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Abstract

We compare the expressive power of three programming abstractions for user-defined computational
effects: Plotkin and Pretnar’s effect handlers, Filinski’s monadic reflection, and delimited control.
This comparison allows a precise discussion about the relative expressiveness of each programming
abstraction. It also demonstrates the sensitivity of the relative expressiveness of user-defined effects to
seemingly orthogonal language features.

We present three calculi, one per abstraction, extending Levy’s call-by-push-value. For each
calculus, we present syntax, operational semantics, a natural type-and-effect system, and, for effect
handlers and monadic reflection, a set-theoretic denotational semantics. We establish their basic
metatheoretic properties: safety, termination, and, where applicable, soundness and adequacy. Using
Felleisen’s notion of a macro translation, we show that these abstractions can macro-express each
other, and show which translations preserve typeability. We use the adequate finitary set-theoretic
denotational semantics for the monadic calculus to show that effect handlers cannot be macro-
expressed while preserving typeability either by monadic reflection or by delimited control. Our
argument fails with simple changes to the type system such as polymorphism and inductive types. We
supplement our development with a mechanised Abella formalisation.
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1 Introduction

How should we compare abstractions for user-defined effects?
Approaches to handling computational effects, such as file, terminal, and network I/O,

random-number generation, and memory allocation and mutation, vary between different
functional programming languages. Whereas strict languages like Scheme and ML allow
these effects to occur everywhere, languages like Haskell restrict the use of effects. One
reason to be wary of incorporating computational effects into a language is that doing so can
mean giving up some of the most basic properties of the lambda calculus, like referential
transparency, and confluence. The loss of these properties leads to unpredictable behaviour in
lazy languages like Haskell, makes it harder to reason about program behaviour, and limits
the applicability of correctness preserving transformations like common subexpression
elimination or code motion.

Monads (Moggi, 1989; Spivey, 1990; Wadler, 1990) are the established abstraction for
incorporating effects into lazy languages. Recently, Bauer & Pretnar (2015) proposed the
use of algebraic effects and handlers (Plotkin & Pretnar, 2009) to structure programs with
user-defined effects. In this approach, the programmer first declares algebraic operations
as the syntactic constructs she will use to cause the effects, in analogy with declaring new
exceptions. Then, she defines effect handlers that describe how to handle these operations,
in analogy with exception handlers. While control transfers immediately to the enclosing
handler without resumption following an exception, a computation may continue in the same
position following an effect operation. In order to support resumption, an effect handler
has access to the continuation at the point of effect invocation. Thus algebraic effects and
handlers provide a form of delimited control. Delimited control operators have long been
used to encode effects (Danvy, 2006). There are many variants of such control operators,
and their inter-relationships are subtle (Shan, 2007), and often appear only in folklore. Here
we focus on a specific pair of operators: shift-zero and dollar (Materzok & Biernacki, 2012)
typed with simple types1 whose operational semantics and type system are the closest to
effect handlers and monads.

We study the three different abstractions for user-defined effects: effect handlers, monads,
and delimited control operators. Our goal is to enable language designers to conduct a
precise and informed discussion about the relative expressiveness of each abstraction.
In order to compare them, we build on an idealised calculus for functional-imperative
programming, namely call-by-push-value (Levy, 2003), and extend it with each of the three
abstractions and their corresponding natural type systems. We then assess the expressive
power of each abstraction by rigorously comparing and analysing these calculi.

We use Felleisen’s notion of macro expressibility (1991): when a programming language
L is extended by some feature, we say that the extended language L+ is macro expressible
when there is a local syntax-directed translation (a macro translation) from L+ to L that
keeps the features in L fixed. Felleisen introduces this notion to study the relative expressive
power of Turing-complete calculi, as macro expressivity is more sensitive in these contexts
than notions of expressivity based on computability. We adapt Felleisen’s approach to the

1but neither answer-type-modification (Asai, 2009; Kobori et al., 2016) nor answer-type-
polymorphism (Asai & Kameyama, 2007)
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Arrows labelled by ∗ are new untyped direct translations

Fig. 1: Existing and conjectured macro translations.

situation where one extension L1
+ of a base calculus L is macro expressible in another

extension L2
+ of the same base calculus L. Doing so allows us to formally compare the

expressive power of each of the different abstractions for user-defined effects.
In the first instance, we show that, disregarding types, all three abstractions are macro-

expressible in terms of one another, giving six macro translations. Some of these translations
are known in less rigorous forms, either published, or in folklore. One translation, macro-
expressing effect-handlers in delimited control, improves on previous concrete implementa-
tions (Kammar et al., 2013), which rely on the existence of a global higher-order memory
cell storing a stack of effect-handlers. The translation from monadic reflection to effect
handlers is new.

We also examine whether these translations preserve typeability, and the contrary: whether
the translations of some well-typed programs are untypeable. This untypeability is sensitive
to the precise choice of features of the type system. We show that the translation from
delimited control to monadic reflection preserves typeability. A potential difference between
the expressive power of handler type systems and between monadic reflection and delimited
control type systems was recently suggested by Kammar & Pretnar (2017), who give a
straightforward typeability preserving macro-translation of delimited dynamic state into
a calculus of effect handlers, whereas existing translations using monads and delimited
control require more sophistication (Kiselyov et al., 2006). We show that there exists no
macro translation from effect handlers to monadic reflection that preserves typeability. The
proof relies on the denotational semantics for the monadic calculus. This set-theoretic
denotational semantics and its adequacy for Filinski’s multi-monadic metalanguage (2010)
is another piece of folklore which we formalise here. We conjecture that a similar proof,
though with more mathematical sophistication, can be used to prove the non-existence of a
typeability-preserving macro translation from the monadic calculus to effect handlers. To
this end, we give adequate set-theoretic semantics to the effect handler calculus with its
type-and-effect system, and highlight the critical semantic invariant a monadic calculus will
invalidate.

Fig. 1 summarises our contributions and conjectured results. Untyped calculi appear on
the left and their typed fragments on the right. Unlabelled arrows between the typed calculi
signify that the corresponding macro translation between the untyped calculi preserves
typeability. Arrows labelled by ∗ are new untyped direct translations. Arrows labelled with
non-existence signify that no macro translation exists between the calculi, not even a partial
macro translation that is only defined for well-typed programs.
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The non-expressivity results are sensitive to the precise collection of features in each
calculus. For example, extending the base calculus with inductive types and primitive
recursion would create gaps in our non-existence arguments, and we conjecture that
extending the calculi with various forms of polymorphism would make our untyped
translations typeability-preserving. Indeed Piróg et al. (2019), building on our work, have
recently proved that typed macro translations do exist between a polymorphic call-by-
value lambda calculus extended variously with effect handlers and delimited control. As
well as standard data type polymorphism, they rely on polymorphic operations (Kammar
et al., 2013) and a novel form of answer-type polymorphism (Asai & Kameyama, 2007).
Kiselyov & Sivaramakrishnan (2018) also observe the need for some form of answer-
type polymorphism in their typed embedding of effect handlers into a general delimited
continuations library. To avoid implementing answer-type polymorphism in practice, they
rely on an encoding in terms of a universal type.

Adding features to each calculus blurs the distinction between each abstraction. This
sensitivity means that in a full-blown language, such as Haskell, OCaml, or Scheme, the
different abstractions are often practically equivalent (Schrijvers et al., 2019). It also teaches
us that meaningful relative expressivity results must be stated within a rigorous framework
such as a formal calculus, where the exact assumptions and features are made explicit. The
full picture is still far from complete, but our work lays the foundation for drawing it.

We supplement our pencil-and-paper proofs with a mechanised formalisation in the Abella
proof assistant (Gacek, 2008, 2009) of the more syntactic aspects of our work. Specifically,
for each calculus, we formalise a Wright & Felleisen style progress-and-preservation safety
theorem (1994), and correctness theorems for our translations.

This article is a revised and extended version of a previous paper (Forster et al., 2017).
The core contributions are as follows:

• syntax and semantics of formal calculi for effect handlers, monadic reflection, and
delimited control, where each calculus extends a shared call-by-push-value core, and
their metatheory:

— set-theoretic denotational semantics for effect handlers and monadic reflection;
— denotational soundness and adequacy proofs for effect handlers and monadic

reflection;
— a termination proof for monadic reflection (termination proofs for the other calculi

appear in existing work);

• six macro-translations between the three untyped calculi, and variations on three of
those translations;
• formally mechanised metatheory in Abella2 comprising:

— progress and preservation theorems;
— the translations between the untyped calculi; and
— their correctness proofs in terms of formal simulation results;

• typeability preservation of the macro translation from delimited control to monadic
reflection; and

2https://github.com/matijapretnar/proofs

https://github.com/matijapretnar/proofs
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Core metatheory
MAM EFF MON DEL

Safety XTheorem 1 XTheorem 6 XTheorem 11 XTheorem 17
Termination Theorem 2 Theorem 7 Theorem 12 Corollary 21
Compositionality Theorem 3 Theorem 8 Theorem 13
Soundness Theorem 4 Theorem 9 Theorem 14
Adequacy Theorem 5 Theorem 10 Theorem 15
Finite denotation property Lemma 16
Continuation monad Lemma 18

Simulation results

source
target

EFF MON DEL

EFF XTheorem 26 XTheorem 24

MON XTheorem 25 XTheorem 22

DEL XTheorem 23 XTheorem 19

Other translation results
TYPED DEL→TYPED MON

Typeability preservation XTheorem 20

TYPED EFF→TYPED DEL & TYPED EFF→TYPED MON

Inexpressivity Theorem 27

X means result is mechanised in Abella2

Table 1: Metatheory summary

• a proof that there exists no typeability-preserving macro translation from effect
handlers to either monadic reflection or delimited control.

Moreover, this article extends these contributions with the following new contributions:

• extensions to the mechanised metatheory in Abella2 with:

— a formalisation of the kind system;
— the variations on the translations into delimited continuations; and
— the typeability preservation proof;

• an experience report on using Abella,

as well as updating related work, and providing additional explanations to the metatheoretic
development and the technical details involved in the termination, adequacy, and non-
existence proofs. Table 1 summarises our metatheoretic results and the coverage of their
Abella formalisation.

We structure the remainder of the paper as follows. Sections 2–5 present the core calculus
and its extensions with effect handlers, monadic reflection, and delimited control, in this
order, along with their metatheoretic properties (Table 1). Section 6 presents the macro
translations between these calculi, their correctness, and typeability-preservation. Section 7
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V,W ::= values
x variable
| () unit value
| (V1,V2) pairing
| inj`V variant
| {M} thunk

M,N ::= computations
case V of product

(x1,x2)→M matching
| case V of { variant

(inj`i
xi→Mi)i} matching

|V ! force

| return V returner
| x←M; N sequencing
| λx.M abstraction
|M V application
| 〈M1,M2〉 pairing
| prji M projection

Fig. 2: MAM syntax

reports on our experience of using Abella for mechanising proofs. Section 8 concludes and
outlines further work.

