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Abstract. Abstraction is the cornerstone of high-level programming;
HTML forms are the principal medium of web interaction. However, most
web programming environments do not support abstraction of form com-
ponents, leading to a lack of compositionality. Using a semantics based
on idioms, we show how to support compositional form construction and
give a convenient syntax.

1 Introduction

Say you want to present users with an HTML form for entering a pair of dates
(such as an arrival and departure date for booking a hotel). In your initial design,
a date is represented just as a single text field. Later, you choose to replace each
date by a pair of pulldown menus, one to select a month and one to select a day.

In typical web frameworks, such a change will require widespread modifica-
tions to the code. Under the first design, the HTML form will contain two text
fields, and the code that handles the response will need to extract and parse
the text entered in each field to yield a pair of values of an appropriate type,
say, an abstract date type. Under the second design, however, the HTML will
contain four menus, and the code that handles the response will need to extract
the choices for each menu and combine them in pairs to yield each date.

How can we structure a program so that it is isolated from this choice? We
want to capture the notion of a part of a form, specifically a part for collecting
values of a given type or purpose; we call such an abstraction a formlet. The
designer of the formlet should choose the HTML presentation, and decide how
to process the input into a date value. Clients of the formlet should be insulated
from the choice of HTML presentation, and also from the calculation that yields
the abstract value. And, of course, we should be able to compose formlets to
build larger formlets.

Once described, this sort of abstraction seems obvious and necessary. But
remarkably few web frameworks support it. Three existing web programming
frameworks that do support some degree of abstraction over form components
are WASH [28], iData [23] and WUI [11, 12], each having distinctive features and
limitations. (We discuss these further in Section 6.)

Our contribution is to reduce form abstraction to its essence. We use id-
ioms [19] (also known as applicative functors), a notion of effectful computation,
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related to both monads [20] and arrows [14]. We define a semantics for form-
lets by composing standard idioms, show how to support compositional form
construction, and give a convenient syntax. Furthermore, we illustrate how the
semantics can be extended to support additional features (such as checking form
input for validity), either by composing with additional standard idioms or by
generalising to indexed and parameterised idioms.

We originally developed formlets as part of our work on Links [6], a program-
ming language for the web. Like many other systems the original design of Links
exposed programmers to the low-level details of HTML/CGI. We introduced
formlets as a means to abstract away from such details.

In this paper we present a complete implementation of formlets in OCaml.
We take advantage of the extensible Camlp4 preprocessor to provide syntactic
sugar, without which formlets are usable but more difficult to read and write.
Both the library and the syntax extension are available from

http://groups.inf.ed.ac.uk/links/formlets/

The Links implementation of formlets also provides the syntax presented here.
The complete Links system includes many features, such as a full suite of HTML
controls (textareas, pop-up menus, radio buttons, etc.), which are not described
here. Steve Strugnell has ported a commercial web-based project-management
application originally implemented in PHP to the Links version of formlets [26].
He gives an in-depth comparison between Links formlets and forms implemented
in PHP. Chris Eidhof has released a Haskell implementation of formlets [8].

The remainder of this paper is organised as follows. Section 2 presents form-
lets, as they appear to the programmer, through examples. Section 3 gives
a semantics for formlets as the composition of the three idiom instances that
capture the effects needed for form abstraction. Section 4 defines formally the
formlet syntax used throughout the paper and relates it to the formlet idiom.
Section 5 shows how to extend the basic abstraction with additional features:
static XHTML validation, user-input validation, and an optimised representa-
tion based on multi-holed contexts. Section 6 examines the relationship with
existing form-abstraction features in high-level web frameworks.

2 Formlets by example

Now we illustrate formlets, as they might appear to the programmer, with an
example (Fig. 1). We assume familiarity with HTML and OCaml. This section
covers our OCaml implementation, and so has features that may vary in another
implementation of formlets. We use a special syntax (defined formally in Sec-
tion 4) for programming with formlets; this syntax is part of the implementation,
and makes formlets easier to use, but not an essential part of the abstraction.

