
Do Be Do Be Do

Sam Lindley
The University of Edinburgh, UK

sam.lindley@ed.ac.uk

Conor McBride
University of Strathclyde, UK
conor.mcbride@strath.ac.uk

Craig McLaughlin
The University of Edinburgh, UK

craig.mclaughlin@ed.ac.uk

Abstract
We explore the design and implementation of Frank, a strict func-
tional programming language with a bidirectional effect type sys-
tem designed from the ground up around a novel variant of Plotkin
and Pretnar’s effect handler abstraction.

Effect handlers provide an abstraction for modular effectful pro-
gramming: a handler acts as an interpreter for a collection of com-
mands whose interfaces are statically tracked by the type system.
However, Frank eliminates the need for an additional effect han-
dling construct by generalising the basic mechanism of functional
abstraction itself. A function is simply the special case of a Frank
operator that interprets no commands. Moreover, Frank’s operators
can be multihandlers which simultaneously interpret commands
from several sources at once, without disturbing the direct style of
functional programming with values.

Effect typing in Frank employs a novel form of effect polymor-
phism which avoids mentioning effect variables in source code.
This is achieved by propagating an ambient ability inwards, rather
than accumulating unions of potential effects outwards.

We introduce Frank by example, and then give a formal ac-
count of the Frank type system and its semantics. We introduce
Core Frank by elaborating Frank operators into functions, case ex-
pressions, and unary handlers, and then give a sound small-step
operational semantics for Core Frank.

Programming with effects and handlers is in its infancy. We con-
tribute an exploration of future possibilities, particularly in combi-
nation with other forms of rich type system.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Applicative (functional) languages

Keywords algebraic effects, effect handlers, effect polymor-
phism, call-by-push-value, pattern matching, continuations, bidi-
rectional typing

1. Introduction
Shall I be pure or impure?

—Philip Wadler [60]

We say ‘Yes.’: purity is a choice to make locally. We introduce
Frank, an applicative language where the meaning of ‘impure’
computations is open to negotiation, based on Plotkin and Power’s

algebraic effects [45–48] in conjunction with Plotkin and Pretnar’s
handlers for algebraic effects [49]—a rich foundation for effectful
programming. By separating effect interfaces from their implemen-
tation, algebraic effects offer a high degree of modularity. Program-
mers can express effectful programs independently of the concrete
interpretation of their effects. A handler gives one interpretation
of the effects of a computation. In Frank, effect types (sometimes
called simply effects in the literature) are known as abilities. An
ability denotes the permission to invoke a particular set of com-
mands.

Frank programs are written in direct style in the spirit of effect
type systems [34, 57]. Frank operators generalise call-by-value
functions in two dimensions. First, operators handle effects. A
unary operator is an effect handler, acting as an interpreter for a
specified set of commands whose types are statically tracked by the
type system. A unary function is simply the special case of a unary
operator whose handled command set is empty. Second, operators
are n-ary, handling multiple computations over distinct command
sets simultaneously. An n-ary function is simply the special case of
an n-ary operator whose handled command sets are all empty.

The contributions of this paper are:

• the definition of Frank, a strict functional programming lan-
guage featuring a bidirectional effect type system, effect poly-
morphism, and effect handlers;

• operators as both multihandlers for handling multiple compu-
tations over distinct effect sets simultaneously and as functions
acting on values;

• a novel approach to effect polymorphism which avoids men-
tioning effect variables in source code, crucially relying on the
observation that one must always instantiate the effects of an
operator being applied with the ambient ability, that is, pre-
cisely those algebraic effects permitted by the current typing
context;

• a description of pattern matching compilation from Frank into
a fairly standard call-by-value language with unary effect han-
dlers, Core Frank;

• a straightforward small-step operational semantics for Core
Frank and a proof of type soundness;

• an exploration of directions for future research, combining
effect-and-handlers programming with features including sub-
structural typing, dependent types, and totality.

A number of other languages and libraries are built around
effect handlers and algebraic effects. Bauer and Pretnar’s Eff [7]
language is an ML-like language extended with effect handlers.
A significant difference between Frank and the original version of
Eff is that the latter provides no support for effect typing. Recently
Bauer and Pretnar have designed an effect type system for Eff [6].
Their implementation [50] supports Hindley-Milner type inference
and the type system incorporates effect subtyping.

Hillerström and Lindley [20–22] (Links [11]) and Leijen [30]
(Koka [29]) have extended existing languages with effect handlers
and algebraic effects. Both languages incorporate row-based effect
type systems and attempt to elide some effect variables from source
code, but neither eliminates effect variables to the extent that Frank
does. Dolan et al. [12] built Multicore OCaml by extending OCaml
with support for effect handlers and algebraic effects. Multicore
OCaml does not include an effect type system.

Whereas Frank is bidirectionally typed, all of these other lan-
guages use Hindley-Milner type inference. None of the other lan-
guages supports multihandlers and none of those with effect typing
allow effect variables to be omitted to the degree that Frank does.

Kammar et al. [25] describe a number of effect handler libraries
for languages ranging from Racket, to SML, to OCaml, to Haskell.
Apart from the Haskell library, their libraries have no effect typing
support. The Haskell library takes advantage of type classes to
simulate an effect type system not entirely dissimilar to that of
Frank. As Haskell is lazy, the Haskell library cannot be used to
write direct-style effectful programs—one must instead adopt a
monadic style. Moreover, although there are a number of ways of
almost simulating effect type systems in Haskell, none is without
its flaws. Kiselyov and collaborators [26, 27] have built another
Haskell library for effect handlers, making different design choices.

Brady’s effects library [8] provides a DSL for programming
with effects in the dependently typed language Idris [9]. Like the
Haskell libraries, Brady’s library currently requires the program-
mer to write effectful code in a monadic style.

McBride’s Shonky [41] is essentially an untyped version of
Frank, with a somewhat different concrete syntax. We have built
a prototype implementation of Frank by translating typed Frank
programs into Shonky. The implementation is available at the fol-
lowing URL:

https://www.github.com/frank-lang/frank

The rest of the paper is structured as follows. Section 2 intro-
duces Frank by example. Section 3 presents abstract syntax and a
type system for Frank. Section 4 describes how to elaborate oper-
ators into Core Frank, a language of plain call-by-value functions,
explicit case analysis, and unary handler constructs. Section 5 gives
an operational semantics for Core Frank and proves type sound-
ness. Section 6 discusses how to store computations in data struc-
tures. Section 7 describes the status of our implementation. Sec-
tion 8 outlines related work. Section 9 discusses future work and
Section 10 concludes.

2. A Frank Tutorial
‘To be is to do’—Socrates.
‘To do is to be’—Sartre.
‘Do be do be do’—Sinatra.

—anonymous graffiti, via Kurt Vonnegut [59]

Frank is a functional programming language with effects and
handlers in the spirit of Eff [7], controlled by a type system inspired
by Levy’s call-by-push-value [32]. Doing and Being are clearly
separated, and managed by distinguished notions of computation
and value types.

2.1 Data Types and First-Order Functions
Concrete values live in inductive data types. By convention (not
compulsion), we give type constructors uppercase initials, and may
apply prefixed to parameters, also written uppercase. Data con-
structors are prefix and, again by convention, initially lowercase.

data Zero =
data Unit = unit

data Bool = tt | ff

data Nat = zero | suc Nat
data List X = nil | cons X (List X)

data Pair X Y = pair X Y

We choose to treat constructors as distinct from functions, and
constructors must always be fully applied.

We can write perfectly ordinary first-order functional programs
by pattern matching. Type signatures are compulsory, universally
quantifying implicitly over freely occurring type variables, and
insisting on the corresponding parametric polymorphism.

append : List X -> List X -> List X
append nil ys = ys
append (cons x xs) ys = cons x (append xs ys)

2.2 Effect Polymorphism in Ambient Silence
Computations, such as functions, have computation types, which
embed explicitly into the value types: braces play the role of ‘sus-
penders’ in types and values. Accordingly, we can write typical
higher-order functions

map : {X -> Y} -> List X -> List Y
map f nil = nil
map f (cons x xs) = cons (f x) (map f xs)

and apply them in the usual way:

map {n -> n+1} (cons 1 (cons 2 (cons 3 nil)))
= cons 2 (cons 3 (cons 4 nil))

A value type A is a data type D R1 ... Rn, a suspended com-
putation type {C}, or a type variable X. A computation type resem-
bles a function type T1 -> ... -> Tm -> [I1 ... In]B with
m ports and a peg showing the ability the computation needs—a
bracketed list of n enabled interfaces—and the value type it de-
livers. In Frank, names always bind values (a simplifying decision
which we shall re-examine in section 9). Top level definitions give
names to suspended computations, but we omit the outer braces in
their types for convenience.

Type checking separates cleanly into checking the compatibility
of value types and checking that required abilities are available.
Empty brackets may be omitted. We could have written

map : {X -> []Y} -> List X -> []List Y

which really means

map : {{X -> []Y} -> List X -> []List Y}

but have a care: the empty bracket stands for the ambient ability,
not for purity; the map operator is implicitly effect-polymorphic.

The type of map in Frank says that whatever ability an instance
receives will be offered in turn to the operator that acts on each el-
ement. That is, we have written something like ML’s map but with-
out giving up control over effects, and we have written something
like Haskell’s map but acquired a function as general as its monadic
mapM, as we shall see just as soon as we acquire nontrivial ability.

2.3 Controlling Evaluation
Frank is a (left-to-right) call-by-value language, so we should be
careful when defining control operators. For instance, we may
define sequential composition operators

fst : X -> Y -> X snd : X -> Y -> Y
fst x y = x snd x y = y

Both arguments are evaluated (relative to the ambient ability), be-
fore one value is returned. We take the liberty of writing snd x y
as x; y, echoing the ML semicolon, and note its associativity.

https://www.github.com/frank-lang/frank

Meanwhile, avoiding evaluation must be done explicitly by
suspending computations. The following operator

iffy : Bool -> X -> X -> X
iffy tt t f = t
iffy ff t f = f

is the conditional expression operator which forces evaluation of
the condition and both branches, before choosing between the val-
ues. To write the traditional conditional, we must therefore suspend
the second and third arguments:

if : Bool -> {X} -> {X} -> X
if tt t f = t!
if ff t f = f!

Again, Frank variables stand for values, but t and f are not values
of type X. Rather, they are suspended computations of type {X},
but we must do just one. The postfix ! denotes nullary application
of a suspended computation.

We write suspended computations in braces, with a choice of
zero or more pattern matching clauses separated by | symbols. In
a nullary suspension, we have one choice, which is just written as
an expression in braces, for instance,

if fire! {launch missiles} {unit}

assuming that launch is a command permitted by the ambient
ability, granted to both branches by the silently effect-polymorphic
type of if.