We compare the expressive power of the various abstractions in Section 6. Our positive
translation results appear in Sections 6.1–6.6, which only depend on Parts 1–4 of Sections 2–
5. The negative translation results of Section 6.7 depend on the more technical denotational
metatheory (Parts 5–6 of Sections 2–5) which may be skipped on first reading.

2 The Core-Calculus: MAM

We seek a functional-imperative calculus where effects and higher-order features interact
well. Levy’s call-by-push-value (CBPV) calculus fits the bill (2003): it allows us to uniformly
deal with call-by-value and call-by-name evaluation strategies, making the theoretical
development relevant to both ML-like and Haskell-like languages. In CBPV, evaluation
order is explicit, and the way it combines computational effects with higher-order features
yields simpler program logic reasoning principles (Kammar & Plotkin, 2012; Plotkin &
Pretnar, 2008). We extend CBPV with an effect type system, obtaining a variant of Kammar
& Plotkin’s multi-adjunctive intermediate language (2012) without effect operations or
coercions. We call the resulting calculus the multi-adjunctive metalanguage (MAM). Later,
each of Sec. 3–5 introduces a different extension of MAM for each notion of user-defined
effect.

2.1 Syntax

Fig. 2 presents MAM’s raw term syntax, which distinguishes between value terms V (data)
and computation terms M (programs). We let P,Q range over the union of value and
computation terms. We assume a countable set of variables ranged over by x, y, . . ., and a
countable set of variant constructor literals ranged over by `. The unit value, products, and
finite variants/sums are standard. A computation can be suspended as a thunk {M}, which
may be passed around. Products and variants are eliminated with standard pattern matching
constructs. When eliminating variants, we will use a tuple notation when working abstractly,
as in the figure, and a comma-separated list when working concretely, as in the example
below. Thunks can be forced to resume their execution. A computation may simply return
a value, and two computations can be sequenced, as in Haskell’s do notation. A function
computation abstracts over values to which it may be applied. In order to pass a function
λx.M as data, it must first be suspended as a thunk {λx.M}. For completeness, we also
include CBPV’s binary computation products, which subsume projections from products in
call-by-name languages.
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Frames and contexts
P ::= x← [ ]; N | [ ] V | prji [ ] pure frames
F ::= P computation frames
C ::= [ ] | C[F[ ]] evaluation context
H ::= [ ] |H[P[ ]] pure context

Reduction M M′

M β M′

C[M] C[M′]

Beta reduction M β M′

(×) case (V1,V2) of (x1,x2)→M β M[V1/x1,V2/x2]

(+) case inj`V of {. . . inj` x→M . . .} β M[V/x]
(F) x← return V ; M β M[V/x]

(U) {M}! β M
(→) (λx.M) V  β M[V/x]
(&) prji 〈M1,M2〉 β Mi

Fig. 3: MAM operational semantics

Example 1. Representing booleans as variants, we may define negation as follows.

not = {λb.case b of {inj
True

x→ return (inj
False

())

, inj
False

x→ return (inj
True

())}}

2.2 Operational Semantics

Fig. 3 presents MAM’s standard structural operational semantics, in the style of Felleisen
& Friedman (1987). To reuse the core definitions as much as possible, we refactor the
semantics into β -reduction rules and a single congruence rule. As usual, a β -reduction
reduces a matching pair of introduction and elimination forms.

We factor the definition of evaluation contexts through computation frames. In MAM these
consist of pure frames, the elimination frames for pure computation. For each extension we
will add another kind of effectful computation frame. We use [ ] to denote the hole in each
frame or context, which signifies which term should evaluate first, and define substitution
frames and terms for holes (C[F[ ]], C[M]) in the standard way. Later, in each calculus we
will make use of pure contexts in order to capture continuations, stacks of pure frames,
extending from a control operator to the nearest delimiter. Any term can be decomposed
into at most one pair of evaluation context and β -reducible term, making the semantics
deterministic.

Example 2. With this semantics we have the following three-step reduction:

not! (inj
True

()) 
|

(U)

(λb.case b of {inj
True

x→ return (inj
False

())

, inj
False

x→ return (inj
True

())})

(inj
True

())

 
|

(→)

case inj
True

() of {inj
True

x→ return (inj
False

())

, inj
False

x→ return (inj
True

())}

 
|

(+)

return (inj
False

())
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toggle = {x← get!;

y← not! x;

put! y;

return x}
(a) Direct style

get = { λ s.( s,s )}
put = {λ s′.λ_.((),s′)}
runState = λc.λ s.c! s

toggle = {λ s.(x,s)← get! s;

y← not! x;

(_,s)← put! y s;

return (x,s)}
(b) State-passing style

Fig. 4: User-defined boolean state

Syntactic sugar. We use nested patterns in our pattern matching constructs. We abbreviate
the variant constructors to their labels, and omit the unit value, e.g., TrueB True ()B

inj
True

(). We allow elimination constructs to apply to arbitrary computations, and not just
values, by setting for example M N B x← N; M x for some fresh x, giving a more readable,
albeit call-by-value, appearance.

Example 3. As a running example, we express boolean state in each of our calculi. Fig. 4(a)
shows the code, which toggles the state and returns the value of the original state, as we
would like to write it. Fig. 4(b) shows how we do so in MAM, via a standard state-passing
transformation. We then run toggle with the initial value True to get the expected result:

runState! toggle True ? return (True,False)

This transformation is not a macro translation from the extension of MAM with global state
to MAM. In addition to the definition of put and get, it globally threads the state through
toggle’s structure, changing core MAM constructs. For example, x← M; N changes to
(x,s)←M′; N′. Each user-defined effect abstraction in Sections 3–5 provides a different
means for macro-expressing state.

2.3 Type-and-Effect System

Fig. 5 presents MAM’s types and effects. As a core calculus for three calculi with different
notions of effect, MAM is pure, and the only shared effect is the empty effect /0.

We include a kind system, unneeded in traditional CBPV where a context-free distinc-
tion between values and computations ensures types are well-formed. The two points of
difference from CBPV are the kind of effects, and the refinement of the computation kind
by well-kinded effects E. The other available kinds are the standard value kind and a kind
for well-formed environments (without type dependencies).

Our type system includes type variables ranging over value-types, i.e., types of kind
Val (which in Section 4 we use for defining monads parametrically). The simple types,
finite products, and variants, are the standard CBPV value types. Thunk types are annotated
with effect annotations. Computation types include returners FA, which are computations
that return a value of type A, similar to the monadic type Monad m =⇒ m a in Haskell.
Functions are computations and only take values as arguments. For completeness, we include
CBPV’s computation products, which account for product elimination via projection in
call-by-name languages.

To ensure well-kindedness of types, which may contain type variables, we use type
environments in a list notation that denotes finite sets of type variables. So the type
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E ::= effects
/0 pure effect

K ::= kinds
| Eff effects
| Val values
| CompE computations
| Context environments

A,B ::= value types
α type variable
| 1 unit
| A1×A2 products
| {`i Ai}i variants
|UEC thunks

C,D ::= computation types
FA returners
| A→C functions
|C1 &C2 products

Environments:
Θ ::= α1, . . . ,αn
Γ,∆ ::= x1 : A1, . . . ,xn : An

Fig. 5: MAM kinds and types

environment ΘBα1,β ,α2 is in fact the set Θ= {α1,α2,β}. Similarly, we use a list notation
for value environments, which are functions from a finite set of variable names to the set of
value types. So the domain of definition of the value environment ΓB x : α, f : α → Fα is
Dom (Γ) = {x, f}.

Example 4. The value-type of booleans bit is given by {False 1,True 1}.

Fig. 6 presents the kind and type systems. The only effect ( /0) is well-kinded. Type
variables must appear in the current type environment, and they are always value types. The
remaining value and computation types and environments have straightforward structural
kinding conditions. Thunks of E-computations of type C require the type C to be well-
kinded, which includes the side-condition that E is a well-kinded effect. This kind system
has the property that each valid kinding judgement has a unique derivation. Value type
judgements assert that a value term has a well-formed value type under a well-formed
environment in a type variable environment.

The rules for simple types are straightforward. Observe how the effect annotation moves
between the E-computation type judgement and the type of E-thunks. The side condition
for computation type judgements asserts that a computation term has a well-formed E-
computation type under a well-formed environment for a well-formed effect E under a type
variable environment. The rules for variables, value and computation products, variants,
and functions are straightforward. The rules for thunking and forcing ensure that the
computation’s effect annotation agrees with the effect annotation of the thunk. The rule for
return allows us to return a value at any effect annotation, yielding a may-effect system: the
effect annotations specify which effects may occur, without prescribing that any particular
effect must occur. The rule for sequencing comes from our choice to omit any form of effect
coercion, subeffecting, or effect polymorphism: the three effect annotations must agree.
More sophisticated effect systems allow greater flexibility (Katsumata, 2014). We leave the
precise treatment of such extensions to later work.