The formlet date formlet has two text input fields, labelled “Month” and
“Day.” Upon submission, this formlet will yield a date value representing the
date entered. The user-defined make date function translates the day and month
into a suitable representation.



let date formlet : date formlet = formlet
<div>

Month: {input int ⇒ month}
Day: {input int ⇒ day}

</div>

yields make date month day

let travel formlet : (string × date × date) formlet =
formlet
<#>

Name: {input ⇒ name}
<div>

Arrive: {date formlet ⇒ arrive}
Depart: {date formlet ⇒ depart}

</div>

{submit "Submit"}
</#>

yields (name, arrive, depart)

let display itinerary : (string × date × date)→ xml =
fun (name, arrive, depart)→
<html>

<head><title>Itinerary</title></head>

<body>

Itinerary for: {xml text name}
Arriving: {xml of date arrive}
Departing: {xml of date depart}

</body>

</html>

handle travel formlet display itinerary

Fig. 1. Date example

let date formlet : date formlet =
pure (fun ((), month, (), day, ()) → make date month day)
⊗ (tag "div" [ ]

(pure (fun () month () day () → ((), month, (), day, ()))
⊗ text "Month: " ⊗ input int
⊗ text "Day: " ⊗ input int ⊗ text "\n "))

let travel formlet : (string × date × date) formlet =
pure (fun ((), name, ((), arrive, (), depart), ()) →

(name, arrive, depart))
⊗ (pure (fun () name ((), arrive, (), depart) () →

((), name, ((), arrive, (), depart), ()))
⊗ text "Name: " ⊗ input
⊗ (tag "div" [ ]

(pure (fun () arrive () depart → ((), arrive, (), depart))
⊗ text "Arrive: " ⊗ date formlet
⊗ text "Depart: " ⊗ date formlet))

⊗ xml (submit "Submit"))

let display itinerary : (string × date × date) → xml =
fun (name, arrive, depart) →

xml tag "html" [ ]
((xml tag "head" [ ]

(xml tag "title" [ ] (xml text "Itinerary"))) @
(xml tag "body" [ ]

((xml text "Itinerary for: ") @ (xml text name) @
(xml text "Arriving: ") @ (xml of date arrive) @
(xml text "Departing: ") @ (xml of date depart))))

handle travel formlet display itinerary

Fig. 2. Date example (desugared)



A formlet expression consists of a body and a yields clause. The body of
date formlet is

<div>

Month: {input int ⇒ month}
Day: {input int ⇒ day}

</div>

and its yields clause is

make date month day

The body of a formlet expression is a formlet quasiquote. This is like an
XML literal expression but with embedded formlet bindings. A formlet binding
{f ⇒ p} binds the value yielded by f to the pattern p for the scope of the
yields clause. Here f is an expression that evaluates to a formlet and the type
yielded by the formlet must be the same as the type accepted by the pattern.
Thus the variables month and day will be bound to the values yielded by the
two instances of the input int formlet. The bound formlet f will render some
HTML which will take the place of the formlet binding when the outer formlet
is rendered.

The value input int : int formlet is a formlet that renders as an HTML text
input element, and parses the submission as type int . It is built from the prim-
itive formlet input which presents an input element and yields the entered
string. Although input int is used here twice, the system prevents any field
name clashes.

It is important to realize that any given formlet defines behavior at two
distinct points in the program’s runtime: first when the form structure is built
up, and much later (if at all) when the form is submitted by the user, when the
outcome is processed. The first corresponds to the body and the second to the
yields clause.

Next we illustrate how user-defined formlets can be usefully combined to cre-
ate larger formlets. Continuing Fig. 2, travel formlet asks for a name, an arrival
date, and a departure date. The library function submit returns the HTML for a
submit button; its string argument provides the label for the button. (This cov-
ers the common case where there is a single button on a form. A similar function
submit button : string → bool formlet constructs a submit button formlet, whose
result indicates whether this button was the one that submitted the form.)