With non-nullary suspensions we can simulate case-expressions
inline using reverse application

on : X -> {X -> Y} -> Y
on x f = f x

as in this example of the short-circuited ‘and’:

shortAnd : Bool -> {Bool} -> Bool
shortAnd x c = on x { tt -> c! | ff -> ff }

2.4 Abilities Collect Interfaces; Interfaces Offer Commands
Abilities (Frank’s realisation of algebraic effects) are collections
of parameterised interfaces, each of which describes a choice of
commands (known elsewhere as operations [49]). Command types
may refer to the parameters of their interface but are not otherwise
polymorphic. Here are some simple interfaces.

interface Send X = send : X -> Unit

interface Receive X = receive : X

interface State S = get : S
| put : S -> Unit

interface Abort = aborting : Zero

The send command takes an argument of type X and returns a value
of type Unit. The receive command returns a value of type X. The
State interface offers get and set commands. Note that, unlike
data constructors, commands are first-class values. In particular,
while Zero is uninhabited, {[Abort]Zero} contains the value
aborting. Correspondingly, we can define a polymorphic abort
which we can use whenever Abort is enabled

abort : [Abort]X
abort! = on aborting! {}

by empty case analysis. The postfix ! attached to abort denotes
the definition of a nullary operator.

We may use the silent effect polymorphism of map nontrivially
to send a list of elements, one at a time:

sends : List X -> [Send X]Unit
sends xs = map send xs; unit

The reason this type checks at all is because map is implicitly
polymorphic in its effects. The bracket [Send X] demands that
the ambient ability permits at least the Send X commands. The
type of map works with any ambient ability, hence certainly those
which permit Send X, and it passes that ability to its computation
argument, which may thus be send.

However, the following does not typecheck, because Send X
has not been included in the peg of bad.

bad : List X -> Unit
bad xs = map send xs; unit

There is no effect inference in Frank. The typing rules’ conclu-
sions do not accumulate the abilities of the programs in their pre-
misses. Rather, we are explicit about what the environment makes
possible—the ambient ability—and where and how that changes.

In designing Frank we have sought to maintain the benefits of
effect polymorphism whilst avoiding the need to write effect vari-
ables in source code. There are no explicit effect variables in any of
the examples in this paper. In an earlier draft of this paper we ruled
out explicit effect variables by fiat. But doing so placed artificial
restrictions on the formalism (see Section 3), so we do now permit
them. A case where explicit effect variables may be useful is in ma-
nipulating data types containing multiple suspended computations
with different abilities; we are yet to explore compelling use cases.

2.5 Direct Style for Monadic Programming
We work in a direct applicative style. Where the output of one
computation is used as the input to another, we may just write
an application, or a case analysis, directly. For instance, we can
implement the result of repeatedly reading lists until one is empty
and concatenating the result.

catter : [Receive (List X)]List X
catter! = on receive! { nil -> nil

| xs -> append xs catter! }

In Haskell, receive! would be a monadic computation ask
unsuitable for case analysis—its value would be extracted and
named before inspection, thus:

catter :: Reader (List a) (List a) -- Haskell
catter = do
xs <- ask
case xs of

[] -> return []
xs -> do ys <- catter; return (xs ++ ys)

The latter part of catter could perhaps be written without nam-
ing ys as (xs ++) <$> catter, or even, with ‘idiom brackets’,
(|pure xs ++ catter|), but always there is extra plumbing
(here do-notation and return) whose only purpose is to tell the
compiler where to parse a type as effect value and where just as
value . The choice to be frank about the separation of effects from
values in the syntax of types provides a stronger cue to the status
of each component and reduces the need for plumbing. We do not,
however, escape the need to disambiguate doing receive! from
being receive.

In the same mode, we can implement the C++ ‘increment c,
return original value’ operation as follows.

next : [State Int]Int
next! = fst get! (put (get! + 1))

In Haskell next would have to be explicitly sequentialised.

next :: State Int Int
next = do x <- get

y <- get
put y+1
return x

(We have written get twice to match the preceding Frank code, but
assuming a standard implementation of state one could of course
delete the second get and use x in place of y.) The absence of
explicit plumbing in Frank depends crucially on the fact that Frank,
unlike Haskell, has a fixed evaluation order.

2.6 Handling by Application
In a call-by-value language a function application can be seen as a
particularly degenerate mode of coroutining between the function
and its argument. The function process waits while the argument
process computes to a value, transmitted once as the argument’s
terminal action; on receipt, the function post-processes that value
in some way, before transmitting its value in turn.

Frank is already distinct from other languages with effect han-
dlers in its effect type system, but the key departure it makes in
program style is to handle effects without any special syntax for in-
voking an effect handler. Rather, the ordinary notion of ‘function’
is extended with the means to offer effects to arguments, invoked
just by application. That is, the blank space application notation is
used for more general modes of coroutining between operator and
arguments than the return-value-then-quit default. For instance, the
usual behaviour of the ‘state’ commands can be given as follows.

state : S -> <State S>X -> X
state _ x = x
state s <get -> k> = state s (k s)
state _ <put s -> k> = state s (k unit)

Let us give an example using state before unpacking its definition.
We might pair the elements of a list with successive numbers.

index : List X -> List (Pair Int X)
index xs = state 0 (map {x -> pair next! x} xs)

Allowing string notation for lists of characters we obtain:

index "abc" = cons (pair 0 ’a’)
(cons (pair 1 ’b’)

(cons (pair 2 ’c’) nil))

What is happening?
The type of state shows us that Frank operators do not merely

have input types, but input ports, specifying not only the types of
the values expected, but also an adjustment to the ambient ability,
written in chevrons and usually omitted when it is the identity (as
in all of the examples we have seen so far). Whatever the ambient
ability might be when state is invoked, the initial state should
arrive at its first port using only that ability; the ambient ability at
its second port will include the State S interface, shadowing any
other State A interfaces which might have been present already.
Correspondingly, by the time index invokes map, the ambient
ability includes State Int, allowing the elementwise operation
to invoke next!.

The first equation of state explains what to do if any value ar-
rives on the second port. In Frank, a traditional pattern built from
constructors and variables matches only values, so the x is not a
catch-all pattern, as things other than values can arrive at that port.
In particular, requests can arrive at the second port, in accordance
with the State S interface. A request consists of a command in-
stance and a continuation. Requests are matched by patterns in
chevrons which show the particular command instance being han-
dled left of ->, with a pattern variable standing for the continuation

on the right. The patterns of state thus cover all possible signals
(that is, values or requests) advertised as acceptable at its ports.

Having received signals for each argument the state operator
should handle them. If the input on the second port is a value, then
that value is returned. If the input on the second port is a request,
then the state operator is reinvoked with a new state (which is
simply the old state in the case of get and s in the case of put s)
in the first port and the continuation invoked in the second port.

We emphasise a key difference between Frank and most other
languages supporting algebraic effect handlers (including Eff,
Koka, and Multicore OCaml [12]): Frank’s continuation variables
are shallow in that they capture only the rest of the subordinated
computation, not the result of handling it, allowing us to change
how we carry on handling, for instance, by updating the state. In
contrast, Multicore OCaml’s continuation variables are deep in that
invoking them implicitly reinvokes the handler. Consider the defi-
nition for state in Multicore OCaml

effect Put : t -> unit
let put x = perform (Put x)

effect Get : t
let get () = perform Get

let state m =
match m () with
| x -> fun s -> x
| effect Get k -> fun s -> continue k s s
| effect (Put s) k -> fun _ -> continue k () s

Multicore OCaml provides three special keywords for algebraic ef-
fects and handlers: effect declares a command or marks a request
pattern, perform invokes a command, and continue invokes a
continuation. The shallow implementation of state in Frank re-
quires explicit recursion. The deep implementation of state in
Multicore OCaml performs the recursion implicitly. On the other
hand, the shallow version allows us to thread the state through the
operator, whereas the deep version relies on interpreting a state-
ful computation as a function and threading the state through the
continuation.

Shallow handlers can straightforwardly express deep handlers
using explicit recursion. Deep handlers can encode shallow han-
dlers in much the same way that iteration (catamorphism, fold)
can encode primitive recursion (paramorphism), and with much the
same increase in complexity. On the other hand, handlers which ad-
mit a deep implementation have a more regular behaviour and ad-
mit easier reasoning, just as ‘folds’ offer specific proof techniques
not available to pattern matching programs in general. Kammar
et al. [25] provide a more in-depth discussion of the trade-offs be-
tween deep and shallow handlers.

2.7 Handling on Multiple Ports
Frank allows the programmer to write n-ary operators, so we can
offer different adjustments to the ambient ability at different ports.
For instance, we can implement a pipe operator which matches
receive commands downstream with send commands upstream.

pipe : <Send X>Unit -> <Receive X>Y -> [Abort]Y
pipe <send x -> s> <receive -> r> =
pipe (s unit) (r x)

pipe <_> y = y
pipe unit <_> = abort!

The type signature conveys several different things. The pipe op-
erator must handle all commands from Send X on its first port and
all commands from Receive X on its second port. We say that
pipe is thus a multihandler. The first argument has type Unit and

the second argument has type Y. The operator itself is allowed to
perform Abort commands and returns a final value of type Y.

The first line implements the communication between producer
and consumer, reinvoking pipe with both continuations, giving the
sent value to the receiver. The second line makes use of the catch-all
pattern <_> which matches either a send command or an attempt to
return a value: as the consumer has delivered a value the producer
can be safely discarded. The third line covers the case which falls
through: the catch-all pattern must be a receive command, as the
value case has been treated already, but the producer has stopped
sending, so abort is invoked to indicate a ‘broken pipe’.

We can run pipe as follows:

pipe (sends (cons "do" (cons "be" (cons "" nil))))
catter!

= "dobe"

Moreover, if we write

spacer : [Send (List Char),
Receive (List Char)]Unit

spacer! = send receive; send " "; spacer!

we find instead that

pipe (sends (cons "do" (cons "be" (cons "" nil))))
(pipe spacer! catter!)

= "do be "

where the spacer’s receives are handled by the outer pipe, but
its sends are handled by the inner one. The other way around also
works as it should, that is, pipe is associative.

pipe (pipe
(sends (cons "do" (cons "be" (cons "" nil))))
spacer!) catter!

= "do be "

There is nothing you can do with simultaneous handling that
you cannot also do with mutually recursive handlers for one process
at a time. The Frank approach is, however, more direct. Kammar
et al. [25] provide both deep and shallow handler implementations
for pipes using their Haskell effects library. Both implementations
are significantly more complex than the above definition in Frank,
requiring the unary handler for sending (receiving) to maintain a
suspended computation to the consumer (producer) to continue the
interaction upon receipt of a command. Moreover, the deep handler
implementation depends on a non-trivial mutually recursive data
type, which places considerable cognitive load on the programmer.
So, even in systems such as Multicore OCaml and Eff, offering a
more aesthetic syntax than Kammar et al.’s library, a programming
burden remains.

