
An idiom’s guide to formlets

Ezra Cooper Sam Lindley Philip Wadler Jeremy Yallop
The University of Edinburgh

Abstract
Formlets in Links decouple user interface from data, a vital form of
abstraction supported by very few web frameworks. Formlets are
best defined in terms of idioms, not monads or arrows as one might
suppose from the existing literature.

1. Introduction
Say you want to present the user with an HTML form for entering
a pair of dates. In your initial design, a date is represented as a pair
of pulldown menus, one to select a month and one to select a day.
Later, you choose to replace each date by a single text field, for
entering a date as text.

In the usual web frameworks, such a change will require
widespread changes to the code. Under the first design, the HTML
form will contain four menus, and code that handles the response
will need to extract the menu entries for each month and day, and
combine these to yield a pair of values of an abstract type Date.
Under the second design, the HTML will contain two text input
fields, and the code that handles the response will need to extract
the texts and parse each to yield the pair of dates.

How can we structure a program so that it is isolated from
this choice? What we want is the notion of a part of a form for
representing dates—we call this a formlet. The designer of the
formlet should choose the HTML presentation, and decide how to
process the input into a Date value. Clients of the formlet should
not need to know the HTML in the form, or how it is processed
to yield an abstract value. And, of course, we should be able to
compose formlets to build larger formlets.

Once described, this form of abstraction seems obvious and nec-
essary. But remarkably few web frameworks support it. In particu-
lar, we failed to support it in the first version of our web language,
Links.

The standard HTML form interface presents several problems
in realising the above. For example:

• There is no static association between the form definition and
the code that handles it; thus the interface is fragile. The form
and the handling code need to be kept manually in sync.

• Field values are always submitted individually and always as
strings: HTML provides no facility for processing data or giving
it structure.

• Given two forms, there is generally no easy way to combine
them into a new form without fear of name clashes amongst the
fields—thus it is not easy to write a form that uses subcompo-
nents abstractly. In particular, there is no easy way to use the
same form twice in a larger form.

Formlets address all of these problems. They statically check that a
form and its handler are compatible, they translate raw form inputs
into structured values, and they automatically generate distinct
names for distinct fields, enabling composition.

Conventional web programming frameworks such as PHP (PHP)
and Ruby on Rails (Ruby on Rails) prevent abstraction by expos-
ing to programmers the individual fields. Research frameworks
such as PLT Scheme (Graunke et al. 2001), JWIG (Christensen
et al. 2003), scriptlets (Elsman and Larsen 2004), Ocsigen (Balat
2006) and Lift (Lift) and our previous design for Links (Cooper
et al. 2007) all fall short in the same way.

Three existing web programming frameworks that do sup-
port some degree of abstraction over form components are
WASH (Thiemann 2005), iData (Plasmeijer and Achten 2006) and
WUI (Hanus 2006, 2007).

Semantically, a formlet is an idiom (McBride and Paterson
2008). Idioms generalise monads (Moggi 1989; Wadler 1995; Ben-
ton et al. 2002). Idioms provide a model for static computation.
Static computation is exactly what is needed for abstracting forms:
monads are too restrictive as we describe in Section 3.

A particularly nice property of idioms is that they are closed
under composition. We initially define formlets as the composi-
tion of a name generation idiom, an accumulation idiom and an
environment idiom. Thus the formlet idiom is defined completely
abstractly in terms of the basic idioms. Idioms promote modular
programming. Once we have given the basic definition of formlets,
we extend the formlet idiom to support validation by composing
with a further accumulation idiom and an error idiom.

Entire implementations of non-validating and validating form-
lets are included in the paper. Links offers syntactic sugar for form-
lets, making them easier to use; even so, the basic idiom structure
could be implemented in any functional language and is quite us-
able without the sugar. We have created basic implementations of
formlets in Haskell, OCaml, Python and C].

This paper focuses on abstractions for building forms. There
are many related issues that are not covered. In particular, we do
not dwell on security issues, and we do not attempt to check the
validity of XHTML statically. (Static validity checking for XML
is well-studied (Møller and Schwartzbach 2005) and orthogonal to
our treatment of formlets, so we focus elsewhere.)

The contributions of this paper are:

• a unified design for a compositional abstraction over HTML
forms (Section 2);

• a definition of this feature in terms of idioms, a simple semantic
framework (Section 3);

• a desugaring transformation that makes formlets easier to use
(Section 4);

• an extended design supporting form validation (Section 5); and
• a comparison of form-abstraction features in web-programming

systems (Section 6).

Section 7 concludes.

1 April 2008

2. Formlets by example
Abstractly, formlets are composable templates that when instanti-
ated yield two outputs: a rendering and a collector. The rendering
is the HTML representation of the form, and the collector is a func-
tion that transforms raw submitted form data into a structured value.
A single name source is used to ensure that the rendering and the
collector are in accordance.

We illustrate formlets at a high level with an example (Fig-
ures 1, 2 and 3). We assume familiarity with HTML and use Links
syntax. Links is a strict typed functional programming language
designed for web-programming. Semantically it is close to the ML
family of languages; syntactically it resembles JavaScript. For more
details on Links see our earlier work (Cooper et al. 2007).

The following Links code creates a formlet, called date , with
two text input fields, labelled “Month” and “Day”:

sig date : Formlet(Date);
var date =

formlet
<div style="padding:8px">

Month: {inputInt → month},
Day: {inputInt → day}

</div>

yields
makeDate(month, day);

This defines date as a value, of type Formlet(Date), which can
be embedded in a page as an HTML form. Upon submission of
the form, this formlet will yield a Date value representing the date
entered; the user-defined makeDate function translates the day and
month into a suitable representation.

(The Links keyword sig simply declares a type signature
for a variable binding or function definition. The expression
var x = m; n binds the value of m to the variable x in n .)

A formlet expression has two components: a body and a yields
clause. The body of the date formlet is

<div style="padding:8px">

Month: {inputInt → month},
Day: {inputInt → day}

</div>

and its yields clause is
makeDate(month, day);

Links allows XML to be embedded in Links code using XML
quasiquotes. XML values in Links are forests represented as lists of
XML nodes. An XML value has type Xml . An XML quasiquote is
either a singleton forest consisting of one element <t as>...</t>
or an arbitrary forest denoted by the special syntax <#>...</#>. A
Links expression e of type Xml is embedded in a quasiquote using
an antiquote written {e}.

The body of a formlet expression is a formlet quasiquote. Form-
let quasiquotes augment XML quasiquotes with a further kind of
antiquote: formlet bindings. A formlet binding {f → p} binds the
value yielded by f to the pattern p in the yields clause. Thus the
variables month and day are bound to the values yielded by each
instance of the inputInt formlet. They are bound inside the yields
clause. The value inputInt : Formlet(Int) is a formlet that al-
lows the user to enter an Int using an HTML text input element.
Although the inputInt formlet is used twice, the formlet library
ensures that no field name clashes arise.