Example 5. The values from Fig. 4(b) have the following types:

not : U/0(bit→ Fbit)
get : U/0(bit→ F(bit×bit))
put : U/0(bit→ bit→ F(bit×bit))

toggle : U/0(bit→ F(bit×bit))
runState : U/0(U/0(bit→ F(bit×bit))

→ bit→ F(bit×bit))

as expected.
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Effect kinding Θ `k E : Eff

Θ `k /0 : Eff

Context kinding Θ `k Γ : Context

[Θ `k Γ(x) : Val]x∈Dom(Γ)

Θ `k Γ : Context

Value kinding Θ `k A : Val
α ∈Θ

Θ `k α : Val Θ `k 1 : Val
Θ `k A1 : Val Θ `k A2 : Val

Θ `k A1×A2 : Val

[Θ `k Ai : Val]i
Θ `k {`i Ai}i : Val

Θ `k C : CompE

Θ `k UEC : Val

Computation kinding Θ `k C : CompE (Θ `k E : Eff)
Θ `k A : Val

Θ `k FA : CompE

Θ `k A : Val Θ `k C : CompE

Θ `k A→C : CompE

Θ `k C1 : CompE Θ `k C2 : CompE

Θ `k C1 &C2 : CompE

Value typing Θ;Γ `V : A (Θ `k Γ : Context,A : Val)

(x : A) ∈ Γ

Θ;Γ ` x : A Θ;Γ ` () : 1
Θ;Γ `V1 : A1 Θ;Γ `V2 : A2

Θ;Γ ` (V1,V2) : A1×A2

Θ;Γ `V : Ai

Θ;Γ ` inj`i
V : {`i Ai}i

Θ;Γ `E M : C

Θ;Γ ` {M} : UEC

Computation typing Θ;Γ `E M : C (Θ `k Γ : Context,E : Eff,C : CompE )
Θ;Γ `V : A1×A2

Θ;Γ,x1 : A1,x2 : A2 `E M : C

Θ;Γ `E case V of (x1,x2)→M : C

Θ;Γ `V : {`i Ai}i
[Θ;Γ,xi : Ai `E Mi : C]i

Θ;Γ `E case V of {inj`i
xi→Mi}i : C

Θ;Γ `V : UEC

Θ;Γ `E V ! : C

Θ;Γ `V : A

Θ;Γ `E return V : FA

Θ;Γ `E M : FA Θ;Γ,x : A `E N : C

Θ;Γ `E x←M; N : C

Θ;Γ,x : A `E M : C

Θ;Γ `E λx.M : A→C

Θ;Γ `E M : A→C Θ;Γ `V : A

Θ;Γ `E M V : C

Θ;Γ `E M1 : C1 Θ;Γ `E M2 : C2

Θ;Γ `E 〈M1,M2〉 : C1 &C2

Θ;Γ `E M : C1 &C2

Θ;Γ `E prji M : Ci

Fig. 6: MAM kind and type system

2.4 Operational Metatheory

We now establish the basic properties of MAM.

Theorem 1 (MAM safety). Well-typed programs don’t go wrong: for all closed MAM

returners Θ;` /0 M : FA, either M  N for some Θ;` /0 N : FA or else M = return V for
some Θ; `V : A.

We have mechanised the standard inductive progress-and-preservation proof using Abella.
We now extend existing termination results for CBPV (Doczkal, 2007; Doczkal &

Schwinghammer, 2009). We say that a term M diverges, and write M ∞ if for every n ∈N
there exists some N such that M n N. Because the operational semantics is deterministic,
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N is unique, and if M i Ni for all 1≤ i≤ n, then Ni Ni+1 for all 1≤ i < n. We say that
M does not diverge when M 6 ∞.

Theorem 2 (MAM termination). There are no infinite reduction sequences: for all MAM

terms ; ` /0 M : FA, we have M 6 ∞, and there exists some unique ; ` V : A such that
M ? return V .

Proof
We use Tait’s method (1967), i.e., a unary logical relation, to establish totality. In detail,
we define a (unary) relational interpretation of types and establish a basic lemma. The full
definition follows the logical structure, except for the following case. In order to define
the relation on returners FA, we need a monadic lifting. We use the lifting from Hermida’s
thesis (1993), defined to contain the returners that reduce to a return value for all closed
substitutions. Forster et al. (2019) have since formalised in Coq a similar termination proof
for call-by-push-value; see their manuscript (Fig. 12 on page 6) for more details. �

We define contextual equivalence of MAM terms, which we will use to state our inexpres-
sivity result (Theorem 27). First, we define the subclass of ground types.

(ground types) G ::= 1 | G1×G2 | {`i Gi}i

We also introduce some convenient notational conventions. For uniformity’s sake, we let
types X range over both value and E-computation types, and recall that phrases P,Q range
over both value and computation terms. Judgements of the form Θ;Γ `E P : X are meta
judgements, ranging over value judgements Θ;Γ `V : X when P =V (in which case E = /0),
and E-computation judgements Θ;Γ `E M : X when P = M.

The standard next step is to define well-typed program contexts X[ ] — terms with zero,
one, or more occurrences of a hole, denoted by [ ], not to be confused with evaluation
contexts C[ ], which always contain exactly one hole. Defining program contexts and
their type judgements directly is straightforward but tedious and lengthy. Such a definition
would have four kinds of judgements, depending on whether the hole takes a value or
a computation, and whether the whole context is of value or computation type. For our
purposes, we can exploit a folklore simplification, that relies on the following observations.

We only need program contexts X[ ] indirectly, to plug two terms P, Q of the appropriate
type, obtaining pairs 〈X[P],X[Q]〉 in which both components have the same type. Consider
the set of all such pairs:

Ξ[P,Q]B {〈X[P],X[Q]〉|X[ ] is a well-typed enclosing context}

Example 6. Taking PB (not! True) and QB (return False) we want to include:〈
x← not! True;

not! x
,

x← return False;

not! x

〉
〈{not! True},{return False}〉

in the set Ξ[(not! True),(return False)].

To define the contextual equivalence of P and Q, we quantify over all pairs 〈M,N〉 in
Ξ[P,Q] of closed ground returners FG, and require that M and N reduce to the same value.
So, besides pairing M and N, we also need to know their shared type X (and effect E when
they are computations), their free variables and their type, i.e., an environment Γ, and the
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type environment Θ containing the free variables in X and Γ. However, nowhere do we need
to refer to the context X[ ] we plugged them into. As we need to know Θ, Γ, E, and X in
addition to P and Q, instead of defining Ξ[P,Q], we will define Ξ[Θ;Γ `E P,Q : X ].

Moreover, P and Q may be open terms, cause effects, and the enclosing context may
capture some of their free variables. Hence we consider, not only pairs of plugged contexts,
but tuples 〈Θ,Γ,E,M,N,C〉 in which Θ;Γ `E M,N : C are computation terms arising by
plugging a context with P and Q respectively, and similarly tuples 〈Θ,Γ,V,W,A〉 where
Θ;Γ ` V,W : A are value terms. We can then quantify over the tuples in which Θ and Γ are
empty, and C = FG is a ground returner type, as those represent closed, ground contexts.

To present the full definition, we require some additional standard auxiliary definitions.
We say that environment Γ′ extends environment Γ, and write Γ′ ≥ Γ when Γ′ extends Γ as a
partial function from identifiers to value types, i.e., when Dom (Γ)⊆ Dom (Γ′) and for all
(x : A) ∈ Γ, we have (x : A) ∈ Γ′. Consider any two computations of the same type C0 under
the same environments Θ0,Γ0, that is, Θ0;Γ0 `E0 M0 : C0 and Θ0;Γ0 `E0 N0 : C0. Define
Ξ[Θ0;Γ0 `E0 M0,N0 : C0] to be the smallest set with the following closure properties:

• for all Θ′ ⊇Θ0, Θ′ `k Γ′ : Context with Γ′ ≥ Γ0, we have 〈Θ′,Γ′,E0,M0,N0,C0〉 ∈Ξ;
• Ξ is closed under the typing rules, for example:

— for all 〈Θ,Γ,E,M,N,C〉 ∈ Ξ, we also have: 〈Θ,Γ,{M},{N},UEC〉 ∈ Ξ3;
— for all 〈Θ,Γ,V1,W1,A1〉 ,〈Θ,Γ,V2,W2,A2〉 ∈ Ξ, we also have:

〈Θ,Γ,〈V1,V2〉 ,〈W1,W2〉 ,A1×A2〉 ∈ Ξ

and so on.

Example 7. Going back to Example 6, we have that:〈
·, ·, /0,

(
x← not! True;

not! x

)
,

(
x← return False;

not! x

)
,Fbit

〉
〈·, ·,{not! True},{return False},U/0bit〉

are in the set Ξ[·; · ` /0 (not! True),(return False) : Fbit]. For an example involving open
terms and type-variables, take the tuple:

〈
α, ·, /0,

u← True;

s← not! u;

runState! toggle s

 ,


u← True;

s← not! u;

y← not! s;

return (s,y)

 ,F(bit×bit)

〉

from the set:

Ξ[α;s : bit ` /0 (runState! toggle s) ,

(
y← not! s;

return (s,y)

)
: F(bit×bit)]

3Closure under typing rules necessitates including tuples representing value judgements in Ξ as
well as those representing computation judgements.
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In line with the motivation for this definition, we call the components 〈M,N〉 of each
tuple in Ξ[Θ0;Γ0 `E0 M0,N0 : C0] context plugged with M0 and N0. We will use the notation
〈X[M0],X[N0]〉 for such contexts plugged with M0 and N0, but emphasise that we have not
defined contexts X[−] on their own, only plugged contexts.

We now say that Θ0;Γ0 `E0 M0,N0 : C0 are contextually equivalent when, for all:

〈·, ·, /0,X[M0],X[N0],FG〉 ∈ Ξ[Θ0;Γ0 `E0 M0,N0 : C0]

and V , we have:

X[M0] 
∗ return V ⇐⇒ X[N0] 

∗ return V

We similarly define contextual equivalence for values. We write Θ;Γ `E P' Q : X when P
and Q are contextually equivalent.

2.5 Denotational Semantics

MAM has a straightforward set-theoretic denotational semantics. Presenting the semantics
for the core calculus simplifies our later presentation. To do so, we first recall the following
established facts about monads, specialised and concretised to the set-theoretic setting.

A monad is a triple 〈T,return,�=〉 where T assigns to each set X a set TX , return
assigns to each set X a function returnX : X → T X and �= assigns to each function
f : X → TY its Kleisli extension: a function�= f : TX → TY , and the three assignments
satisfy the monad laws, with the convention that�= f is a post-fix operator:

((return x)�= f ) = f (x) (a�=returnx) = a ((a�= f )�=g) = a�=(λx.( f x�=g))

for all f : X → TY , x ∈ X , a ∈ T X , and g : Y → T Z.

Example 8 (see Moggi (1989)). Let R be any set. The R-continuation monad is given by:

KRX B R(RX ) return xB λk : RX .k(x) (m�= f )B λk : RY .m(λx : X .k (( f x) k))

As is well-known, these definitions satisfy the monad laws.

A T -algebra for a monad 〈T,return,�=〉, following Marmolejo & Wood (2010), is
a pair C =

〈
|C|,�=C

〉
where |C| is a set, called the carrier, and �=C assigns to every

function f : X → |C| its Kleisli extension�= f : T X → |C| satisfying:(
(return x)�=C f

)
= f (x),

(
(a�=g)�=C f

)
= a�=C(λy.(g(y)�=C f ))

for all x ∈ X , f : X → |C|, a ∈ TY , and g : Y → T X of the appropriate types.

Example 9. For each set X , the pair FX B 〈T X ,�=〉 forms a T -algebra called the free
T -algebra over X .