Let us clarify that the adjustment marked in chevrons on a port
promises exactly what will be handled at that port. The peg of pipe
requires the ambient ability to support Abort, and its ports offer to
extend that ability with Send X and Receive X, respectively, so
the producer and consumer will each also support Abort. However,
because neither port advertises Abort in its adjustment, the imple-
mentation of pipe may not intercept the aborting command. In
particular, the catch-all pattern <_> matches only the signals adver-
tised at the relevant port, with other commands forwarded transpar-
ently to the most local port offering the relevant interface. No Frank
process may secretly intercept commands. Of course, the pipe op-
erator can prevent action by ignoring the continuation to a send on
its first port or a receive on its second, but it cannot change the
meaning of other commands.

One can simulate adjustments using a more conventional effect
type system with abilities on both ports and pegs. However, this
yields more verbose and less precise types. For instance, the type

of the first argument to pipe becomes <Abort, Send X>Unit
instead of <Send X>Unit. The type of the port has been polluted
by the ability of the peg and it now fails to advertise precisely which
interfaces it handles.

2.8 The Catch Question
Frank allows us to implement an ‘exception handler’ with a slightly
more nuanced type than is sometimes seen.

catch : <Abort>X -> {X} -> X
catch x _ = x
catch <aborting -> _> h = h!

The first argument to catch is the computation to run that may raise
an exception. The second argument is the alternative computation
to run in the case of failure, given as a suspended computation al-
lowing us to choose whether to run it. We do not presume that the
ambient ability in which catch is executed offers the Abort inter-
face. In contrast, a typical treatment of exceptions renders catch
as the prioritised choice between two failure-prone computations.
For instance, the Haskell mtl library offers

catchError :: -- Haskell
MonadError () m => m a -> (() -> m a) -> m a

where the exception handler is always allowed to throw an error.
In other words, this Haskell typing unnecessarily makes the ability
to abort non-local. Leijen makes a similar observation in Koka’s
treatment of exceptions [29].

Frank’s effect polymorphism ensures that the alternative com-
putation is permitted to abort if and only if catch is, so we lose no
functionality but gain precision. Moreover, we promise that catch
will trap aborting only in its first port, so that any failure (or any-
thing else) that h! does is handled by the environment—indeed,
you can see that h! is executed as a tail call, if at all, thus outside
the scope of catch. In the case that the ambient is allowed to abort,
then when the adjustment is applied to the ambient ability we ob-
tain an ability with two instances of the Abort interface. Just like
Koka, Frank resolves any replication of interfaces by shadowing,
discarding all but the last instance of an interface in an ability.

2.9 The Disappearance of Control
Using one of the many variations on the theme of free monads,
we could implement operators like state, pipe and catch as
abstractions over computations reified as command-response trees.
By contrast, our handlers do not abstract over computations, nor do
they have computation-to-computation handler types distinct from
value-to-computation function types [6, 25].

Frank computations are abstract: a thing of type {C} can be
communicated or invoked, but not inspected. Ports explain which
values are expected, and operators match on those values directly,
without apparently forcing a computation, yet they also admit other
specific modes of interaction, handled in specific ways.

Semantically, then, a Frank operator must map computation
trees to computation trees, but we write its action on values directly
and its handling of commands minimally. The machinery by which
commands from the input not handled locally must be forwarded
with suitably wrapped continuations is hard-wired, as we shall
make explicit in Sections 4 and 5.

However, let us first give the type system for these programs and
show how Frank’s careful silences deliver the power we claim.

3. A Frank Formalism
A value is. A computation does.

—Paul Blain Levy [32]

In this section we give a formal presentation of the abstract syntax
and type system of Frank.

Types

(value types) A,B ∶∶=D R ∣ {C} ∣X
(computation types) C ∶∶= T → G
(ports) T ∶∶= ⟨∆⟩A
(pegs) G ∶∶= [Σ]A
(type variables) Z ∶∶=X ∣ [E]
(type arguments) R ∶∶= A ∣ [Σ]
(polytypes) P ∶∶= ∀Z.A
(abilities) Σ ∶∶= ∅ ∣ Σ, I R ∣ E
(adjustments) ∆ ∶∶= ι ∣ ∆ + I R
(type environments) Γ ∶∶= ⋅ ∣ Γ, x ∶ A ∣ f ∶ P

Terms
(uses) m ∶∶= x ∣ f ∣ c ∣m s
(constructions) n ∶∶=m ∣ k n ∣ {e}

∣ let f ∶ P = n in n′

∣ letrec f ∶ P = e in n
(spines) s ∶∶= n
(computations) e ∶∶= r ↦ n

(computation patterns) r ∶∶= p ∣ ⟨c p → z⟩ ∣ ⟨x⟩
(value patterns) p ∶∶= k p ∣ x

Figure 1. Frank Abstract Syntax

3.1 Syntax
The abstract syntax of Frank is given in Figure 1.

The types are divided into value types and computation types.
Value types are data types (D R), suspended computation types
({C}), or type variables (X).

Computations types are build from input ports T and output
pegs G. A computation type

C = ⟨∆1⟩A1 → ⋅ ⋅ ⋅→ ⟨∆n⟩An → [Σ]B
has ports ⟨∆1⟩A1, . . . , ⟨∆n⟩An and peg [Σ]B. A computation
of type C must handle effects in ∆i on the i-th argument. All
arguments are handled simultaneously. As a result it returns a value
of type B and may perform effects in Σ.

A port ⟨∆⟩A constrains an input. The adjustment ∆ describes
the difference between the ambient effects and the effects of the
input, in other words, those effects occurring in the input that must
be handled on that port. A peg [Σ]A constrains an output. The
effects Σ are those that result from running the computation.

Effect Polymorphism with an Invisible Effect Variable Consider
the type of map in Section 2:

{X → Y }→ List X → List Y

Modulo the braces around the function type, this is the same type a
functional programmer might expect to write in a language without
support for effect typing. In fact, this type desugars into:

⟨ι⟩{⟨ι⟩X → [ε]Y }→ ⟨ι⟩(List X)→ [ε](List Y)
We adopt the convention that the identity adjustment ι may be
omitted from adjustments and ports.

I1 R1, . . . , In Rn ≡ ι + I1 R1 + ⋅ ⋅ ⋅ + In Rn
A ≡ ⟨ι⟩A

Similarly, we adopt the convention that effect variables may be
omitted from abilities and pegs.

I1 R1, . . . , In Rn ≡ ε, I1 R1, . . . , In Rn
A ≡ [ε]A

Here ε is a distinguished effect variable, the implicit effect variable
that is fresh for every type signature in a program. This syntactic
sugar ensures that we need never write the implicit effect variable
ε anywhere in a Frank program.

We let X range over ordinary type variables and E range over
effect variables; polytypes may be polymorphic in both. Though we
avoid effect variables in source code, we are entirely explicit about
them in the abstract syntax and the type system.

Data Types and effect interfaces are defined globally. A defini-
tion for data type D(Z) consists of a collection of data constructor
signatures of the form k ∶ A, where the type/effect variables Z
may be bound in the data constructor arguments A. Each data con-
structor belongs to a single data type and may appear only once
in that data type. We write D(D R,k) for the type arguments of
constructor k of data type D R. A definition for effect interface
I(Z) consists of a collection of command signatures of the form
c ∶ A → B, denoting that command c takes arguments of types A
and returns a value of type B. The types A and B may all depend
on Z. Each command belongs to a single interface and may appear
only once in that interface. We write I(I R, c) for the signature of
command c of effect interface I R

Effect Parameters with an Invisible Effect Variable In the case
that the first parameter of a data type or effect interface definition
is its only effect variable ε, then we may omit it from the definition
(we give an example in Section 6).

An ability is a collection of interfaces initiated either with the
empty ability ∅ (yielding a closed ability) or an effect variable E
(yielding an open ability). Order is important, as repeats are per-
mitted, in which case the right-most interface overrides all others
with the same name. Closed abilities are not normally required, but
they can be used to enforce purity, for instance. In ASCII source
code we write ∅ as 0.

Adjustments modify abilities. The identity adjustment ι leaves
an ability unchanged. An adjustment ∆ + I R extends an ability
with the interface I R. The action of an adjustment ∆ on an ability
Σ is given by the ⊕ operation.

Σ⊕ ι = Σ
Σ⊕ (∆ + I R) = (Σ⊕∆), I R

Type environments distinguish monomorphic and polymorphic
variables.

Frank follows a bidirectional typing discipline [44]. Thus terms
are subdivided into uses whose type may be inferred, and con-
structions which may be checked against a type. Uses comprise
monomorphic variables (x), polymorphic variables (f), commands
(c), and applications (m s). Constructions comprise uses (m),
data constructor instances (k n), suspended computations ({e}),
polymorphic let (let f ∶ P = n in n′) and mutual recursion
(letrec f ∶ P = e in n). A spine (s) is a sequence of construc-
tions (n). We write ! for the empty spine.

A computation is defined by a sequence of pattern matching
clauses (r ↦ n). Each pattern matching clause takes a sequence of
computation patterns (r). A computation pattern is either a stan-
dard value pattern (p), a request pattern (⟨c p → z⟩), which matches
command c binding its arguments to p and the continuation to z, or
a catch-all pattern ⟨x⟩, which matches any value or handled com-
mand, binding it to x. A value pattern is either a data constructor
pattern (k p) or a variable pattern x.