(The syntax <#> · · · </#> enters the XML parsing mode without introducing
a root XML node; its result is an XML forest, with the same type as XML values
introduced by a proper XML tag. We borrow this notation from WASH.)

Having created a formlet, how do we use it? For a formlet to become a form,
we need to connect it with a handler, which will consume the form input and
perform the rest of the user interaction. The function handle attaches a handler
to a formlet.

Continuing the above example, we render travel formlet onto a full web page,
and attach a handler (display itinerary) that displays the chosen itinerary back
to the user. (The abstract type xml is given in Fig. 3; we construct XML using



type xml = xml item list
and tag = string
and attrs = (string × string) list
and xml item

val xml tag : tag → attrs → xml → xml
val xml text : string → xml

Fig. 3. The xml abstract type.

special syntax, which is defined in terms of the xml tag and xml text functions,
as shown formally in Section 4.)

This is a simple example; a more interesting application might render another
form on the display itinerary page, one which allows the user to confirm the
itinerary and purchase tickets; it might then take actions such as logging the
purchase in a database, and so on.

This example demonstrates the key characteristics of the formlet abstraction:
static binding (we cannot fetch the value of a form field that is not in scope),
structured results (the month and day fields are packaged into an abstract date
type, which is all the formlet consumer sees), and composition (we reuse the
date formlet twice in travel formlet , without fear of field-name clashes).

2.1 Syntactic sugar

Fig. 2 shows the desugared version of the date example. XML values are con-
structed using the xml tag and xml text functions and the standard list concate-
nation operator, @. Formlet values are slightly more complicated. The xml tag
and xml text functions have formlet counterparts tag and text ; composition of
formlets makes use of the standard idiom operations pure and ⊗. The formlet
primitives are covered in detail in Section 3.

The sugar makes it easier to freely mix static XML with formlets. Without
the sugar, dummy bindings are needed to bind formlets consisting just of XML
(see the calls to pure in Fig. 2), and formlets nested inside XML have to be
rebound (see the second call to pure in the body of travel formlet in Fig. 2). A
desugaring algorithm is described in Section 4.

2.2 Life without formlets

Now consider implementing the above example using the standard HTML/CGI
interface. We would face the following difficulties with the standard interface:

– There is no static association between a form definition and the code that
handles it, so the interface is fragile. This means the form and the handling
code need to be kept manually in sync.

– Field values are always received individually and always as strings: the in-
terface provides no facility for processing data or giving it structure.

– Given two forms, there is generally no easy way to combine them into a new
form without fear of name clashes amongst the fields—thus it is not easy to



module type Idiom = sig
type α t
val pure : α → α t
val (⊗) : (α → β) t → α t → β t

end

module type FORMLET = sig
include Idiom
val xml : xml → unit t
val text : string → unit t
val tag : tag → attrs → α t → α t
val input : string t
val run : α t → xml × (env → α)

end

Fig. 4. The idiom and formlet interfaces

write a form that abstractly uses subcomponents. In particular, it’s difficult
to use a form twice within a larger form.

Conventional web programming frameworks such as PHP [22] and Ruby on
Rails [25] facilitate abstraction only through templating or textual substitution,
hence there is no automatic way to generate fresh field names, and any form
“abstraction” (such as a template) still exposes the programmer to the concrete
field names used in the form. Even advanced systems such as PLT Scheme [10],
JWIG [5], scriptlets [9], Ocsigen [2], Lift [15] and the original design for Links [6]
all fall short in the same way.

Formlets address all of the above problems: they provide a static association
between a form and its handler (ensuring that fields referenced actually exist
and are of the right type), they allow processing raw form data into structured
values, and they allow composition, in part by generating fresh field names at
runtime.

3 Semantics

We wish to give a semantics of formlets using a well-understood formalism. We
shall show that formlets turn out to be idioms [19], a notion of computation
closely related to monads [3, 20, 29]. We begin with a concrete implementation
in OCaml, which we then factor using standard idioms to give a formal semantics.

