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We compare the expressive power of three programming abstractions for user-defined computational effects:

Plotkin and Pretnar’s effect handlers, Filinski’s monadic reflection, and delimited control without answer-

type-modification. This comparison allows a precise discussion about the relative expressiveness of each

programming abstraction. It also demonstrates the sensitivity of the relative expressiveness of user-defined

effects to seemingly orthogonal language features.

We present three calculi, one per abstraction, extending Levy’s call-by-push-value. For each calculus, we

present syntax, operational semantics, a natural type-and-effect system, and, for effect handlers and monadic

reflection, a set-theoretic denotational semantics. We establish their basic metatheoretic properties: safety,

termination, and, where applicable, soundness and adequacy. Using Felleisen’s notion of a macro translation, we

show that these abstractions can macro-express each other, and show which translations preserve typeability.

We use the adequate finitary set-theoretic denotational semantics for the monadic calculus to show that effect

handlers cannot be macro-expressed while preserving typeability either by monadic reflection or by delimited

control. Our argument fails with simple changes to the type system such as polymorphism and inductive

types. We supplement our development with a mechanised Abella formalisation.
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1 INTRODUCTION

How should we compare abstractions for user-defined effects?

The use of computational effects, such as file, terminal, and network I/O, random-number

generation, and memory allocation and mutation, is controversial in functional programming.

While languages like Scheme and ML allow these effects to occur everywhere, pure languages like

Haskell restrict the use of effects. One reason to be wary of incorporating computational effects

into a language is that doing so can mean giving up some of the most basic properties of the lambda
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calculus, like β-equality, referential transparency, and confluence. The loss of these properties leads
to unpredictable behaviour in lazy languages, makes it harder to reason about program behaviour,

and limits the applicability of correctness preserving transformations like common subexpression

elimination or code motion.

Monads [Moggi 1989; Spivey 1990; Wadler 1990] are the established abstraction for incorporating

effects into pure languages. Recently, Bauer and Pretnar [2015] proposed the use of algebraic

effects and handlers [Plotkin and Pretnar 2009] to structure programs with user-defined effects.

In this approach, the programmer first declares algebraic operations as the syntactic constructs

she will use to cause the effects, in analogy with declaring new exceptions. Then, she defines

effect handlers that describe how to handle these operations, in analogy with exception handlers.

While exceptions immediately transfer control to the enclosing handler without resumption, a

computation may continue in the same position following an effect operation. In order to support

resumption, an effect handler has access to the continuation at the point of effect invocation. Thus

algebraic effects and handlers provide a form of delimited control. Delimited control operators have

long been used to encode effects [Danvy 2006]. There are many variants of such control operators,

and their inter-relationships are subtle [Shan 2007], and often appear only in folklore. Here we

focus on a specific pair of operators: shift-zero and dollar [Materzok and Biernacki 2012] without

answer-type-modification, whose operational semantics and type system are the closest to effect

handlers and monads.

We study the three different abstractions for user-defined effects: effect handlers, monads, and

delimited control operators. Our goal is to enable language designers to conduct a precise and

informed discussion about the relative expressiveness of each abstraction. In order to compare them,

we build on an idealised calculus for functional-imperative programming, namely call-by-push-

value [Levy 2004], and extend it with each of the three abstractions and their corresponding natural

type systems. We then assess the expressive power of each abstraction by rigorously comparing

and analysing these calculi.

We use Felleisen’s notion of macro expressibility [Felleisen 1991]: when a programming language

L is extended by some feature, we say that the extended language L+ is macro expressible when

there is a local syntax-directed translation (a macro translation) from L+ to L that keeps the

features in L fixed. Felleisen introduces this notion to study the relative expressive power of

Turing-complete calculi, as macro expressivity is more sensitive in these contexts than notions

of expressivity based on computability. We adapt Felleisen’s approach to the situation where one

extension L1

+ of a base calculus L is macro expressible in another extension L2

+ of the same base

calculus L. Doing so allows us to formally compare the expressive power of each of the different

abstractions for user-defined effects.

In the first instance, we show that, disregarding types, all three abstractions are macro-expressible

in terms of one another, giving six macro translations. Some of these translations are known in less

rigorous forms, either published, or in folklore. One translation, macro-expressing effect-handlers

in delimited control, improves on previous concrete implementations [Kammar et al. 2013], which

rely on the existence of a global higher-order memory cell storing a stack of effect-handlers. The

translation from monadic reflection to effect handlers is new.

We also examine whether these translations preserve typeability: the translations of some well-

typed programs are untypeable. This untypeability is sensitive to the precise choice of features

of the type system. We show that the translation from delimited control to monadic reflection

preserves typeability. A potential difference between the expressive power of handler type systems

and between monadic reflection and delimited control type systems was recently suggested by

Kammar and Pretnar [2017], who give a straightforward typeability preserving macro-translation

of delimited dynamic state into a calculus of effect handlers, whereas existing translations using
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Fig. 1. Existing and conjectured macro translations

monads and delimited control require more sophistication [Kiselyov et al. 2006]. We show that there

exists no macro translation from effect handlers to monadic reflection that preserves typeability.

The proof relies on the denotational semantics for the monadic calculus. This set-theoretic deno-

tational semantics and its adequacy for Filinski’s multi-monadic metalanguage [2010] is another

piece of folklore which we formalise here. We conjecture that a similar proof, though with more

mathematical sophistication, can be used to prove the non-existence of a typeability-preserving

macro translation from the monadic calculus to effect handlers. To this end, we give adequate

set-theoretic semantics to the effect handler calculus with its type-and-effect system, and highlight

the critical semantic invariant a monadic calculus will invalidate.

Fig. 1 summarises our contributions and conjectured results. Untyped calculi appear on the left

and their typed fragments on the right. Unlabelled arrows between the typed calculi signify that

the corresponding macro translation between the untyped calculi preserves typeability. Arrows

labelled by ∗ are new direct untyped direct translations. Arrows labelled by ∄ signify that no macro

translation exists between the calculi, not even a partial macro translation that is only defined for

well-typed programs.

The non-expressivity results are sensitive to the precise collection of features in each calculus.

For example, extending the base calculus with inductive types and primitive recursion would create

gaps in our non-existence arguments, and we conjecture that extending the calculi with various

forms of polymorphism would make our untyped translations typeability-preserving. Adding more

features to each calculus blurs the distinction between each abstraction. This sensitivity means that

in a realistic programming language, such as Haskell, OCaml, or Scheme, the different abstractions

are often practically equivalent [Schrijvers et al. 2016]. It also teaches us that meaningful relative

expressivity results must be stated within a rigorous framework such as a formal calculus, where

the exact assumptions and features are made explicit. The full picture is still far from complete, but

our work lays the foundation for drawing it.

We supplement our pencil-and-paper proofs with a mechanised formalisation in the Abella proof

assistant [Gacek 2008, 2009] of the more syntactic aspects of our work. Specifically, for each calculus,

we formalise a Wright and Felleisen style progress-and-preservation safety theorem [1994], and

correctness theorems for our translations.

We make the following contributions:

• syntax and semantics of formal calculi for effect handlers, monadic reflection, and delimited

control, where each calculus extends a shared call-by-push-value core, and their metatheory:

– set-theoretic denotational semantics for effect handlers and monadic reflection;

– denotational soundness and adequacy proofs for effect handlers and monadic reflection;

– a termination proof for monadic reflection (termination proofs for the other calculi appear

in existing work);

• six macro-translations between the three untyped calculi, and variations on three of those

translations;
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V ,W ::= values

x variable

| () unit value

| (V1,V2) pairing

| injℓ V variant

| {M } thunk

M,N ::= computations

case V of product

(x1, x2)→ M matching

| case V of { variant

(injℓi xi → Mi )i } matching

| V ! force

| return V returner

| x ← M ; N sequencing

| λx .M abstraction

| M V application

| ⟨M1,M2⟩ pairing

| prji M projection

Fig. 2. mam syntax

• formally mechanised metatheory in Abella
1
comprising:

– progress and preservation theorems;

– the translations between the untyped calculi; and

– their correctness proofs in terms of formal simulation results;

• typeability preservation of the macro translation from delimited control to monadic reflection;

and

• a proof that there exists no typeability-preserving macro translation from effect handlers to

either monadic reflection or delimited control.

We structure the remainder of the paper as follows. Sections 2–5 present the core calculus and its

extensions with effect handlers, monadic reflection, and delimited control, in this order, along with

their metatheoretic properties. Section 6 presents the macro translations between these calculi,

their correctness, and typeability-preservation. Our positive translation results appear in § 6.1–6.6,

which only depend on §1–4 of Section 2–5. Section 7 concludes and outlines further work.

2 THE CORE-CALCULUS: mam

We are interested in a functional-imperative calculus where effects and higher-order features

interact well. Levy’s call-by-push-value (CBPV) calculus fits the bill [2004]. It allows us to uniformly

deal with call-by-value and call-by-name evaluation strategies, making the theoretical development

relevant to both ML-like and Haskell-like languages. In CBPV evaluation order is explicit, and the

way it combines computational effects with higher-order features yields simpler program logic

reasoning principles [Plotkin and Pretnar 2008; Kammar and Plotkin 2012]. We extend it with

a type-and-effect system. It is a variant of Kammar and Plotkin’s multi-adjunctive intermediate

language [2012] without effect operations or coercions. We call the resulting calculus the multi-

adjunctive metalanguage (mam).

2.1 Syntax

Fig. 2 presents mam’s raw term syntax, which distinguishes between values (data) and computations

(programs). We assume a countable set of variables ranged over by x , y, . . ., and a countable set of

variant constructor literals ranged over by ℓ. The unit value, products, and finite variants/sums are

standard. A computation can be suspended as a thunk {M }, which may be passed around. Products

and variants are eliminated with standard pattern matching constructs. Thunks can be forced to

resume their execution. A computation may simply return a value, and two computations can be

sequenced, as in Haskell’s do notation. A function computation abstracts over values to which it

may be applied. In order to pass a function λx .M as data, it must first be suspended as a thunk

{λx .M }. For completeness, we also include CBPV’s binary computation products, which subsume

projections from products in call-by-name languages.