Example To illustrate how source programs may be straightfor-
wardly represented as abstract syntax, we give the abstract syn-
tax for an example involving the map, state, and index operators

Γ [Σ]-- m⇒ A

VAR
x ∶ A ∈ Γ

Γ [Σ]-- x⇒ A

POLYVAR

f ∶ ∀Z.A ∈ Γ

Γ [Σ]-- f ⇒ θ(A)

COMMAND

c ∶ A→ B ∈ Σ

Γ [Σ]-- c⇒ {⟨ι⟩A→ [Σ]B}

APP

Γ [Σ]-- m⇒ {⟨∆⟩A→ [Σ′]B} Σ′ = Σ Γ [Σ⊕∆]-- n ∶A
Γ [Σ]-- m n⇒ B

Γ [Σ]-- n ∶A

SWITCH
Γ [Σ]-- m⇒ A A = B

Γ [Σ]-- m ∶B

DATA

k A ∈D R Γ [Σ]-- n ∶A
Γ [Σ]-- k n ∶D R

THUNK
Γ ⊢ e ∶C

Γ [Σ]-- {e} ∶ {C}

LET

P = ∀Z.A Γ [Σ]-- n ∶A Γ, f ∶ P [Σ]-- n′ ∶B
Γ [Σ]-- let f ∶ P = n in n′ ∶B

LETREC

P = ∀Z.{C} Γ, f ∶ P ⊢ e ∶C Γ, f ∶ P [Σ]-- n ∶B
Γ [Σ]-- letrec f ∶ P = e in n ∶B

Γ ⊢ e ∶C
COMP
(ri,j ∶ Tj --[Σ] Γ′i,j)i,j (Γ, (Γ′i,j)j [Σ]-- ni ∶B)i

(ri,j)i,j covers (Tj)j
Γ ⊢ ((ri,j)j ↦ ni)i ∶ (Tj →)j [Σ]B

p ∶A ⊣ Γ

P-VAR

x ∶A ⊣ x ∶ A

P-DATA

k A ∈D R p ∶A ⊣ Γ

k p ∶D R ⊣ Γ

r ∶ T --[Σ] Γ

P-VALUE
p ∶A ⊣ Γ

p ∶ ⟨∆⟩A --[Σ] Γ

P-REQUEST

c ∶ A→ B ∈ ∅⊕∆ (pi ∶Ai ⊣ Γi)i
⟨c p→ z⟩ ∶ ⟨∆⟩B′ --[Σ] Γ, z ∶ ⟨ι⟩B → [Σ⊕∆]B′

P-CATCHALL

⟨x⟩ ∶ ⟨∆⟩A --[Σ] x ∶ {[Σ⊕∆]A}

Figure 2. Frank Typing Rules

from Section 2.

letrec map ∶
∀ε X Y.{⟨ι⟩{⟨ι⟩X → [ε]Y }→ ⟨ι⟩(ListX)→ [ε](List Y)}
= f nil ↦ nil
f (cons x xs) ↦ cons (f x) (map f xs) in

letrec state ∶ ∀ε X.{⟨ι⟩X → ⟨ι + State S⟩X → [ε]X}
= s x ↦ x
s ⟨get↦ k⟩ ↦ state s (k s)
s ⟨set s′ ↦ k⟩↦ state s′ (k unit) in

let index ∶ ∀ε X.{⟨ι⟩ListX → [ε]List (Pair NatX)} =
= {xs ↦ state zero (map {x↦ pair next! x} xs)} in

index “abc”

The map function and state handler are recursive, so are defined
using letrec, whereas the index function is not recursive so is de-
fined with let. The type signatures are adorned with explicit univer-
sal quantifiers and braces to denote that they each define suspended
computations. Pattern matching by equations is represented by ex-
plicit pattern matching in the standard way. Each wildcard pattern
is represented with a fresh variable.

3.2 Typing Rules
The typing rules for Frank are given in Figure 2. The inference
judgement Γ [Σ]-- m ⇒ A states that in type environment Γ with
ambient ability Σ, we can infer that use m has type A. The check-
ing judgement Γ [Σ]-- n ∶A states that in type environment Γ with

ambient ability Σ, construction n has type A. The auxiliary judge-
ment Γ⊢ e ∶C states that in type environment Γ, computation e has
type C. The judgement r ∶T --[Σ] Γ states that computation pattern
r of port type T with ambient ability Σ binds type environment Γ.
The judgement p ∶A ⊣Γ states that value pattern p of type A binds
type environment Γ.

The VAR rule infers the type of a monomorphic variable x by
looking it up in the environment; POLYVAR does the same for a
polymorphic variable f , but also instantiates type variables and ef-
fect variables through substitution θ: the presentation is declarative,
so θ is unconstrained. The COMMAND rule infers the type of a com-
mand c by looking it up in the ambient ability, where the ports have
the identity adjustment and the peg has the ambient ability.

The APP rule infers the type of an application m n un-
der ambient ability Σ. First it infers the type of m of the form
{⟨∆⟩A→ [Σ′]B}. Then it checks that Σ′ = Σ and that each argu-
ment ni matches the inferred type in the ambient ability Σ extended
with adjustment ∆i. If these checks succeed, then the inferred type
for the application is B.

The SWITCH rule allows us to treat a use as a construction.
The checking rules for data types (DATA), suspended computations
(THUNK), polymorphic let (LET), and mutual recursion (LETREC)
recursively check the subterms.

Notation We write (M)i for a list of zero or more copies of M
indexed by i. Similarly, we write (M)i,j for a list of zero or more
copies of M indexed by i and j.

A computation of type T → G is built by composing pattern
matching clauses of the form r ↦ n (COMP), where r is a sequence
of computation patterns whose variables are bound in n. The side
condition in the COMP rule requires that the patterns in the clauses
cover all possible values inhabiting the types of the ports. Pattern
elaboration (Section 4) yields an algorithm for checking coverage.

Value patterns can be typed as computation patterns (P-VALUE).
A request pattern ⟨c p→ z⟩ may be checked at type ⟨∆⟩B′ with
ambient ability Σ (P-REQUEST). The command c must be in the
adjustment ∆. The continuation is a plain function so its port type
has the identity adjustment. The continuation’s peg has the ambi-
ent ability with ∆ applied. To check a computation pattern ⟨x⟩ we
apply the adjustment to the ambient ability (P-CATCHALL).

Instantiating ε In an earlier draft of this paper, the POLYVAR
rule was restricted to always instantiate the implicit effect variable
ε with the ambient ability Σ. Correspondingly, data types were
restricted to being parameterised by at most one effect variable,
namely ε. The language resulting from these restrictions has the
pleasant property that effect variables need never be written at
all. However, we now feel that the restrictions are artificial, and
having multiple effect variables may be useful. Given that the APP
rule already checks that ambients match up exactly where needed,
relaxing the POLYVAR rule does no harm, and now we can support
data types parameterised by multiple effect variables.

Subeffecting One strength of bidirectional type systems [44]
is how smoothly they extend to support subtyping rules. Before
adopting operators, we considered incorporating a subeffecting
judgement. But, in the presence of operators, subeffecting does not
seem particularly helpful, as operators are invariant in their effects.

4. Core Frank
We elaborate Frank into Core Frank, a language in which op-
erators are implemented through a combination of call-by-value
functions, case statements, and unary effect handlers. Operators in
Frank elaborate to n-ary functions over suspended computations
in Core Frank. Shallow pattern matching on a single computation
elaborates to unary effect handling. Shallow pattern matching on
a data type value elaborates to case analysis. Deep pattern match-
ing on multiple computations elaborates to a tree of unary effect
handlers and case statements.

The abstract syntax of Core Frank is given in Figure 3. The only
difference between Frank and Core Frank types is that a computa-
tion type in Frank takes n ports to a peg, whereas a computation
type in Core Frank takes n value types to a peg. The difference
between the term syntaxes is more significant. Polymorphic type
variables are instantiated explicitly with type arguments. Construc-
tions may be coerced to uses via a type annotation, which is helpful
for the semantics (Section 5), where constructions are often substi-
tuted for variables. In place of pattern-matching suspended compu-
tations, we have n-argument lambda abstractions, case statements,
and unary effect handlers. The first two abstractions are standard;
the third eliminates a single effectful computation. Elimination of
commands is specified by command clauses which arise from re-
quest and catch-all patterns in the source language. Elimination of
return values is specified by the single return clause, which arises
from value patterns in the source language. The adjustment annota-
tion is necessary for type checking. As we no longer have operators,
application is now plain n-ary call-by-value function application.

The Core Frank typing rules are given in Figure 4. They are
mostly unsurprising given the corresponding Frank Typing rules.
The HANDLE rule requires the adjustment ∆ for its premisses (the
source language builds this adjustment into ports). It is also anno-
tated with the result type. The COERCE rule allows constructions

Types

(value types) A,B ∶∶=D R ∣ {C} ∣X
(computation types) C ∶∶= A→ G
(pegs) G ∶∶= [Σ]A
(type variables) Z ∶∶=X ∣ [E]
(type arguments) R ∶∶= A ∣ [Σ]
(polytypes) P ∶∶= ∀Z.A
(abilities) Σ ∶∶= ∅ ∣ Σ, I R ∣ E
(adjustments) ∆ ∶∶= ι ∣ ∆ + I R
(type environments) Γ ∶∶= ⋅ ∣ Γ, x ∶ A ∣ f ∶ P

Terms
(uses) m ∶∶= x ∣ f R ∣ c ∣m s ∣ (n ∶ A)
(constructions) n ∶∶=m ∣ k n

∣ λx.n
∣ casem of k x↦ n
∣ handle∆

G mwith c x→ z ↦ n
∣ x↦ n′

∣ let f ∶ P = n in n′

∣ letrec f ∶ P = λx.n in n′

(spines) s ∶∶= n

Figure 3. Core Frank Abstract Syntax

to be treated as uses. The type annotations in the HANDLE and CO-
ERCE rules are used in the operational semantics.

Notation We extend our indexed list notation to allow indexing
over data constructors and commands. In typing rules, we follow
the convention that if a meta variable appears only inside such an
indexed list then it is implicitly indexed. For instance, the n in the
CASE rule depends on k, whereas Σ does not because it appears
outside as well as inside an indexed list.

4.1 Elaboration
We now describe the elaboration of Frank into Core Frank by way
of a translation J−K.

We begin with the translation on types. Most cases are homo-
morphic, that is, given by structurally recursive boilerplate, so we
only give the non-trivial cases. In order to translate a computation
type we supply the ambient ability to each of the ports.

JT → [Σ]AK = JT K(JΣK)→ [JΣK]JAK

Each port elaborates to a suspended computation type with effects
given by the ambient ability extended by the adjustment at the port.

J⟨∆⟩AK(Σ) = {[Σ⊕ J∆K]JAK}

The translation on terms depends on the type of the term so we
specify it as a translation on derivation trees. As with the transla-
tion on types, we give only the non-trivial cases: all of the other
cases are homomorphic. The translation on polymorphic variables
converts implicit instantiation into explicit type application.

t
f ∶ ∀Z.A ∈ Γ

Γ [Σ]-- f ⇒ θ(A)

|

=
f ∶ ∀Z.JAK ∈ JΓK

Γ [Σ]-- f R⇒ JAK[R/Z]
,

where Ri = Jθ(Zi)K and A[R/Z] denotes the simultaneous sub-
stitution of each type argument Ri for type variable Zi in value
type A. In the remaining non-trivial cases, we save space by writ-
ing only the judgement at the root of a derivation and by writing
only the term when referring to a descendent of the root.