3.1 A concrete implementation

Figs. 4 and 5 give a concrete implementation of formlets in OCaml.
The type α t is the type of formlets that return values of type α (the library

exposes this type at the top-level as α formlet). Concretely α t is defined as a
function that takes a name source (integer) and returns a triple of a rendering
(XML), a collector (function of type env → α) and an updated name source.
The formlet operations ensure that the names generated in the rendering are the
names expected (in the environment) by the collector.

The pure operation is used to create constant formlets whose renderings are
empty and whose collector always returns the same value irrespective of the



module Formlet : FORMLET = struct
type α t = int → (xml × (env → α) × int)

let pure x i = ([ ], const x, i)
let (⊗) f p i = let (x1, g, i) = f i in

let (x2, q, i) = p i in
(x1 @ x2, (fun env → g env (q env)), i)

let xml x i = (x, const (), i)
let text t i = xml (xml text t) i
let tag t attrs fmlt i = let (x, f, i) = fmlt i in (xml tag t attrs x, f, i)

let next name i = ("input_" ^ string of int i, i + 1)
let input i = let (w, i) = next name i in

(xml tag "input" [("name", w)] [ ], List.assoc w, i)

let run c = let (x, f, ) = c 0 in (x, f )
end

Fig. 5. The formlet idiom

environment. The ⊗ operation applies an A → B formlet to an A formlet. The
name source is threaded through each formlet in turn. The resulting renderings
are concatenated and the collectors composed. Together pure and ⊗ constitute
the fundamental idiom operations. (To be an idiom, they must also satisfy some
laws, shown in Section 3.2.)

As before, the xml and text operations create unit formlets from the given
XML or text, and the tag operation wraps the given formlet’s rendering in a
new element with the specified tag name and attributes.

The primitive formlet input generates HTML input elements. A single name
is generated from the name source, and this name is used both in the rendering
and the collector. The full implementation includes a range of other primitive
formlets for generating the other HTML form elements (e.g. textarea, option,
etc.).

The run operation “runs” a formlet by supplying it with a name source (we
use 0); this produces a rendering and a collector function.

3.2 Idioms

Idioms were introduced by McBride [18] to capture a common pattern in func-
tional programming.1 An idiom is a type constructor I together with operations:

pure : α→ I α ⊗ : I (α→ β)→ I α→ I β

1 Subsequently McBride and Paterson [19] changed the name to applicative functor to
emphasise the view of idioms as an “abstract characterisation of an applicative style
of effectful programming”. We stick with McBride’s original “idiom” for brevity.



that satisfy the following laws:

pure id ⊗ u = u pure f ⊗ pure x = pure (f x)
pure (◦) ⊗ u ⊗ v ⊗ w = u ⊗ (v ⊗ w) u ⊗ pure x = pure (λf.f x) ⊗ u

where id is the identity function and ◦ denotes function composition.
The pure operation lifts a value into an idiom. Like standard function ap-

plication, idiom application ⊗ is left-associative. The idiom laws guarantee that
pure computations can be reordered. However, an effectful computation cannot
depend on the result of a pure computation, and any expression built from pure
and ⊗ can be rewritten in the canonical form

pure f ⊗ u1 ⊗ · · · ⊗ uk

where f is the pure part of the computation and u1, . . . , uk are the effectful
parts of the computation. This form captures the essence of idioms as a tool for
modelling computation.

The intuition is that an idiomatic computation consists of a series of side-
effecting computations, each of which returns a value. The order in which compu-
tations are performed is significant, but a computation cannot depend on values
returned by prior computations. The final return value is obtained by aggregat-
ing the values returned by each of the side-effecting computations, using a pure
function. As Lindley and others [17] put it: idioms are oblivious.

Formlets fit this pattern: the sub-formlets cannot depend on one another,
and the final value yielded by a formlet is a pure function of the values yielded
by the sub-formlets.