Example 10 (Paré’s theorem (1974)). Let 2 := {True,False} be the set of boolean values.
For each set Y , the powerset PY is the carrier of an algebra for the 2-continuation monad.
For every function f : X → PY , and element a ∈ 2(2X ), we assign the subset:

(a�= f )B

{
y ∈ Y

∣∣∣∣∣a
(

λx : X .

{
True y ∈ f (x)

False otherwise

)
= True

}
Then 〈PY ,�=〉 is a K2-algebra.
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Effects
⟦ /0⟧θ B 〈Id, id, id〉

Value types
⟦α⟧θ B θ(α)

⟦1⟧θ B {?}

⟦A1×A2⟧θ B ⟦A1⟧θ × ⟦A2⟧θ
⟦{`i Ai}i⟧θ B

⋃
i {`i}× ⟦Ai⟧θ

⟦UEC⟧θ B
∣∣⟦C⟧θ ∣∣

Computation types
⟦FA⟧θ B F⟦A⟧θ ⟦A→C⟧θ B

〈∣∣⟦C⟧θ ∣∣⟦A⟧θ ,λ f ca.c�=Cλx. f xa
〉

⟦C1 &C2⟧θ B
〈∣∣⟦C1⟧θ

∣∣× ∣∣⟦C2⟧θ
∣∣,λ f c.

〈
c�=C1(π1 ◦ f ),c�=C2(π2 ◦ f )

〉〉
Fig. 7: MAM denotational semantics for types

We parameterise MAM’s semantics by an assignment θ of sets θ(α) to each of the type
variables α in Θ. Given such a type variable assignment θ , we assign to each

• effect: a monad ⟦Θ `k E : Eff⟧
θ

, denoted by
〈

T⟦E⟧θ ,return⟦E⟧θ ,�=⟦E⟧θ
〉

;

• value type: a set ⟦Θ `k A : Val⟧
θ

;
• E-computation type: a T⟦E⟧θ -algebra ⟦Θ `k C : CompE⟧θ ; and
• context: the set ⟦Θ `k Γ : Context⟧

θ
B∏x∈Dom(Γ) ⟦Γ(x)⟧θ .

Fig. 7 defines the standard set-theoretic semantics over the structure of types. The
pure effect denotes the identity monad, which sends each set to itself, and extends a
function by doing nothing. The extended languages in the following sections will assign
more sophisticated monads to other effects. The semantics of type variables uses the type
assignment given as parameter. The unit type always denotes the singleton set. Product
types and variants denote the corresponding set-theoretic operations of cartesian product
and disjoint union, and thus the empty variant type 0B {} denotes the empty set. The type
of thunked E-computations of type C denotes the carrier of the T⟦E⟧θ -algebra ⟦C⟧

θ
. The E-

computation type of A returners denotes the free ⟦E⟧
θ

-algebra. Function and product types
denote well-known algebra structures over the sets of functions and pairs, respectively (Barr
& Wells, 1985, Theorem 4.2).

Terms can have multiple types, for example the function λx.return x has the types
1→ F1 and 0→ F0, and type judgements can have multiple type derivations. We thus
give a Curry-style semantics (Reynolds, 1998) by defining the semantic function for type
judgement derivations rather than for terms. For readability, we often write ⟦P⟧ and omit
the typing derivation for P.

The semantic function for terms is parameterised by an assignment θ of sets to type
variables. It assigns to each well-typed derivation for a:

• value term: a function ⟦Θ;Γ `V : A⟧
θ

: ⟦Γ⟧
θ
→ ⟦A⟧

θ
; and

• E-computation term: a function ⟦Θ;Γ `E M : C⟧
θ

: ⟦Γ⟧
θ
→ |⟦C⟧

θ
|.

Fig. 8 defines the standard set-theoretic semantics over the structure of derivations. Each
definition takes an environment γ ∈ ⟦Γ⟧

θ
.

We begin with values. The semantics of variables looks the appropriate value up in this
environment. The unit value denotes the unique element of the singleton ⟦1⟧. A pair of
values denote the pair of their denotations. A variant constructor denotes the injection of a
value into a disjoint union by pairing the value with the constructor label. Thunking denotes
the element of the carrier the computation denotes.
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Value terms
⟦x⟧θ (γ)B πx(γ)

⟦inj`V⟧θ (γ)B
〈
`,⟦V⟧θ (γ)

〉 ⟦()⟧θ (γ)B ?
⟦{M}⟧θ (γ)B ⟦M⟧θ (γ)

⟦(V1,V2)⟧θ (γ)B
〈⟦V1⟧θ (γ),⟦V2⟧θ (γ)

〉
Computation terms
⟦case V of (x1,x2)→M⟧θ (γ)B ⟦M⟧θ (γ[x1 7→ a1,x2 7→ a2]) where ⟦V⟧θ (γ) = 〈a1,a2〉
⟦case V of {inj`i

xi→Mi}i⟧θ (γ)B ⟦M j⟧θ (γ[x j 7→ a j]) where ⟦V⟧θ (γ) =
〈
` j,a j

〉
⟦V !⟧θ (γ)B ⟦V⟧θ (γ)

⟦return V⟧θ (γ)B return (⟦V⟧θ (γ)) ⟦x←M; N⟧θ (γ)B ⟦M⟧θ (γ)�=λa.⟦N⟧θ (γ[x 7→ a])
⟦λx.M⟧θ (γ)B λa.⟦M⟧θ (γ[x 7→ a]) ⟦M V⟧θ (γ)B (⟦M⟧θ (γ))(⟦V⟧θ (γ))

⟦〈M1,M2〉⟧θ (γ)B
〈⟦M1⟧θ (γ),⟦M2⟧θ (γ)

〉 ⟦prji M⟧θ (γ)B πi(⟦M⟧θ (γ))

Fig. 8: MAM denotational semantics for terms

Moving to computations, each pattern match denotes the function defined by case splitting
on the denotation of the matched value. Forcing a value denotes treating its denotation from
the algebra carrier as a computation. Returning a value denotes applying the unit of the
monad to the denotation of said value. The semantics of sequencing uses the Kleisli extended
function (�=⟦C⟧ f ) : T X → |⟦C⟧| given by the algebra structure. Function abstraction
denotes the set-theoretic function definition, and application denotes set-theoretic evaluation.
Pairing and projection terms denote the set-theoretic pairing and projections.

2.6 Denotational Metatheory

We now develop the basic properties of our denotational semantics. Our goal is to establish
adequacy of the semantics: that well-typed terms under the same assumptions that have
equivalent denotations are observationally equivalent. In our set-theoretic setting, the proof-
recipe is well-established, using the following compositionality and soundness theorems:

Theorem 3 (MAM compositionality). The meaning of a term depends only on the meaning of
its sub-terms: for all MAM contexts 〈X[P],X[Q]〉 plugged with P and Q in Ξ[Θ;Γ `E P,Q : X ],
if ⟦P⟧= ⟦Q⟧ then ⟦X[P]⟧= ⟦X[Q]⟧.
Proof
Straightforward induction on the set Ξ of plugged contexts. �

In order to be able to express our simulation results in Section 6, we adopt a relaxed
variant of simulation: let cong be the smallest relation containing β that is closed under
the term formation constructs, and so contains  as well, and let 'cong be the smallest
congruence relation containing β .

Theorem 4 (MAM soundness). Reduction preserves the semantics: for every pair of well-
typed MAM terms Θ;Γ `E P,Q : X, if P 'cong Q then ⟦P⟧ = ⟦Q⟧. In particular, for every
well-typed closed term of ground type ;` /0 P : FG, if P ∗ return V then ⟦P⟧= ⟦V⟧.
Proof
First check that β preserves the semantics by calculating the denotations of both sides
of each rule. Next, take any β -reduction M  β N, and consider a pair of plugged con-
texts 〈X[M],X[N]〉. Because β preserves the semantics, by appeal to compositionality
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⟦X[M]⟧= ⟦X[N]⟧. Therefore cong is contained in denotational equivalence, which is also
a congruence, hence 'cong implies denotational equivalence. �

It now follows that the semantics is adequate:

Theorem 5 (MAM adequacy). Denotational equivalence implies contextual equivalence:
for all well-typed MAM terms Θ;Γ `E P,Q : X, if ⟦P⟧= ⟦Q⟧ then P' Q.

Recall the convention from page 11 for uniformly treating values and computation. With
this convention, the adequacy theorem is stated for both values and computation terms.
Proof
Consider any two denotationally equivalent terms P and Q, a closed ground context
plugged with them 〈X[P],X[Q]〉, and assume X[P] ∗ return V . By the Compositionality
Theorem 3, X[P] and X[Q] have equal denotations. By the Safety Theorem 1 and Termination
Theorem 2, X[Q]  ∗ return V ′ for some value return V ′. And so by the Soundness
Theorem 4:

⟦return V⟧= ⟦X[P]⟧= ⟦X[Q]⟧= ⟦return V ′⟧
Conclude by verifying that, for ground returners, denotational equality implies syntactic
equality. �

As a consequence, we deduce that our operational semantics is well-behaved: for all
well-typed computations Θ;Γ `E M,M′ : C, if M cong M′ then M 'M′.

3 Effect Handlers: EFF

Algebraic effects and handlers provide a basis for modular programming with user-defined
effects (Bauer & Pretnar, 2015; Hillerström & Lindley, 2016; Kammar et al., 2013; Kiselyov
et al., 2013; Leijen, 2017; Lindley et al., 2017). Programmable effect handlers arose as
part of Plotkin & Power’s denotational theory of computational effects (2002), which
investigates the consequences of using the additional structure in algebraic presentations
of monadic models of effects. This account refines Moggi’s monadic account (1989) by
incorporating into the theory the syntactic constructs that generate effects as algebraic
operations for a monad (Plotkin & Power, 2003): each monad is accompanied by a collection
of syntactic operations, whose interaction is specified by a collection of equations, i.e.,
an algebraic theory, which fully determines the monad. To fit exception handlers into
this account, Plotkin & Pretnar (2009) generalised exception handlers to effect handlers,
handling arbitrary algebraic effects and, following Levy’s CBPV, give a computational
interpretation of algebras for a monad. By allowing the user to declare operations, effects
can be described in a composable manner. Bauer & Pretnar (2015) demonstrate how, by
defining algebras for the free monad with these operations, users can give the abstract
operations different meanings, in similar fashion to Swierstra’s use of free monads (2008).