The body of a formlet expression corresponds roughly to the
rendering and the yields clause to the collector of a formlet. More
precisely, the quasiquote performs two roles: it defines how to com-

bine the renderings of the sub-formlets to give a composite render-
ing for the whole formlet, and how to bind the values returned by
the collectors of the sub-formlets. The yields clause defines how
the collector should combine the bound values into a single return
value.

Next we illustrate how user-defined formlets can be usefully
combined to create larger formlets. We construct a travel formlet
which asks for a name, an arrival date, and a departure date.

sig travel : (String) -> Formlet ((String, Date, Date))
fun travel(title) {

formlet
<#>
<h1>{stringToXml(title)}</h1>
Name: {input → name}
<div>
Arrival: {date → arrive}
Departure: {date → depart}

</div>
{submit("Submit")}

</#>
yields

(name, arrive, depart)
}

The input formlet allows the user to enter a String using an
HTML text input element. The library function submit sim-
ply returns the HTML for a submit button without a name at-
tribute. (The submit function covers the common case where
there is a single button on a form. We also provide a func-
tion submitButton : (String) → Formlet(Bool) which con-
structs a submit button formlet, allowing multiple buttons on the
same form to be distinguished.)

(Functions in Links take multiple arguments. The declaration
fun f(ps){e} defines a k-ary function with arguments bound by
the patterns in ps = p1 . . . pk and body e. Anonymous functions
are written in the same way, but omitting the name of the function.
Curried functions can be defined using declarations of the form
fun f(ps1) . . . (psk){e}. A function of k arguments is given the
type (A1, . . . , Ak) → B where A1, . . . , Ak are the types of the
arguments and B is the return type.)

Having created a formlet, how do we use it? For a formlet to
become a form, we need to connect it with a handler, which will
consume the form input and perform the rest of the user interaction
and render it as part of a web page. In Links, web pages have type
Page . The function xmlPage outputs raw XML as a web page. The
function formletPage takes a formlet and a handler, renders the
formlet with the handler attached, and outputs the resulting form
element wrapped in html and body tags. (When we add validation
in Section 5 we will replace xmlPage and formletPage with more
general constructs.)

Continuing the above example, we render travel onto a simple
page, and attach a handler displayItinerary that displays the cho-
sen itinerary back to the user. A more interesting application might
render another form on the displayItinerary page, one which al-
lows the user to confirm the itinerary and purchase tickets; it might
then take actions such as logging the purchase in a database, and so
on.

2.1 Syntactic sugar
Figure 2 shows the desugared version of the date example. XML
values can be constructed using the tagx and textx functions in
conjunction with the standard list concatenation operation. Form-
lets are slightly more complicated. The tagx and textx functions are
lifted into the formlet as tag and text in order to allow raw XML
to be mixed with formlets. Composition of formlets makes use of
the standard idiom operations pure and ⊗. The XML and formlet
primitives are covered in detail in Section 3.

2 April 2008

sig date : Formlet(Date);
var date =

formlet
<div style="padding:8px">

Month: {inputInt → month},
Day: {inputInt → day}

</div>

yields
makeDate(month, day);

fun travel(title) {
formlet

<#>
<h1>{stringToXml(title)}</h1>
Name: {input → name}
<div>
Arrival: {date → arrive}
Departure: {date → depart}

</div>
{submit("Submit")}

</#>
yields

(name, arrive, depart)
}

sig displayItinerary : ((String, Date, Date)) → Page
fun displayItinerary((name, arrive, depart)) {

xmlPage(
<html>
<body>
Itinerary for: {stringToXml(name)}.
Arriving: {dateToXml(arrive)}.
Departing: {dateToXml(depart)}.

</body>
</html>)

}

formletPage(
travel("Welcome to Bruntsfield Travel Services"),
displayItinerary)

Figure 1. Date example

The sugar makes it easier to freely mix raw XML with formlets.
Without the sugar, dummy bindings (underscores) are needed to
bind formlets consisting of raw XML (e.g. the calls to pure in
Figure 2). Furthermore, formlets nested inside XML would have
to be rebound (e.g. the second call to pure in the body of travel in
Figure 2).

In fact, with a different representation of formlets, it is possible
to write unsugared code where XML freely mixes with formlets,
without the need for dummy bindings or rebinding. The idea is
to compose the renderings of sub-formlets by plugging them into
a multi-holed context rather than using tag and text . We have
implemented a prototype of this technique in OCaml. Statically
typing multi-holed contexts is non-trivial, so we defer the details
to another paper.

It seems that some form of syntactic sugar is necessary if one
wants formlets to appear next to their bindings; without the sugar
the binding may appear a great distance from the formlet being
bound.

2.2 Separating logic from layout
The benefits of separating logic from layout in web application
development are well documented (Kerer and Kirda 2001). At first
sight it may seem that formlets require logic and layout to be

sig date : Formlet(Date);
var date =

tag("div", [("style","padding:8px")],
tag("span", [("style",

"border:2px solid; padding:4px")],
pure(fun (_)(month)(_)(day) {

makeDate(month, day)
}) ⊗

text("Month: ") ⊗ inputInt ⊗
text("Day: ") ⊗ inputInt));

fun travel(title) {
pure(fun (_)(_)(name)(arrive, depart)(_) {

(name, arrive, depart)
}) ⊗

tag("h1", [], xml(stringToXml(title))) ⊗
text("Name: ") ⊗ input ⊗
tag("div", [],

pure(fun (_)(x)(_)(y) {(x, y)}) ⊗
text("Arrival: ") ⊗ date ⊗
text("Departure: ") ⊗ date) ⊗

xml (submit("Submit"))
}

sig displayItinerary : ((String, Date, Date)) → Page
fun displayItinerary((name, arrive, depart)) {

xmlPage(
tagx("html", [],
tagx("body", [],
textx("Itinerary for: ") ++
xmlx(stringToXml(name)) ++
textx("Arriving: ") ++
xmlx(dateToXml(arrive)) ++
textx("Departing: ") ++
xmlx(dateToXml(depart)) ++
textx("."))))

}

formletPage(
travel("Welcome to Bruntsfield Travel Services"),
displayItinerary)

Figure 2. Desugared date example

Figure 3. Date example screenshot

intertwined. We argue that in fact formlets encourage separation
of logic from layout.

For modularity we allow the expressions appearing in formlet
bindings and yields clauses to be arbitrary well-typed Links expres-
sions. However, in practice, as exemplified by the date example, the
formlet bindings typically refer only to names of other formlets and
the yields clause is typically only used for aggregation of values re-
turned by sub-formlets.

In other words, the parts of formlets that look like logic are in
fact merely the interface between the logic and the layout. Though
it can be a good idea to separate logic from layout, it is certainly

3 April 2008

important to expose the interface between the two, whether one is
working on the logic or the layout.

