ L
case L {z→ N} def

= let z = L in N
case L {` x→ N; χ} def

= case L {` x→ N;z→ case z {χ}}
where we let χ range over sequences of cases:

χ ::= · | z→ N | ` x→ N; χ

We write fv(M) for the free variables of M. We write ftv(T) for the free type
variables of a type T and ftv(Γ) for the free type variables of type environment Γ.
We write dom(Γ) for the domain of type environment Γ.

1.3.2 Typing and Kinding Judgments

The kinding rules are given in Figure 1.3. The kinding judgment ∆ ` A : K(Y,Z)
states that in kind environment ∆, the type A has kind K(Y,Z). Type variables in the
kind environment are well-kinded. The rules for forming function, record, variant,
universally quantified, and presence types follow the syntactic structure of types.
Because of the subkinding relation, a record is linear if any of its fields are linear,
and similarly for variants. Recall that RowL is the kind of row types whose labels
cannot appear in L . (To be clear, this constraint applies equally to absent and present
labels; it is a constraint on the form of row types. In contrast, ` : Abs in a row type
is a constraint on terms.) An empty row has kind RowL (Y,Z) for any label set L ,
linearity Y , and restriction Z. The use of disjoint union in the EXTENDROW rule
ensures that row types have distinct labels. A row type can only be used to build a
record or variant if it has kind Row /0; this constraint ensures that any absent labels in
an open row type are mentioned explicitly.

In Figure 1.4 we define two auxiliary judgments that for use in the typing rules.
The linearity judgment ∆ ` Γ : Y is the pointwise extension of the kinding judgment
restricted to the linearity component of the kind. It states that in kind environment ∆,
each type in environment Γ has linearity Y . The type environment splitting judgment
∆ ` Γ = Γ1 +Γ2 states that in kind environment ∆, the type environment Γ can be
split into type environments Γ1 and Γ2. Contraction of unlimited types is built into
this judgment.

The typing rules are given in Figure 1.5. The typing judgment ∆;Γ `M : A states
that in kind environment ∆ and type environment Γ, the term M has type A. We
assume that Γ and A are well-kinded with respect to ∆. If ∆ and Γ are empty (that is,
M is a closed term), then we will often omit them, writing `M : A for ·; · `M : A.

1.3 The Core Language 11

∆ ` T : K(Y,Z)

FUNCTION
∆ ` A : Type(Y,?) ∆ ` B : Type(Y ′,?)

∆ ` A→Y ′′ B : Type(Y ′′,?)

FORALL
∆,α : K(•,Z) ` A : Type(Y,?)

∆ ` ∀αK(Y ′,Z).A : Type(Y,?)

RECORD
∆ ` R : Row /0(Y,?)

∆ ` 〈R〉 : Type(Y,?)

VARIANT
∆ ` R : Row /0(Y,?)

∆ ` [R] : Type(Y,?)

INPUT
∆ ` A : Type(Y,?)
∆ ` S : Type(Y ′,π)

∆ ` ?A.S : Type(◦,π)

OUTPUT
∆ ` A : Type(Y,?)
∆ ` S : Type(Y ′,π)

∆ ` !A.S : Type(◦,π)

END

∆ ` End : Type(•,π)

EMPTYROW

∆ ` · : RowL (Y,Z)

EXTENDROW
∆ ` P : Presence(Y,Z) ∆ ` R : RowL]{`}(Y,Z)

∆ ` (` : P;R) : RowL (Y,Z)

ABSENT

∆ ` Abs : Presence(Y,Z)

PRESENT
∆ ` A : Type(Y,Z)

∆ ` Pre(A) : Presence(Y,Z)

TYVAR
α : K(Y,Z) ∈ ∆

∆ ` α : K(Y,Z)

DUALTYVAR
α : K(Y,π) ∈ ∆

∆ ` α : K(Y,π)

UPCAST
` J ≤ J′ ∆ ` T : J

∆ ` T : J′

Figure 1.3 Kinding Rules

∆ ` Γ : Y

L-EMPTY

∆ ` · : Y

L-EXTEND
∆ ` Γ : Y ∆ ` A : K(Y,Z)

∆ ` (Γ,x : A) : Y

∆ ` Γ = Γ1 +Γ2

C-EMPTY

∆ ` ·= ·+ ·

C-•
∆ ` A : Type(•,?) ∆ ` Γ = Γ1 +Γ2

∆ ` Γ,x : A = (Γ1,x : A)+(Γ2,x : A)