3.3 Factoring formlets

Now we introduce the three idioms into which the formlet idiom factors (Fig. 6).
Besides the standard idiom operations in the interface, each idiom comes with
operations corresponding to primitive effects and a run operation for executing
the effects and extracting the final result. A computation in the Namer idiom
has type int → α× int ; it is a function from a counter to a value and a possibly-
updated counter. The next name operation uses this counter to construct a fresh
name, updating the counter. A computation in the Environment idiom has type
env → α; it receives an environment and yields a value. The lookup operation
retrieves values from the environment by name. A computation in the XmlWriter
idiom (also known as a monoid-accumulator) has type xml × α and so yields
both XML and a value; the XML is generated by the primitive xml , text and tag
operations and concatenated using ⊗. Each of these idioms corresponds directly
to a standard monad [19].

The formlet idiom is just the composition of these three idioms (see Fig. 8).
The Compose module composes any two idioms (Fig. 7).



module Namer : sig
include Idiom
val next name : string t
val run : α t → α

end = struct
type α t = int → α × int
let pure v i = (v, i)
let (⊗) f p i = let (f ′, i) = f i in

let (p′, i) = p i in
(f ′ p′, i)

let next name i =
("input_"^string of int i, i+1)

let run v = fst (v 0)
end

module Environment : sig
include Idiom
type env = (string × string) list
val lookup : string → string t
val run : α t → env → α

end = struct
type α t = env → α
and env = (string × string) list
let pure v e = v
let (⊗) f p e = f e (p e)
let lookup = List.assoc
let run v = v

end

module XmlWriter : sig
include Idiom
val text : string → unit t
val xml : xml → unit t
val tag : tag → attrs → α t → α t
val run : α t → xml × α

end = struct
type α t = xml × α
let pure v = ([ ], v)
let (⊗) (x, f ) (y, p) = (x @ y, f p)
let text x = (xml text x, ())
let xml x = (x, ())
let tag t a (x,v) = (xml tag t a x, v)
let run v = v

end

Fig. 6. Standard idioms

module Compose (F : Idiom) (G : Idiom) : sig
include Idiom with type α t = (α G.t) F.t
val refine : α F.t → (α G.t) F.t

end = struct
type α t = (α G.t) F.t
let pure x = F.pure (G.pure x )
let (⊗) f x = F.pure (⊗G) ⊗F f ⊗F x
let refine v = (F.pure G.pure) ⊗F v

end

Fig. 7. Idiom composition

module Formlet : FORMLET = struct
module AE = Compose (XmlWriter) (Environment)
include Compose (Namer) (AE)
module N = Namer module A = XmlWriter module E = Environment
let xml x = N.pure (AE.refine (A.xml x ))
let text s = N.pure (AE.refine (A.text s))
let tag t ats f = N.pure (A.tag t ats) ⊗N f
let input = N.pure (fun n → A.tag "input" [("name", n)]

(A.pure (E.lookup n))) ⊗N N.next name
let run v = let xml, collector = A.run (N.run v) in (xml, E.run collector)

end

Fig. 8. The formlet idiom (factored)



To work with a composed idiom, we need to be able to lift the primitive
operations from the component idioms into the composed idiom. Given idioms
F and G, we can lift any idiomatic computation of type α G.t to an idiomatic
computation of type (α G.t)F.t using F .pure, or lift one of type αF.t to one of
type (α G.t) F.t using Compose(F)(G).refine.

In defining the composed formlet idiom, a combination of N .pure and
AE .refine is used to lift the results of the A.xml and A.text operations. The
tag operation is lifted differently as its third argument is a formlet: here we ap-
ply the A.tag t ats operation to it. The run operation simply runs each of the
primitive run operations in turn. The input operation is the most interesting. It
generates a fresh name and uses it both to name an input element and, in the
collector, for lookup in the environment.

3.4 A note on monads

Monads [3, 20, 29] are a more standard semantic tool for reasoning about side-
effects. However, it is not difficult to see that there is no monad corresponding
to the formlet type. Intuitively, the problem is that a bind operation for formlets
would have to read some of the input submitted by the user before the formlet
had been rendered, which is clearly impossible. (Recall that the type of bind
would be α formlet → (α → β formlet) → β formlet and to implement this
would require extracting the α value from the first argument to pass it to the
second argument; but the rendering of the β formlet should not depend on the
α-type data submitted to the first formlet.)