3. Semantics
A natural question to ask is whether formlets fit into a well-
understood semantic framework. Clearly formlets involve side-
effects, in the form of name generation and user interaction. Mon-
ads (Moggi 1989; Wadler 1995; Benton et al. 2002) provide a
standard semantic tool for reasoning about side-effects. Briefly, a
monad is given by a type constructor T together with operations:

return : (α)→ T(α)
? : (T(α), (α)→ T(β))→ T(β)

that satisfy the following laws:

return(u) ? f = f(u)

u ? return = u

(u ? f) ? g = u ? (fun(x){f(x) ? g})

It is not difficult to see that there is no monad corresponding to
the formlet type. Intuitively, the problem is that a bind operation (?)
for the formlet type would have to read some of the input submitted
by the user before the form had been rendered, which is clearly
impossible. Idioms are a generalisation of monads that are suitable
for modelling formlets. In fact, the formlet idiom is the composition
of three primitive idioms.

An idiom (McBride and Paterson 2008) is simply a type con-
structor together with operations pure and ⊗, pronounced “apply”,
obeying certain laws. These operations permit injecting values into
the idiom as well as general applicative computations—but the id-
iom gives a special meaning to the notion of application. On top of
the general applicative structure given by pure and apply, an idiom
will also typically come with operations for constructing impure
(or effectful) values in that particular idiom.

(Arrows (Hughes 2000) can also be used; we could simulate the
formlet idiom—or any other idiom for that matter—using arrows.
We choose not to as we do not require the extra power provided by
arrows.)

Formally, an idiom is a type constructor I together with opera-
tions:

pure : (α)→ I(α)
⊗ : (I((α)→ β), I(α))→ I(β)

that satisfy the following laws:

pure(id) ⊗ u = u

pure(◦) ⊗ u ⊗ v ⊗ w = u ⊗ (v ⊗ w)

pure(f) ⊗ pure(x) = pure(f(x))

u ⊗ pure(x) = pure(fun(f){f(x)}) ⊗ u

where id is the identity function and ◦ is function composition.
We note that every monad is an idiom.

I = T

pure = return

f ⊗ a = f ? fun(f){a ? fun(a){return(f(a))}}

Indeed every monad generates two idioms, as we can swap the
order of f ? fun(f) and a ? fun(a) on the right-hand-side of the
last equation.

Like standard function application, idiom application is left-
associative. The idiom laws guarantee that pure computations can
be reordered. In particular, an effectful computation cannot depend
on the result of a pure computation, and any expression built from
pure and ⊗ can be rewritten in the canonical form:

pure(f) ⊗ u1 ⊗ · · · ⊗ uk

typename XmlItem;
typename Tag = String;
typename Attributes = [(String, String)];
typename Xml = [XmlItem];

sig textx : (String) → Xml
sig tagx : (Tag, Attributes, Xml) → Xml

Figure 4. XML

where f is the pure part of the computation and u1 . . . uk are the
effectful parts of the computation. This canonical form captures
the essence of idioms as a tool for modelling computation. The
intuition is that an idiomatic computation consists of a series of
side-effecting computations, each of which returns a value. As
with monads, the order in which computations are performed is
significant, but unlike monads subsequent computations cannot
depend on the values returned by prior computations. The final
return value is obtained by aggregating the values returned by each
of the side-effecting computations using a pure function.

3.1 XML
Before giving some concrete examples of idioms, we make a small
digression to outline how XML is implemented in Links (Figure 4).
(A Links declaration of the form typename T = A binds a type
alias T to the type A. Type aliases can also have type parameters.
The type [A] denotes the type of lists whose elements have type
A.) In addition to the basic operations on lists, we need to be able to
create text and element nodes. The operation textx : (String) →
Xml converts a string to a text node, and the operation tagx :
(Tag ,Attributes,Xml) → Xml takes a three arguments: t , as
and x , and returns an element node with tag t, attributes as and
body x.

The Links type Xml captures the general notion of XML doc-
uments; in this paper we use the type only for HTML, and thus
we will refer to HTML values although they have type Xml . Links
makes no attempt to statically validate HTML, but it does make
certain well-formedness guarantees: for instance, there is no way
to create HTML with mismatched start and end tags.

3.2 The basic idioms
Throughout the remainder of the paper we make liberal use of su-
perscripts to distinguish related operations on different data struc-
tures (usually idioms). Of course, Links source code does not sup-
port superscripts; they should be translated as capital letter suffixes.
In a language that supported some form of overloading, such as
type classes, we might dispense with many of the superscripts.

Each new idiom we introduce will be presented in its own figure
and should be read as an abstract type supporting a fixed set of
operations. (Links does not yet support abstract types, but will do
in a future version.)

Recall that idioms always compose. The formlet idiom is the
composition of three basic idioms. Now we can show the id-
ioms that comprise formlets. The name-generation idiom (Fig-
ure 5) threads a source of names through all of its computations;
this permits the effect of fresh name generation. (The declaration
op p1 � p2 {e} defines a binary infix operator � with arguments
bound by the patterns p1 and p2. It has type (A1, A2) → B where
A1 and A2 are the types of its arguments and B is the return type.)
The accumulation idiom over the monoid of XML forests (Figure 6)
carries an XML value alongside its computations. The idiom’s
application operation concatenates the two computations’ XML
values. The additional operations (text a, xml a and tag a) provide
other ways of manipulating the XML. Note in particular that text a

and tag a lift the corresponding operations on XML into the idiom.

4 April 2008

typename In(α) = (Gen) → (α, Gen);

sig puren : (α) → In(α)
sig ⊗n : (In((α) → β), In(α)) → In(β)

sig nextNamen : In(String)
sig runn : In(α) → α

fun puren(v) {
fun(gen) { (v, gen) }

}
op f ⊗n a {

fun (gen) {
var (v, gen) = f (gen);
var (w, gen) = a(gen);
(v(w), gen)

}
}

typename Gen = Int;
fun nextNamen(gen) {

("input_" ++ intToString(gen), gen + 1)
}
fun runn(c) {

var (v, _) = c(0);
v

}

Figure 5. The name-generation idiom

The environment idiom (Figure 7) passes some environment (e.g.
an association list) through all its computations; the available effect
is reading from the environment.

In fact, each of these primitive idioms is simply a standard
monad interpreted as an idiom. The reason for interpreting them as
idioms rather than monads is that idioms always compose, whereas
monads do not, and in particular these monads do not compose.

Why do the monads fail to compose? The failure to compose
the monads that induce these idioms arises at the first step when
we try to compose the accumulation monad with the environment
monad. The difficulty is that in order to define u ? f we need the
return value of u which we can only extract once we have the
environment, but the environment is not in scope when we need
the accumulated monoid, so we cannot extract the accumulation
resulting from applying f to the return value of u. We end up trying
to write something like:

(x, u) ? f = (x ++ y,
fun (env) {

var (y, v) = f (u(env));
v(env)

})

which is clearly not well-scoped. This is exactly the issue men-
tioned at the beginning of the section—there cannot be a form-
let monad because it would necessitate being able to read some
of the input before rendering the whole of the form. It seems that
attempting to precompose any non-trivial monad with the environ-
ment monad will lead to similar problems.