1
https://github.com/matijapretnar/user-defined-effects-formalization
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Frames and contexts

P ::= x ← [ ]; N | [ ] V | prji [ ] pure frames

F ::= P computation frames

C ::= [ ] | C[F [ ]] evaluation context

H ::= [ ] | H [P[ ]] pure context

Reduction M { M ′

M {β M ′

C[M] { C[M ′]

Beta reduction M {β M ′

(×) case (V1,V2) of (x1, x2)→ M {β M[V1/x1,V2/x2]
(+) case injℓ V of {. . . injℓ x → M . . .} {β M[V /x]
(F ) x ← return V ; M {β M[V /x]

(U ) {M }!{β M
(→) (λx .M ) V {β M[V /x]
(&) prji ⟨M1,M2⟩{β Mi

Fig. 3. mam operational semantics

Example 2.1. Using the boolean values injTrue () and injFalse (), we define a logical not operation:

not = {λb.case b of {injTrue x → return injFalse ()
injFalse x → return injTrue ()}}

2.2 Operational Semantics

Fig. 3 presents mam’s standard structural operational semantics, in the style of Felleisen and

Friedman [1987]. In order to reuse the core definitions as much as possible, we refactor the semantics

into β-reduction rules and a single congruence rule. As usual, a β-reduction reduces a matching

pair of introduction and elimination forms.

We factor the definition of evaluation contexts through computation frames. In mam these consist

of pure frames, the elimination frames for pure computation. For each extension we will add another

kind of effectful computation frame. We use [ ] to denote the hole in each frame or context, which

signifies which term should evaluate first, and define substitution frames and terms for holes

(C[F [ ]], C[M]) in the standard way. Later, in each calculus we will make use of pure contexts in

order to capture continuations, stacks of pure frames, extending from a control operator to the

nearest delimiter. A reducible term can be decomposed into at most one pair of evaluation context

and β-reducible term, making the semantics deterministic.

Example 2.2. With this semantics we have not ! (injTrue ()) {
+ return inj(False()) .

We use the following standard syntactic sugar. We use nested patterns in our pattern matching

constructs. We abbreviate the variant constructors to their labels, and omit the unit value, e.g.,

True desugars to injTrue (). We allow the application of functions and the elimination constructs to

apply to arbitrary computations, and not just values, by setting for exampleM N B x ← N ; M x
for some fresh x , giving a more readable, albeit call-by-value, appearance.

Example 2.3. As a running example, we express boolean state in each of our calculi. Fig. 4(a)

shows the code, which toggles the state and returns the value of the original state, as we would like

to write it. Fig. 4(b) shows how we do so in mam, via a standard state-passing transformation. We

may then run toддle with the initial value True to get the expected result runState! toддle True {⋆

(True, False). This transformation is not a macro translation. In addition to the definition of put
and get , it globally threads the state through toддle’s structure. Each user-defined effect abstraction

in Sections 3–5 provides a different means for macro-expressing state.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 13. Publication date: September 2017.



13:6 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar

2.3 Type-and-Effect System

Fig. 5 presents mam’s types and effects. As a core calculus for three calculi with different notions of

effect, mam is pure, and the only shared effect is the empty effect ∅.

We include a kind system, unneeded in traditional CBPVwhere a context-free distinction between

values and computations forces types to be well-formed. The two points of difference from CBPV

are the kind of effects, and the refinement of the computation kind by well-kinded effects E. The
other available kinds are the standard value kind and a kind for well-formed environments (without

type dependencies).

Our type system includes value-type variables (which in Section 4 we use for defining monads

parametrically). The simple types, finite products and variants, are the standard CBPV value types.

Thunk types are annotated with effect annotations. Computation types include returners FA, which
are computations that return a value of type A, similar to the monadic type Monadm =⇒ m a
in Haskell. Functions are computations and only take values as arguments. We include CBPV’s

computation products, which account for product elimination via projection in call-by-name

languages.

To ensure well-kindedness of types, which may contain type variables, we use type environments

in a list notation that denotes sets of type variables. Similarly, we use a list notation for value

environments, which are functions from a finite set of variable names to the set of value types.

Example 2.4. The type of booleans bit is given by {inj
False

1, inj
True

1}.

Fig. 6 presents the kind and type systems. The only effect (∅) is well-kinded. Type variables must

appear in the current type environment, and they are always value types. The remaining value and

computation types and environments have straightforward structural kinding conditions. Thunks

of E-computations of typeC require the typeC to be well-kinded, which includes the side-condition

that E is a well-kinded effect. This kind system has the property that each valid kinding judgement

has a unique derivation. Value type judgements assert that a value term has a well-formed value

type under a well-formed environment in some type variable environment.

The rules for simple types are straightforward. Observe how the effect annotation moves between

the E-computation type judgement and the type of E-thunks. The side condition for computation

toддle = { x ← get !;

y ← not ! x ;

put ! y;

x }
(a) Direct style

дet = { λs .( s, s )}
put = {λs ′.λ_.((), s ′)}
runState = λc .λs .c! s

toддle = {λs . (x , s)← get ! s;

y ← not ! x ;

(_, s)← put ! y s;

(x , s)}
(b) State-passing style

Fig. 4. User-defined boolean state

E ::= effects

∅ pure effect

K ::= kinds

| Eff effects

| Val values

| CompE computations

| Context environments

A,B ::= value types

α type variable

| 1 unit

| A1 ×A2 products

| {injℓi Ai }i variants

| UEC thunks

C,D ::= computation types

FA returners

| A→ C functions

| C1 &C2 products

Environments:

Θ ::= α1, . . . ,αn
Γ,∆ ::= x1 : A1, . . . , xn : An

Fig. 5. mam kinds and types
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Effect kinding Θ ⊢k E : Eff

Θ ⊢k ∅ : Eff

Context kinding Θ ⊢k Γ : Context

[Θ ⊢k Γ(x ) : Val]x ∈Dom (Γ)

Θ ⊢k Γ : Context

Value kinding Θ ⊢k A : Val
α ∈ Θ

Θ ⊢k α : Val Θ ⊢k 1 : Val

Θ ⊢k A1 : Val Θ ⊢k A2 : Val

Θ ⊢k A1 ×A2 : Val

[Θ ⊢k Ai : Val]i
Θ ⊢k {injℓi Ai }i : Val

Θ ⊢k C : CompE
Θ ⊢k UEC : Val

Computation kinding Θ ⊢k C : CompE (Θ ⊢k E : Eff )

Θ ⊢k A : Val

Θ ⊢k FA : CompE

Θ ⊢k A : Val Θ ⊢k C : CompE
Θ ⊢k A→ C : CompE

Θ ⊢k C1 : CompE
Θ ⊢k C2 : CompE

Θ ⊢k C1 &C2 : CompE

Value typing Θ; Γ ⊢ V : A (Θ ⊢k Γ : Context,A : Val)
(x : A) ∈ Γ

Θ; Γ ⊢ x : A Θ; Γ ⊢ () : 1

Θ; Γ ⊢ V1 : A1 Θ; Γ ⊢ V2 : A2

Θ; Γ ⊢ (V1,V2) : A1 ×A2

Θ; Γ ⊢ V : Ai

Θ; Γ ⊢ injℓi V : {injℓi Ai }i

Θ; Γ ⊢E M : C

Θ; Γ ⊢ {M } : UEC

Computation typing Θ; Γ ⊢E M : C (Θ ⊢k Γ : Context,E : Eff,C : CompE )
Θ; Γ ⊢ V : A1 ×A2

Θ; Γ, x1 : A1, x2 : A2 ⊢E M : C

Θ; Γ ⊢E case V of (x1, x2)→ M : C

Θ; Γ ⊢ V : {injℓi Ai }i
[Θ; Γ, xi : Ai ⊢E Mi : C]i

Θ; Γ ⊢E case V of {injℓi xi → Mi }i : C

Θ; Γ ⊢ V : UEC

Θ; Γ ⊢E V ! : C

Θ; Γ ⊢ V : A

Θ; Γ ⊢E return V : FA

Θ; Γ ⊢E M : FA Θ; Γ, x : A ⊢E N : C

Θ; Γ ⊢E x ← M ; N : C

Θ; Γ, x : A ⊢E M : C

Θ; Γ ⊢E λx .M : A→ C

Θ; Γ ⊢E M : A→ C Θ; Γ ⊢ V : A

Θ; Γ ⊢E M V : C

Θ; Γ ⊢E M1 : C1 Θ; Γ ⊢E M2 : C2

Θ; Γ ⊢E ⟨M1,M2⟩ : C1 &C2

Θ; Γ ⊢E M : C1 &C2

Θ; Γ ⊢E prji M : Ci

Fig. 6. mam kind and type system

type judgements asserts that a computation term has a well-formed E-computation type under a

well-formed environment for some well-formed effect E under some type variable environment. The

rules for variables, value and computation products, variants, and functions are straightforward. The

rules for thunking and forcing ensure that the computation’s effect annotation agrees with the effect

annotation of the thunk. The rule for return allows us to return a value at any effect annotation,

reflecting the fact that this is a may-effect system: the effect annotations track which effects may

be caused, without prescribing that any effect must occur. The rule for sequencing reflects our

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 13. Publication date: September 2017.
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choice to omit any form of effect coercion, subeffecting, or effect polymorphism: the three effect

annotations must agree. More sophisticated effect systems allow greater flexibility [Katsumata

2014]. We leave the precise treatment of such extensions to later work.

Example 2.5. The values from Fig. 4(b) have the following types:

not : U∅ (bit→ Fbit) get : U∅ (bit→ F (bit × bit)) put : U∅ (bit→ bit→ F (bit × bit))
toддle : U∅ (bit→ F (bit × bit)) runState : U∅ (U∅ (bit→ F (bit × bit)) → bit→ F (bit × bit))

2.4 Operational Metatheory

We establish the basic properties of mam.

Theorem 2.6 (mam safety). Well-typed programs don’t go wrong: for all closed mam returners

Θ; ⊢∅ M : FA, eitherM { N for some Θ; ⊢∅ N : FA or elseM = return V for some Θ; ⊢ V : A.

The standard inductive progress-and-preservation proof is in the Abella formalisation.

We extend existing termination results for CBPV [Doczkal 2007; Doczkal and Schwinghammer

2009]. We say that a termM diverges, and writeM {∞ if for every n ∈ N there exists some N such

thatM {n N . We say thatM does not diverge whenM{̸∞.

Theorem 2.7 (mam termination). There are no infinite reduction sequences: for all mam terms

; ⊢∅ M : FA, we haveM{̸∞, and there exists some unique ; ⊢ V : A such thatM {⋆ return V .

The proof uses Tait’s method [1967] to establish totality. Explicitly, we define a (unary) relational

interpretation to types and establish a basic lemma. To interpret returners FA, we need a monadic

lifting. We use the lifting from Hermida’s thesis [1993], defined to contains the returners that

reduce to a return value for all closed substitutions. The remainder of the proof is immediate as the

semantics is deterministic.