Every monad is an idiom, though of course, being oblivious, the idiom in-
terface is less powerful (see Lindley and others [17] on the relative expressive
power of idioms, arrows and monads). Although the idioms in Fig. 6 are in fact
also monads, their composition (the formlet idiom) is not a monad: although id-
ioms are closed under composition, monads are not. Using monad transformers
in place of functor composition recovers some compositionality, but there is no
combination of monad transformers that layers these effects in the right order.

4 Syntax

The syntax presented in Section 2 can be defined as syntactic sugar, which desug-
ars into uses of the basic formlet operations. Here we formally define the syntax
and its translation. We add two new kinds of expression: XML quasiquotes, (or
XML literals with embedded evaluable expressions), and formlet expressions,
denoting formlet values. Fig. 9 gives the grammar for these expressions.

The desugaring transformations are shown in Fig. 10. The operation J·K de-
sugars the formlet expressions in a program; it is a homomorphism on all syntac-
tic forms except XML quasiquotes and formlet expressions. The operation (·)∗
desugars XML quasiquotes and nodes. The operation z† denotes a pattern aggre-
gating the sub-patterns of z where z ranges over formlet quasiquotes and nodes.
In an abuse of notation, we also let z† denote the expression that reconstructs



Expressions

e ::= · · · | r (XML)
| formlet q yields e (formlet)

XML quasiquotes

m ::= s | {e} | <t ats>m1 . . . mk</t> node
r ::= <t ats>m1 . . . mk</t> | <#>m1 . . . mk</#> quasiquote

Formlet quasiquotes

n ::= s | {e} | {f ⇒ p} | <t ats>n1 . . . nk</t> node
q ::= <t ats>n1 . . . nk</t> | <#>n1 . . . nk</#> quasiquote

Meta variables

e expression
p pattern

f formlet-type expression
s string

t tag
ats attribute list

Fig. 9. Quasiquote syntax.

the value matched by the pattern. (Of course, we need to be somewhat careful in
the OCaml implementation to properly reconstruct the value from the matched
pattern.) Finally, z◦ is a formlet that tuples the outcomes of sub-formlets of z.

As a simple example of desugaring, consider the definition of the input int
formlet used earlier:

let input int : int formlet =
formlet <#>{input ⇒ i}</#> yields int of string i

Under the translation given in Fig. 10, the body becomes

pure (fun i → int of string i) ⊗ (pure (fun i → i) ⊗ input)

We can use the idiom laws (and η-reduction) to simplify the output a little,
giving the following semantically-equivalent code:

pure int of string ⊗ input

As a richer example, recall date formlet from Fig. 1 and its desugaring in Fig. 2.
We could easily optimise the desugared code by removing the extra units from the
body of the inner pure and from the arguments to the function in the outer pure.
One thing we cannot do is avoid the rebinding of month and day . Section 5.3
outlines an alternate desugaring that obviates this rebinding.

Completeness Everything expressible with the formlet operations can be
expressed directly in the syntax. For example, the ⊗ operator of the formlet
idiom may be written as a function ap using syntactic sugar:

let ap : (α→ β) formlet → α formlet → β formlet =
fun f p→ formlet <#>{f ⇒ g}{p⇒ q}</#> yields g q

Under the desugaring transformation, the body becomes



JrK = r∗

Jformlet q yields eK = pure(fun q† → JeK) ⊗ q◦

s∗ = xml text s
{e}∗ = JeK

(<t ats>m1 . . . mk</t>)∗ = xml tag t ats (<#>m1 . . . mk</#>)∗

(<#>m1 . . . mk</#>)∗ = m∗1 @ · · · @m∗k

s◦ = text s
{e}◦ = xml JeK

{f ⇒ p}◦ = JfK
(<t ats>n1 . . . nk</t>)◦ = tag t ats (<#>n1 . . . nk</#>)◦

(<#>n1 . . . nk</#>)◦ = pure (fun n†1 . . . n
†
k → (n†1, . . . , n

†
k)) ⊗ n◦1 · · · ⊗ n◦k

s† = ()
{e}† = ()

{f ⇒ p}† = p

(<t ats>n1 . . . nk</t>)† = (n†1, . . . , n
†
k)

(<#>n1 . . . nk</#>)
† = (n†1, . . . , n

†
k)

Fig. 10. Desugaring XML and formlets.