Any two idioms can be composed, producing an idiom. The
composition of two idiom triples is defined pointwise. Given id-
ioms I and J with associated operations pureI, ⊗I and pureJ, ⊗J

(respectively), we obtain the idiom I composed with J as I◦J where

var pureI ◦ J = pureI ◦ pureJ;
op f ⊗I◦J a {

pureI(curry((⊗J))) ⊗I f ⊗I a
}

(The standard library function curry converts a binary function to
a curried function.) We can lift any idiomatic computation of type

typename Ia(α) = (Xml, α);

sig purea : (α) → Ia(α)
sig ⊗a : (Ia((α) → β), Ia(α)) → Ia(β)

sig texta : (String) → Ia(())
sig xmla : (Xml) → Ia(())
sig taga : (Tag, Attributes, Ia(α)) → Ia(α)
sig pluga : ((Xml) → Xml, Ia(α)) → Ia(α)
sig runa : Ia(α) → (Xml, α)

fun purea(v) {
([], v)

}
op (x, f) ⊗a (y, a) {

(x ++ y, f (a))
}

fun pluga(k, (x, v)) {
(k(x), v)

}
fun xmla(e) {

pluga(fun (_) {e}, purea(()))
}
fun texta(s) {

xmla(textx(s))
}
fun taga(t, as, v) {

pluga(fun (x) {(tagx(t, as, x))}, v)
}
var runa = id;

Figure 6. The accumulation idiom over the monoid of XML
forests

typename Env = [(String, String)];
typename Ie(α) = (Env) → α;

sig puree : (α) → Ie(α)
sig ⊗e : (Ie((α) → β), Ie(α)) → Ie(β)

sig lookupe : (String) → Ie(String)
sig rune : Ie(α) → ((Env) → α)

fun puree(v) {
fun (env) {v}

}
op f ⊗e a {

fun (env) {f (env)(a(env))}
}

fun lookupe(n) {
fun (env) {

switch (env) {
case [] → error("Not found " ++ n)
case (m,v)::env → if (n == m) v

else lookupe(n)(env)
}

}
}
var rune = id;

Figure 7. The environment idiom

J(A) to an idiomatic computation of type I(J(A)), refine any
idiomatic computation of type I(A) to an idiomatic computation
of type I(J(A)), and map any function of type J(A)→ J(B) to
a function of type I(J(A))→ I(J(B)).

5 April 2008

typename Formlet(α) = In(Ia(Ie(α)));

sig pure : (α) → Formlet(α)
sig ⊗ :

(Formlet((α) → β), Formlet(α)) → Formlet(β)

sig xml : (Xml) → Formlet(())
sig text : (String) → Formlet(())
sig tag : (Tag, Attributes, Formlet(α)) → Formlet(α)

sig run : Formlet(α) → Ia(Ie(α))

sig input : Formlet(String)

var pure = puren ◦ purea ◦ puree

op f ⊗ a {
puren(fun (f)(a) {

purea(curry((⊗e))) ⊗a f ⊗a a
}) ⊗n f ⊗n a

}

fun xml (x) {
puren(purea(puree) ⊗a xmla(x))

}
fun text(s) {

puren(purea(puree) ⊗a texta(s))
}
fun tag(t, as, f) {

puren(fun (v) {taga(t, as, v)}) ⊗n f
}

var run = runn;

var input =
puren(fun (name) {

taga("input",
[("name", name)],
purea(lookupe(name)))

}) ⊗n nextNamen

Figure 8. The formlet idiom

sig liftI,J : (J(α)) → I(J(α))
var liftI,J = pureI;

sig refineI,J : (I(α)) → I(J(α))
fun refineI,J(v) { pureI(pureJ) ⊗I v }

sig mapI,J

: ((J(α)) → J(β)) → (I(J(α))) → I(J(β))
fun mapI,J(f)(c) { pureI(f) ⊗I c }

Using a combination of lifting, refinement and mapping, it is
straightforward to transform all of the side-effecting operations
from the basic idioms into the formlet idiom.

3.3 The formlet idiom
We now give an implementation of formlets as the composition of
the above idioms (Figure 8).

Formlet = In ◦ Ia ◦ Ie

The actual implementation included with Links differs slightly in
that we flatten the nested pairs into triples and inline many of the
occurrences of pure and ⊗ for performance. The XML manipula-
tion operations and run operation are lifted into the formlet idiom.
It would be inappropriate to lift the nextName and lookup opera-
tions into the formlet idiom as lower-level access to the generated
names is needed in order to ensure that the rendering and the collec-
tor are in accordance. Instead of nextName and lookup we provide
a library of formlet operations corresponding to HTML input ele-
ments, each of which generates one or more names. These include
input , textarea and button (which give rise to the eponymous
HTML elements), as well as choice (corresponding to HTML
option/select elements), submit (which produces HTML for a

sig inputInt : Formlet(Int)
sig submit : (String) → Xml

var inputInt =
formlet

<#>{input → s}</#>
yields

stringToInt(s);
fun submit(textx) {

<button type="submit">{stringToXml(textx)}</button>
}

Figure 9. Formlet library operations

typename Handler(α) = (α) → Page;
typename Cont = Handler(Env);

sig makeCont : (Handler(α)) → (Ie(α)) → Ie(Page)
sig pickleCont : (Cont) → String
sig makeForm : (Xml, Cont) → Xml

fun makeCont(h)(c) {
puree(h) ⊗e c

}
fun makeForm(contents, cont) {

var (x, _) =
taga("form",

[("enctype",
"application/x-www-form-urlencoded"),

("action", "#"),
("method", "POST")],

taga("input",
[("type", "hidden"),
("name", "_k"),
("value", pickleCont(cont))],

contents)));
x

}

Figure 10. Pickling continuations

submit button) and others. Some additional library operations that
are used in the examples in this paper are defined in Figure 9.

3.4 Pickling continuations
Links maintains session state by pickling continuations (Cooper
et al. 2007). In particular, the continuation to be invoked by a form
is stored as a pickled continuation in a hidden field in the form.
In order to implement this functionality for formlets we add some
extra operations to the environment idiom and the accumulation
idiom (Figure 10). A handler of type α is a function from α
to Page . A continuation is a handler whose input comes from
the CGI environment—that is, a handler of type Handler(Env).
The makeCont function composes a handler with a collector to
give a continuation. The pickleCont function is a built-in Links
function for pickling a continuation as a string. The expression
makeForm(e, cont) returns a form whose action is to invoke
cont and whose body is e . When a form is submitted, the special
name _k is recognised by the Links run-time as containing the
pickled continuation. The continuation is unpickled, and invoked
with the current CGI environment.

3.5 Pages
Recall that the top-level value returned by a Links program must
have type Page . For the basic formlet idiom without validation, we
can simply define the Page type to be Xml (Figure 11). (When we
add validation in Section 5, pages become more involved.)