3.1 Syntax

Fig. 9(a) presents the extension EFF, Kammar et al.’s core calculus of effect handlers (2013).
We assume a countable set of elements of a separate syntactic class, called operation names
and ranged over by op. For each operation name op, EFF’s operation call construct allows
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M,N ::= . . . computations
| op V operation call
| handle M with H handling construct

H ::= handlers
{return x 7→M} return clause
| H ]{oppk 7→ N} operation clause

(a) Syntax extensions to Fig. 2

Frames and contexts F ::= . . . | handle [ ] with H computation frames

Beta reduction
(ret) handle (return V ) with H β Hreturn[V/x]
(op) handle H[op V ] with H β Hop[V/p,{λx.handle H[return x] with H}/k]

(b) Operational semantics extensions to Fig. 3

Fig. 9: EFF

toggle = {x← get (); y← not! x; put y;
return x}

HST = {return x 7→ λ s .return x
get _ k 7→ λ s .k! s s
put s′ k 7→ λ_.k! () s′}

runState = {λc.handle c! with HST }

toggle : UStateFbit

HST : bit State⇒ /0 bit→ Fbit

State = {get : 1→ bit,put : bit→ 1} : Eff

runState : U/0((UStateFbit)→ bit→ Fbit)
(a) terms (b) types

Fig. 10: User-defined boolean state in EFF

the programmer to invoke the effect associated with op by passing it a value as an argument.
Operation names are the only interface to effects the language has. The handling construct
allows the programmer to use a handler to interpret the operation calls of a given returner
computation. Handlers are specified by two kinds of clauses. A return clause describes how
to handle a final return value. An operation clause describes how to invoke an operation
op. The variable p binds the value from the operation call in the body of the operation
clause and is entirely analogous to an exception variable in an exception handler. However,
unlike exceptions, more general effects, like reading from or writing to memory, may
resume. Therefore the body of an operation clause can also access the continuation k at the
operation’s calling point.

Example 11. Fig. 10(a) expresses user-defined boolean state in EFF. The handler HST is
parameterised by the current state. When the computation terminates, we discard this state.
When the program calls get, the handler returns the current state (s) and leaves it unchanged.
When the program calls put, the handler returns the unit value, and updates the state to the
newly supplied value (s′).

3.2 Operational Semantics

Fig. 9(b) presents EFF’s extension to MAM’s operational semantics. Computation frames F
now include the handling construct, whereas the pure frames P do not, allowing a handled
computation to β -reduce under the handler. We add two β -reduction cases for the added
construct. When the returner computation inside a handler is fully evaluated, the return



ZU064-05-FPR jfp18-expressiveness 5 August 2019 13:34

18 Y. Forster, O. Kammar, S. Lindley, and M. Pretnar

Kinds and types
E ::= . . . effects
| {op : A→ B}]E arity assignment
K ::= . . . kinds
|Handler handlers
R ::= A E⇒E ′C handler types

Computation typing
(op : A→ B) ∈ E Θ;Γ `V : A

Θ;Γ `E op V : FB
Θ;Γ `E M : FA Θ;Γ ` H : A E⇒E ′C

Θ;Γ `E ′ handle M with H : C

Effect kinding
Θ `k A : Val
Θ `k B : Val

op /∈ E Θ `k E : Eff
Θ `k {op : A→ B}]E : Eff

Handler kinding Θ `k R : Handler

Θ `k A : Val Θ `k E,E ′ : Eff Θ `k C : CompE ′

Θ `k A E⇒E ′C : Handler

Handler typing Θ;Γ ` H : R (Θ `k Γ : Context,R : Handler)

Θ;Γ,x : A `E M : C [Θ;Γ,p : Ai,k : UE(Bi→C) `E Ni : C]i

Θ;Γ ` {return x 7→M}]{opi p k 7→ Ni}i : A {opi:Ai→Bi}i⇒E C

Fig. 11: EFF’s kinding and typing (extending Fig. 5 and 6)

clause proceeds with the return value. When the returner computation inside a handler
needs to evaluate an operation call, the definition of pure contexts H ensures H is precisely
the continuation of the operation call delimited by the handler. Put differently, it ensures
that the handler in the root of the reduct is the closest handler to the operation call in
the call stack. The operation clause corresponding to the operation called then proceeds
with the supplied parameter and current continuation. Rewrapping the handler around this
continuation ensures that all operation calls invoked in the continuation are handled in the
same way.

Example 12. With this semantics, the user-defined state from Fig. 10 behaves as expected:

runState! toggle True ∗ (handle True with HST ) False 
∗
True

More generally, the handler HST expresses dynamically scoped state (Kammar & Pretnar,
2017). For additional handlers for state and other effects, see Pretnar’s tutorial (2015).

3.3 Type-and-Effect System

Fig. 11 presents EFF’s extension to the kind and type system. The effect annotations in EFF

are functions from finite signatures, assigning to each operation name its parameter type A
and its return type B. We add a new kind for handler types, which describes the kind and
the returner type the handler can handle, and the kind and computation type of the handling
clause.

In the kinding judgement for effects, the types in each operation’s arity assignment
must be value types. The kinding judgement for handlers requires all the types and effects
involved to be well-kinded.

Computation type judgements now include two additional rules for each new computation
construct. An operation call is well-typed when the parameter and return type agree with the
arity assignment in the effect annotation. An instance of the handling construct is well-typed
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when the type and effect of the handled computation and the type-and-effect of the construct
agree with the types and effects in the handler type. The set of handled operations must
strictly agree with the set of operations in the effect annotation. The variable bound to the
return value has the returner type in the handler type. In each operation clause, the bound
parameter variable has the parameter type from the arity assignment for this operation,
and the continuation variable’s input type matches the return type in the operation’s arity
assignment. The overall type of all operation clauses agrees with the computation type of
the handler. The second effect annotation on the handler type matches the effect annotations
on the continuation and the body of the operation and return clauses.

Example 13. Fig. 10(b) types the boolean state terms.

3.4 Operational Metatheory

We follow MAM’s development.

Theorem 6 (EFF safety). Well-typed programs don’t go wrong: for all closed EFF returners
Θ;` /0 M : FA, either M  N for some Θ;` /0 N : FA or else M = return V for some
Θ; `V : A.

The straightforward progress-and-preservation proof is in the Abella formalisation.

Theorem 7 (EFF termination). There are no infinite reduction sequences: for all EFF terms
; ` /0 M : FA, we have M 6 ∞, and there exists a unique ; `V : A such that M ? return V .

The proof follows that of Theorem 2, replacing the monadic lifting with a folklore
monadic lifting for algebraic effects (Kammar, 2014; Kammar & McDermott, 2018).

We define ground types, plugged contexts, ', and 'cong for EFF as in MAM.

3.5 Denotational Semantics

We now give a set-theoretic denotational semantics for EFF. First, recall the following
concepts in universal and categorical algebra. A signature Σ is a pair consisting of a set
|Σ| whose elements we call operation symbols, and a function arityΣ from |Σ| assigning to
each operation symbol ϕ ∈ |Σ| a (possibly infinite) set arity(ϕ). We write (ϕ : A) ∈ Σ when
ϕ ∈ |Σ| and arityΣ(ϕ) = A. Given a signature Σ and a set X , we inductively form the set
TΣX of Σ-terms over X :

t ::= x | ϕ 〈ta〉a∈A (x ∈ X ,(ϕ : A) ∈ Σ)

The assignment TΣ together with the following assignments form a monad

return xB x t�= f B t[ f (x)/x]x∈X ( f : X → TΣY )

The TΣ-algebras
〈
C,�=C

〉
are in bijective correspondence with Σ-algebras on the same

carrier. These are pairs 〈C,⟦−⟧〉 where ⟦−⟧ assigns to each (ϕ : A) ∈ Σ a function ⟦ϕ⟧ :
CA→C from A-ary tuples of C elements to C. The bijection is given by setting�=C f to
be the Σ-homomorphic extension of f : X → |C| to TΣX :(

x�=C f
)
B f (x)

(
ϕ 〈ta〉a∈A�=

C f
)
B ⟦ϕ⟧〈ta�= f 〉a∈A
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Effects
⟦E⟧θ B T{opp:⟦A⟧

θ |(op:A→B)∈E,p∈⟦A⟧
θ}

Handler types
⟦A E⇒E ′C⟧B {⟦E⟧-algebras with carrier |⟦C⟧|}× |⟦C⟧|⟦A⟧

Computation terms
⟦op V⟧θ (γ)B op⟦V⟧

θ
γ 〈return a〉a∈⟦B⟧

θ⟦handle M with H⟧θ (γ)B ⟦M⟧θ (γ)�= f where ⟦H⟧(γ) = 〈D, f : ⟦A⟧→ |⟦C⟧|〉
Handler terms
⟦{return x 7→M}]{opi p k 7→ Ni}i⟧θ (γ)B 〈D, f 〉 where D’s algebra structure and f are given by:

⟦opq⟧D 〈ξa〉a B ⟦Nop⟧θ (γ[q/p,〈ξa〉a/k]) f (a)B ⟦M⟧θ (γ[a/x])

Fig. 12: EFF denotational semantics (extending Fig. 7 and 8)

EFF’s denotational semantics is given by the following extension to MAM’s. Given a type
variable assignment θ , we assign to each handler type a pair ⟦Θ `k R : Handler⟧

θ
= 〈C, f 〉

consisting of an algebra C and a function f into the carrier |C| of this algebra.
Fig. 12 presents how EFF extends MAM’s denotational semantics. Each effect E gives

rise to a signature whose operation symbols are the operation names in E tagged by an
element of the denotation of the corresponding parameter type. This signature gives rise
to the monad E denotes. When E = /0, the induced signature is empty, and gives rise to
the identity monad, and so this semantic function extends MAM’s semantics. Handlers of
E-computations returning A-values using E ′-computations of type C denote a pair. Its first
component is an ⟦E⟧

θ
-algebra structure over the carrier |⟦C⟧

θ
|, which may have nothing

to do with the ⟦E ′⟧
θ

-algebra structure ⟦C⟧
θ

already possesses. The second component is a
function from ⟦A⟧

θ
to the carrier |⟦C⟧

θ
|.

The denotation of op V at effect type E, where op : A→ B ∈ E, is the algebraic term
op⟦V⟧θ (γ) 〈b〉b∈⟦B⟧θ . The denotation of the handling construct uses the Kleisli extension of
the second component in the denotation of the handler. The denotation of a handler term
defines the TΣ-algebras by defining a Σ-algebra for the associated signature Σ. The operation
clause for op allows us to interpret each of the operation symbols associated to op. The
denotation of the return clause gives the second component of the handler.

3.6 Denotational Metatheory

We repeat the recipe for proving adequacy.

Theorem 8 (EFF compositionality). The meaning of a term depends only on the meaning of
its sub-terms: for all pairs of well-typed plugged EFF contexts MP, MQ in Ξ[Θ;Γ `E P,Q : X ],
if ⟦P⟧= ⟦Q⟧ then ⟦MP⟧= ⟦MQ⟧.