(pure (fun (g, q) → g q)) ⊗ (pure (fun g q → (g, q)) ⊗ f ⊗ p)

which, under the idiom laws, is equivalent to f ⊗ p. And pure, too, can be
defined in the sugar as fun x → formlet <#></#> yields x. This shows that the
syntax is complete for the formlet operations.

5 Extensions

The formlet abstraction is robust, as we can show by extending it in several
independent ways.

5.1 XHTML validation

The problem of statically enforcing validity of HTML and indeed XML is well-
studied [4, 13, 21, 27]. Such schemes are essentially orthogonal to the work pre-
sented here: we can incorporate a type system for XML with little disturbance
to the core formlet abstraction.

Of course, building static validity into the type system requires that we have
a whole family of types for HTML rather than just one. For instance, we might
have separate types for block and inline entities (as in Elsman and Larsen’s
system [9]), or even a different type for every tag (as in XDuce [13]).

Fortunately, it is easy to push the extra type parameters through our formlet
construction. The key component that needs to change is the XmlWriter idiom.



As well as the value type, this now needs to be parameterised over the XML
type. The construction we need is what we call an indexed idiom. It is roughly
analogous to an effect-indexed monad [30]. In OCaml, we define an indexed idiom
as follows:

module type XIdiom = sig

type (ψ, α) t

val pure : α → (ψ, α) t

val (⊗) : (ψ, α → β) t → (ψ, α) t → (ψ, β) t

end

(For the indexed XML writer idiom the parameter ψ is the XML type.) Like
idioms, indexed idioms satisfy the four laws given in Section 3. They can be
pre- and post-composed with other idioms to form new indexed idioms. Pre-
composing the name generation idiom with the indexed XML writer idiom pre-
composed with the environment idiom gives us an indexed formlet idiom.

As a proof of concept, we have implemented a prototype of formlets with
XML typing in OCaml using Elsman and Larsen’s encoding of a fragment of
XHTML 1.0 [9]. It uses phantom types to capture XHTML validity constraints.

5.2 Input validation

A common need in form processing is validating user input: on submission, we
should ensure that the data is well-formed, and if not, re-display the form to the
user (with error messages) until well-formed data is submitted.

Formlets extend to this need if we incorporate additional idioms for error-
checking and accumulating error messages and add combinators satisfies and
err , which add to a formlet, respectively, an assertion that the outcome must
satisfy a given predicate and an error message to be used when it does not. Any
time the continuation associated with a formlet is invoked, the outcome is sure
to satisfy the validation predicate(s).

The need to re-display a page upon errors also requires additional mechanics.
Instead of simply attaching a continuation to a formlet and rendering it to
HTML, the formlet continuation now needs to have a complete page context
available to it, in case it needs to redisplay the page. To facilitate this, we add
a new syntactic form, which associates formlets with their continuations in the
context of a larger page.

Extending with input validation adds some complexity to the implementa-
tion, so we omit details here. We have implemented it in the Links version of
formlets and provide details in a technical report [7].

5.3 Multi-holed contexts

The presentation of formlets we have given in this paper relies on lifting the tag
constructor from the XmlWriter idiom into the Formlet idiom. As illustrated by
the desugaring of the date example in Section 4 this makes it difficult to separate



the raw XML from the semantic content of formlets and requires nested formlet
values to be rebound.