6 April 2008

typename Page = Xml;

sig formp : (Formlet(α), Handler(α)) → Page
sig renderp : (Page) → Xml

sig xmlPage : (Xml) → Page
sig formletPage : (Formlet(α), Handler(α)) → Page

fun formp(f , h) {
var (x, h) =

runa(purea(makeCont(h)) ⊗a run(f));
makeForm(x, rune(h));

}
var renderp = id;

var xmlPage = id;
fun formletPage(f , h)

tagx("html", [],
tagx("body", [],
formp(f , h)))

Figure 11. Pages

Terms
qx XML
formlet qf yields e formlet

XML quasiquotes

n ::= s | {e}
| <t as>n1 . . . nk</t> node

qx ::= <t as>n1 . . . nk</t>
| <#>n1 . . . nk</#> quasiquote

Formlet quasiquotes

n ::= s | {e} | {f → p}
| <t as>n1 . . . nk</t> node

qf ::= <t as>n1 . . . nk</t>
| <#>n1 . . . nk</#> quasiquote

Meta variables
e expression
p pattern
f formlet

s string
t tag

as attribute list

Figure 12. Quasiquote syntax

The only interesting function here is formp. The expression
formp(f) first runs f , then makes a continuation by composing the
handler with the formlet’s collector and finally invokes the function
forma to render the form as HTML. The function render p is used
internally by the Links run-time, which needs a way of converting
pages back to XML for display by a web browser. The xmlPage
function allows raw XML to be lifted to a page. The formletPage
function invokes formp and wraps the resulting XML in html and
body tags.

The reader may be worried that these operations seem rather
limited. For instance, they do not allow multiple formlets on a
page, and they do not allow a header to appear on a page con-
taining a formlet. These features are supported by the version of
formlets discussed in Section 5 (where we abandon xmlPage and
formletPage in favour of more general functions). We have omit-
ted them here in an attempt to make the initial presentation simpler.

4. Desugaring
Having shown how formlets look to the programmer in Links, and
described the idiom structure of formlets, we now show how to

(qx)◦ = [[q]]x

(formlet q yields e)◦ = pure(fun (q†){e◦}) ⊗ [[q]]f

[[s]]x = textx(s)
[[{e}]]x = e◦

[[<t as>n1 . . . nk</t>]]
x = tagx(t, as,

[[<#>n1 . . . nk</#>]]
x
)

[[<#>n1 . . . nk</#>]]
x = [[n1]]

x
++ . . . ++ [[nk]]x

[[s]]f = text(s)

[[{e}]]f = xml (e◦)

[[{f → p}]]f = f◦

[[<t as>n1 . . . nk</t>]]
f = tag(t, as,

[[<#>n1 . . . nk</#>]]
f
)

[[<#>n1 . . . nk</#>]]
f = pure(fun (n†

1) . . . (n†
k) {

(n†
1, . . . , n

†
k)

}) ⊗ [[n1]]
f · · · ⊗ [[nk]]f

s† =
{e}† =

{f → p}† = p

<t as>n1 . . . nk</t>
† = n†

1 . . . n†
k

<#>n1 . . . nk</#>
† = n†

1 . . . n†
k

Figure 13. Desugaring XML and formlets

compile the syntactic sugar (Figure 12) for XML, formlets and
pages.

The desugaring transformation (·)◦ is given in Figure 13. It is
a homomorphism except on XML quasiquotes and formlet expres-
sions. The auxiliary operations [[·]]x, (·)† and [[·]]f are defined on
quasiquotes and on nodes. Let r range over quasiquotes and nodes.
The operation r† returns a pattern aggregating the sub-patterns of
r. The operation [[r]]f returns a formlet aggregating the sub-formlets
of r.

As well as pure and apply, the operations text , xml and tag are
used for lifting raw XML into formlets.

5. Validation
Up to this point we have been proceeding on the impractical as-
sumption that text entered into forms is always valid. For example,
we have not made any provision for the case where the user en-
ters non-digit characters into a field which is interpreted as an inte-
ger. We wish to provide the following behaviour: when an invalid
form is submitted, the page on which it appeared should be redis-
played, together with error messages describing the problems with
the form.

5.1 The validating formlet idiom
In order to keep track of error messages we modify the Formlet
type, changing the return type of the collector component from α
to (Xml ,Maybe(α)).

In Section 3 we saw that formlets arise as the composition of
three idioms.

Formlet = In ◦ Ia ◦ Ie

In order to define a validating formlet idiom we need to introduce
an idiom for modelling errors. The error idiom Io (Figure 14) is
derived from the standard error monad.

typename Maybe(α) = [|Just:α|Nothing|];
typename Io(α) = Maybe(α);

7 April 2008

(Links supports variant types. The type [|C1:A1 . . . Ck:Ak|]
is a variant with constructors C1, . . . , Ck of types A1, . . . , Ak.)

The validating formlet idiom (Figure 16) is obtained by the
composition of the non-validating formlet idiom with idioms for
XML accumulation and errors.

Formlet = In ◦ Ia ◦ Ie ◦ Ia ◦ Io

typename Formlet(α) = In(Ia(Ie(Ia(Io(α)))));

When passed an environment, a collector of type
(Env) → (Xml, Maybe(A)) attempts to extract a value
v of type A, returning Just(v) if the extraction succeeds, or
Nothing if it fails. The first component of the return value, the
error rendering, is the HTML that should be displayed in an error
situation, whether that situation arose due to this or some other col-
lector. If no validator is attached to the formlet then the extraction
succeeds, using the original HTML as the error rendering. Given
these adjustments we can add a validating operation, satisfies , on
formlets (Figures 15 and 16).

typename Validator(α) =
((α) → Bool, (α) → (Xml) → Xml);

sig satisfies
: (Formlet(α), Validator(α)) → Formlet(α)

A validator is a pair of a predicate and an error reporting func-
tion. The error reporting function takes a value and then transforms
some existing XML to add an error message. An auxiliary func-
tion, err , constructs a validator from a predicate and a function
that builds an error message as a string; if the predicate fails then
the message function will be passed the failing value.

sig err
: ((α) → Bool) → ((α) → String) → Validator(α)

The satisfies operation is defined by lifting the function check ,
which validates computations in the accumulation idiom precom-
posed with the error idiom, into the validating formlet idiom.

sig check
: (Ia(Io(α))) → (Validator(α)) → Ia(Io(α))

The function check is divided into three parts. The first part checks
whether: there is a value and the predicate is satisfied, there is a
value but the predicate is not satisfied, or there is no value. The
second part changes the maybe value to Nothing if it fails to
satisfy the predicate. The third part inserts an error message if there
is a value that does not satisfy the predicate. Besides these new
operations, we must adjust the basic formlet operations to support
validation (Figure 16).

The collector of the pure function now returns an empty error
rendering and a value wrapped in Just . The ⊗ operator concate-
nates the error renderers; collection now succeeds only if it suc-
ceeds for both operands. The input formlet includes HTML for
both the regular renderer and the error renderer. If collection fails
then the submitted value is available to the error renderer, so we can
repopulate the field by supplying a value for the value attribute.

Using satisfies and err we can add error-checking to a form-
let. For example, we can now improve the definition of inputInt
so that a suitable message is displayed if parsing the string fails
(Figure 17).

(Links supports matching strings against regular expressions.
The expression s ~ r evaluates to true if the string s matches the
regular expression r .)