We now define contextual equivalence of mam terms. We define the subclass of ground types:

(ground values) G ::= 1 | G1 ×G2 | {injℓi Gi }i

The standard next step is to define well-typed program contexts X[ ] — terms with zero, one, or

more occurrences of a hole, denoted by [ ], not to be confused with evaluation contexts C[ ], which

always contain exactly one hole. Defining program contexts and their type judgements directly is

straightforward but tedious and lengthy, with four kinds of judgements, and so we take a different

approach. Informally, given two computation termsM1 andM2, in order to define their contextual

equivalence, we need to quantify over the set of all the pairs of contexts plugged withM1 andM2:

Ξ[M1,M2] B
{
⟨X[M1],X[M2]⟩��X[ ] is a well-typed enclosing context

}
Once we define this set, we do not need contexts, their type system, nor their semantics in the

remainder of the development, and so we will define this set directly.

When defining this set, we need to know the form of the typing judgement, and so it will contain,

apart from the two terms ⟨X[M1],X[M2]⟩, their shared environments,Θ′ and Γ′, and shared type,A
orC . When this shared type is a computation typeC , we also need to know the effect annotation E.
So this set will contain quintuples ⟨Θ′, Γ′,V1,V2,A⟩ representing the simultaneous value judgement

Θ′; Γ′ ⊢ V1,V2 : A and sextuples ⟨Θ′, Γ′,E ′,N1,N2,C⟩ representing the simultaneous computation

judgement Θ′; Γ′ ⊢E′ N1,N2 : C . Because values can contain computations through thunking, and

vice versa through forcing, this set will contain both such quintuples and sextuples. Because the

program context can introduce identifiers through function abstraction, we should also allow for

environment extension.
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Effects

⎜∅⨆︁θ B ⟨Id, id, id⟩
Value types

⎜α⨆︁θ B θ (α )
⎜1⨆︁θ B {⋆}

⎜A1 ×A2⨆︁θ B ⎜A1⨆︁θ × ⎜A2⨆︁θ
⎟{injℓi Ai }i∮︀θ B

⋃
i {ℓi } × ⎜Ai⨆︁θ

⎜UEC⨆︁θ B ���⎜C⨆︁θ
���

Computation types

⎜FA⨆︁θ B F⎜A⨆︁θ ⎜A→ C⨆︁θ B
〈���⎜C⨆︁θ ���⎜A⨆︁θ , λ fs .λx .c (fmap (λ f . f (x )) fs )

〉
⎜C1 &C2⨆︁θ B

〈���⎜C1⨆︁θ ��� ×
���⎜C2⨆︁θ ���, λcs .

〈
c1 (fmap π1 cs ), c2 (fmap π2 cs )

〉〉
Fig. 7. mam denotational semantics for types

The full definition is as follows. We say that an environment Γ′ extends an environment Γ,
and write Γ′ ≥ Γ if Γ′ extends Γ as a partial function from identifiers to value types. Con-

sider any two computations with the same type C0 under the same environments Θ0,G0, that

is, Θ0; Γ0 ⊢E0 M1 : C0 and Θ0; Γ0 ⊢E0 M2 : C0. Define the set Ξ[Θ0; Γ0 ⊢E0 M1,M2 : C0] to be the small-

est set of tuples ⟨Θ′, Γ′,V1,V2,A⟩ and ⟨Θ
′, Γ′,E ′,N1,N2,C⟩ that is compatible with the typing rules

and contains all the tuples ⟨Θ, Γ,E0,M1,M2,C0⟩, where Θ ⊇ Θ0 and Γ ≥ Γ0. The compatibility

with the rules means, for example, that if ⟨Θ′, Γ′,V1,V2,A⟩ is in Ξ[Θ0; Γ0 ⊢E0 M1,M2 : C0], then so is

⟨Θ′, Γ′, ∅, return V1, return V2, FA⟩. Define the set Ξ[Θ0; Γ0 ⊢ V1,V2 : A] for contexts plugged with

values analogously.

For uniformity’s sake, we let types X range over both value and E-computation types, and

phrases P range over both value and computation terms. Judgements of the form Θ; Γ ⊢E P : X
are meta judgements, ranging over value judgements Θ; Γ ⊢ P : X and E-computation judgement

Θ; Γ ⊢E P : X .

Let Θ; Γ ⊢E P ,Q : X be two mam phrases. We say that P and Q are contextually equivalent

and write Θ;E ⊢Γ P ≃ Q : X when, for all pairs of plugged closed ground-returner pure contexts〈
∅, ∅, ∅,MP ,MQ , FG

〉
in Ξ[Θ; Γ ⊢E P ,Q : X ] and for all closed ground value terms ; ⊢ V : G, we

haveMP {
∗ return V if and only ifMQ {

∗ return V .

2.5 Denotational Semantics

mam has a straightforward set-theoretic denotational semantics. Presenting the semantics for the

core calculus will simplify our later presentation. To do so, we first recall the following established

facts about monads, specialised and concretised to the set-theoretic setting.

A monad is a triple ⟨T, return,≫=⟩ where T assigns to each set X a set TX , return assigns to

each set X a function returnX : X → TX and≫= assigns to each function f : X → TY its Kleisli

extension: a function≫= f : TX → TY , and the three assignments satisfy the monad laws:

(return x )≫= f = f (x ), a≫=returnx = a, (a≫= f )≫=д = a≫= (λx .( f x≫=д))

for all f : X → TY , x ∈ X , a ∈ TX , and д : Y → TZ . A T -algebra for a monad ⟨T, return,≫=⟩,
following Marmolejo and Wood [2010], is a pairC =

〈
|C |,≫=C

〉
where |C | is a set, called the carrier,

and≫=C assigns to every function f : X → |C | its Kleisli extension≫= f : TX → |C | satisfying:

(return x )≫=C f = f (x ), (a≫=д)≫=C f = a≫=C (λy.(дy≫=C f ))

for all x ∈ X , f : X → |C |, a ∈ TY , and д : Y → TX of the appropriate types. For each set X , the
pair FX B ⟨TX ,≫=⟩ forms a T -algebra called the free T -algebra over X .

We parameterise mam’s semantics function ⎜Θ ⊢k E : Eff⨆︁ by an assignment θ of sets θ (α ) to
each of the type variables α in Θ. Given such a type variable assignment θ , we assign to each

• effect: a monad ⎜Θ ⊢k E : Eff⨆︁θ , denoted by

〈
T⎜E⨆︁θ , return

⎜E⨆︁θ ,≫=⎜E⨆︁θ
〉
;
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Value terms

⎜x⨆︁θ (γ ) B πx (γ )

⎜injℓ V ⨆︁θ (γ ) B
〈
ℓ, ⎜V ⨆︁θ (γ )

〉 ⎜()⨆︁θ (γ ) B ⋆
⎜{M }⨆︁θ (γ ) B ⎜M⨆︁θ (γ )

⎜(V1,V2)⨆︁θ (γ ) B
〈
⎜V1⨆︁θ (γ ), ⎜V2⨆︁θ (γ )

〉
Computation terms

⎜case V of (x1, x2)→ M⨆︁θ (γ ) B ⎜M⨆︁θ (γ [x1 7→ a1, x2 7→ a2]) where ⎜V ⨆︁θ (γ ) = ⟨a1,a2⟩
⎟case V of {injℓi xi → Mi }i∮︀θ B ⎜Mj⨆︁θ (γ [xj 7→ aj ]) where ⎜V ⨆︁θ (γ ) =

〈
ℓj ,aj

〉
⎜V !⨆︁θ (γ ) B ⎜V ⨆︁θ (γ )

⎜return V ⨆︁θ (γ ) B return ( ⎜V ⨆︁θ (γ )) ⎜x ← M ; N ⨆︁θ (γ ) B ⎜M⨆︁θ (γ )≫=λa. ⎜N ⨆︁θ (γ [x 7→ a])
⎜λx .M⨆︁θ (γ ) B λa. ⎜M⨆︁θ (γ [x 7→ a]) ⎜M V ⨆︁θ (γ ) B (⎜M⨆︁θ (γ )) (⎜V ⨆︁θ (γ ))

⎜⟨M1,M2⟩⨆︁θ (γ ) B
〈
⎜M1⨆︁θ (γ ), ⎜M2⨆︁θ (γ )

〉
⎜prji M⨆︁θ (γ ) B πi (⎜M⨆︁θ (γ ))

Fig. 8. mam denotational semantics for terms

• value type: a set ⎜Θ ⊢k A : Val⨆︁θ ;
• E-computation type: a T⎜E⨆︁θ -algebra ⎜Θ ⊢k C : CompE⨆︁θ ; and
• context: the set ⎜Θ ⊢k Γ : Context⨆︁θ B

∏
x ∈Dom (Γ) ⎜Γ(x )⨆︁θ .

Fig. 7 defines the standard set-theoretic semantics function over the structure of types. The pure

effect denotes the identity monad, which sends each set to itself, and extends a function by doing

nothing. The extended languages in the following sections will assign more sophisticated monads

to other effects. The semantics of type variables uses the type assignment given as parameter. The

unit type always denotes the singleton set. Product types and variants denote the corresponding

set-theoretic operations of cartesian product and disjoint union, and thus the empty variant type

0 B {} denotes the empty set. The type of thunked E-computations of type C denotes the carrier

of the T⎜E⨆︁θ -algebra ⎜C⨆︁θ . The E-computation type of A returners denotes the free ⎜E⨆︁θ -algebra.
Function and product types denote well-known algebra structures over the sets of functions and

pairs, respectively [Barr and Wells 1985, Theorem 4.2].

Terms can have multiple types, for example the function λx .return x has the types 1 → F1
and 0→ F0, and type judgements can have multiple type derivations. We thus give a Curry-style

semantics [Reynolds 2009] by defining the semantic function for type judgement derivations rather

than for terms. To increase readability, we write ⎜P⨆︁ and omit typing derivation for P .
The semantic function for terms is parameterised by an assignment θ of sets to type variables. It

assigns to each well-typed derivation for a:

• value term: a function ⎜Θ; Γ ⊢ V : A⨆︁θ : ⎜Γ⨆︁θ → ⎜A⨆︁θ ; and
• E-computation term: a function ⎜Θ; Γ ⊢E M : C⨆︁θ : ⎜Γ⨆︁θ → ���⎜C⨆︁θ

���.
Fig. 8 defines the standard set-theoretic semantics over the structure of derivations. The semantics

of sequencing uses the Kleisli extended function (≫=⎜C⨆︁ f ) : TX → ��⎜C⨆︁�� for functions into non-free
algebras f : X → ��⎜C⨆︁��, given by the algebra structure.