Besides obfuscating the code, this rebinding is inefficient. By adapting the
formlet datatype to accumulate a list of XML values rather than a single XML
value, and replacing tag with a general operation for plugging the accumulated
list into a multi-holed context plug , we obtain a more efficient formlet implemen-
tation that does provide a separation between the raw XML and the semantic
content. Further, this leads to a much more direct desugaring transformation.
For example, the desugared version of the date example becomes:

let date formlet : ( , date) NFormlet.t =
plug (tag "div" [ ] (text "Month: " @ hole @ text "Day: " @ hole))

(pure (fun month day → make date month day) ⊗ input int ⊗ input int)

Statically typing plug in OCaml requires some ingenuity. Using phantom
types, we encode the number of holes in a context, or the number of elements
in a list, as the difference between two type-level Peano numbers [16]. As with
XHTML typing the key component that needs to change is the XmlWriter idiom.
This now needs to be parameterised over the number of XML values in the list
it accumulates. The construction we need is the what we call a parameterised
idiom, the idiom analogue of a parameterised monad [1]. In OCaml, we define a
parameterised idiom as follows:

module type PIdiom = sig
type (µ, ν, α) t
val pure : α → (µ, ν, α) t
val (⊗) : (µ, ν, α → β) t → (σ, µ, α) t → (σ, ν, β) t

end

(For the parameterised XML writer idiom the parameters µ and ν encode the
length of the list of XML values as ν − µ.) Like idioms, and indexed idioms,
parameterised idioms satisfy the four laws given in Section 3. They can be pre-
and post-composed with other idioms to form new parameterised idioms. Pre-
composing the name generation idiom with the parameterised XML writer idiom
pre-composed with the environment idiom gives a parameterised formlet idiom.

We have implemented a prototype of formlets with a multi-holed plugging
operation in OCaml. Statically-typed multi-holed contexts can be combined with
statically typed XHTML [16]. Lifting the result to idioms gives either an indexed
parameterised idiom—that is, an idiom with an extra type parameter for the
XML type and two extra type parameters for the number of XML values in
the accumulated list—or, by attaching the XML type to both of the other type
parameters, a parameterised idiom.

5.4 Other extensions

These are by no means the only useful extensions to the basic formlet abstraction.
For example, we might wish to translate validation code to JavaScript to run on
the client [12], or enforce separation between those portions of the program that
deal with presentation and those that treat application-specific computation, a



common requirement in large web projects. Either of these may be combined
with the formlet abstraction without injury to the core design presented here.

6 Related work

The WASH, iData and WUI frameworks all support aspects of the form ab-
straction we have presented. WUI, in fact, meets all of the goals listed in the
introduction. Underlying all these systems is the essential mode of form abstrac-
tion we describe, although they vary richly in their feature sets and limitations.

WASH The WASH/CGI Haskell framework [28] supports a variety of web
application needs, including forms with some abstraction. WASH supports user-
defined types as the result of an individual form field, through defining a Read
instance, which parses the type from a string. It also supports aggregating data
from multiple fields using a suite of tupling constructors, but it does not allow
arbitrary calculations from these multiple fields into other data types, such as
our abstract date type. In particular, the tupling constructors still expose the
structure of the form fields, preventing true abstraction. For example, given a
one-field component, a programmer cannot modify it to consist of two fields
without also changing all the uses of the component.

iData The iData framework [23] supports a high degree of form abstraction,
calling its abstractions iData. Underlying iData is an abstraction much like form-
lets. Unlike formlets, where form abstraction is separated from control flow (the
function handle attaches a handler to a formlet), iData have control flow baked
in. An iData program defines a single web page consisting of a collection of in-
terdependent iData. Whenever a form element is edited by the user, the form
is submitted and then re-displayed to the user with any dependencies resolved.
The iTasks library [24] builds on top of iData by enabling or disabling iData
according to the state of the program.

WUI The WUI (Web User Interface) library [11, 12] implements form abstrac-
tions for the functional logic programming language Curry. Here the basic units
are called WUIs. WUIs enforce an assumption that each WUI of type α should
accept a value of type α as well as generate one; this input value models the
default or current value for the component. Thus a WUI α is equivalent, in our
setting, to a value of type α→ α formlet .
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