C-◦-LEFT
∆ ` A : Type(◦,?) ∆ ` Γ = Γ1 +Γ2

∆ ` Γ,x : A = (Γ1,x : A)+Γ2

C-◦-RIGHT
∆ ` A : Type(◦,?) ∆ ` Γ = Γ1 +Γ2

∆ ` Γ,x : A = Γ1 +(Γ2,x : A)

Figure 1.4 Linearity of Contexts and Context Splitting

12 Lightweight Functional Session Types

∆;Γ `M : A

VAR
∆ ` Γ : •

∆;Γ,x : A ` x : A

CONST
Σ(c) = A

∆; · ` c : A

LINLAM
∆;Γ,x : A `M : B

∆;Γ ` λ
◦xA.M : A→◦ B

UNLLAM
∆ ` Γ : •
∆;Γ,x : A `M : B

∆;Γ ` λ
•xA.M : A→• B

APP
∆;Γ1 ` L : A→Y B
∆;Γ2 `M : A

∆;Γ1 +Γ2 ` L M : B

POLYLAM
∆,α :: K(•,Z);Γ `V : A α /∈ ftv(Γ)

∆;Γ ` Λα
K(Y,Z).V : ∀αK(Y,Z).A

POLYAPP
∆;Γ `M : ∀αK(Y,Z).A
∆ ` T :: K(Y,Z)

∆;Γ `M T : A[α := T]

UNIT
∆ ` Γ : •

∆;Γ ` 〈〉 : 〈〉

LETUNIT
∆;Γ1 `M : 〈〉 ∆;Γ2 ` N : B

∆;Γ1 +Γ2 ` let 〈〉 ←M in N : B

CASEZERO
∆;Γ ` L : []

∆;Γ ` case⊥L : B

EXTEND
∆;Γ1 `M : A
∆;Γ2 ` N : 〈` : Abs;R〉

∆;Γ1 +Γ2 ` 〈`= M;N〉 : 〈` : Pre(A);R〉

LETRECORD
∆;Γ1 `M : 〈` : Pre(A);R〉
∆;Γ2,x : A,y : 〈R〉 ` N : B

∆;Γ1 +Γ2 ` let 〈`= x;y〉 ←M in N : B

INJECT
∆;Γ `M : A

∆;Γ ` (` M)R : [` : Pre(A);R]

CASE
∆;Γ1 ` L : [` : Pre(A);R]
∆;Γ2,x : A `M : B
∆;Γ2,y : [` : Abs;R] ` N : B

∆;Γ1 +Γ2 ` case L {` x→M;y→ N} : B

Figure 1.5 Typing Rules

We assume a signature Σ mapping constants to their types. The definition of Σ

on the basic concurrency primitives is given in Figure 1.6.
The EXTEND rule is strict in the sense that it requires a label to be absent from

a record before the record can be extended with the label. The CASE rule refines

Σ(send) = ∀α◦,?.∀σ◦,π .〈α, !α.σ〉 →• σ

Σ(receive) = ∀α◦,?.∀σ◦,π .?α.σ →• 〈α,σ〉
Σ(fork) = ∀σ◦,π .∀α•,?.(σ →◦ α)→• σ

Figure 1.6 Type Schemas for Constants

1.4 Extensions 13

the type of the value being matched so that in the type of the variable bound by the
default branch, the non-matched label is absent.

Selection and Choice. Traditional accounts of session types include types for
selection and choice. Following our previous work [13], inspired by Kobayashi [8],
we encode selection and choice using variant types.

⊕{R} def
= ![R].End

N{R} def
= ?[R].End

select ` M def
= fork (λx.send 〈` x,M〉)

offer L {χ} def
= let 〈x,z〉= receive L in case x {χ}

The encoding of select uses fork in order to generate a fresh channel of the con-
tinuation type. In the implementation of Links we support selection and choice in
the source language. This is primarily for programming convenience. One might
imagine desugaring these using the rules above, and then potentially rediscovering
them in the back-end for performance reasons.