Γ [Σ]-- m⇒ A

VAR
x ∶ A ∈ Γ

Γ [Σ]-- x⇒ A

POLYVAR
f ∶ P ∈ Γ

Γ [Σ]-- f R⇒ P (R)

COMMAND

c ∶ A→ B ∈ Σ

Γ [Σ]-- c⇒ {A→ [Σ]B}

APP

Γ [Σ]-- m⇒ {A→ [Σ′]B} Σ′ = Σ Γ [Σ]-- n ∶A
Γ [Σ]-- m n⇒ B

COERCE
Γ [Σ]-- n ∶A

Γ [Σ]-- (n ∶ A)⇒ A

Γ [Σ]-- n ∶A

SWITCH
Γ [Σ]-- m⇒ A A = B

Γ [Σ]-- m ∶B

DATA

k A ∈D R Γ [Σ]-- n ∶A
Γ [Σ]-- k n ∶D R

FUN

Γ, x ∶ A [Σ′]-- n ∶B
Γ [Σ]-- λx.n ∶ {A→ [Σ′]B}

CASE

Γ [Σ]-- m⇒D R
(Γ, x ∶ A [Σ]-- n ∶B)kA∈DR

Γ [Σ]-- casem of (k x↦ n)k ∶B

HANDLE
Γ [Σ⊕∆]-- m⇒ A′

(Γ, x ∶ A, z ∶ B → [Σ⊕∆]A′ [Σ]-- n ∶B′)c∶A→ B ∈ ∅⊕∆ Γ, x ∶ A′ [Σ]-- n′ ∶B′

Γ [Σ]-- handle∆
[Σ]B′ mwith (c x→ z ↦ n)c ∣ x↦ n′ ∶B′

LET

P = ∀Z.A Γ [Σ]-- n ∶A Γ, f ∶ P [Σ]-- n′ ∶B
Γ [Σ]-- let f ∶ P = n in n′ ∶B

LETREC

P = ∀Z.{C} Γ, f ∶ P [Σ]-- λx.n ∶ {C} Γ, f ∶ P [Σ]-- n′ ∶B
Γ [Σ]-- letrec f ∶ P = λx.n in n′ ∶B

Figure 4. Core Frank Typing Rules

The crux of the translation is the elaboration of pattern match-
ing for computations. Computations can occur either in suspended
computations or mutually recursive definitions. In order to translate
a computation we supply the ambient ability.

JΓ [Σ]-- {e} ∶CK = JeK(JΣK)
JΓ [Σ]-- letrec f ∶ P = e in n ∶BK =

JΓK [JΣK]-- letrec f ∶ JP K = JeK(JΣK) in JnK

The translation of a computation is then defined as follows

JΓ ⊢ ((ri,j)j ↦ ni)i ∶ (Tj →)j GK(Σ) =
JΓK [Σ]-- λ(xj)j .PE((xj)j , (Tj)j , ((ri,j)j ↦ JniK)i,G)

∶ {(JTjK→)j JGK}

where each xj is fresh and PE(x,Q,u,G) is a function that takes
a list of variables x to eliminate, a list of pattern types Q, a pattern
matching matrix u, and a result type G, and yields a Core Frank
term. Pattern types (Q) are either value types (A), port types (T), or
inscrutable types (●). We use the latter to avoid trying to reconstruct
continuation types. A pattern matching matrix u is a list of pattern
matching clauses, where the body n of each clause u = r ↦ n is a
Core Frank construction instead of a source Frank construction.

The pattern matching elaboration function PE is defined in
Figure 5. For this purpose we find it convenient to use functional
programming list notation. We write [] for the empty list, v ∶∶vs for
the list obtained by prepending element v to the beginning of the list
vs , [v] as shorthand for v ∶∶ [], and vs ++ws for the list obtained by
appending list ws to the end of list vs . There are four cases for PE .
If the head pattern type is a data type, then it generates a case split.
If the head pattern is a port type then it generates a handler. If the
head pattern is some other pattern type (a suspended computation
type or a type variable) then neither eliminator is produced. If the
lists are empty then the body of the head clause is returned.

Sequencing Computations We write let x = n in n′ as syntactic
sugar for on n {x↦ n′}, where on is as in Section 2:

let x = n in n′ ≡
let (on ∶ ∀ε X Y.{⟨ι⟩X → ⟨ι⟩{⟨ι⟩X → [ε]Y }→ [ε]Y }) =

{x f ↦ f x} in on n {x↦ n′}
This sugar differs from the polymorphic let construct in two ways:
1) it has no type annotation on n, and 2) x is monomorphic in n′.

We make use of several auxiliary functions. The Patterns func-
tion returns a complete list of patterns associated with the supplied
data type or interface. The PatternTypes function takes a data
type and constructor or interface and command, and returns a list
of types of the components of the constructor or command. The op-
eration us @ r projects out a new pattern matching matrix from us
filtered by matching the pattern r against the first column of us . We
make use of the obvious generalisations of let binding for binding
multiple constructions and for rebinding patterns.

Example To illustrate how operators are elaborated into Core
Frank, we give the Core Frank representation of the pipe multi-
handler defined in Section 2.7.

letrec pipe ∶
∀ε X Y.{{[ε,Abort,SendX]Unit}→

{[ε,Abort,ReceiveX]Y }→ [ε,Abort]Y }
= λxy.handleι+SendX[ε,Abort]Y x! with

⟨send x→ s⟩↦
handleι+ReceiveX[ε,Abort]Y y! with

⟨receive→ r⟩↦ pipe (s unit) (r x)
y ↦ y

x↦ case x of unit↦
handleι+ReceiveX[ε,Abort]Y y! with

⟨receive→ r⟩↦ abort!
y ↦ y

PE(x ∶∶ xs,DRs ∶∶Qs,us,G) = PE(xs,Qs,us @ x,G) if Headless(us)
PE(x ∶∶ xs,DRs ∶∶Qs,us,G) = case x of

(ki ysi ↦ PE(ysi ++ xs,PatternTypes(DRs, ki) ++Qs,us @ ki ysi,G))i
where

(ki ysi)i = Patterns(D)
PE(x ∶∶ xs, ⟨∆⟩A ∶∶Qs,us,G) = handle

J∆K
JGK x! with

(⟨ci ysi → zi⟩↦ PE(zi ∶∶ ysi ++ xs,PatternTypes(∆, ci) ++Qs,us @ ⟨ci ys → zi⟩,G))i
w ↦ PE(w ∶∶ xs,A ∶∶Qs,us,G)

where
w ∶∶ (⟨ci ysi → zi⟩)i = Patterns(∆)

PE(x ∶∶ xs,Q ∶∶Qs,us,G) = PE(xs,Qs,us @ x,G)
PE([], [], ([]↦ n) ∶∶ us,G) = n

Headless([]) = true
Headless(u ∶∶ us) = Headless(u) ∧Headless(us)

Headless(x ∶∶ rs ↦ n) = true
Headless(⟨x⟩ ∶∶ rs ↦ n) = true

Headless(r ∶∶ rs ↦ n) = false

[] @ r = []
(u ∶∶ us) @ r = (u@ r) ∶∶ (us @ r)

(k ps ′ ∶∶ rs ↦ n) @ k ps = [ps ++ rs ↦ let ps ′ = ps in n]
(k′ ps ′ ∶∶ rs ↦ n) @ k ps = [], if k ≠ k′

(x ∶∶ rs ↦ n) @ k ps = [ps ++ rs ↦ let x = k ps in n]
(⟨x⟩ ∶∶ rs ↦ n) @ k ps = [ps ++ rs ↦ let x = {k ps} in n]

(r ∶∶ rs ↦ n) @ k ps = []
(⟨c ps ′ → q′⟩ ∶∶ rs ↦ n) @ ⟨c ps → q⟩ = [q ∶∶ ps ++ rs ↦ let (q′ ∶∶ ps ′) = (q ∶∶ ps) in n]

(⟨x⟩ ∶∶ rs ↦ n) @ ⟨c ps → q⟩ = [q ∶∶ ps ++ rs ↦ let x = {q (c ps)} in n]
(r ∶∶ rs ↦ n) @ ⟨c ps → q⟩ = []

(y ∶∶ rs ↦ n) @ x = [rs ↦ let y = x in n]
(⟨y⟩ ∶∶ rs ↦ n) @ x = [rs ↦ let y = {x} in n]

Patterns(D) = (k xsk)k∈D, each xsk fresh
Patterns(I) = (⟨c xsc → yc⟩)c∈I , each xsc, yc fresh

Patterns(ι) = [w], w fresh
Patterns(∆ + I Rs) = Patterns(∆) ++Patterns(I)

PatternTypes(DRs, k) = As, where D(DRs, k) = As
PatternTypes(I Rs, c) = ● ∶∶As, where I(I Rs, c) = As → B
PatternTypes(I Rs, c) = [], if I(I Rs, c) undefined

PatternTypes(ι) = []
PatternTypes(∆ + I Rs, c) =

PatternTypes(∆, c) ++PatternTypes(I Rs, c)

Figure 5. Pattern Matching Elaboration

The ports are handled left-to-right. The producer is handled first. A
different handler for the consumer is invoked depending on whether
the producer performs a send command or returns a value.

Notice that the type pollution problem described in Section 2.7
is manifested in the translation to Core Frank: the types of the
arguments are unable to distinguish the handled interfaces from
those that just happen to be in the ambient ability.

Our pattern matching elaboration procedure is rather direct, but
is not at all optimised for efficiency. We believe it should be rea-
sonably straightforward to adapt standard techniques (e.g. [36]) to
implement pattern matching more efficiently. However, some care
is needed as pattern matching compilation algorithms often reorder
columns as an optimisation. Column reordering is not in general a
valid optimisation in Frank. This is because commands in the ambi-
ent ability, but not in the argument adjustments, are implicitly for-
warded, and the order in which they are forwarded is left-to-right.
(Precise forwarding behaviour becomes apparent when we com-
bine pattern elaboration with the operational semantics for Core
Frank in Section 5.)

4.2 Incomplete and Ambiguous Pattern Matching as Effects
The function PE provides a straightforward means for checking
coverage and redundancy of pattern matching. Incomplete coverage
can occur iff PE is invoked on three empty lists PE([], [], [],G),
which means PE is undefined on its input. Redundancy occurs iff
the final clause defining PE in Figure 5 is invoked in a situation in
which us is non-empty. As an extension to Frank, we could allow
incomplete and ambiguous pattern matching mediated by effects.
We discuss this possibility further in section 9.

5. Small-Step Operational Semantics
We give a small step operational semantics for Core Frank in-
spired by Kammar et al.’s semantics for the effect handler calculus
λeff [25]. The main differences between their semantics and ours
arise from differences in the calculi. Whereas λeff is call-by-push-
value, Core Frank is n-ary call-by-value, which means Core Frank
has many more kinds of evaluation context. A more substantive dif-
ference is that handlers in λeff are deep (the continuation reinvokes
the handler), whereas handlers in Frank are shallow (the continua-
tion does not reinvoke the handler).