Validation can be added to any formlet value regardless of
whether there is validation code attached to the value already. For
example, starting with the inputInt formlet we can construct a
formlet that accepts only even numbers:

typename Maybe(α) = [|Just:α|Nothing|];
typename Io(α) = Maybe(α);

sig pureo : (α) → Io(α)
sig ⊗o : (Io((α) → β), Io(α)) → Io(β)

sig failo : Io(α)
sig runo : Io(α) → Maybe(α)

fun pureo(v) {
Just(v)

}
op f ⊗o a {

switch (f , a) {
case (Just(f), Just(a)) → Just(f (a))
case _ → Nothing

}
}

var failo = Nothing;
var runo = id;

Figure 14. The error idiom

fun evenError(i) { intToString(i) ++ " is not even!" }
var inputEven =

inputInt 8satisfies8 (even 8err 8 evenError);

(The standard library function even : (Int) → Bool returns true
if its argument is an integer.) If the user enters a non-integer into
an inputEven field then the error message generated by intError
will be displayed. If integer parsing succeeds but the parity check
fails then the message generated by evenError will be displayed.
In general, when additional validation is applied to a formlet f
which already includes validation code, the validators are run from
innermost outwards; only the first failing validator is used to label
f with an error message. However, errors may also be displayed
from other formlets, which are not descendents of f . For instance,
a date formlet constructed from two input formlets for the day and
the month may display errors arising from errors on both the day
and the month.

We might similarly improve the formlets from Section 2 by
adding validation that tests that the dates are within range, or that
the departure date is no earlier than the arrival date. We have only
shown an error message combinator (err) that takes a message and
displays it in a standard place. The datatype permits user-defined
combinators that indicate the error in other ways.

5.2 Pages with validation support
In order to support multiple forms on a page we introduce some
additional syntactic sugar for pages (Figures 19 and 20). We in-
troduce the page q construct. Here q is a page quasiquote, an
XML quasiquote augmented with a facility to associate formlets
with handlers. A formlet/handler association is written {f ⇒ h}.
The value of page q is a page fragment. Intuitively, a page frag-
ment is an HTML value where each formlet/handler association
{f ⇒ h} has been replaced by an HTML form. The body of
that form is the rendering of the formlet f , and the action of the
form applies the handler h to the result of invoking f ’s collec-
tor. In addition to formlet/handler associations, page quasiquotes
also support page antiquotes {|g|}, which allow page fragments
to be composed from smaller page fragments. Formlet/handler
associations generalise the formletPage function and XML an-

8 April 2008

typename Validator(α) =
((α) → Bool, (α) → (Xml) → Xml);

sig err
: ((α) → Bool, (α) → String) → Validator(α)

sig check
: (Ia(Io(α)), Validator(α)) → Ia(Io(α))

fun err(p,error) {
(p,
fun (v)(x) {

<#>
{x}
{textx(error(v))}

</#>
})

}
typename Result(α) = [|Pass:α|Fail:α|Dead|];
fun check(a, (p, error)) {

var result =
purea(fun (o) {

switch (runo(pureo(fun (v) {
if p(v) Pass(v)
else Fail(v)

}) ⊗o o)) {
case Just(v) → v
case Nothing → Dead

}
}) ⊗a a;

var w =
purea(fun (r) {

switch (r) {
case Pass(v) → pureo(v)
case _ → failo

}
}) ⊗a result;

switch (runa(result)) {
case (_, Fail(v)) → pluga(error(v), w)
case _ → w

}
}

Figure 15. Validation operations

tiquotes inside page expressions generalise the xmlPage function.
fun formletPage(f , h) {

page
<html>
<body>
{f ⇒ h}
</body>

</html>
}

fun xmlPage(x) {
page

<#>{x}</#>
}

The example in Figure 18 creates a page containing two forms.
As explained earlier, we want a formlet that fails validation to be
presented a second time to the user along with error messages.
Further, we want this formlet to be presented in its original context.
If the user enters non-numeric text into the inputEven form then
the implementation should re-display the entire page, with an error
message beside the offending field. If the user subsequently submits
invalid input in the date form then the entire page should be
re-displayed with error messages accompanying both forms: the
state of the inputEven form, including error messages, should be
preserved.

In order to implement such behaviour we refine our notion of
pages. Validating page fragments represent composable web-page
fragments containing validated forms. A validating page fragment

typename Formlet(α) = In(Ia(Ie(Ia(Io(α)))));

sig pure : (α) → Formlet(α)
sig ⊗ :

(Formlet((α) → β), Formlet(α)) → Formlet(β)

sig text : (String) → Formlet(())
sig xml : (Xml) → Formlet(())
sig tag : (Tag, Attributes, Formlet(α)) → Formlet(α)

sig run : Formlet(α) → Ia(Ie(Ia(Io(α))))

sig input : Formlet(String)

sig satisfies
: (Formlet(α), Validator(α)) → Formlet(α)

var pure = puren ◦ purea ◦ puree ◦ purea ◦ pureo

op f ⊗ a {
puren(fun (f)(a) {

purea(fun (f)(a) {
puree(fun (f)(a) {

purea(curry((⊗o))) ⊗a f ⊗a a
}) ⊗e f ⊗e a

}) ⊗a f ⊗a a
}) ⊗n f ⊗n a

}

fun text(x) {
var v = texta(s);
puren(purea(puree(purea(pureo) ⊗a v)) ⊗a v)

}
fun xml (x) {

var v = xmla(x);
puren(purea(puree(purea(pureo) ⊗a v)) ⊗a v)

}
fun tag(t, as, f) {

fun wrap(v) {taga(t, as, v)}
puren(fun (v) {

purea(puree(wrap)) ⊗a wrap(v)
}) ⊗n f

}

var run = runn;

var input =
puren(fun (name) {

fun wrap(v) {
taga("input", [("name", name)], v)

}
purea(puree(wrap)) ⊗a

wrap(purea(puree(purea(pureo)) ⊗a

lookupe(name)))
}) ⊗n nextNamen

fun satisfies(f , validate) {
puren(fun (u) {

purea(fun (v) {
puree(fun (w) {

check(w, validate)
}) ⊗e v

}) ⊗a u
}) ⊗n f

}

Figure 16. The validating formlet idiom

consists of a k-holed XML context, k formlets and k handlers. To
support concatenation of contexts we must also store the number
of holes in the context. The formlets in the list may have different
types; we might elude the typing problem by hiding the types
behind an existential.

typename Context = (Int, ([Xml]) → Xml);
typename Page =

(Context, [∃α.(Formlet(α), Handler(α))]);

9 April 2008

fun isInt(s) { s ~ /^-?[0-9]+$/ }

fun intError(s) { s ++ " is not an integer!" }

sig inputInt : Formlet(Int)
var inputInt =

formlet
<#>{input 8satisfies8 (isInt 8err 8 intError) → s}</#>

yields
stringToInt(s);

Figure 17. Validating formlet library operations

fun displayEven (e) {
page

<html>
<body>
An even number: {intToString(e)}

</body>
</html>

}

fun displayDate(d) {
page

<html>
<body>
A date: {dateToString(d)}

</body>
</html>

}

page
<html>
<body>
Enter an even number: {inputEven ⇒ displayEven}
Alternatively, enter a date: {date ⇒ displayDate}

</body>
</html>

Figure 18. Two forms on a page

Links does not support existential types, so instead we store the
code that will be used to eliminate the formlet/handler pairs. We
hide the ∃-bound type using a closure, which introduces existentials
for encoding heterogeneous environments.