2.6 Denotational Metatheory

We develop the basic properties of our denotational semantics. Our goal is to establish the adequacy

of the semantics: terms with equivalent denotations are observationally equivalent. In our set-

theoretic setting, the proof-recipe is well-established, using the following compositionality and

soundness theorems:
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Theorem 2.8 (mam compositionality). The meaning of a term depends only on the meaning

of its sub-terms: for all pairs of well-typed plugged mam contextsMP ,MQ in Ξ[Θ; Γ ⊢E P ,Q : X ], if

⎜P⨆︁ = ⎜Q⨆︁ then ⎜MP ⨆︁ = ⎟MQ∮︀.
The proof is a straightforward induction on the set of plugged contexts.

To phrase our simulation results in later development, we adopt a relaxed variant of simulation:

let{cong be the smallest relation containing{β that is closed under the term formation constructs,

and so contains{ as well, and let ≃cong be the smallest congruence relation containing{β .

Theorem 2.9 (mam soundness). Reduction preserves the semantics: for every pair of well-typed

mam terms Θ; Γ ⊢E P ,Q : X , if P ≃cong Q then ⎜P⨆︁ = ⎜Q⨆︁. In particular, for every well-typed closed

term of ground type ; ⊢∅ P : FG, if P {∗ return V then ⎜P⨆︁ = ⎜V ⨆︁.
The proof is standard: check that {β preserves the semantics via calculation, and appeal to

compositionality. It now follows that the semantics is adequate:

Theorem 2.10 (mam adeqacy). Denotational equivalence implies contextual equivalence: for all

well-typed mam terms Θ; Γ ⊢E P ,Q : X , if ⎜P⨆︁ = ⎜Q⨆︁ then P ≃ Q .

To see how the different pieces fit together, consider any two denotationally equivalent terms P
and Q , a closed ground context plugged with them X[P], X[Q], and assume X[P] {∗ return V .
By the Compositionality Theorem 2.8, X[P] and X[Q] have equal denotations. By the Safety

Theorem 2.6 and Termination Theorem 2.7, X[Q] {∗ return V ′ for some value return V ′. And so

by the Soundness Theorem 2.9:

⎜return V ⨆︁ = ⎜X[P]⨆︁ = ⎜X[Q]⨆︁ = ⎜return V ′⨆︁
Conclude by verifying that, for ground returners, denotational equality implies syntactic equality.

As a consequence, we deduce that our operational semantics is very well-behaved: for all well-

typed computations Θ; Γ ⊢E M,M ′ : C , ifM {cong M
′
thenM ≃ M ′.

3 EFFECT HANDLERS: eff

Algebraic effects and handlers provide a basis for modular programming with user-defined ef-

fects [Kammar et al. 2013; Kiselyov et al. 2013; Bauer and Pretnar 2015; Hillerström and Lindley

2016; Leijen 2017; Lindley et al. 2017]. Programmable effect handlers arose as part of Plotkin and

Power’s denotational theory of computational effects [2002], which investigates the consequences

of using the additional structure in algebraic presentations of monadic models of effects. This

account refines Moggi’s monadic account [1989] by incorporating into the theory the syntactic

constructs that generate effects as algebraic operations for a monad [Plotkin and Power 2003]: each

monad is accompanied by a collection of syntactic operations, whose interaction is specified by a

collection of equations, i.e., an algebraic theory, which fully determines the monad. To fit exception

handlers into this account, Plotkin and Pretnar [2009] generalised exception handlers to effect

handlers, handling arbitrary algebraic effects and, following Levy’s CBPV, give a computational

interpretation of algebras for a monad. By allowing the user to declare operations, effects can be

described in a composable manner. Bauer and Pretnar [2015] demonstrate how, by defining algebras

for the free monad with these operations, users can give the abstract operations different meanings,

in similar fashion to Swierstra’s use of free monads [2008].

3.1 Syntax

Fig. 9(a) presents the extension eff, Kammar et al.’s core calculus of effect handlers [2013]. We

assume a countable set of elements of a separate syntactic class, called operation names and ranged

over by op. For each operation name op, eff’s operation call construct allows the programmer to
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M,N ::= . . . computations

| op V operation call

| handleM with H handling construct

H ::= handlers

{return x 7→ M } return clause

| H ⊎
{
op p k 7→ N

}
operation clause

(a) Syntax extensions to Fig. 2

Frames and contexts F ::= . . . | handle [ ] with H computation frames

Beta reduction

(ret) handle (return V ) with H {β H return
[V /x]

(op) handle H [op V ] with H {β H op
[V /p, {λx .handleH [return x] with H }/k]

(b) Operational semantics extensions to Fig. 3

Fig. 9. eff

toддle = {x ← get (); y ← not ! x ; put y; x }
HST = {return x 7→ λs .return x

get _ k 7→ λs .k! s s
put s ′ k 7→ λ_.k! () s ′}

runState = {λc .handle c! with HST }

toддle : UStateFbit
HST : bit State⇒∅ bit→ Fbit

State =
{
get : 1→ bit, put : bit→ 1

}
: Eff

runState : U∅ ((UStateFbit) → bit→ Fbit)

Fig. 10. User-defined boolean state in eff

invoke the effect associated with op by passing it a value as an argument. Operation names are the

only interface to effects the language has. The handling construct allows the programmer to use a

handler to interpret the operation calls of a given returner computation. As the given computation

may call thunks returned by functions, the decision which handler will handle a given operation

call is dynamic. Handlers are specified by two kinds of clauses. A return clause describes how to

proceed when returning a value. An operation clause describes how to proceed when invoking

an operation op. The body of an operation clause can access the value passed in the operation

call using the first bound variable p, which is similar to the bounding occurrence of an exception

variable when handling exceptions. But unlike exceptions, we expect arbitrary effects like reading

from or writing to memory to resume. Therefore the body of an operation clause can also access

the continuation k at the operation’s calling point.

Example 3.1. The left column of Fig. 10 expresses user-defined boolean state in eff. The handler

HST is parameterised by the current state. When the computation terminates, we discard this state.

When the program calls get, the handler returns the current state and leaves it unchanged. When

the program calls put, the handler returns the unit value, and instates the newly given state.

3.2 Operational Semantics

Fig. 9(b) presents eff’s extension to mam’s operational semantics. Computation frames F now

include the handling construct, whereas the pure frames P do not, allowing a handled computation

to β-reduce under the handler. We add two β-reduction cases for the added construct. When

the returner computation inside a handler is fully evaluated, the return clause proceeds with the

return value. When the returner computation inside a handler needs to evaluate an operation call,

the definition of pure contexts H ensures H is precisely the continuation of the operation call

delimited by the handler. Put differently, it ensures that the handler in the root of the reduct is the

closest handler to the operation call in the call stack. The operation clause corresponding to the
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Kinds and types

E ::= . . . effects

|
{
op : A→ B

}
⊎ E arity assignment

K ::= . . . kinds

| Handler handlers

R ::= A E⇒E′ C handler types

Computation typing

(op : A→ B) ∈ E Θ; Γ ⊢ V : A

Θ; Γ ⊢E op V : FB

Θ; Γ ⊢E M : FA Θ; Γ ⊢ H : A E⇒E′ C

Θ; Γ ⊢E′ handleM with H : C

Effect kinding

Θ ⊢k A : Val
Θ ⊢k B : Val

op < E Θ ⊢k E : Eff

Θ ⊢k
{
op : A→ B

}
⊎ E : Eff

Handler kinding Θ ⊢k R : Handler

Θ ⊢k A : Val Θ ⊢k E,E
′
: Eff Θ ⊢k C : CompE′

Θ ⊢k A
E⇒E′ C : Handler

Handler typing Θ; Γ ⊢ H : R (Θ ⊢k Γ : Context,R : Handler)

Θ; Γ,x : A ⊢E M : C [Θ; Γ, p : Ai , k : UE (Bi → C ) ⊢E Ni : C]i

Θ; Γ ⊢ {return x 7→ M } ⊎ {opi p k 7→ Ni }i : A
{opi :Ai→Bi }i⇒E C

Fig. 11. eff’s kinding and typing (extending Fig. 5 and 6)

operation called then proceeds with the supplied parameter and current continuation. Rewrapping

the handler around this continuation ensures that all operation calls invoked in the continuation

are handled in the same way.

Example 3.2. With this semantics, the user-defined state from Fig. 10 behaves as expected:

runState! toддle True {∗ (handle True with HST ) False {
∗ True

More generally, the handler HST expresses dynamically scoped state [Kammar and Pretnar 2017].

For additional handlers for state and other effects, see Pretnar’s tutorial [2015].

3.3 Type-and-Effect System

Fig. 11 presents eff’s extension to the kind and type system. The effect annotations in eff are

functions from finite signatures, assigning to each operation name its parameter type A and its

return type B. We add a new kind for handler types, which describes the kind and the returner

type the handler can handle, and the kind and computation type of the handling clause.

In the kinding judgement for effects, the types in each operation’s arity assignment must be

value types. The kinding judgement for handlers requires all the types and effects involved to be

well-kinded.

Computation type judgements now include two additional rules for each new computation

construct. An operation call is well-typed when the parameter and return type agree with the arity

assignment in the effect annotation. An instance of the handling construct is well-typed when the

type and effect of the handled computation and the type-and-effect of the construct agree with the

types and effects in the handler type. The set of handled operations must strictly agree with the set

of operations in the effect annotation. The variable bound to the return value has the returner type

in the handler type. In each operation clause, the bound parameter variable has the parameter type

from the arity assignment for this operation, and the continuation variable’s input type matches

the return type in the operation’s arity assignment. The overall type of all operation clauses agrees

with the computation type of the handler. The second effect annotation on the handler type matches

the effect annotations on the continuation and the body of the operation and return clauses.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 13. Publication date: September 2017.



13:14 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar

Example 3.3. The boolean state terms are assigned the types given in the right column of Fig. 10.

3.4 Operational Metatheory

We follows mam’s development, formalising eff’s safety theorem in Abella:

Theorem 3.4 (eff safety). Well-typed programs don’t go wrong: for all closed eff returners

Θ; ⊢∅ M : FA, eitherM { N for some Θ; ⊢∅ N : FA or elseM = return V for some Θ; ⊢ V : A.

Using the monadic lifting from Kammar’s thesis [2014], we obtain termination for eff [Kammar

et al. 2013]:

Theorem 3.5 (eff termination). There are no infinite reduction sequences: for all eff terms

; ⊢∅ M : FA, we haveM{̸∞, and there exists a unique ; ⊢ V : A such thatM {⋆ return V .

eff shares mam’s ground types, and we define plugged contexts, ≃ and ≃cong as in mam.