(use values) v ∶∶= x ∣ f R ∣ c ∣ (w ∶ A)
(construction values) w ∶∶= v ∣ k w ∣ λx.n
(evaluation contexts) E ∶∶= [] ∣ E n ∣ v (w,E , n) ∣ (E ∶ A) ∣ k (w,E , n) ∣ case E of (k xk ↦ nk)k

∣ handle∆
G E with (c xc → zc ↦ nc)c ∣ x↦ n′

∣ let (f ∶ P) = E in n

(λx.n ∶ {A→ [Σ]B}) w Ð→ (n[(w ∶ A)/x] ∶ B)
case (k′ w ∶DR) of (k xk ↦ nk)k Ð→ nk′[(w ∶ A)/xk′], A = D(DR,k′)

handle∆
G v with (c xc → zc ↦ nc)c ∣ x↦ n′ Ð→ n′[v/x]

handle∆
G E[c′ w] with (c xc → zc ↦ nc)c ∣ x↦ n′ Ð→ nc′[(w ∶ A)/xc′ , (λy.E[y] ∶ {B → G})/zc′], c′ ∉ HC (E) and c′ ∶ A→ B ∈ ∆

let f ∶ P = w in nÐ→ n[(w ∶ P)/f]
letrec f ∶ P = λx.n in n′ Ð→ n′[(λx.letrec f ∶ P = λx.n in n ∶ P)/f]

(v ∶ A)Ð→ v

E[n]Ð→ E[n′], if nÐ→ n′

Figure 6. Small-Step Operational Semantics for Core Frank

The semantics is given in Figure 6. All of the rules except the
ones for handlers are standard β-reductions (modulo some typing
noise due to bidirectional typing). We write n[m/x] for n with m
substituted for x and n[m/x] for n with each mi simultaneously
substituted for each xi. Similarly, we write n[(n′ ∶ P)/f] for n
with (n′ ∶ P (R)) substituted for f R and the corresponding gener-
alisation for simultaneous substitution (writing P (R) for A[R/Z]
where P = ∀Z.A). Values are handled by substituting the value
into the handler’s return clause. Commands are handled by captur-
ing the continuation up to the current handler and dispatching to the
appropriate clause for the command. We write HC (E) for the set
of commands handled by evaluation context E . Formally HC (−)
is given by the homomorphic extension of the following equations.

HC ([]) = ∅
HC (handle∆

G E with (ci xci → zci ↦ nci)i ∣ x↦ n′) =
HC (E) ∪ {ci}i

The side condition on the command rule ensures that command c′

is handled by the nearest enclosing handler that has a clause for
handling c′. A more intensional way to achieve the same behaviour
is to explicitly forward unhandled commands using an additional
rule [25].

Reduction preserves typing.

THEOREM 1 (Subject Reduction).

• If Γ [Σ]-- m⇒ A and mÐ→m′ then Γ [Σ]-- m′ ⇒ A.
• If Γ [Σ]-- n ∶A and nÐ→ n′ then Γ [Σ]-- n′ ∶A.

There are two ways in which reduction can stop: it may yield a
value, or it may encounter an unhandled command instance (if the
ambient ability is non-empty). We capture both possibilities with a
notion of normal form, which we use to define type soundness.

DEFINITION 2 (Normal Forms). If Γ [Σ]-- n ∶A then we say that n
is normal with respect to Σ if it is either a value w or of the form
E[c w] where c ∶ A→ B ∈ Σ and c ∉ HC (E).

THEOREM 3 (Type Soundness).
If ⋅ [Σ]-- n ∶ A then either n is normal with respect to Σ or there
exists ⋅ [Σ]-- n′ ∶A such that nÐ→ n′. (In particular, if Σ = ∅ then
either n is a value or there exists ⋅ [Σ]-- n′ ∶A such that nÐ→ n′.)

6. Computations as Data
So far, our example data types have been entirely first order, but
our type system admits data types which abstract over abilities
exactly to facilitate the storage of suspended computations in a
helpfully parameterised way. When might we want to do that? Let
us develop an example, motivated by Shivers and Turon’s treatment
of modular rollback in parsing [53].

Consider a high-level interface to an input stream of characters
with one-step lookahead. A parser may peek at the next input
character without removing it, and accept that character once its
role is clear.

interface LookAhead = peek : Char | accept : Unit

We might seek to implement LookAhead on top of regular Console
input, specified thus:

interface Console = inch : Char
| ouch : Char -> Unit

where an input of ’\b’ indicates that the backspace key has been
struck. The appropriate behaviour on receipt of backspace is to un-
wind the parsing process to the point where the previous character
was first used, then await an alternative character. To achieve that
unwinding, we need to keep a log, documenting what the parser
was doing when the console actions happened.

data Log X
= start {X}
| inched (Log X) {Char -> X}
| ouched (Log X)

Note that although Log is not explicitly parameterised by an abil-
ity it must be implicitly parameterised as it stores implicitly ef-
fect polymorphic suspended computations. The above definition is
shorthand for the following.
data Log [ε] X
= start {[ε]X}
| inched (Log [ε] X) {Char -> [ε]X}
| ouched (Log [ε] X)

As discussed in Section 3, the general rule is that if the body of
a data type (or interface) definition includes the implicit effect
variable then the first parameter of the definition is also the im-
plicit effect variable. Initially a log contains a parser computation
(start). When a character is input (inched) the log is augmented
with the continuation of the parser, which depends on the character

read, allowing the continuation to be replayed if the input character
changes. When a character is output (ouched) there is no need to
store the continuation as the return type of an output is Unit and
hence cannot affect the behaviour of the parser.

Modular rollback can now be implemented as a handler in-
formed by a log and a one character buffer.

data Buffer = empty | hold Char

The parser process being handled should also be free to reject
its input by aborting, at which point the handler should reject the
character which caused the rejection.

input : Log [LookAhead, Abort, Console] X ->
Buffer ->
<LookAhead, Abort>X ->
[Console]X

input _ _ x = x
input l (hold c) <peek -> k> =

input l (hold c) (k c)
input l (hold c) <accept -> k> =

ouch c; input (ouched l) empty (k unit)
input l empty <accept -> k> =

input l empty (k unit)
input l empty <peek -> k> =

on inch!
{ ’\b’ -> rollback l
| c -> input (inched l k) (hold c) (k c) }

input l _ <aborting -> k> = rollback l

Note that the Log type’s ability has been instantiated with exactly
the same ambient ability as is offered at the port in which the parser
plugs. Correspondingly, it is clear that the parser’s continuations
may be stored, and under which conditions those stored continua-
tions can be invoked, when we rollback.

rollback : Log [LookAhead, Abort, Console] X ->
[Console]X

rollback (start p) = parse p
rollback (ouched l) = map ouch "\b \b";

rollback l
rollback (inched l k) = input l empty (k peek!)

parse : {[LookAhead, Abort, Console]X} ->
[Console]X

parse p = input (start p) empty p!

To undo an ouch, we send a backspace, a blank, and another
backspace, erasing the character. To undo the inch caused by a
‘first peek’, we empty the buffer and reinvoke the old continuation
after a new peek.

Here is a basic parser that accepts a sequence of zeros termi-
nated by a space, returning the total length of the sequence on suc-
cess, and aborting on any other input.

zeros : Int -> [LookAhead, Abort]Int
zeros n = on peek! { ’0’ -> accept!; zeros (n+1)

| ’ ’ -> accept!; n
| c -> abort!}

In order to implement actual console input and output the
Console interface is handled specially at the top-level using a
built-in handler that interprets inch and ouch as actual character
input and output. The entry point for a Frank program is a nullary
main operator.

main : [Console]Int
main! = parse (zeros 0)

The ability of main is the external ability of the whole program.
We can use it to configure the runtime to the execution context: is it

a terminal? is it a phone? is it a browser? What will the user let us
do? Currently, Frank supports a limited range of built-in top-level
interfaces, but one can imagine adding many more and in particular
connecting them to external APIs.

While the Log type does what is required of it, this example
does expose a shortcoming of Frank as currently specified: we have
no means to prevent the parser process from accessing Console
commands, because our adjustments can add and shadow interfaces
but not remove them. If we permitted ‘negative’ adjustments, we
could give the preferable types

input : Log [LookAhead, Abort] X -> Buffer ->
<LookAhead, Abort, -Console>X ->
[Console]X

rollback : Log [LookAhead, Abort] X -> [Console]X

parse : {[LookAhead, Abort]X} -> [Console]X

At time of writing, it is clear how to make negative adjustments act
on a concrete ability, but less clear what their impact is on effect
polymorphism—a topic of active investigation.

7. Implementation
The second author has been plotting Frank since at least 2007 [37].
In 2012, he implemented a prototype for a previous version of
Frank [39]. Since then the design has evolved. A significant change
is the introduction of operators that handle multiple computations
simultaneously. More importantly, a number of flaws in the original
design have been ironed out as a result of formalising the type
system and semantics.

We have now implemented a prototype of Frank in Haskell
that matches the design described in the current paper [1]. In or-
der to rapidly build a prototype, we consciously decided to take
advantage of a number of existing technologies. The current pro-
totype takes advantage of the indentation sensitive parsing frame-
work of Adams and Ağacan [3], the “type-inference-in-context”
technique of Gundry et al. [17], and the existing implementation of
Shonky [41].

Much like Haskell, in order to aid readability, the concrete syn-
tax of Frank is indentation sensitive (though we do not explicitly
spell out the details in the paper). In order to implement indentation
sensitivity, Adams and Ağacan [3] introduce an extension to pars-
ing frameworks based on parsing expression grammars. Such gram-
mars provide a formal basis for the Parsec [31] and Trifecta [28]
parser combinator Haskell libraries. In contrast to the ad hoc meth-
ods typically employed by many indentation sensitive languages
(including Haskell and Idris [9]), Adams and Ağacan’s extension
has a formal semantics. Frank’s parser is written using Trifecta
with the indentation sensitive extension, which greatly simplifies
the handling of indentation by separating it as much as possible
from the parsing process.

For bidirectional typechecking, our prototype uses Gundry
et al.’s “type-inference-in-context” technique [17] for implement-
ing type inference and unification (Gundry’s thesis [18] contains a
more detailed and up-to-date account). The key insight is to keep
track in the context not just of term variables but also unification
variables. The context enforces an invariant that later bindings may
only depend on earlier bindings. The technique has been shown to
scale to the dependently typed setting [18].

The back-end of the prototype diverges from the formalism de-
scribed in the paper. Instead of targeting a core calculus, Frank is
translated into Shonky [41], which amounts to an untyped version
of Frank. Shonky executes code directly through an abstract ma-
chine much like that of Hillerström and Lindley [22].

8. Related Work
We have discussed much of the related work throughout the paper.
Here we briefly mention some other related work.