Semantics. In the extended version of this article [15] we give an asynchronous
small-step operational semantics for FST. Following Gay and Vasconcelos [7], whose
calculus we call LAST (for Linear Asynchronous Session Types), we factor the se-
mantics into functional and concurrent reduction relations, and introduce explicit
buffers to provide asynchrony. For the functional fragment of the language, we give
a standard left-to-right call-by-value semantics. The semantics of the concurrent por-
tion of the language is given by a reduction relation on configurations of process and
buffers. This semantics differs from our previous work on GV [13] in that is relies
on explicit buffers, allowing asynchrony between the sending and receiving of a
message, and it uses standard β -reduction instead of weak explicit substitutions [10].
FST, like GV but unlike LAST, is deadlock-free, deterministic, and terminating.

1.4 Extensions

FST can be straightforwardly extended with additional features.
If we add a fixed point constant, then we lose termination, but deadlock freedom

and determinism continue to hold. Another standard extension supported by Links
is recursive types. While care is needed in defining the dual of a recursive session
type, the treatment is otherwise quite standard. Negative recursive types allow a fixed
point combinator to be defined, so again we lose termination, but deadlock freedom
and determinism continue to hold.

The price we pay for the strong properties we obtain is that our model of concur-
rency is rather weak. For instance, it gives us no way of implementing a server with

14 Lightweight Functional Session Types

any notion of shared state. Drawing on LAST (and previous work on session-typed π-
calculi), Links supports access points, which provide a much more expressive model
of concurrency at the cost of introducing deadlock. Nevertheless, it is often possible
to locally restrict code to a deadlock-free subset of Links.

1.4.1 Recursion

The grammar of session types we have presented so far is rather limited; for exam-
ple, it cannot express repeated behavior. As illustrated in Section 1.2, we can use
recursive session types to define a calculator that supports multiple calculations. In
order to support this kind of example, we can straightforwardly extend FST with
equi-recursive types. We add a kinding rule for recursive types and identify each
recursive type with its unrolling.

REC
∆,α : Type(Y,Z) ` A : Type(Y,Z)

∆ ` rec α
Y,Z.A : Type(Y,Z)

rec α
Y,Z.A = A[rec α

Y,Z.A/α]

It is well-known [2, 3] that recursive types complicate the definition of duality, par-
ticularly when the recursion variable appears as a carried type (that is, as A in ?A.S or
!A.S). For example, consider the simple recursive session type rec σ◦,π .?σ .σ . The
dual of this type is not rec σ◦,π .!σ .σ , as one would obtain by taking the dual of the
body of the recursive type directly, but is rec σ◦,π .!σ .σ instead.

Bernardi and Hennessy [2] point out that even existing definitions that correctly
handle the above instance of recursion variables appearing inside a carried type often
fail for other examples. The underlying difficulty arises from attempting to define
duality in a setting in which the duality operator may not be applied to atomic type
variables. Bernardi and Hennessy show that is is possible to give a correct definition
in such a setting, but we prefer the more compositional definition that arises naturally
when one admits duals of atomic type variables [16] (something that we want anyway
as our calculus is polymorphic).

rec σX ,π.S = rec σ
X ,π.(S[σ/σ])

Having added recursive types, one can of course encode a fixed point combinator.
Alternatively, we can add a fixed point constant to FST, even without recursive types:

Σ(fix) = ∀α•,?.∀β •,?.((α →• β)→• (α →• β))→• (α →• β)

Of course, these extensions allows us to write nonterminating programs, but it is
straightforward to show that subject reduction, progress, deadlock freedom, and
determinism continue to hold.

1.4 Extensions 15

1.4.2 Access Points

In order to extend FST with access points, we replace the constant fork with four
new constants:

Σ(spawn) = ∀α•,?.(〈〉 →◦ α)→• 〈〉
Σ(new) = ∀σ◦,π .〈〉 →• AP σ

Σ(accept) = ∀σ◦,π .AP σ →• σ

Σ(request) = ∀σ◦,π .AP σ →• σ

A process M is spawned with spawn M, where M is a thunk that returns an arbitrary
unlimited value; we can define spawn in terms of fork and vice versa:

spawn M def
= (λxEnd.〈〉)(fork (λxEnd.M 〈〉))

fork M def
= let z = new 〈〉 in spawn (λx.M (accept z));request z

Session-typed channels are created through access points. A fresh access point of
type AP S is created with new. Given an access point L of type AP S we can create
a new server channel (accept L), of session type S, or client channel (request L), of
session type S. Processes can accept and request an arbitrary number of times on any
given access point. Access points are synchronous in the sense that each accept will
block until it is paired up with a corresponding request and vice-versa.