The proof follows the same line as MAM’s Theorem 3: by induction on plugged contexts.

Theorem 9 (EFF soundness). Reduction preserves the semantics: for every pair of well-
typed EFF terms Θ;Γ `E P,Q : X, if P 'cong Q then ⟦P⟧ = ⟦Q⟧. In particular, for every
well-typed closed term of ground type ;` /0 P : FG, if P ∗ return V then ⟦P⟧= ⟦V⟧.

Our proof is identical to MAM’s soundness Theorem 4, with two more cases for β . We
combine the previous results, as with MAM:

Theorem 10 (EFF adequacy). Denotational equivalence implies contextual equivalence:
for all well-typed EFF terms Θ;Γ `E P,Q : X, if ⟦P⟧= ⟦Q⟧ then P' Q.
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M,N ::= . . . computations
| µ(N) reflect
| [N]T reify
T ::= monads

where{return x = M;
y�= f = N}

return clause
bind clause

Frames and contexts
F ::= . . . | [[ ]]T computation frames

Beta reduction
for every T = where{λx.Nu;λy.λ f .Nb}:
(ret) [ return V ]T  β Nu[V/x]
(reflection) [ H[µ(N)] ]T  β

Nb[{N}/y,{(λx.[H[return x]]T )}/ f ]
(a) Syntax (extending Fig. 2) (b) Operational semantics (extending Fig. 3)

Fig. 13: MON

Therefore, EFF also has a well-behaved operational semantics: for all well-typed compu-
tations Θ;Γ `E M,M′ : C, if M cong M′ then M 'M′.

4 Monadic Reflection: MON

Moggi (1989) conceptualises computational effects as monads, which he uses to give
a uniform denotational semantics for a wide range of different effects. Spivey (1990)
and Wadler (1990) introduce programming abstractions based on monads, allowing new
effects to be declared and used as if they are native. Examples include parsing (Hutton &
Meijer, 1998), backtracking and constraint solving (Schrijvers et al., 2013), and mechanised
reasoning (Bulwahn et al., 2008; Ziliani et al., 2015). Libraries now exist for monadic
programming even in impure languages such as OCaml4, Scheme5, and C++ (Sinkovics &
Porkoláb, 2013).

Languages that use monads as an abstraction for user-defined effects typically employ
other mechanisms to support them—usually an overloading resolution mechanism, such as
type-classes in Haskell and Coq, and functors/implicits in OCaml. As a consequence, such
accounts do not study monads as an abstraction in their own right, and are intertwined with
implementation details and concepts stemming from the added mechanism. Filinski’s work
on monadic reflection (1994; 1996; 1999; and 2010) provides a more canonical abstraction
for incorporating monads into a programming language. In his calculi, user-defined monads
stand independently.

4.1 Syntax

Fig. 13(a) presents MON’s syntax. The where{return x = Nu;y�= f = Nb} construct binds
x in the term Nu and y and f in Nb. The term Nu describes the unit and the term Nb describes
the Kleisli extension/bind operation. We will explain the choice of the keyword where when
we describe MON’s type system. Using monads, the programmer can write programs as if
the new effect was native to the language. We call the mode of programming when the effect
appears native the opaque view of the effect. In contrast, the transparent mode occurs when
the code can access the implementation of the effect directly in terms of its defined monad.

4http://www.cas.mcmaster.ca/~carette/pa_monad/
5http://okmij.org/ftp/Scheme/monad-in-Scheme.html

http://www.cas.mcmaster.ca/~carette/pa_monad/
http://okmij.org/ftp/Scheme/monad-in-Scheme.html
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toggle = {x← get!; y← not! x; put! y;
return x}

get = { µ(λ s.(s ,s))}
put = {λ s′.µ(λ_.((),s′))}
State = where{

return x= λ s.(x,s);
f�=k = λ s.(x,s′)← f s;

k! x s′}
runState = {λc.[c!]State}

toggle : UStateFbit

get : UStateFbit
put : UState(bit→ F1)

/0≺ instance monad
(α.bit→ F(α×bit))State : Eff

runState : U/0((UStateFbit)→ bit→ F(bit×bit))
(a) terms (b) types

Fig. 14: User-defined boolean state in MON

The reflect construct µ(N) allows the programmer to graft code executing in transparent
mode into a block of code executing in opaque mode. The reify construct [N]

T turns a
block of opaque code into the result obtained by the implementation of the effect.

Example 14. Fig. 14(a) expresses user-defined boolean state in MON using the standard
State monad. To express get and put, we reflect the concrete definition of the corresponding
operations of the state monad. To run a computation, we use reification to get the monadic
representation of the computation as a state transformer, and apply it to the initial state.

4.2 Operational Semantics

Fig. 13(b) describes the extension to the operational semantics. The ret transition uses the
user-defined monadic return to reify a value. To explain the reflection transition, note that
the pure context H captures the continuation at the point of reflection delimited by an
enclosing reification, with an opaque view of the effect T . The reflected computation N
views this effect transparently. By reifying H, we can use the user-defined monadic bind to
graft the two together.

Example 15. With this semantics we have

runState! toggle True ? return (True,False)

as expected.

This example fits with the way in which monadic reflection is often used, but is not
as flexible as the effect handler version because get and put are concrete functions rather
than abstract operations, which means we cannot abstract over how to interpret them. To
write a version of toggle that can be interpreted in different ways is possible using monadic
reflection but requires more sophistication.

4.3 Type-and-Effect System

Fig. 15 presents the natural extension to MAM’s kind and type system for monadic reflection.
Effects are a stack of monads. The empty effect is the identity monad. A monad T can be
layered on top of an existing stack E by

E ≺ instance monad(α.C)where{return x = M;y�= f = N}
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Kinds and types E ::= . . . effects
| E ≺ instance monad(α.C)T layered monad

Effect kinding
Θ,α `k C : CompE `m T : E ≺ instance monad(α.C)T

Θ `k E ≺ instance monad(α.C)T : Eff

Monad typing

Θ `m T : E

Θ,α;x : α `E Nu : C Θ,α,β ;y : UEC, f : UE(α →C[β/α]) `E Nb : C[β/α]

Θ `m where{return x = Nu;y�= f = Nb} :

E ≺ instance monad(α.C)where{return x = Nu;y�= f = Nb}

Computation typing
Θ;Γ `E N : C[A/α]

Θ;Γ `E≺instance monad(α.C)T µ(N) : FA

Θ `m T : E ≺ instance monad(α.C)T
Θ;Γ `E≺instance monad(α.C)T N : FA

Θ;Γ `E [N]T : C[A/α]

Fig. 15: MON’s kinding and typing (extending Fig. 5 and 6)

The intention is that the type constructor C[−/α] has an associated monad structure given
by the bodies of the return M and the bind N, and can use effects from the rest of the stack
E. To be well-kinded, C must be an E-computation, and T must be a well-typed monad:
return should be typed C[A/α] when substituted for some value V : A, and�= typed as a
Kleisli extension operation.

Example 16. Fig. 14(b) types the boolean state terms.

The choice of keywords for monads and their types follows their syntax in Haskell. We
stress that our calculus does not, however, include a type-class mechanism. The type of a
monad contains the return and bind terms, which means that we must check for equality of
terms during type-checking, for example, to ensure that we are sequencing two computations
with compatible effect annotations (for our purposes α-equivalence suffices). The need
to check equality of terms arises from our choice of structural, anonymous, monads—in
Haskell monads are given nominally, and two monads are compatible if they have exactly the
same name. As our monads are structural, the bodies of the return and the bind operations
must be closed, apart from their immediate arguments. If layered monad definitions were
allowed to contain open terms, types in type contexts would contain these open terms
through the effect annotations in thunks, requiring us to support dependently-typed contexts.
The monad abstraction is parametric, so naturally requires the use of type variables, and for
this reason we include type variables in the base calculus MAM. We choose monads to be
structural and closed primarily in order to keep them closer to the other abstractions.

Our calculus differs from Filinski’s (2010) in that our effect definitions are local and
structural, whereas his allow nominal declarations of new effects only at the top level.
Because we do not allow the bodies of the return and the bind to contain open terms, this
distinction between the two calculi is minor. As a consequence, effect definitions in both
calculi are static, and the monadic bindings can be resolved at compile time. Filinski’s
calculus also includes a sophisticated effect-basing mechanism, that allows a computation
to immediately use, via reflection, effects from any layer in the hierarchy below it, whereas
our calculus only allows reflecting effects from the layer immediately below. However,
effect-basing can be simulated in our calculus: the monad stack is statically known, and,
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Effects
⟦E ≺ instance monad(α.C)NuNb⟧θ B 〈T,return,�=〉
where T X B

∣∣∣⟦C⟧(θ [α 7→X ])

∣∣∣ returnX B ⟦Nu⟧(θ [α 7→X ]) : X → T X

�=X ,Y B ⟦Nb⟧(θ [α1 7→X ,α2 7→Y ]) : T X → (X → TY )→ TY
(provided these form a monad)

Monads
⟦Θ `m T : E⟧B ⟦E⟧
Computation terms
⟦[N]T ⟧(γ)B ⟦N⟧(γ)
⟦µ(N) ⟧(γ)B ⟦N⟧(γ)

Fig. 16: MON denotational semantics (extending Fig. 7 and 8)

having access to the type information, we can insert multiple reflection operators and lift
effects from lower levels into the current level.

4.4 Operational Metatheory

We prove MON’s Felleisen-Wright safety in our Abella formalisation:

Theorem 11 (MON safety). Well-typed programs don’t go wrong: for all closed MON

returners Θ;` /0 M : FA, either M  N for some Θ;` /0 N : FA or else M = return V for
some Θ; `V : A.

As with EFF, MON’s ground types are the same as MAM’s. While we can define an
observational equivalence relation in the same way as for MAM and EFF, we will not do
so. Monads as a programming abstraction have a well-known conceptual complication —
user-defined monads must obey the monad laws. These laws are a syntactic counterpart to
the three equations in the definition of (set-theoretic/categorical) monads. The difficulty
involves deciding what equality between such terms means. The natural candidate is
observational equivalence, but as the contexts can themselves define additional monads, it
is not straightforward to do so. Giving an acceptable operational interpretation to the monad
laws is an open problem. We avoid the issue by giving a partial denotational semantics to
MON.