Efficient Effect Handler Implementations A natural implemen-
tation for handlers is to use free monads [25]. Swierstra [55] illus-
trates how to write effectful programs with free monads in Haskell,
taking advantage of type-classes to provide a certain amount of
modularity. However, using free monads directly can be quite in-
efficient [25].

Wu and Schrijvers [62] show how to obtain a particularly effi-
cient implementation of deep handlers taking advantage of fusion.
Their work explains how Kammar et al. [25] implemented efficient
handler code in Haskell. Kiselyov and Ishii [26] optimise their shal-
low effect handlers implementation, which is based on free monads,
by taking advantage of an efficient representation of sequences of
monadic operations [58]. The experimental multicore extension to
OCaml [12] extends OCaml with effect handlers motivated by a
desire to abstract over scheduling strategies. It does not include an
effect system. It does provide an efficient implementation by opti-
mising for the common case in which continuations are invoked at
most once (the typical case for a scheduler). The implementation
uses the stack to represent continuations and as the continuation is
used at most once there is no need to copy the stack. Koka [30]
takes advantage of a selective CPS translation to improve the effi-
ciency of generated JavaScript code.

Layered Monads and Monadic Reflection Filinski’s work on
monadic reflection [14] and layered monads [13] is closely related
to effect handlers. Monadic reflection supports a similar style of
composing effects. The key difference is that monadic reflection
interprets monadic computations in terms of other monadic com-
putations, rather than abstracting over and interpreting operations

Swamy et al. [54] add support for monads in ML, providing
direct-style effectful programming for a strict language. Unlike
Frank, their system is based on monad transformers rather than
effect handlers.

Schrijvers et al. [52] compare the expressiveness of effect han-
dlers and monad transformers in the context of Haskell. Forster et
al. [15] compare effect handlers with monadic reflection and delim-
ited control in a more abstract setting.

Variations and Applications Lindley [33] investigates an adap-
tation of effect handlers to more restrictive forms of computation
based on idioms [42] and arrows [24]. Wu et al. [63] study scoped
effect handlers. They attempt to tackle the problem of how to mod-
ularly weave an effect handler through a computation whose com-
mands may themselves be parameterised by other computations.
Kiselyov and Ishii [26] provide solutions to particular instances of
this problem. Schrijvers et al. [51] apply effect handlers to logic
programming.

9. Future Work
We have further progress to make on many fronts, theoretical and
practical.

Direct Semantics The semantics of Frank presented in this paper
is via a translation to Core Frank, a fairly standard call-by-value
language extended with algebraic effects and unary effect handlers.
This has the advantage of making it clear how the semantics of
Frank relates to the semantics of other languages with algebraic ef-
fects and effect handlers. Nevertheless, we believe there are good
reasons to explore a more direct semantics. A direct semantics may
offer a more efficient implementation or more parsimonious gener-
ated code (witness the translation of pipe into Core Frank in Sec-
tion 4). Perhaps a more compelling motivation is that multihandlers

appear to share some features of other expressive programming ab-
stractions such as multiple dispatch and join patterns [16], and it
would be interesting to better understand how multihandlers relate
to these abstractions.

Verbs versus Nouns Our rigid choice that names stand for values
means that nullary operators need ! to be invoked. They tend to
be much more frequently found in the doing than the being, so it
might be prettier to let a name like jump stand for the ‘intransitive
verb’, and write {jump} for the ‘noun’. Similarly, there is consid-
erable scope for supporting conveniences such as giving functional
computations by partial application whenever it is unambiguous.

Data as Computations Frank currently provides both interfaces
and data types. However, given an empty type 0, we can simu-
late data types using interfaces (and data constructors using com-
mands). Data constructors can be seen as exceptions, that is, com-
mands that do not return a value. For instance, we can encode lists
as follows:

interface ListI X = nil : 0
| cons : X -> ListI X -> 0

The type of lists with elements of type X is [ListI X]0. We can
then simulate map as follows:

mapI : {X -> Y} -> [ListI X]0 -> [ListI Y]0
mapI f <nil -> _> = nil!
mapI f <cons x xs -> _> = cons (f x) (mapI f xs)

Note that the pattern matching clauses are complete because the
return type is uninhabited.

Given that computations denote free monads (i.e, trees) and data
types also denote trees, it is hardly surprising that there is a corre-
spondence here. Indeed Atkey’s algebraic account of type checking
and elaboration [4] makes effective use of this correspondence. We
would like to study abstractions for more seamlessly translating
back and forth between computations and data.

Failure and Choice in Pattern Matching As discussed in Sec-
tion 4.2 we could extend Frank to realise incomplete or ambiguous
patterns as effects. Pattern matching can fail (if the patterns are in-
complete) or it can succeed in multiple ways (if the patterns are
redundant). Thus in general pattern matching yields a searchable
solution space. We can mediate failure and choice as effects, sep-
arating what it is to be a solution from the strategy used to find
one. Concretely, we envisage the programmer writing custom fail-
ure and choice handlers for navigating the search space. Wu, Schri-
jvers and Hinze [63] have shown the modularity and flexibility of
effect handlers in managing backtracking computations: the design
challenge is to deploy that power in the pattern language as well as
in the expression language.

Scaling by Naming What if we want to have multiple State
components? One approach, adopted by Brady [8], is to rename
them apart: when we declare the State interface, we acquire also
the Foo.State interface with operations Foo.get and Foo.set,
for any Foo. We would then need to specialise Stateful operators
to a given Foo, and perhaps to generate fresh Foos dynamically.

Dynamic Effects An important effect that we cannot imple-
ment directly in Frank as it stands is dynamic allocation of
ML-style references. One difficulty is that the new command
which allocates a new reference cell has a polymorphic type
forall X.new : Ref X. But even if we restrict ourselves to a
single type, it is still unclear how to safely represent the Ref data
type. Eff works around the problem using a special notion of re-
source [7]. We would like to explore adding resources or a similar
abstraction to Frank.

Negative Adjustments Currently the only non-trivial adjustments
are positive: they add interfaces to an ability. As mentioned in Sec-
tion 6, we would like to add support for negative adjustments that
remove interfaces from an ability. An extreme case of a negative ad-
justment is a nugatory adjustment that removes all interfaces from
any ability to yield the pure ability. Whereas positive adjustments
can be simulated with more conventional effect type systems, at the
cost of some precision in types, it is not clear to us whether negative
adjustments can be.

Controlled Snooping We might consider allowing handlers to
trap some or even all commands generically, just as long as their
ports make this possibility clear. Secret interception of commands
remains anathema.

Indexed Interfaces Often, an interaction with the environment
has some sort of state, affecting which commands are appropriate,
e.g., reading from files only if they open. Indeed, it is important
to model the extent to which the environment determines the state
after a command. McBride [38] observes that indexing input and
output types over the state effectively lets us specify interfaces
in a proof-relevant Hoare logic. Hancock and Hyvernat [19] have
explored the compositionality of indexed ‘interaction structures’,
showing that it is possible to model both sharing and independence
of state between interfaces.

Session Types as Interface Indices Our pipe is a simple imple-
mentation of processes communicating according to a rather un-
subtle protocol, with an inevitable but realistic ‘broken pipe’ fail-
ure mode. We should surely aim for more sophisticated protocols
and tighter compliance. The interface for interaction on a channel
should be indexed over session state, ensuring that the requests ar-
riving at a coordinating multihandler match exactly.

Substructural Typing for Honesty with Efficiency Using Abort,
we know that the failed computation will not resume under any cir-
cumstances, so it is operationally wasteful to construct the contin-
uation. Meanwhile, for State, it is usual for the handler to invoke
the continuation exactly once, meaning that there is no need to al-
locate space for the continuation in the heap. Moreover, if we want
to make promises about the eventual execution of operations, we
may need to insist that handlers do invoke continuations sooner or
later, and if we want communicating systems to follow a protocol,
then they should not be free to drop or resend messages. Linear,
affine, and relevant type systems offer tools to manage uses more
tightly: we might profitably apply them to continuations and the
data structures in which they are stored.

Modules and Type Classes Frank’s effect interfaces provide a
form of modularity and abstraction, tailored to effectful program-
ming in direct style. It seems highly desirable to establish the for-
mal status of interfaces with respect to other ways to deliver mod-
ularity, such as ML modules [35] and Haskell type classes [61].

Totality, Productivity, and Continuity At heart, Frank is a lan-
guage for incremental transformation of computation (command-
response) trees whose node shapes are specified by interfaces, but
in the ‘background’, whilst keeping the values communicated in
the foreground. Disciplines for total programming over treelike
data, as foreground values, are the staple of modern dependently
typed programming languages, with the state of the art continuing
to advance [2]. The separation of client-like inductive structures
and server-like coinductive structures is essential to avoid deadlock
(e.g., a server hanging) and livelock (e.g., a client constantly in-
teracting but failing to return a value). Moreover, local continuity
conditions quantifying the relationship between consumption and
production (e.g., spacer consuming one input to produce two out-
puts) play a key role in ensuring global termination or productivity.

Guarded recursion seems a promising way to capture these more
subtle requirements [5].

Given that we have the means to negotiate purity locally whilst
still programming in direct style, it would seem a missed oppor-
tunity to start from anything other than a not just pure but total
base. To do so, we need to refine our notion of ‘ability’ with a
continuity discipline and check that programs obey it, deploying
the same techniques total languages use on foreground data for the
background computation trees. McBride has shown that general re-
cursion programming fits neatly in a Frank-like setting by treating
recursive calls as abstract commands, leaving the semantics of re-
cursion for a handler to determine [40].

10. Conclusion
We have described our progress on the design and implementa-
tion of Frank, a language for direct-style programming with locally
managed effects. Key to its design is the generalisation of function
application to operator application, where an operator is n-adic and
may handle effects performed by its arguments. Frank’s effect type
system statically tracks the collection of permitted effects and con-
venient syntactic sugar enables lightweight effect polymorphism in
which the programmer rarely needs to read or write any effect vari-
ables.

It is our hope that Frank can be utilised as a tool for tackling
the programming problems we face in real life. Whether we are
writing elaborators for advanced programming languages, websites
mediating exercises for students, or multi-actor communicating
systems, our programming needs increasingly involve the kinds of
interaction and control structures which have previously been the
preserve of heavyweight operating systems development. It should
rather be a joy.

Acknowledgments
We would like to thank the following people: Fred McBride for
the idea of generalising functions to richer notions of context; Ste-
van Andjelkovic, Bob Atkey, James McKinna, Gabriel Scherer,
Cameron Swords, and Philip Wadler for helpful feedback; Michael
Adams and Adam Gundry for answering questions regarding their
respective works and for providing source code used as inspi-
ration; and Daniel Hillerström for guidance on OCaml Multi-
core. This work was supported by EPSRC grants EP/J014591/1,
EP/K034413/1, and EP/M016951/1, a Royal Society Summer In-
ternship, and the Laboratory for Foundations of Computer Science.