3.5 Denotational Semantics

We now give a set-theoretic denotational semantics for eff. First, recall the following concepts in

universal and categorical algebra. A signature Σ is a pair consisting of a set |Σ| whose elements we

call operation symbols, and a function arityΣ from |Σ| assigning to each operation symbol φ ∈ |Σ|
a (possibly infinite) set arity (φ). We write (φ : A) ∈ Σ when φ ∈ |Σ| and arityΣ (φ) = A. Given a

signature Σ and a set X , we inductively form the set TΣX of Σ-terms over X :

t ::= x | φ ⟨ta⟩a∈A (x ∈ X , (φ : A) ∈ Σ)

The assignment TΣ together with the following assignments form a monad

return x B x t≫= f B t[f (x )/x]x ∈X ( f : X → TΣY )

The TΣ-algebras

〈
C,≫=C

〉
are in bijective correspondence with Σ-algebras on the same carrier.

These are pairs

〈
C, ⎜−⨆︁〉 where ⎜−⨆︁ assigns to each (φ : A) ∈ Σ a function ⎜φ⨆︁ : CA → C from

A-ary tuples of C elements to C . The bijection is given by setting≫=C f to be the Σ-homomorphic

extension of f : X → |C | to TΣX .

eff’s denotational semantics is given by extending mam’s semantics as follows. Given a type vari-

able assignment θ , we assign to each handler type a pair ⎜Θ ⊢k R : Handler⨆︁θ =
〈
C, f

〉
consisting

of an algebra C and a function f into the carrier |C | of this algebra.
Fig. 12 presents how eff extends mam’s denotational semantics. Each effect E gives rise to a

signature whose operation symbols are the operation names in E tagged by an element of the

denotation of the corresponding parameter type. This signature gives rise to the monad E denotes.

When E = ∅, the induced signature is empty, and gives rise to the identity monad, and so this

semantic function extends mam’s semantics. Handlers of E-computations returning A-values using
E ′-computations of type C denote a pair. Its first component is an ⎜E⨆︁θ -algebra structure over

the carrier
���⎜C⨆︁θ

���, which may have nothing to do with the ⎜E ′⨆︁θ -algebra structure ⎜C⨆︁θ already

possesses. The second component is a function from ⎜A⨆︁θ to the carrier
���⎜C⨆︁θ

���.
The denotation of op V at effect type E, where op : A → B ∈ E, is op⎜V ⨆︁θ (γ ) ⟨a⟩a∈⎜B⨆︁θ . The

denotation of the handling construct uses the Kleisli extension of the second component in the

denotation of the handler. The denotation of a handler term defines the TΣ-algebras by defining a

Σ-algebra for the associated signature Σ. The operation clause for op allows us to interpret each

of the operation symbols associated to op. The denotation of the return clause gives the second

component of the handler.
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Effects

⎜E⨆︁θ B T
{
opp :⎜A⨆︁θ ���(op:A→B )∈E,p∈⎜A⨆︁θ

}
Handler types

⎟A E⇒E′ C∮︀ B {⎜E⨆︁-algebras with carrier
��⎜C⨆︁��

}
× ��⎜C⨆︁��⎜A⨆︁

Computation terms

⎜op V ⨆︁θ (γ ) B op⎜V ⨆︁θγ ⟨return a⟩a∈⎜B⨆︁θ⎜handleM with H⨆︁θ (γ ) B ⎜M⨆︁θ (γ )≫= f where ⎜H⨆︁ (γ ) = 〈
D, f : ⎜A⨆︁→ ��⎜C⨆︁��

〉
Handler terms

⎜{return x 7→ M } ⊎ {opi p k 7→ Ni }i⨆︁θ (γ ) B
〈
D, f

〉
where D’s algebra structure and f given by:

⎟opq∮︀D
〈
ξa

〉
a B ⎟Nop∮︀θ (γ [q/p,

〈
ξa

〉
a/k]) f (a) B ⎜M⨆︁θ (γ [a/x])

Fig. 12. eff denotational semantics (extending Fig. 7 and 8)

3.6 Denotational Metatheory

We repeat the recipe for proving adequacy.

Theorem 3.6 (eff compositionality). The meaning of a term depends only on the meaning

of its sub-terms: for all pairs of well-typed plugged eff contexts MP , MQ in Ξ[Θ; Γ ⊢E P ,Q : X ], if

⎜P⨆︁ = ⎜Q⨆︁ then ⎜MP ⨆︁ = ⎟MQ∮︀.
The proof is identical to mam, with two more cases for{β .

Theorem 3.7 (eff soundness). Reduction preserves the semantics: for every pair of well-typed eff

terms Θ; Γ ⊢E P ,Q : X , if P ≃cong Q then ⎜P⨆︁ = ⎜Q⨆︁. In particular, for every well-typed closed term of

ground type ; ⊢∅ P : FG, if P {∗ return V then ⎜P⨆︁ = ⎜V ⨆︁.
We combine the previous results, as with mam:

Theorem 3.8 (eff adeqacy). Denotational equivalence implies contextual equivalence: for all

well-typed eff terms Θ; Γ ⊢E P ,Q : X , if ⎜P⨆︁ = ⎜Q⨆︁ then P ≃ Q .

Therefore, eff also has a well-behaved operational semantics: for all well-typed computations

Θ; Γ ⊢E M,M ′ : C , ifM {cong M
′
thenM ≃ M ′.

4 MONADIC REFLECTION: mon

Moggi [1989] conceptualises computational effects as monads, which he uses to give a uniform

denotational semantics for a wide range of different effects. Spivey [1990] and Wadler [1990]

introduce programming abstractions based on monads, allowing new effects to be declared and

used as if they are native. Examples include parsing [Hutton and Meijer 1998], backtracking and

constraint solving [Schrijvers et al. 2013], and mechanised reasoning [Ziliani et al. 2015; Bulwahn

et al. 2008]. Libraries now exist for monadic programming even in impure languages such as

OCaml
2
, Scheme

3
, and C++ [Sinkovics and Porkoláb 2013].

Languages that use monads as an abstraction for user-defined effects typically employ other

mechanisms to support them—usually an overloading resolution mechanism, such as type-classes

in Haskell and Coq, and functors/implicits in OCaml. As a consequence, such accounts do not study

monads as an abstraction in their own right, and are intertwined with implementation details and

concepts stemming from the added mechanism. Filinski’s work on monadic reflection [1994; 1996;

1999; 2010] provides a more canonical abstraction for incorporating monads into a programming

language. In his calculi, user-defined monads stand independently.

2
http://www.cas.mcmaster.ca/~carette/pa_monad/

3
http://okmij.org/ftp/Scheme/monad-in-Scheme.html
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M,N ::= . . . computations

| µ(N ) reflect

| [N]T reify

T ::= monads

where {return x = M ;

y≫= f = N }
return clause

bind clause

Frames and contexts

F ::= P | [[ ]]T computation frames

Beta reduction

for every T = where {λx .Nu ; λy.λ f .Nb }:

(ret) [ return V ]T {β Nu [V /x]
(reflection) [H [µ(N )] ]T {β

Nb [{N }/y, {(λx .[H [return x]]T )}/f ]
(a) Syntax (extending Fig. 2) (b) Operational semantics (extending Fig. 3)

Fig. 13. mon

toддle = {x ← get !; y ← not ! x ; put ! y; x }
get = { µ(λs .(s , s ))}
put = {λs ′.µ(λ_.((), s ′))}
State = where {

return x = λs .(x , s);
f≫=k = λs .(x , s ′) ← f s;

k! x s ′}
runState = {λc .[c!]State }

toддle : UStateFbit
get : UStateFbit
put : UState (bit→ F1)

∅ ≺ instance monad
(α .bit→ F (α × bit)) State : Eff

runState : U∅ ((UStateFbit) → bit→ F (bit × bit))

Fig. 14. User-defined boolean state in mon

4.1 Syntax

Fig. 13(a) presents mon’s syntax. The where {return x = Nu ; y≫= f = Nb } construct binds x in the

term Nu and y and f in Nb . The term Nu describes the unit and the term Nb describes the Kleisli

extension/bind operation. We elaborate on the choice of the keyword where when we describe

mon’s type system. Using monads, the programmer can write programs as if the new effect was

native to the language. We call the mode of programming when the effect appears native the

opaque view of the effect. In contrast, the transparent mode occurs when the code can access the

implementation of the effect directly in terms of its defined monad. The reflect construct µ(N )
allows the programmer to graft code executing in transparent mode into a block of code executing

in opaque mode. The reify construct [N]T turns a block of opaque code into the result obtained by

the implementation of the effect.

Example 4.1. The left column of Fig. 14 expresses user-defined boolean state in mon using the

standard State monad. To express get and put , we reflect the concrete definition of the corresponding
operations of the state monad. To run a computation, we use reification to get the monadic

representation of the computation as a state transformer, and apply it to the initial state.

4.2 Operational Semantics

Fig. 13(b) describes the extension to the operational semantics. The ret transition uses the user-

defined monadic return to reify a value. To explain the reflection transition, note that the pure

contextH captures the continuation at the point of reflection delimited by an enclosing reification,

with an opaque view of the effect T . The reflected computation N views this effect transparently.

By reifyingH , we can use the user-defined monadic bind to graft the two together.

Example 4.2. With this semantics we have runState! toддle True {⋆ return (True, False).
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The example we have given here fits with the way in which monadic reflection is often used, but

is not as flexible as the effect handler version because get and put are concrete functions rather
than abstract operations, which means we cannot abstract over how to interpret them. To write a

version of toддle that can be interpreted in different ways is possible using monadic reflection but

requires more sophistication.

4.3 Type-and-Effect System

Fig. 15 presents the natural extension to mam’s kind and type system for monadic reflection. Effects

are a stack of monads. The empty effect is the identity monad. A monad T can be layered on

top of an existing stack E by E ≺ instance monad (α .C )where {return x = M ; y≫= f = N }. The
intention is that the type constructorC[−/α] has an associated monad structure given by the bodies

of the returnM and the bind N , and can use effects from the rest of the stack E. To be well-kinded,

C must be an E-computation, and T must be a well-typed monad: return should be typed C[A/α]
when substituted for some value V : A, and≫= typed as a Kleisli extension operation.

Example 4.3. The boolean state terms are assigned the types given in the right column of Fig. 14.