4.5 Denotational Semantics

We extend MAM’s denotational semantics to MON as follows. Given a type variable assign-
ment θ , we assign to each monad type and effect a monad ⟦Θ `m T : E⟧

θ
= ⟦Θ `k E : Eff⟧

θ
,

if the sub-derivations have well-defined denotations, and this data does indeed form a set-
theoretic monad. Consequently, the denotation of any derivation is undefined if at least
one of its sub-derivations has undefined semantics. Moreover, the definition of kinding
judgement denotations now depends on term denotations.

Fig. 16 extends the denotational semantics of MAM to MON. The denotation of the layered
monad construct is only well-defined if the user-defined type constructor, return, and bind,
form a monad. For the denotation of computation terms, recall that

T⟦E≺instance monad(α.C)T⟧X =
∣∣∣⟦C⟧(θ [α 7→X ])

∣∣∣
and therefore, semantically, we can view any computation of type FA subject to the kinding
judgement Θ `k FA : CompE≺instance monad(α.C)T as an E-computation of type C[A/α].

Compare this semantics with Filinski’s original semantics (1994), in which

⟦µ(N)⟧= ⟦N⟧�=id ⟦[N]
T ⟧= returnT ⟦N⟧
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To explain the difference, bear in mind that our calculus is based on CBPV, whereas
Filinski’s original calculus is based on a pure λ -calculus. Specifically, Filinski interprets the
judgement M : A as M : TA. The corresponding judgement for us is M : FA. The semantics
of the pure λ -calculus does not insert monadic returns and binds in the appropriate places,
and so Filinski’s translation inserts them explicitly. In contrast, CBPV inserts returns and
binds (and if the term is pure, they cancel out), and so MON’s semantics need not add them.

4.6 Denotational Metatheory

We define a proper derivation to be a derivation whose semantics is well-defined for all
type variable assignments, and a proper term or type to be a term or type that has a proper
derivation. Thus, a term is proper when all the syntactic monads it contains denote semantic
set-theoretic monads. When dealing with the typed fragment of MON, we restrict our
attention to such proper terms as they reflect the intended meaning of monads. Doing so
allows us to mirror the metatheory of MAM and EFF for proper terms.

We define plugged proper contexts as with MAM and EFF with the additional requirement
that all terms are proper. The definitions of the equivalences ' and 'cong are then identical
to those of MAM and EFF.

Theorem 12 (MON termination). There are no infinite reduction sequences: for all proper
MON terms ; ` /0 M : FA, we have M 6 ∞, and there exists some unique ; `V : A such that
M ? return V .

Our proof uses Lindley & Stark’s >>-lifting (2005).

Theorem 13 (MON compositionality). The semantics depends only on the semantics of sub-
terms: for all pairs of well-typed plugged proper MON contexts MP, MQ in Ξ[Θ;Γ `E P,Q : X ],
if ⟦P⟧= ⟦Q⟧ then ⟦MP⟧= ⟦MQ⟧.

The proof is identical to MAM, with two more cases for β . Similarly, we have:

Theorem 14 (MON soundness). Reduction preserves the semantics: for every pair of well-
typed proper MON terms Θ;Γ `E P,Q : X, if P'cong Q then ⟦P⟧= ⟦Q⟧. In particular, for
every well-typed proper closed term of ground type ;` /0 P : FG, if P ∗ return V then
⟦P⟧= ⟦V⟧.

We combine the previous results, as with MAM and EFF:

Theorem 15 (MON adequacy). Denotational equivalence implies contextual equivalence:
for all well-typed proper MON terms Θ;Γ `E P,Q : X, if ⟦P⟧= ⟦Q⟧ then P' Q.

Therefore, the proper fragment of MON also has a well-behaved operational semantics:
for all well-typed proper computations Θ;Γ `E M,M′ : C, if M cong M′ then M 'M′.

In contrast to EFF the semantics for MON is finite:

Lemma 16 (finite denotation property). For every type variable assignment θ = 〈Xα〉α∈Θ

of finite sets, every proper MON value type Θ `k A : and computation type Θ `k C : denote
finite sets ⟦A⟧

θ
and ⟦C⟧

θ
.
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M,N ::= . . . computations
| S0k.M shift-0
| 〈M|x.N〉 reset

Frames and contexts
F ::= . . . | 〈[ ]|x.N〉 computation frames

Beta reduction
(ret) 〈(return V )|x.M〉 β M[V/x]
(capture) 〈H[S0k.M]|x.N〉 β

M[λy.〈H[return y]|x.N〉/k]
(a) Syntax (extending Fig. 2) (b) Operational semantics (extending Fig. 3)

Fig. 17: DEL

EFF does not possess the finite denotation property. For example, for the effect E B
{tick : 1→ 1}, we have infinitely many different E-returner denotations:

|⟦`k F1 : CompE⟧θ |= {tickn ⟦()⟧
θ
|n ∈ N}

Our inexpressivity proof (Theorem 27) will use the facts that: (a) all of these returners are
definable in EFF, and (b) they are observationally distinguishable.

5 Delimited Control: DEL

Control operators have a long history of expressing both user-defined effects (Danvy, 2006)
and algorithms with sophisticated control flow (Felleisen et al., 1988) such as tree-fringe
comparison, and other control mechanisms, such as coroutines. The delimited operators
enjoy an improved metatheory in comparison with their undelimited counterparts (Felleisen
et al., 1988). The operator closest in spirit to handlers is S0, pronounced “shift zero”. It
was introduced by Danvy & Filinski (1990) as part of a systematic study of continuation-
passing-style conversion.

5.1 Syntax

Fig. 17(a) presents the extension DEL. The construct S0k.M, which we will call “shift”,
captures the current continuation and binds it to k, and replaces it with M. The construct
〈M|x.N〉, which we will call “reset”, delimits any continuations captured by shift inside M.
Once M runs its course and returns a value, this value is bound to x and N executes. For
delimited control cognoscenti this construct is sometimes called “dollar”, and can macro
express the entire CPS hierarchy (Kiselyov & Shan, 2007; Materzok & Biernacki, 2012).

Example 17. Fig. 18(a) expresses user-defined boolean state in DEL (Danvy, 2006, Sec-
tion 1.4). The code assumes the environment outside the closest reset will apply it to the
currently stored state. By shifting and abstracting over this state, get and put can access
this state and return the appropriate result to the continuation. When running a stateful
computation, we discard the state when we reach the final return value.

5.2 Operational Semantics

The extension to the operational semantics in Fig. 17(b) reflects our informal description.
The ret rule states that once the delimited computation returns a value, this value is
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toggle = {x← get!; y← not! x; put! y;
return x}

get = {S0k.λ s.k! s s}
put = {λ s′.S0k.λ_.k! () s′}
runState = {λc.〈c!|x.λ s.x〉}

toggle : UStateFbit

get : UStateFbit
put : UState(bit→ F1)
runState : U/0((UStateFbit)→ bit→ Fbit)
State = /0,bit→ Fbit : Eff

(a) terms (b) types

Fig. 18: User-defined boolean state in DEL

Kinds and types
E ::= . . . effects
| E,C enclosing continuation type

Effect kinding
Θ `k E : Eff Θ `k C : CompE

Θ `k E,C : Eff

Computation typing

Θ;Γ,k : UE(A→C) `E M : C

Θ;Γ `E,C S0k.M : FA

Θ;Γ `E,C M : FA Θ;Γ,x : A `E N : C

Θ;Γ `E 〈M|x.N〉 : C

Fig. 19: DEL’s kinding and typing (extending Fig. 5 and 6)

substituted in the remainder of the reset computation. For the capture rule, the definition
of pure contexts guarantees that in the reduct 〈H[S0k.M]|x.N〉 there are no intervening
resets in H, and as a consequence H is the delimited continuation of the evaluated shift.
After the reduction takes place, the continuation is re-wrapped with the reset, while the
body of the shift has access to the enclosing continuation. If we were to, instead, not
re-wrap the continuation with a reset, we would obtain the control/prompt-zero operators
(cf. Shan’s (2007) and Kiselyov et al.’s (2005) analyses of macro expressivity relationships
between these two, and other, variations on untyped delimited control).

Example 18. We have:
runState! toggle True ∗ 〈True|x.λ s.x〉 False ∗ return True.

5.3 Type-and-Effect System

Fig. 19 presents the natural extension to MAM’s kind and type system for delimited control.
It is based on Danvy and Filinski’s description (Danvy & Filinski, 1989); they were the first
to propose a type system for delimited control. Effects are now a stack of computation types,
with the empty effect standing for the empty stack. The top of this stack is the return type of
the currently delimited continuation. Thus, as Fig. 19 presents, a shift pops the top-most
type off this stack and uses it to type the current continuation, and a reset pushes the type of
the delimited return typed onto it.

Example 19. Fig. 18(b) types the boolean state terms.

In this type system, the return type of the continuation remains fixed inside every reset.
Existing work on type systems for delimited control (Kiselyov & Shan (2007) provide a
substantial list of references) focuses on type systems that allow answer-type modification,
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as these can express typed printf and type-state computation (as in Asai’s analysis (2009)).
We exclude answer-type modification to keep the fundamental account clearer and simpler:
the type system with answer-type modification is further removed from the well-known
abstractions for effect-handlers and monadic reflection. We conjecture that the relative
expressiveness of delimited control does not change even with answer-type modification,
once we add analogous capabilities to effect handlers (Brady, 2013; Kiselyov, 2016) and
monadic reflection (Atkey, 2009).

5.4 Operational Metatheory

Our Abella formalisation establishes:

Theorem 17 (DEL safety). Well-typed programs don’t go wrong: for all closed DEL

returners Θ;` /0 M : FG, either M N for some Θ;` /0 N : FG or else M = return V for
some Θ; `V : G.

In the next section, we extend DEL’s metatheory using the translation from DEL to MON.
We define DEL’s ground types, plugged contexts, ', and 'cong as in MAM.

6 Macro Translations

Felleisen (1991) argues that the usual notions of computability and complexity reduction do
not capture the expressiveness of general-purpose programming languages. The Church-
Turing thesis and its extensions assert that any reasonably expressive model of computation
can be efficiently reduced to any other reasonably expressive model of computation.
Thus the notion of a polynomial-time reduction with a Turing-machine is too crude to
differentiate expressive power of two general-purpose programming languages. As an
alternative, Felleisen introduces macro translation: a local reduction of a language extension,
in the sense that it is homomorphic with respect to the syntactic constructs, and conservative,
in the sense that it does not change the core language. We adapt this concept to local
translations between conservative extensions of a shared core.

Translation Notation We define translations S→T from each source calculus S to each
target calculus T. By default we assume untyped translations, writing EFF, MON, and DEL

in translations that disregard typeability. In typeability preserving translations, which must
also respect the monad laws where MON is concerned, we explicitly write TYPED EFF,
TYPED MON, and TYPED DEL. We allow translations to be hygienic and introduce fresh
binding occurrences. We write M 7→ M for the translation at hand. We include only the
non-core cases in the definition of each translation.