Adding access points exposes the difference between asynchronous and syn-
chronous semantics. Here is an example of a term that reduces to a value under an
asynchronous semantics, but deadlocks under a synchronous semantics.

let z = new 〈〉 in
let z′ = new 〈〉 in
spawn (λ 〈〉.let x = accept z in

let y = accept z′ in send 〈0,x〉; let 〈v,y〉= receive y in v);
let x = request z′ in
let y = request z in send 〈0,x〉; let 〈v,y〉= receive y in v

Under an asynchronous semantics, both sends happen followed by both receives,
and the term reduces to the value 0. Under a synchronous semantics both sends are
blocked and the term is deadlocked.

Shared State. With access points we can implement shared state cells.

State A = AP (!A.End)

newCell : ∀α•,?.〈〉 → State α

newCell v = let x = new 〈〉 in spawn (λ 〈〉.send 〈v,accept x〉);x

put : ∀α•,?.State α → α → 〈〉
put x v = let 〈 , 〉= receive (request x) in spawn (λ 〈〉.send 〈v,accept x〉);〈〉
get : ∀α•,?.State α → α

get x = let 〈v, 〉= receive (request x) in spawn (λ 〈〉.send 〈v,accept x〉);v

16 Lightweight Functional Session Types

Nondeterminism. We can straightforwardly encode nondeterministic choice by
using an access point to generate a nondeterministic boolean value. Suppose that we
have ∆;Γ ` M : T and ∆;Γ ` N : T . The following term will nondeterministically
choose between terms M and N:

let z = new 〈〉 in
spawn (λ 〈〉.send 〈True,accept z〉);
spawn (λ 〈〉.send 〈False,accept z〉);
let 〈x, 〉= receive (request z) in
case x {True→M;False→ N}

One process is left waiting on accept z. However, as z cannot escape, this process
can be safely garbage collected.

Recursion. Recursion can in fact be encoded using access points. We have al-
ready seen that access points are expressive enough to simulate higher-order state.
We can now use Landin’s knot (back-patching) [9] to implement recursion. For
instance, the following term loops forever:

let x = newCell〈〉→〈〉 (λ 〈〉.〈〉) in put 〈x,λ 〈〉.get x 〈〉〉;get x 〈〉

1.5 Links with Session Types

Version 0.6 of the Links web programming language includes an extension based on
FST. It is available online from the Links website:

http://links-lang.org/

Links is a functional programming language for the web. From a single source pro-
gram, Links generates code to run on all three tiers of a web application: the browser,
the server, and the database. Links is a call-by-value language with support for ML-
style type inference (extended with support for first-class polymorphism similar to
that of provided by the impredicative polymorphism extension of GHC [22]). It
incorporates a row-type system that is used for records, variants, and effects, and
provides equi-recursive types. Subkinding is used to distinguish base types from
other types. This is important for enforcing the constraint that generated SQL queries
must return a list of records whose fields are of base type [11].

In order to keep the presentation uniform and self-contained we use the concrete
syntax of FST throughout rather than that of Links. However, all of the examples
presented in this article can be written directly in Links with essentially the same
abstract syntax, modulo the fact that Links uses Hindley-Milner style type inference.

http://links-lang.org/

1.5 Links with Session Types 17

1.5.1 Design Choices

Before implementing session types for Links we considered a number of design
choices. Linearity is central to our description of session types. Most existing func-
tional languages (including vanilla Links) do not provide native support for linear
types. We considered three broad approaches:

1. encode linearity using existing features of the programming language (as in Pu-
cella and Tov’s Haskell encoding of session types [19] or our Haskell encoding
of session types [14])

2. stratify the language so that the linear fragment of the language is separated out
from the host language (as in Toninho et al’s work [20])

3. bake linearity into the type system of the whole language (as in LAST [7])

The appeal of the first approach is that it does not require any new language fea-
tures, assuming the starting point is a language with a sufficiently rich type system—
for example, one that is able to conveniently encode parameterized monads [1], or
parameterized higher-order abstract syntax [5]. The second approach is somewhere
in between. It allows a linear language to be embedded in an existing host language
without disrupting the host language. The third approach requires linearity to per-
vade the whole type system, but opens up interesting possibilities for code reuse, for
instance through polymorphism over linearity [24] or through subkinding [17].