The choice of keywords for monads and their types follows their syntax in Haskell. We stress that

our calculus does not, however, include a type-class mechanism. The type of a monad contains the

return and bind terms, which means that we must check for equality of terms during type-checking,

for example, to ensure that we are sequencing two computations with compatible effect annotations

(for our purposes α-equivalence suffices). The need to check equality of terms arises from our

choice of structural, anonymous, monads—in Haskell monads are given nominally, and two monads

are compatible if they have exactly the same name. As our monads are structural, the bodies of the

return and the bind operations must be closed, apart from their immediate arguments. If layered

monad definitions were allowed to contain open terms, types in type contexts would contain these

open terms through the effect annotations in thunks, requiring us to support dependently-typed

contexts. The monad abstraction is parametric, so naturally requires the use of type variables,

and for this reason we include type variables in the base calculus mam. We choose monads to be

structural and closed primarily in order to keep them closer to the other abstractions.

Kinds and types

E ::= . . . effects

| E ≺ instance monad (α .C )T layered monad

Effect kinding

Θ,α ⊢k C : CompE ⊢m T : E ≺ instance monad (α .C )T

Θ ⊢k E ≺ instance monad (α .C )T : Eff

Monad typing

Θ ⊢m T : E

Θ,α ; x : α ⊢E Nu : C Θ,α , β ; y : UEC, f : UE (α → C[β/α]) ⊢E Nb : C[β/α]

Θ ⊢m where {return x = Nu ; y≫= f = Nb } :

E ≺ instance monad (α .C )where {return x = Nu ; y≫= f = Nb }

Computation typing

Θ; Γ ⊢E N : C[A/α]

Θ; Γ ⊢E≺instance monad(α .C )T µ(N ) : FA

Θ ⊢m T : E ≺ instance monad (α .C )T
Θ; Γ ⊢E≺instance monad(α .C )T N : FA

Θ; Γ ⊢E [N]T : C[A/α]

Fig. 15. mon’s kinding and typing (extending Fig. 5 and 6)
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Effects

⎜E ≺ instance monad (α .C ) NuNb⨆︁θ B ⟨T , return,≫=⟩
where TX B ���⎜C⨆︁(θ [α 7→X ])

��� returnX B ⎜Nu⨆︁(θ [α 7→X ]) : X → TX

≫=X ,Y B ⎜Nb⨆︁(θ [α1 7→X ,α2 7→Y ]) : TX → (X → TY ) → TY

(provided these form a monad)

Monads

⎜Θ ⊢m T : E⨆︁ B ⎜E⨆︁
Computation terms

⎟[N]T ∮︀(γ ) B ⎜N ⨆︁ (γ )
⎜µ(N ) ⨆︁(γ ) B ⎜N ⨆︁ (γ )

Fig. 16. mon denotational semantics (extending Fig. 7 and 8)

Our calculus differs from Filinski’s [2010] in that our effect definitions are local and structural,

whereas his allow nominal declarations of new effects only at the top level. Because we do not

allow the bodies of the return and the bind to contain open terms, this distinction between the two

calculi is minor. As a consequence, effect definitions in both calculi are static, and the monadic

bindings can be resolved at compile time. Filinski’s calculus also includes a sophisticated effect-

basing mechanism, that allows a computation to immediately use, via reflection, effects from any

layer in the hierarchy below it, whereas our calculus only allows reflecting effects from the layer

immediately below. However, effect-basing does not significantly change the expressiveness of the

calculus: the monad stack is statically known, and, having access to the type information, we can

insert multiple reflection operators and lift effects from lower levels into the current level.

4.4 Operational Metatheory

We prove mon’s Felleisen-Wright safety in our Abella formalisation:

Theorem 4.4 (mon safety). Well-typed programs don’t go wrong: for all closed mon returners

Θ; ⊢∅ M : FA, eitherM { N for some Θ; ⊢∅ N : FA or elseM = return V for some Θ; ⊢ V : A.

As with eff, mon’s ground types are the same as mam’s. While we can define an observational

equivalence relation in the same way as for mam and eff, we will not do so. Monads as a program-

ming abstraction have a well-known conceptual complication — user-defined monads must obey

the monad laws. These laws are a syntactic counterpart to the three equations in the definition of

(set-theoretic/categorical) monads. The difficulty involves deciding what equality between such

terms means. The natural candidate is observational equivalence, but as the contexts can themselves

define additional monads, it is not straightforward to do so. Giving an acceptable operational inter-

pretation to the monad laws is an open problem. We avoid the issue by giving a partial denotational

semantics to mon.

4.5 Denotational Semantics

We extend mam’s denotational semantics to mon as follows. Given a type variable assignment

θ , we assign to each monad type and effect a monad ⎜Θ ⊢m T : E⨆︁θ = ⎜Θ ⊢k E : Eff⨆︁θ , if the sub-
derivations have well-defined denotations, and this data does indeed form a set-theoretic monad.

Consequently, the denotation of any derivation is undefined if at least one of its sub-derivations

has undefined semantics. Moreover, the definition of kinding judgement denotations now depends

on term denotations.

Fig. 16 extends the denotational semantics of mam to mon. The denotation of the layered monad

construct is only well-defined if the user-defined type constructor, return, and bind, form a monad.

For the denotation of computation terms, recall that T⎜E≺instance monad(α .C )T ⨆︁X =
���⎜C⨆︁(θ [α 7→X ])

��� and
therefore, semantically, we can view any computation of type FA subject to the kinding judgement

Θ ⊢k FA : CompE≺instance monad(α .C )T as an E-computation of type C[A/α].

Compare this semantics with Filinski’s original semantics [1994], in which ⎜µ(N )⨆︁ = ⎜N ⨆︁≫=id,
⎟[N]T ∮︀ = returnT ⎜N ⨆︁. To explain the difference, bear in mind that our calculus is based on CBPV,
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whereas Filinski’s original calculus is based on a pure λ-calculus. Specifically, Filinski interprets
the judgementM : A asM : TA. The corresponding judgement for us isM : FA. The semantics of

the pure λ-calculus does not insert monadic returns and binds in the appropriate places, and so

Filinski’s translation inserts them explicitly. In contrast, CBPV inserts returns and binds (and if the

term is pure, they cancel out), and so mon’s semantics need not add them.

4.6 Denotational Metatheory

We define a proper derivation to be a derivation whose semantics is well-defined for all type variable

assignments, and a proper term or type to be a term or type that has a proper derivation. Thus, a

term is proper when all the syntactic monads it contains denote semantic set-theoretic monads.

When dealing with the typed fragment of mon, we restrict our attention to such proper terms as

they reflect the intended meaning of monads. Doing so allows us to mirror the metatheory of mam

and eff for proper terms.

We define plugged proper contexts as with mam and eff with the additional requirement that all

terms are proper. The definitions of the equivalences ≃ and ≃cong are then identical to those of

mam and eff.

Theorem 4.5 (mon termination). There are no infinite reduction sequences: for all proper mon

terms ; ⊢∅ M : FA, we haveM{̸∞, and there exists some unique ; ⊢ V : A such thatM {⋆ return V .

Our proof uses Lindley and Stark’s ⊤⊤-lifting [2005].

Theorem 4.6 (mon compositionality). The semantics depends only on the semantics of sub-terms:

for all pairs of well-typed plugged proper mon contextsMP ,MQ in Ξ[Θ; Γ ⊢E P ,Q : X ], if ⎜P⨆︁ = ⎜Q⨆︁
then ⎜MP ⨆︁ = ⎟MQ∮︀.
The proof is identical to mam, with two more cases for{β . Similarly, we have:

Theorem 4.7 (mon soundness). Reduction preserves the semantics: for every pair of well-typed

proper mon terms Θ; Γ ⊢E P ,Q : X , if P ≃cong Q then ⎜P⨆︁ = ⎜Q⨆︁. In particular, for every well-typed

proper closed term of ground type ; ⊢∅ P : FG, if P {∗ return V then ⎜P⨆︁ = ⎜V ⨆︁.
We combine the previous results, as with mam and eff:

Theorem 4.8 (mon adeqacy). Denotational equivalence implies contextual equivalence: for all

well-typed proper mon terms Θ; Γ ⊢E P ,Q : X , if ⎜P⨆︁ = ⎜Q⨆︁ then P ≃ Q .

Therefore, the proper fragment of mon also has a well-behaved operational semantics: for all

well-typed proper computations Θ; Γ ⊢E M,M ′ : C , ifM {cong M
′
thenM ≃ M ′.

In contrast to eff the semantics for mon is finite:

Lemma 4.9 (finite denotation property). For every type variable assignment θ = ⟨Xα ⟩α ∈Θ of

finite sets, every proper mon value type Θ ⊢k A : and computation type Θ ⊢k C : denote finite sets

⎜A⨆︁θ and ⎜C⨆︁θ .
5 DELIMITED CONTROL: del

Control operators have a long history of expressing both user-defined effects [Danvy 2006] and

algorithms with sophisticated control flow [Felleisen et al. 1988] such as tree-fringe comparison,

and other control mechanisms, such as coroutines. The delimited operators enjoy an improved

metatheory in comparison with their undelimited counterparts [Felleisen et al. 1988]. The operator

closest in spirit to handlers is S0, pronounced “shift zero”. It was introduced by Danvy and Filinski

[1990] as part of a systematic study of continuation-passing-style conversion.
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M,N ::= . . . computations

| S0k .M shift-0

| ⟨M |x .N ⟩ reset

Frames and contexts

F ::= . . . | ⟨[ ]|x .N ⟩ computation frames

Beta reduction

(ret) ⟨(return V ) |x .M⟩{β M[V /x]
(capture) ⟨H [S0k .M]|x .N ⟩{β M[λy.

〈
H [return y]��x .N

〉
/k]

(a) Syntax (extending Fig. 2) (b) Operational semantics (extending Fig. 3)

Fig. 17. del

5.1 Syntax

Fig. 17(a) presents the extension del. The construct S0k .M , which we abbreviate to “shift”, captures

the current continuation and binds it to k , and replaces it withM . The construct ⟨M |x .N ⟩, which
we will call “reset”, delimits any continuations captured by shift insideM . OnceM runs its course

and returns a value, this value is bound to x and N executes. For delimited control cognoscenti this

construct is sometimes called “dollar”, and can macro express the entire CPS hierarchy [Materzok

and Biernacki 2012; Kiselyov and Shan 2007].

Example 5.1. The left column of Fig. 18 expresses user-defined boolean state in del [Danvy

2006, Section 1.4]. The code assumes the environment outside the closest reset will apply it to the

currently stored state. By shifting and abstracting over this state, get and put can access this state

and return the appropriate result to the continuation. When running a stateful computation, we

discard the state when we reach the final return value.