Another interesting aspect of the typing arises from the valida-
tion loop. Every form on the page has a handler, but every handler
must be able to regenerate all the forms on a page. In order to tie
this recursive knot we make use of a recursive type (Figure 21).

typename RecForms = [µα.([α]) → Xml];

The HTML forms are represented as a list of recursive forms
of type RecForms . A recursive form is an HTML form that is
parameterised over the list of all other recursive forms on a page.
This allows every form to be updated when one of them changes
(due to a validation error).

In order to avoid an existential type, we need to examine how
the formlets and handlers are going to be consumed. The key
component is the modified makeCont function (Figure 21).

sig makeCont
: (Handler(α), Context, RecForms, Int) →

(Ie(Ia(Io(α)))) → Ie(Page)

The non-validating version of makeCont (Figure 10) takes only
two arguments: a handler h and a collector c. The validating ver-
sion is augmented with three extra arguments for keeping track
of error state: a context k, a recursive form list zs , and an in-
dex i into zs identifying the current form. The collector is run

Terms
page qp page fragment

Page quasiquotes

n ::= s
| {e} | {f ⇒ e} | {|g|}
| <t as>n1 . . . nk</t> node

qp ::= <t as>n1 . . . nk</t>
| <#>n1 . . . nk</#> quasiquote

Meta variables
h handler f formlet

g page fragment

Figure 19. Page fragment syntax

(page q)◦ = [[q]]p

[[s]]p = textp(s)
[[{e}]]p = xml p(e◦)

[[{f ⇒ h}]]p = formp(f◦, e◦)
[[{|g|}]]p = g◦

[[<t as>n1 . . . nk</t>]]
p = tagp(t, as,

[[<#>n1 . . . nk</#>]]
p
)

[[<#>n1 . . . nk</#>]]
p = [[n1]]

p ⊕p . . .⊕p [[nk]]p

Figure 20. Desugaring page fragments

typename RecForms = [µα.([α]) → Xml];

sig makeCont
: (Handler(α), Context, RecForms, Int) →

(Ie(Ia(Io(α)))) → Ie(Page)
fun makeCont(h, k, zs, i)(c) {

var hf = makeCont(h, k, zs, i);
puree(

fun (a) {
var (x, v) = runa(a);
foldo(h,

fun () {
fun z(zs) {

makeForm(x, rune(hf))
}
var zs = substAt(zs, i, z);
k(map(fun (z) {z(zs)}, zs))

},
v)

}) ⊗e c
}

Figure 21. Validating continuations

on the environment, returning some HTML x and an optional re-
turn value v. If validation succeeds then the value is simply passed
to h. If validation fails then the HTML for the i-th form is up-
dated and the page is re-rendered. The HTML for each form is
generated by applying each z in zs to the entire list zs . This is
where the recursive knot is tied. (The standard library function
map : ((α)→ β, [α]) → [β] maps a function over a list. The
standard library function substAt : ([α], Int , α) when applied to
xs , i and x returns xs with the i-th element replaced with the value
x.)

We can now give an implementation of page fragments that does
not depend on an existential type (Figure 22).

10 April 2008

typename CheckedFormBuilder =
(Context, RecForms, Int) → Xml;

typename Page = (Context, [CheckedFormBuilder]);

sig emptyp : Page
sig textp : (Xml) → Page
sig xmlp : (Xml) → Page
sig tagp : (Tag, Attributes, Page) → Page
sig formp : (Formlet(α), Handler(α)) → Page

sig renderp : (Page) → Xml

var emptyp = ((0, fun ([]) {[]}), []);
sig ⊕p : (Page, Page) → Page
op ((i1, k1), ms1) ⊕p ((i2, k2), ms2)) {

((i1 + i2,
fun (xs) {

k1(take(i1, xs)) ++ k2(drop(i1, xs))
}),

ms1 ++ ms2)
}
fun textp(s) {

xmlp(textx(s))
}
fun xmlp(x) {

((0, fun ([]) {x}), fun (gen) {([], gen)})
}
fun tagp(t, as, ((i, k), fs)) {

((i, fun (xs) {tagx(t, as, k(xs))}), fs)
}
sig makeCheckedFormBuilder

: (Formlet(α), Handler(α)) → CheckedFormBuilder
fun makeCheckedFormBuilder(f , h)(k, zs, i) {

var (x, h) =
runa(purea(makeCont(h, k, zs, i)) ⊗a run(f));

makeForm(x, rune(h))
}
fun formp(f , h) {

((1,
fun ([x]) {x}),
[makeCheckedFormBuilder(f , h)])

}
fun renderp(((n, k), ms)) {

var zs = mapi(fun (m, i)(zs) {m(k, zs, i)}, ms);
k(map (fun (z) {z(zs)}, zs))

}

Figure 22. The validating page monoid

typename CheckedFormBuilder =
(Context, RecForms, Int) → Xml;

typename Page = (Context, [CheckedFormBuilder]);

A checked form builder is a function that takes a multi-holed
context k , a recursive form list zs and an index i into this list,
and returns the HTML rendering for the form zs(i). Note that the
context k and list zs are both necessary in order to be able to report
errors.

Page fragments form a monoid structure (Figure 22). The unit
is emptyp : Page and the multiplication is ⊕ :(Page,Page)→
Page . In addition we need to lift the usual XML manipula-
tion operations into the Page type. Most importantly we need
a function for attaching a handler to a page and a way of ren-
dering pages as XML. The definitions of the monoid and XML
operations are quite straightforward. The function formp in-
vokes makeCheckedFormBuilder to construct a checked form
builder from a formlet and a handler. Notice that the body of
makeCheckedFormBuilder is essentially the same as body of
the non-validating formp function of Figure 11. The key difference

is that the call to makeCont takes the extra arguments for identi-
fying the context of the form on the page. The function render p

uses the checked form builders to generate a recursive form list.
This list is then plugged into the context, tying the recursive knot in
the same way as in the makeCont function. (The standard library
function mapi : ((α, Int)→ β, [α]) → [β] maps a function
f : (α, Int) → β over a list. The second argument to f is the
index of the element being mapped.)

6. Related work

JWIG JWIG (Christensen et al. 2003) is an extension of Java for
building web services. It builds on ideas developed in MAWL (Atkins
et al. 1999) and <bigwig> (Brabrand et al. 2002). JWIG allows
HTML (including forms) to be composed using templates. Tem-
plates are first-class multi-holed HTML contexts with named holes.
Both templates and simple values can be plugged into templates.
Regular expressions are used to validate form input data at run-
time. The field validation is performed both on the client and on
the server. A flow analysis is used to statically check validity of
generated HTML documents. The flow analysis requires that field
names be constants, so it is not possible to abstract over form com-
ponents.