Given that we are in the business of developing our own programming language,
we decided to pursue the third option. We wanted to include the full expressivity
of our language in the linear fragment, so we did not see a significant benefit in
stratification, and we wanted to explore possibilities for code-reuse offered by baking
linearity into the type system. We were also presented with another choice regarding
how to accommodate code reuse. Given that Links already supported subkinding [11]
we elected to adopt the linear subkinding approach of Mazurak et al. [17].

An advantage of the LAST (and FST) approach to session typing is that channels
are first class and hence support compositional programming. This is in contrast
to the parameterized monad approach and approaches based on process calculi, in
which channels are just names. For example, in FST with recursive types we can
define broadcasting a value to a whole list of channels:

broadcast : ∀α•,?σ◦,π .α → LinList (!α.σ)→ LinList σ

broadcast v xs = linMap (λx.send 〈v,x〉) xs

where LinList A is a linear list data type and linMap is the map operation over linear
lists:

LinList A = rec α◦,?.[Nil;Cons : 〈A,α〉]

linMap : ∀α◦,?β (◦,?).(α → β)→ LinList α → LinList β

linMap f xs = case xs {Nil → Nil
Cons 〈x,xs〉 → Cons 〈 f x, linMap f xs〉}

18 Lightweight Functional Session Types

An attendant drawback to having first-class channels is that one must explicitly
rebind channels after each operation. This is in contrast to the parameterized monad
approach and approaches based on process calculi, which implicitly rebind channels
after each communication. In order to mitigate the need to explicitly rebind channels,
we introduce process calculus style syntactic sugar inspired by previous work on
the correspondence between classical linear logic and functional sessions [12, 13,
23]. To ease the job of writing a parser, we explicitly delimit process calculus style
syntactic sugar with special brackets /−..

/x(y).Q.
def
= let 〈x,y〉= receive x in /Q.

/x[M].Q.
def
= let x = send〈M,x〉 in /Q.

/` x.Q.
def
= let x = select ` x in /Q.

/offer x {`i→ Qi}i .
def
= offer x {`i(x)→ /Qi .}i

/{M}.
def
= M

We let Q range over process calculus style terms. The desugaring of input, output,
selection, and branching is direct. The {− } brackets allow values to be returned
from the tail of a process calculus expression. As an example, we can more concisely
rewrite the one-shot calculator server of Section 1.2 as follows:

sugarCalc= λc./ offer c {Add→ c(x).c(y).c[x+ y].{〈〉}
Neg→ c(x).c[−x].{〈〉}} .

In general, the syntactic sugar allows us to take advantage of a process-calculus style
for communication-heavy sequences of code, but switch back to a functional style
for compositional programming.

1.5.2 Type Reconstruction

Vanilla Links provides type inference, as in many other typed functional languages.
However, as a consequence of the typing of application, the types of higher-order
functions in FST are not uniquely determined by their uses. As an example, consider
the application operator in FST, implemented by the following term:

Λα
•,?
1 ,α•,?2 .λY1 f α1→Y2 α2 .λY3xα1 . f x

This term is well-typed for arbitrary choices of Y1 and Y2, and any choice of Y3 more
constraining than Y2, giving six distinct well-typed instantiations in all.

There are several ways we might hope to restore complete type inference, but
they each come with significant additional complexity. We could introduce bounded
quantification over linearities, combining the approaches of Tov and Pucella [21] and
Walker [24]; in addition to introducing new forms of quantification, the implications
of the resulting system for type inference have not been studied. Another approach

References 19

was recently proposed by Morris [18]. His approach captures all the variations of the
term above in a single term, and provides complete type inference. However, it relies
on qualified types, an alternative source of complexity. In Links, we prefer unlimited
function types τ →• τ ′ to linear function types τ →◦ τ ′ when inferring the types
of functions. The programmer is always free to override this choice by explicitly
providing types. This approach preserves the simplicity of the language and of type
reconstruction, but at the cost of some completeness.