5.2 Operational Semantics

The extension to the operational semantics in Fig. 17(b) reflects our informal description. The ret

rule states that once the delimited computation returns a value, this value is substituted in the

remainder of the reset computation. For the capture rule, the definition of pure contexts guarantees

that in the reduct ⟨H [S0k .M]|x .N ⟩ there are no intervening resets inH , and as a consequenceH is

the delimited continuation of the evaluated shift. After the reduction takes place, the continuation is

re-wrapped with the reset, while the body of the shift has access to the enclosing continuation. If we

were to, instead, not re-wrap the continuation with a reset, we would obtain the control/prompt-zero

operators, (cf. Shan’s [2007] and Kiselyov et al.’s [2005] analyses of macro expressivity relationships

between these two, and other, variations on untyped delimited control).

Example 5.2. We have: runState! toддle True {∗ ⟨True|x .λs .x⟩ False {∗ return True.

5.3 Type-and-Effect System

Fig. 19 presents the natural extension to mam’s kind and type system for delimited control. It is

based on Danvy and Filinski’s description [Danvy and Filinski 1989]; they were the first to propose

toддle = {x ← get !; y ← not ! x ; put ! y; x }
get = {S0k .λs .k! s s}
put = {λs ′.S0k .λ_.k! () s ′}
runState = {λc . ⟨c!|x .λs .x⟩}

toддle : UStateFbit
get : UStateFbit
put : UState (bit→ F1)
runState : U∅ ((UStateFbit) → bit→ Fbit)
State = ∅, bit→ Fbit : Eff

Fig. 18. User-defined boolean state in del
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Kinds and types

E ::= . . . effects

| E,C enclosing continuation type

Effect kinding

Θ ⊢k E : Eff Θ ⊢k C : CompE
Θ ⊢k E,C : Eff

Computation typing

Θ; Γ,k : UE (A→ C ) ⊢E M : C

Θ; Γ ⊢E,C S0k .M : FA

Θ; Γ ⊢E,C M : FA Θ; Γ,x : A ⊢E N : C

Θ; Γ ⊢E ⟨M |x .N ⟩ : C

Fig. 19. del’s kinding and typing (extending Fig. 5 and 6)

a type system for delimited control. Effects are now a stack of computation types, with the empty

effect standing for the empty stack. The top of this stack is the return type of the currently delimited

continuation. Thus, as Fig. 19 presents, a shift pops the top-most type off this stack and uses it to

type the current continuation, and a reset pushes the type of the delimited return typed onto it.

Example 5.3. The boolean state terms are assigned the types given in the right column of Fig. 18.

In this type system, the return type of the continuation remains fixed inside every reset. Existing

work on type systems for delimited control (Kiselyov and Shan [2007] provide a substantial list

of references) focuses on type systems that allow answer-type modification, as these can express

typed printf and type-state computation (as in Asai’s analysis [2009]). We exclude answer-type

modification to keep the fundamental account clearer and simpler: the type systemwith answer-type

modification is further removed from the well-known abstractions for effect-handlers and monadic

reflection. We conjecture that the relative expressiveness of delimited control does not change even

with answer-type modification, once we add analogous capabilities to effect handlers [Brady 2013;

Kiselyov 2016] and monadic reflection [Atkey 2009].

5.4 Operational Metatheory

Our Abella formalisation establishes:

Theorem 5.4 (del safety). Well-typed programs don’t go wrong: for all closed del returners

Θ; ⊢∅ M : FG, eitherM { N for some Θ; ⊢∅ N : FG or elseM = return V for some Θ; ⊢ V : G.

In the next section, we extend del’s metatheory using the translation from del to mon.

We define del’s ground types, plugged contexts and the equivalences ≃ and ≃cong as in mam.

6 MACRO TRANSLATIONS

Felleisen [1991] argues that the usual notions of computability and complexity reduction do

not capture the expressiveness of general-purpose programming languages. The Church-Turing

thesis and its extensions assert that any reasonably expressive model of computation can be

efficiently reduced to any other reasonably expressive model of computation. Thus the notion of a

polynomial-time reduction with a Turing-machine is too crude to differentiate expressive power

of two general-purpose programming languages. As an alternative, Felleisen introduces macro

translation: a local reduction of a language extension, in the sense that it is homomorphic with

respect to the syntactic constructs, and conservative, in the sense that it does not change the core

language. We adapt this concept to local translations between conservative extensions of a shared

core.

Translation Notation. We define translations S→T from each source calculus S to each target

calculus T. By default we assume untyped translations, writing eff, mon, and del in translations
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that disregard typeability. In typeability preserving translations, which must also respect the monad

laws where mon is concerned, we explicitly write typed eff, typed mon, and typed del. We allow

translations to be hygienic and introduce fresh binding occurrences. We write M 7→ M for the

translation at hand. We include only the non-core cases in the definition of each translation.

Out of the six possible untyped macro-translations, the ideas behind the following four already

appear in the literature: del→mon [Wadler 1994], mon→del [Filinski 1994], del→eff [Bauer and

Pretnar 2015], and eff→mon [Kammar et al. 2013]. The Abella formalisation contains the proofs

of the simulation results for each of the six translations. Three translations formally simulate the

source calculus by the target calculus: mon→del, del→eff, and mon→eff. The other translations,

del→mon, eff→del, and eff→mon, introduce suspended redexes during reduction that invalidate

simulation on the nose.

For the translations that introduce suspended redexes, we use a relaxed variant of simulation,

namely the relations{cong, which are the smallest relations containing{ that are closed under

the term formation constructs. We say that a translationM 7→ M is a simulation up to congruence if

for every reductionM { N in the source calculus we haveM {+
cong

N in the target calculus. In

fact, the suspended redexes always β-reduce by substituting a variable, i.e., {λx .M }! x {+
cong

λx .M ,

thus only performing simple rewiring.

6.1 Delimited Continuations as Monadic Reflection (del→mon)

We adapt Wadler’s analysis of delimited control [1994], using the continuation monad [Moggi

1989]:

Lemma 6.1. For all Θ ⊢k E : Eff , Θ ⊢k C : CompE , we have the following proper monad Cont:

Θ ⊢k E ≺ instance monad (α .UE (α → C ) → C )where {return x = λc .c! x ;
m≫= f = λc .m! {λy. f ! y c}} : Eff

Using Cont we define the macro translation del→mon as follows:

S0k .M := µ(λk .M ) ⟨M |x .N ⟩ := [M]Cont {λx .N }

Shift is interpreted as reflection and reset as reification in the continuation monad.

Theorem 6.2 (del→mon correctness). mon simulates delup to congruence:

M { N =⇒ M {+
cong

N

The only suspended redex arises in simulating the reflection rule, where we substitute a continu-

ation into the bind of the continuation monad yielding a term of the form {λy.{λy.M } y c} which
we must reduce to {λy.M c}.

del→mon extends to a macro translation at the type level:

E,C B E ≺ instance monad
(
α .UE

(
α → C

)
→ C

)
Cont

Theorem 6.3 (del→mon preserves typeability). Every well-typed del phrase Θ; Γ ⊢E P : X
translates into a proper well-typed mon phrase: Θ; Γ ⊢E P : X .

We use this result to extend the metatheory of del:

Corollary 6.4 (del termination). All well-typed closed ground returners in del must reduce to

a unique normal form: if ; ⊢∅ M : FG then there exists V such that ; ⊢ V : G andM {⋆ return V .
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6.2 Monadic Reflection as Delimited Continuations (mon→del)

We define the macro translation mon→del as follows:

µ(M ) := S0k .λb .b! ({M }, {λx .k! x b})

[M]where {return x=Nu;y≫=f =Nb
}
:=

〈
M ���x .λb .Nu

〉
{λ(y, f ).Nb}

Reflection is interpreted by capturing the current continuation and abstracting over the bind

operator which is then invoked with the reflected computation and a function that wraps the

continuation in order to ensure it uses the same bind operator. Reification is interpreted as an

application of a reset. The continuation of the reset contains the unit of the monad. We apply this

reset to the bind of the monad.

Theorem 6.5 (mon→del correctness). del simulates mon up to congruence:

M { N =⇒ M {+
cong

N

This translation does not preserve typeability because the bind operator can be used at different

types. We conjecture that a) any other macro translation will suffer from the same issue and b)

adding (predicative) polymorphism to the base calculus is sufficient to adapt this translation to one

that does preserve typeability.

Filinski’s translation from monadic reflection to delimited continuations [1994] does preserve

typeability, but it is a global translation. It is much like our translation except each instance of bind

is inlined (hence it does not need to be polymorphic).

6.2.1 Alternative Translation with Nested Delimited Continuations. An alternative to mon→del

is to use two nested shifts for reflection and two nested resets for reification:

µ(M ) := S0k .S0b .b! ({M }, {λx . ⟨k! x |z.z! b⟩})

[M]where {return x=Nu;y≫=f =Nb
}
:=

〈〈
M ���x .S0b .Nu

〉���(y, f ).Nb

〉
In the translation of reflection, the reset inside the wrapped continuation ensures that any further

reflections in the continuation are interpreted appropriately: the first shift, which binds k , has
popped one continuation off the stack so we need to add one back on. In the translation of reification,

the shift guarding the unit garbage collects the bind once it is no longer needed.

6.3 Delimited Continuations as Effect Handlers (del→eff)

We define del→eff as follows:

S0k.N B shift0 {λk.N } ⟨M |x .N ⟩ B handleM with {return x 7→ N } ⊎ {shift0 y f 7→ f ! y}

Shift is interpreted as an operation and reset is interpreted as a straightforward handler.

Theorem 6.6 (del→eff correctness). eff simulates del on the nose:M { N =⇒ M {+ N .

This translation does not preserve typeability because inside a single reset shifts can be used

at different types. We conjecture that a) any other macro translation will suffer from the same

issue and b) adding polymorphic operations [Kammar et al. 2013] to eff is sufficient to ensure this

translation does preserve typeability.

One can adapt our translation to a global translation in which every static instance of a shift is

interpreted as a separate operation, thus avoiding the need for polymorphic operations.
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6.4 Effect Handlers as Delimited Continuations (eff→del)

We define eff→del as follows:

op V B S0k .λh.h! (injop (V , {λy.k! y h})) handleM with H B
〈
M ���H

ret

〉
{Hops}

*.
,

handle M with
{return x 7→ Nret}

⊎ {opi p k 7→ Ni }i

+/
-

ret

B x .λh.Nret

*.
,

handle M with
{return x 7→ Nret}

⊎ {opi p k 7→ Ni }i

+/
-

ops

B

λy.case y of {
(inj

opi
(p, k)→ Ni )i

}

Operation invocation is interpreted by capturing the current continuation and abstracting over a

dispatcher which is passed an encoding of the operation. The encoded operation is an injection

whose label is the name of the operation containing a pair of the operation parameter and a wrapped

version of the captured continuation, which ensures the same dispatcher is threaded through the

continuation.