References
[1] Frank repository, 2017.

https://www.github.com/frank-lang/frank.

[2] A. Abel and B. Pientka. Wellfounded recursion with copatterns: a
unified approach to termination and productivity. In Morrisett and
Uustalu [43], pages 185–196.

[3] M. D. Adams and O. S. Ağacan. Indentation-sensitive parsing for
Parsec. In Haskell. ACM, 2014.

[4] R. Atkey. An algebraic approach to typechecking and
elaboration, 2015. URL http://bentnib.org/docs/
algebraic-typechecking-20150218.pdf.

[5] R. Atkey and C. McBride. Productive coprogramming with guarded
recursion. In Morrisett and Uustalu [43], pages 197–208.

[6] A. Bauer and M. Pretnar. An effect system for algebraic effects and
handlers. Logical Methods in Computer Science, 10(4), 2014.

[7] A. Bauer and M. Pretnar. Programming with algebraic effects and
handlers. J. Log. Algebr. Meth. Program., 84(1):108–123, 2015.

[8] E. Brady. Programming and reasoning with algebraic effects and
dependent types. In Morrisett and Uustalu [43], pages 133–144.

https://www.github.com/frank-lang/frank
http://bentnib.org/docs/algebraic-typechecking-20150218.pdf
http://bentnib.org/docs/algebraic-typechecking-20150218.pdf

[9] E. Brady. Idris, a general-purpose dependently typed programming
language: Design and implementation. Journal of Functional Pro-
gramming, 23:552–593, 9 2013.

[10] M. M. T. Chakravarty, Z. Hu, and O. Danvy, editors. ICFP, 2011.
ACM.

[11] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web program-
ming without tiers. In F. S. de Boer, M. M. Bonsangue, S. Graf, and
W. P. de Roever, editors, FMCO, volume 4709 of Lecture Notes in
Computer Science, pages 266–296. Springer, 2006.

[12] S. Dolan, L. White, K. Sivaramakrishnan, J. Yallop, and A. Mad-
havapeddy. Effective concurrency through algebraic effects. In OCaml
Workshop, 2015.

[13] A. Filinski. Representing layered monads. In A. W. Appel and
A. Aiken, editors, POPL, pages 175–188. ACM, 1999.

[14] A. Filinski. Monads in action. In M. V. Hermenegildo and J. Palsberg,
editors, POPL, pages 483–494. ACM, 2010.

[15] Y. Forster, O. Kammar, S. Lindley, and M. Pretnar. On the expressive
power of user-defined effects: effect handlers, monadic reflection,
delimited control. CoRR, abs/1610.09161, 2012.

[16] C. Fournet and G. Gonthier. The reflexive CHAM and the join-
calculus. In H. Boehm and G. L. S. Jr., editors, POPL, pages 372–385.
ACM, 1996.

[17] A. Gundry, C. McBride, and J. McKinna. Type inference in context.
In MSFP. ACM, 2010.

[18] A. M. Gundry. Type Inference, Haskell and Dependent Types. PhD
thesis, University of Strathclyde, 2013.

[19] P. Hancock and P. Hyvernat. Programming interfaces and basic topol-
ogy. Ann. Pure Appl. Logic, 137(1-3):189–239, 2006.

[20] D. Hillerström. Handlers for algebraic effects in Links. Master’s
thesis, School of Informatics, The University of Edinburgh, 2015.

[21] D. Hillerström. Compilation of effect handlers and their applications
in concurrency. Master’s thesis, School of Informatics, The University
of Edinburgh, 2016.

[22] D. Hillerström and S. Lindley. Liberating effects with rows and
handlers. In J. Chapman and W. Swierstra, editors, TyDe, pages 15–27.
ACM, 2016.

[23] R. Hinze and J. Voigtländer, editors. MPC, volume 9129 of Lecture
Notes in Computer Science, 2015. Springer.

[24] J. Hughes. Programming with arrows. In Advanced Functional
Programming, volume 3622 of Lecture Notes in Computer Science,
pages 73–129. Springer, 2004.

[25] O. Kammar, S. Lindley, and N. Oury. Handlers in action. In Morrisett
and Uustalu [43], pages 145–158.

[26] O. Kiselyov and H. Ishii. Freer monads, more extensible effects. In
B. Lippmeier, editor, Haskell, pages 94–105. ACM, 2015.

[27] O. Kiselyov, A. Sabry, and C. Swords. Extensible effects: an alterna-
tive to monad transformers. In C. Shan, editor, Haskell, pages 59–70.
ACM, 2013.

[28] E. A. Kmett. Trifecta (1.5.2), 2015.
http://hackage.haskell.org/package/trifecta-1.5.2.

[29] D. Leijen. Koka: Programming with row polymorphic effect types. In
P. Levy and N. Krishnaswami, editors, MSFP, volume 153 of EPTCS,
pages 100–126, 2014.

[30] D. Leijen. Type directed compilation of row-typed algebraic effects.
In A. D. Gordon, editor, POPL. ACM, 2017.

[31] D. Leijen and P. Martini. Parsec (3.1.9), 2015.
http://hackage.haskell.org/package/parsec-3.1.9.

[32] P. B. Levy. Call-By-Push-Value: A Functional/Imperative Synthesis,
volume 2 of Semantics Structures in Computation. Springer, 2004.

[33] S. Lindley. Algebraic effects and effect handlers for idioms and
arrows. In J. P. Magalhães and T. Rompf, editors, WGP, pages 47–
58. ACM, 2014.

[34] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In
J. Ferrante and P. Mager, editors, POPL, pages 47–57. ACM, 1988.

[35] D. B. MacQueen. Modules for standard ML. In LISP and Functional
Programming, pages 198–207, 1984.

[36] L. Maranget. Compiling pattern matching to good decision trees. In
ML, pages 35–46. ACM, 2008.

[37] C. McBride. How might effectful programs look? In Workshop on
Effects and Type Theory, 2007.
http://cs.ioc.ee/efftt/mcbride-slides.pdf.

[38] C. McBride. Kleisli arrows of outrageous fortune, 2011. Draft.
https://personal.cis.strath.ac.uk/conor.mcbride/
Kleisli.pdf.

[39] C. McBride. Frank (0.3), 2012.
http://hackage.haskell.org/package/Frank.

[40] C. McBride. Turing-completeness totally free. In Hinze and
Voigtländer [23], pages 257–275.

[41] C. McBride. Shonky, 2016.
https://github.com/pigworker/shonky.

[42] C. McBride and R. Paterson. Applicative programming with effects.
J. Funct. Program., 18(1):1–13, 2008.

[43] G. Morrisett and T. Uustalu, editors. ICFP, 2013. ACM.

[44] B. C. Pierce and D. N. Turner. Local type inference. ACM Trans.
Program. Lang. Syst., 22(1):1–44, 2000.

[45] G. D. Plotkin and J. Power. Semantics for algebraic operations. Electr.
Notes Theor. Comput. Sci., 45:332–345, 2001.

[46] G. D. Plotkin and J. Power. Adequacy for algebraic effects. In F. Hon-
sell and M. Miculan, editors, FOSSACS, volume 2030 of Lecture Notes
in Computer Science, pages 1–24. Springer, 2001.

[47] G. D. Plotkin and J. Power. Notions of computation determine mon-
ads. In M. Nielsen and U. Engberg, editors, FOSSACS, volume 2303
of Lecture Notes in Computer Science, pages 342–356. Springer, 2002.

[48] G. D. Plotkin and J. Power. Algebraic operations and generic effects.
Appl. Categ. Structures, 11(1):69–94, 2003.

[49] G. D. Plotkin and M. Pretnar. Handling algebraic effects. Logical
Methods in Computer Science, 9(4), 2013.

[50] M. Pretnar. Inferring algebraic effects. Logical Methods in Computer
Science, 10(3), 2014.

[51] T. Schrijvers, N. Wu, B. Desouter, and B. Demoen. Heuristics en-
twined with handlers combined: From functional specification to logic
programming implementation. In O. Chitil, A. King, and O. Danvy,
editors, PPDP, pages 259–270. ACM, 2014.

[52] T. Schrijvers, M. Piròg, N. Wu, and M. Jaskelioff. Monad transformers
and modular algebraic effects. Technical report, University of Leuven,
2016.

[53] O. Shivers and A. J. Turon. Modular rollback through control logging:
a pair of twin functional pearls. In Chakravarty et al. [10], pages 58–
68.

[54] N. Swamy, N. Guts, D. Leijen, and M. Hicks. Lightweight monadic
programming in ML. In Chakravarty et al. [10], pages 15–27.

[55] W. Swierstra. Data types à la carte. J. Funct. Program., 18(4):423–
436, 2008.

[56] W. Swierstra, editor. Haskell, 2014. ACM.

[57] J. Talpin and P. Jouvelot. The type and effect discipline. Inf. Comput.,
111(2):245–296, 1994.

[58] A. van der Ploeg and O. Kiselyov. Reflection without remorse: reveal-
ing a hidden sequence to speed up monadic reflection. In Swierstra
[56], pages 133–144.

[59] K. Vonnegut. Deadeye Dick. Delacorte Press, 1982.

[60] P. Wadler. The essence of functional programming. In R. Sethi, editor,
POPL, pages 1–14. ACM, 1992.

[61] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-
hoc. In POPL, pages 60–76. ACM, 1989.

[62] N. Wu and T. Schrijvers. Fusion for free - efficient algebraic effect
handlers. In Hinze and Voigtländer [23], pages 302–322.

[63] N. Wu, T. Schrijvers, and R. Hinze. Effect handlers in scope. In
Swierstra [56], pages 1–12.

http://hackage.haskell.org/package/trifecta-1.5.2
http://hackage.haskell.org/package/parsec-3.1.9
http://cs.ioc.ee/efftt/mcbride-slides.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/Kleisli.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/Kleisli.pdf
http://hackage.haskell.org/package/Frank
https://github.com/pigworker/shonky

	Introduction
	A Frank Tutorial
	Data Types and First-Order Functions
	Effect Polymorphism in Ambient Silence
	Controlling Evaluation
	Abilities Collect Interfaces; Interfaces Offer Commands
	Direct Style for Monadic Programming
	Handling by Application
	Handling on Multiple Ports
	The Catch Question
	The Disappearance of Control

	A Frank Formalism
	Syntax
	Typing Rules

	Core Frank
	Elaboration
	Incomplete and Ambiguous Pattern Matching as Effects

	Small-Step Operational Semantics
	Computations as Data
	Implementation
	Related Work
	Future Work
	Conclusion