1.6 Conclusion and Future Work

We have presented an account of lightweight functional session types, extending a
core session-typed linear λ -calculus [13] with: the row typing of the core language
for Links [11], the subkinding for linearity of Mazurak et al.’s lightweight linear
types [17], and the asynchrony and access points of Gay and Vasconcelos’s linear
type theory for asynchronous session types [7].

There is a significant gap between variants of FST with and without access
points. We would like to investigate abstractions that add some of the expressive
power of access points, but are better behaved. In particular, it would be interesting to
explore richer type systems for enforcing deadlock and race freedom, while allowing
some amount of stateful concurrency. More immediately, it would also be natural
to exploit the existing effect type system of Links to statically enforce desirable
properties, for instance, by associating the use of access points with a particular
effect type.

References

[1] R. Atkey. Parameterised notions of computation. J. Funct. Program., 19(3-4):335–376,
2009.

[2] G. Bernardi and M. Hennessy. Using higher-order contracts to model session types.
CoRR, abs/1310.6176v4, 2015.

[3] V. Bono and L. Padovani. Typing copyless message passing. Logical Methods in
Computer Science, 8(1), 2012.

[4] L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In
CONCUR. Springer, 2010.

[5] J. Carette, O. Kiselyov, and C. Shan. Finally tagless, partially evaluated: Tagless staged
interpreters for simpler typed languages. J. Funct. Program., 19(5):509–543, 2009.

[6] J. Garrigue, G. Keller, and E. Sumii, editors. ICFP. ACM, 2016.
[7] S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session types. J.

Funct. Program., 20(01):19–50, 2010.
[8] N. Kobayashi. Type systems for concurrent programs. In 10th Anniversary Colloquium

of UNU/IIST. Springer, 2002.

20 Lightweight Functional Session Types

[9] P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6(4):308–
320, 1964.

[10] J. Lévy and L. Maranget. Explicit substitutions and programming languages. In FSTTCS,
volume 1738 of LNCS, pages 181–200. Springer, 1999.

[11] S. Lindley and J. Cheney. Row-based effect types for database integration. In B. C.
Pierce, editor, TLDI. ACM, 2012.

[12] S. Lindley and J. G. Morris. Sessions as propositions. In PLACES, 2014.
[13] S. Lindley and J. G. Morris. A semantics for propositions as sessions. In J. Vitek, editor,

ESOP, volume 9032 of Lecture Notes in Computer Science, pages 560–584. Springer,
2015.

[14] S. Lindley and J. G. Morris. Embedding session types in haskell. In G. Mainland, editor,
Haskell, pages 133–145. ACM, 2016.

[15] S. Lindley and J. G. Morris. Lightweight functional session types (extended
version). http://homepages.inf.ed.ac.uk/slindley/papers/fst-extended.

pdf, 2016.
[16] S. Lindley and J. G. Morris. Talking bananas: structural recursion for session types. In

Garrigue et al. [6], pages 434–447.
[17] K. Mazurak, J. Zhao, and S. Zdancewic. Lightweight linear types in System F◦. In

A. Kennedy and N. Benton, editors, TLDI. ACM, 2010.
[18] J. G. Morris. The best of both worlds: linear functional programming without

compromise. In Garrigue et al. [6], pages 448–461.
[19] R. Pucella and J. A. Tov. Haskell session types with (almost) no class. In A. Gill, editor,

Haskell. ACM, 2008.
[20] B. Toninho, L. Caires, and F. Pfenning. Higher-order processes, functions, and sessions:

A monadic integration. In ESOP. Springer, 2013.
[21] J. A. Tov and R. Pucella. Practical affine types. In T. Ball and M. Sagiv, editors, POPL,

pages 447–458. ACM, 2011.
[22] D. Vytiniotis, S. Weirich, and S. L. Peyton Jones. FPH: first-class polymorphism for

Haskell. In J. Hook and P. Thiemann, editors, ICFP. ACM, 2008.
[23] P. Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014.
[24] D. Walker. Substructural Type Systems. In B. C. Pierce, editor, Advanced Topics in

Types and Programming Languages, chapter 1. MIT Press, 2005.

http://homepages.inf.ed.ac.uk/slindley/papers/fst-extended.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/fst-extended.pdf

	Introduction
	A First Look
	The Core Language
	Syntax
	Typing and Kinding Judgments

	Extensions
	Recursion
	Access Points

	Links with Session Types
	Design Choices
	Type Reconstruction

	Conclusion and Future Work