Handling is interpreted as an application of a reset whose continuation contains the return clause.

The reset is applied to a dispatcher function that encodes the operation clauses.

Theorem 6.7 (eff→del correctness). del simulates eff up to congruence:

M { N =⇒ M {+
cong

N

The eff→del translation is simpler than Kammar et al.’s which uses a global higher-order

memory cell storing the handler stack [2013].

This translation does not preserve typeability because the interpretation of operations needs to

be polymorphic in the return type of the dispatcher over which it abstracts. We conjecture that a)

any other macro translation will suffer from the same issue and b) adding polymorphism to the

base calculus is sufficient to adapt this translation to one that preserves typeability.

6.4.1 Alternative Translation with Nested Delimited Continuations. Similarly to the mon→del

translation there is an alternative to eff→del which uses two nested shifts for operations and two

nested resets for handlers:

op V B S0k .S0h.h! (injop (V , {λx .
〈
k! x ��y.y! h

〉
})) handleM with H B

〈〈
M ���H

ret

〉���Hops

〉
(
{return x 7→ Nret}

⊎ {opi p k 7→ Ni }i

)
ret

B x .S0h.Nret

(
{return x 7→ Nret}

⊎ {opi p k 7→ Ni }i

)
ops

B
y.case y of {

(inj
op

1

(p, k)→ Ni )}

6.5 Monadic Reflection as Effect Handlers (mon→eff)

We simulate reflection with an operation and reification with a handler. Formally, for every anony-

mous monad T given by where {return x = Nu; y≫= f = Nb} we define mon→eff as follows:

µ(N ) B reflect {N } [M]T B handleM with T

T B {return x 7→ Nu} ⊎ {reflect y f 7→ Nb}

Reflection is interpreted as a reflect operation and reification as a handler with the unit of the

monad as a handler and the bind of the handler as the implementation of the reflect operation.

Theorem 6.8 (mon→eff correctness). eff simulates mon on the nose:M { N =⇒ M {+ N .

mon→eff does not preserve typeability. For instance, consider the following computation of

type Fbit using the environment monad Reader given on the right:

[b ← µ({λ(b, f ).b});
f ← µ({λ(b, f ). f });
f ! b]Reader (inj

true
(), {λb .return b})

⊢k ∅ ≺ instance monad (α .bit ×U∅ (bit→ F bit) → Fα )
where {return x = λe .return x;

m≫= f = λe .x ←m! e; f ! x e} : Eff

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 13. Publication date: September 2017.



On the Expressive Power of User-Defined Effects:

Effect Handlers, Monadic Reflection, Delimited Control 13:25

Its translation into eff is not typeable: reflection can appear at any type, whereas a single operation

is monomorphic. We conjecture that a) this observation can be used to prove that no macro

translation typed mon→typed eff exists and that b) adding polymorphic operations [Kammar

et al. 2013] to eff is sufficient for typing this translation.

6.6 Effect Handlers as Monadic Reflection (eff→mon)

We define eff→mon as follows:

op V B µ(λk .λh.h! (inj
op

(V , {λy.k! y h}))) handleM with H B [M]Cont {H ret} {Hops}

*.
,

handleM with
{return x 7→ Nret}

⊎ {opi p k 7→ Ni }i

+/
-

ret

B λx .λh.Nret

*.
,

handleM with
{return x 7→ Nret}

⊎ {opi p k 7→ Ni }i

+/
-

ops

B

λy.case y of {
(inj

opi
(p, k)→ Ni )i

}

The translation is much like eff→del, using the continuation monad in place of first class continu-

ations.

Operation invocation is interpreted by using reflection to capture the current continuation and

abstracting over a dispatcher which is passed an encoding of the operation. The encoded operation

is an injection whose label is the name of the operation containing a pair of the operation parameter

and a wrapped version of the captured continuation, which ensures the same dispatcher is threaded

through the continuation.

Handling is interpreted as an application of a reified continuation monad computation to the

return clause and a dispatcher function that encodes the operation clauses.

Theorem 6.9 (eff→mon correctness). mon simulates eff up to congruence:

M { N =⇒ M {+
cong

N

This translation does not preserve typeability for the same reason as the eff→del translations:

the interpretation of operations needs to be polymorphic in the return type of the dispatcher over

which it abstracts. We conjecture that a) any other macro translation will suffer from the same

issue and b) adding polymorphism to the base calculus is sufficient to adapt this translation to one

that does preserve typeability.

6.6.1 Alternative Translation Using a Free Monad. An alternative to interpreting effect handlers

using a continuation monad is to use a free monad:

op V B µ(return (inj
op

(V , λx .return x))) handleM with H B H⋆ [M]H
†

(
{return x 7→ Nret}

⊎ {opi p k 7→ Ni }i

)†
B

where {
return x = return (inj

ret
x );

y≫= f = case y of {inj
ret

x → k! x
(inj

opi
(p,k)→ return (inj

opi
(p, λx .k! x≫= f )))i }

}(
{return x 7→ Nret}

⊎ {opi p k 7→ Ni }i

)⋆
B

h = λy.case y of {inj
ret

x → Nret

(inj
opi

(p,k ′)→ k ← return {λx .y ← k ′! x ; h! y}; Ni )i }

Both the bind operation for the free monad H † and the function h that interprets the free monad

H⋆
are recursive. Given that we are in an untyped setting we can straightforwardly implement the

recursion using a suitable variation of the Y combinator. This translation does not extend to the

typed calculi as they do not support recursion. Nevertheless, we conjecture that it can be adapted to

a typed translation if we extend our base calculus to include inductive data types, as the recursive

functions are structurally recursive.
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6.7 Nonexistence Results

Theorem 6.10. The following macro translations do not exist:

• typed eff→typed mon satisfying:M { N =⇒ M ≃ N .

• typed eff→typed del satisfying:M { N =⇒ M ≃ N .

Our proof of the first part hinges on the finite denotation property (Lemma 4.9). Briefly, assume to

the contrary that there was such a translation. Consider a single effect operation symbol tick : 1→ 1

and set tick
0 B return (), and tickn+1 B tick(); tickn . All these terms have the same type, and by

the homomorphic property of the hypothesised translation, their translations all have the same

type. By the finite denotation property two of them are observationally equivalent and by virtue of

a macro translation the two source terms are observationally equivalent in eff. But every distinct

pair of tick
n
terms is observationally distinguishable using an appropriate handler. See Forster’s

thesis [2016] for the full details. The second part follows from Theorem 6.3.

Regarding the remaining four possibilities, we have seen that there is a typeability-

preserving macro translation typed del→typed mon (Theorem 6.3), but we conjecture that

there are no typeability-preserving translations typed mon→typed del, typed del→typed eff,

or typed mon→typed eff.

7 CONCLUSION AND FURTHERWORK

We have given a uniform family of formal calculi expressing the common abstractions for user-

defined effects: effect handlers (eff), monadic reflection (mon), and delimited control (del), together

with their natural type-and-effect systems. We have used these calculi to formally analyse the

relative expressive power of these abstractions. Effect handlers, monadic reflection, and delimited

control have equivalent expressivity when types are not taken into consideration. However, neither

monadic reflection nor delimited control can macro-express effect handlers whilst preserving

typeability. We have formalised the more syntactic aspects of our work in the Abella proof assistant,

and have used set-theoretic denotational semantics to establish inexpressivity results.

Our work has already born unexpected if not entirely unsurprising fruit. By composing our

translation from effect handlers to delimited continuations with a CPS translation for delimited

continuations Hillerström et al. [2017] derived a CPS translation for effect handlers, which they

then used as the basis for an implementation.

Further work abounds. We want to extend each type system until each translation preserves

typeability. We conjecture that adding polymorphic operations to eff would allow it to macro

express del and mon, and that adding polymorphism to mon and del would allow them to macro

express eff. We conjecture polymorphismwould also allow del to macro expressmon, and inductive

data types with primitive recursion would also allow mon to macro express eff.

We are also interested in analysing global translations between these abstractions. In particular,

whereas mon and del allow reflection/shifts to appear anywhere inside a piece of code, in practice,

library designers define a fixed set of primitives using reflection/shifts and only expose those

primitives to users. This observation suggests calculi in which each reify/reset is accompanied by

declarations of this fixed set of primitives. We conjecture that mon and del can be simulated on

the nose via a global translation into the corresponding restricted calculus, and that the restricted

calculi can be macro translated into eff whilst preserving typeability. Such two-stage translations

would give a deeper reason why so many examples typically used for monadic reflection and

delimited control can be directly recast using effect handlers. Other global pre-processing may also

eliminate administrative reductions from our translations and establish simulation on the nose.

We hope the basic calculi we have analysed will form a foundation for systematic further

investigation. Supporting answer-type modification [Asai 2009; Kobori et al. 2015] can inform
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more expressive type system design for effect handlers and monadic reflection, and account for

type-state [Atkey 2009] and session types [Kiselyov 2016]. In practice, effect systems are often

extended with sub-effecting or effect polymorphism [Lucassen and Gifford 1988; Bauer and Pretnar

2014; Pretnar 2014; Leijen 2017; Hillerström and Lindley 2016; Lindley et al. 2017]. To these we add

effect forwarding [Kammar et al. 2013] and rebasing [Filinski 2010].

We have taken the perspective of a programming language designer deciding which programming

abstraction to select for expressing user-defined effects. In contrast, Schrijvers et al. [2016] take

the perspective of a library designer for a specific programming language, Haskell, and compare

the abstractions provided by libraries based on monads with those provided by effect handlers.

They argue that both libraries converge on the same interface for user-defined effects via Haskell’s

type-class mechanism.

Relative expressiveness results are subtle, and the potentially negative results that are hard to

establish make them a risky line of research. We view denotational models as providing a fruitful

method for establishing such inexpressivity results. It would be interesting to connect our work

with that of Laird [2002, 2013, 2017], who analyses the macro-expressiveness of a hierarchy of

combinations of control operators and exceptions using game semantics, and in particular uses such

denotational techniques to show certain combinations cannot macro express other combinations.

We would like to apply similar techniques to compare the expressive power of local effects such as

ML-style reference cells with effect handlers.
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