Scriptlets Scriptlets are built on top of SMLserver (Elsman et al.
2007), a webserver for serving web applications written in Stan-
dard ML. Elsman and Larsen (Elsman and Larsen 2004) imple-
mented static typing for HTML on top of SMLserver. Their system
uses phantom types to enforce validity of HTML, and SML func-
tors called scriptlets for building statically checked forms. SML
functors are not first class, which limits the scope for dynamically
composing forms using scriptlets.

WASH The WASH/CGI Haskell library (Thiemann 2005) treats
HTML forms in a well-typed manner, but does not support the same
degree of abstraction as formlets.

The paradigm of WASH is monadic. The data produced by a
form component is carried forward as values are carried forward
by a monad, and the HTML part of the component is accumulated
as a monadic effect. Further, since handlers are attached to submit
buttons (rather than to the entire form), a submit button is forced to
appear below the fields that it depends on.

WASH supports using a user-defined type for an individual form
field, and it supports aggregating data from multiple fields in a
standard way, but it does not support aggregating multiple fields
into an arbitrary user-defined type. Hence, the programmer cannot
abstract over the HTML presentation of a component: the nature of
its form fields is revealed in its type. For example, given a one-field
component, a programmer cannot readily modify it to consist of
two fields, without changing all the uses of the component.

iData The iData library (Plasmeijer and Achten 2006) takes a
model-view-controller approach to editing program values using
HTML forms. An iData is the fundamental abstraction for editing
values in a web form. The iData library makes use of type-directed
overloading to automatically derive editors for certain types.

As well as abstracting over forms, the iData library builds in a
control flow mechanism which effectively forces the programmer
to treat an entire program as a single web page consisting of a col-
lection of interdependent iData. Whenever one of the elements is
edited by the user, the form is submitted and then re-displayed to
the user with any dependencies resolved. The iTasks library (Plas-
meijer et al. 2007) builds on top of iData and addresses this issue by
enabling or disabling iData according to the state of the program.

WUI The WUI (Web User Interface) library (Hanus 2006, 2007)
implements form abstractions for the functional logic programming
language Curry. Of the existing web form frameworks, the WUI

11 April 2008

library is the one that is closest to formlets in spirit. Indeed, WUIs
are essentially values of type (α)→ Formlet(α). The validation
mechanism for WUIs is strikingly similar to the one we describe
here for formlets. WUIs support validation on the client (Hanus
2007) as well as the server by compiling some of the validation
code to JavaScript. The WUI library is not stateless; continuations
are stored in a table in a persistent server-side process.

We briefly mention some less closely related work.
Hughes’s CGI library (Hughes 2000) supports a form of state-

less communication using arrows. It does not attempt to tackle the
issue of building abstractions over forms.

Rather than presenting the programmer with HTML forms, the
Google Web Toolkit (GWT) generates JavaScript from desktop
Java applications, written against desktop windowing frameworks,
and thus uses a very different paradigm for user interaction.

Ocsigen (Balat 2006) is a web programming extension for
OCaml. It supports statically typed HTML, but does not support
form abstractions.

Lift (Lift) is a web framework for the Scala language. Lift
provides some support for form construction: for instance, it allows
associating a function with a form field, which is applied to the field
value upon submission. Such functions are associated only with a
single concrete field and never with a constructed, abstract field
as formlets allow. Also, there is no syntactic support for binding
multiple field values within the same scope, thus the only way to
collect values from multiple fields is through side-effects.

7. Conclusion
We have presented formlets, a form abstraction based on idioms.
We have implemented formlets in Links and shown that they can
be cleanly extended to support new features such as validation.

In our current implementation, form handlers always run on the
server. Links, however, also supports code running on the client,
so a natural extension would be to allow client-side form handling.
A more challenging task is to extend formlets to respond to events
other than form submission. The natural responses to client-side
events are likely to favour manipulations of the DOM, whose API
has a very imperative feel; how to integrate this with our largely
functional approach is an open-ended question.

References
David L. Atkins, Thomas Ball, Glenn Bruns, and Kenneth C. Cox. Mawl:

A domain-specific language for form-based services. IEEE Trans. Soft-
ware Eng., 25(3):334–346, 1999.

Vincent Balat. Ocsigen: typing web interaction with objective caml. In ML,
pages 84–94, 2006.

Nick Benton, John Hughes, and Eugenio Moggi. Monads and effects. In
Applied Semantics: Advanced Lectures, volume 2395 of LNCS, pages
42–122, 2002.

Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The
<bigwig> project. ACM Trans. Internet Techn., 2(2):79–114, 2002.

Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach.
Extending Java for high-level web service construction. ACM Trans.
Program. Lang. Syst., 25(6):814–875, 2003.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: web
programming without tiers. In FMCO 2006, volume 4709 of LNCS,
pages 266–296, 2007.

Martin Elsman and Ken Friis Larsen. Typing XHTML web applications in
ML. In PADL, pages 224–238, 2004.

Martin Elsman, Niels Hallenberg, and Carsten Varming. SMLserver—A
Functional Approach to Web Publishing (Second Edition), April 2007.
(174 pages). Available via http://www.smlserver.org.

Paul T. Graunke, Shriram Krishnamurthi, Steve Van Der Hoeven, and
Matthias Felleisen. Programming the web with high-level programming
languages. In ESOP, pages 122–136, 2001.

GWT. Google Web Toolkit website, March 2008. http://code.google.
com/webtoolkit/.

M. Hanus. Putting declarative programming into the web: Translating Curry
to JavaScript. In PPDP’07, pages 155–166, 2007.

Michael Hanus. Type-oriented construction of web user interfaces. In
PPDP, pages 27–38, 2006.

John Hughes. Generalising monads to arrows. Sci. Comput. Program., 37
(1-3):67–111, 2000.

Clemens Kerer and Engin Kirda. Layout, content and logic separation in
web engineering. In Web Engineering, Software Engineering and Web
Application Development, volume 2016 of LNCS, pages 135–147, 2001.

Lift. Lift website, March 2008. http://liftweb.net/.
Conor McBride and Ross Paterson. Applicative programming with effects.

JFP, 18(1), 2008.
Eugenio Moggi. Computational lambda-calculus and monads. In LICS,

pages 14–23, 1989.
Anders Møller and Michael I. Schwartzbach. The design space of type

checkers for XML transformation languages. In ICDT ’05, January
2005.

PHP. PHP Hypertext Preprocessor, March 2008. http://www.php.net/.
Rinus Plasmeijer and Peter Achten. iData for the world wide web: Pro-

gramming interconnected web forms. In FLOPS, pages 242–258, 2006.
Rinus Plasmeijer, Peter Achten, and Pieter Koopman. iTasks: executable

specifications of interactive work flow systems for the web. SIGPLAN
Not., 42(9):141–152, 2007.

Ruby on Rails. Ruby on Rails website, March 2008. http://www.
rubyonrails.org/.

Peter Thiemann. An embedded domain-specific language for type-safe
server-side web scripting. ACM Trans. Inter. Tech., 5(1):1–46, 2005.
ISSN 1533-5399. doi: http://doi.acm.org/10.1145/1052934.1052935.

Philip Wadler. Monads for functional programming. In Advanced Func-
tional Programming, volume 925 of LNCS, pages 24–52. 1995.

12 April 2008