Out of the six possible untyped macro-translations, the ideas behind the following four
already appear in the literature: DEL→MON (Wadler, 1994), MON→DEL (Filinski, 1994),
DEL→EFF (Bauer & Pretnar, 2015), and EFF→MON (Kammar et al., 2013). The Abella
formalisation contains the proofs of the simulation results for each of the six translations.
Three translations formally simulate the source calculus by the target calculus: MON→DEL,
DEL→EFF, and MON→EFF. The other translations, DEL→MON, EFF→DEL, and EFF→MON,
introduce suspended redexes during reduction that invalidate simulation on the nose.
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For the translations that introduce suspended redexes, we use a relaxed variant of
simulation, namely the relations  cong, which are the smallest relations containing  
that are closed under the term formation constructs. We say that a translation M 7→M is
a simulation up to congruence if for every reduction M N in the source calculus we
have M +

cong N in the target calculus. In fact, the suspended redexes always β -reduce by
substituting a variable, i.e., {λx.M}! x +

cong λx.M, thus only performing simple rewiring.

6.1 Delimited Continuations as Monadic Reflection (DEL→MON)

We adapt Wadler’s analysis of delimited control (1994), using the continuation monad (Moggi,
1989):

Lemma 18. For all Θ `k E : Eff, Θ `k C : CompE , we have the following proper monad
Cont:

Θ `k E ≺ instance monad(α.UE (α →C)→C)where{
return x = λc.c! x;
m�= f = λc.m! {λy. f ! y c}
} : Eff

Using Cont we define the macro translation DEL→MON as follows:

S0k.M := µ(λk.M) 〈M|x.N〉 := [M]
Cont {λx.N}

Shift is interpreted as reflection and reset as reification in the continuation monad.

Theorem 19 (DEL→MON correctness). MON simulates DEL up to congruence:

M N =⇒ M +
cong N

The only suspended redex arises in simulating the reflection rule, where we substitute
a continuation into the bind of the continuation monad yielding a term of the form
{λy.{λy.M} y c} which we must reduce to {λy.M c}.

DEL→MON extends to a macro translation at the type level:

E,CB E ≺ instance monad(α.UE (α →C)→C)Cont

Theorem 20 (DEL→MON preserves typeability). Every well-typed DEL phrase Θ;Γ `E P :
X translates into a proper well-typed MON phrase: Θ;Γ `E P : X.

We use this result to extend the metatheory of DEL:

Corollary 21 (DEL termination). All well-typed closed ground returners in DEL must
reduce to a unique normal form: if ; ` /0 M : FG then there exists V such that ; `V : G and
M ? return V .

6.2 Monadic Reflection as Delimited Continuations (MON→DEL)

We define the macro translation MON→DEL as follows:
µ(M) := S0k.λb.b! ({M},{λx.k! x b})

[M]
where{return x=Nu;y�= f=Nb} :=

〈
M
∣∣x.λb.Nu

〉
{λ(y, f).Nb}
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Reflection is interpreted by capturing the current continuation and abstracting over the bind
operator which is then invoked with the reflected computation and a function that wraps the
continuation in order to ensure it uses the same bind operator. Reification is interpreted as
an application of a reset. The continuation of the reset contains the unit of the monad. We
apply this reset to the bind of the monad.

Theorem 22 (MON→DEL correctness). DEL simulates MON up to congruence:

M N =⇒ M +
cong N

This translation does not preserve typeability because the bind operator can be used at
different types. We conjecture that a) any other macro translation will suffer from the same
issue and b) adding a form of answer-type polymorphism along the lines of Piróg et al.
(2019) is sufficient to adapt this translation to one that does preserve typeability.

Filinski’s translation from monadic reflection to delimited continuations (1994) does
preserve typeability, but it is a global translation. It is much like our translation except each
instance of bind is inlined (hence bind need not be polymorphic).

6.2.1 Alternative Translation with Nested Delimited Continuations

An alternative to MON→DEL is to use two nested shifts for reflection and two nested resets
for reification:

µ(M) := S0k.S0b.b! ({M},{λx.〈k! x|(y, f).b!(y, f)〉})

[M]
where{return x=Nu;y�= f=Nb} :=

〈〈
M
∣∣x.S0b.Nu

〉∣∣(y, f).Nb
〉

In the translation of reflection, the reset inside the wrapped continuation ensures that any
further reflections in the continuation are interpreted appropriately: the two shifts have
popped unit and bind off the stack; the reset first pushes bind back on the stack and then
invoking k implicitly pushes unit back on the stack. In the translation of reification, the shift
guarding the unit garbage collects bind once it is no longer needed.

(There is an error in our earlier paper (Forster et al., 2017): 〈k! x|(y, f).b!(y, f)〉 was
〈k! x|z.z! b〉.)

6.3 Delimited Continuations as Effect Handlers (DEL→EFF)

We define DEL→EFF as follows:
S0k.N B shift0 {λk.N}

〈M|x.N〉B handle M with {return x 7→ N}]{shift0 pk 7→ p! k}

Shift is interpreted as an operation and reset is interpreted as a straightforward handler.

Theorem 23 (DEL→EFF correctness). EFF simulates DEL on the nose:

M N =⇒ M + N

This translation does not preserve typeability because inside a single reset shifts can be
used at different types. We conjecture that a) any other macro translation will suffer from the
same issue and b) adding polymorphic operations (Kammar et al., 2013) to EFF is sufficient
to ensure this translation does preserve typeability.
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One can adapt our translation to a global translation in which every static instance
of a shift is interpreted as a separate operation, thus avoiding the need for polymorphic
operations.

6.4 Effect Handlers as Delimited Continuations (EFF→DEL)

We define EFF→DEL as follows:
op V B S0k.λh.h!(injop (V ,{λy.k! y h})) handle M with H B

〈
M
∣∣Hret〉 {Hops}

(
{return x 7→ Nret}
] {opi pk 7→ Ni}i

)ret

B x.λh.Nret

(
{return x 7→ Nret}
] {opi pk 7→ Ni}i

)ops

B
λy.case y of {

(injopi
(p,k)→ Ni)i

}

Operation invocation is interpreted by capturing the current continuation and abstracting
over a dispatcher which is passed an encoding of the operation. The encoded operation is
an injection whose label is the name of the operation containing a pair of the operation
parameter and a wrapped version of the captured continuation, which ensures the same
dispatcher is threaded through the continuation.

Handling is interpreted as an application of a reset whose continuation contains the return
clause. The reset is applied to a dispatcher function that encodes the operation clauses.

Theorem 24 (EFF→DEL correctness). DEL simulates EFF up to congruence:

M N =⇒ M +
cong N

The EFF→DEL translation is simpler than Kammar et al.’s which uses a global higher-
order memory cell storing the handler stack (2013).

This translation does not preserve typeability because the interpretation of operations
needs to be polymorphic in the return type of the dispatcher over which it abstracts. We
conjecture that a) any other macro translation will suffer from the same issue and b) adding
a form of answer-type polymorphism along the lines of Piróg et al. (2019) is sufficient to
adapt this translation to one that does preserve typeability.

6.4.1 Alternative Translation with Nested Delimited Continuations

Similarly to the MON→DEL translation there is an alternative to EFF→DEL which uses two
nested shifts for operations and two nested resets for handlers:

op V B S0k.S0h.h!(injop (V ,{λx.〈k! x|y.h! y〉})) handle M with H B 〈〈M|Hret〉|Hops〉

(
{return x 7→ Nret}
] {opi pk 7→ Ni}i

)ret

B x.S0h.Nret(
{return x 7→ Nret}
] {opi pk 7→ Ni}i

)ops

B
y.case y of {

(injop1
(p,k)→ Ni)}

(There is an error in our earlier paper (Forster et al., 2017): 〈k! x|y.h! y〉 was 〈k! x|y.y! h〉.)
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6.5 Monadic Reflection as Effect Handlers (MON→EFF)

We simulate reflection with an operation and reification with a handler. Formally, for every
anonymous monad T given by where{return x = Nu;y�= f = Nb} we define MON→EFF

as follows:

µ(N)B re�ect {N} [M]
T B handle M with T

T B {return x 7→ Nu}]{re�ecty f 7→ Nb}

Reflection is interpreted as a reflect operation and reification as a handler with the unit of
the monad as a handler and the bind of the handler as the implementation of the reflect
operation.

Theorem 25 (MON→EFF correctness). EFF simulates MON on the nose:

M N =⇒ M + N

MON→EFF does not preserve typeability. For instance, consider the following computa-
tion of type Fbit using the environment monad Reader below it:

[b← µ({λ(b, f).b});
f ← µ({λ(b, f). f});
f ! b]Reader (injtrue (),{λb.return b})

`k /0≺ instance monad(α.bit×U/0 (bit→ F bit)→ Fα)

where{return x = λe.return x;
m�= f = λe.x← m! e; f ! x e} : Eff

Its translation into EFF is not typeable: reflection can appear at any type, whereas a single
operation is monomorphic. We conjecture that a) this observation can be used to prove
that no macro translation TYPED MON→TYPED EFF exists and that b) adding polymorphic
operations (Kammar et al., 2013) to EFF is sufficient for typing this translation.

6.6 Effect Handlers as Monadic Reflection (EFF→MON)

We define EFF→MON as follows:

op V B µ(λk.λh.h!(injop (V ,{λy.k! y h}))) handle M with H B [M]Cont {Hret} {Hops}

(
{return x 7→ Nret}
] {opi pk 7→ Ni}i

)ret

B λx.λh.Nret

(
{return x 7→ Nret}
] {opi pk 7→ Ni}i

)ops

B
λy.case y of {

(injopi
(p,k)→ Ni)i

}

The translation is much like EFF→DEL, using the continuation monad in place of first class
continuations.

Operation invocation is interpreted by using reflection to capture the current continuation
and abstracting over a dispatcher which is passed an encoding of the operation. The encoded
operation is an injection whose label is the name of the operation containing a pair of the
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operation parameter and a wrapped version of the captured continuation, which ensures the
same dispatcher is threaded through the continuation.

Handling is interpreted as an application of a reified continuation monad computation to
the return clause and a dispatcher function that encodes the operation clauses.

Theorem 26 (EFF→MON correctness). MON simulates EFF up to congruence:

M N =⇒ M +
cong N

This translation does not preserve typeability for the same reason as the EFF→DEL

translations: the interpretation of operations needs to be polymorphic in the return type of
the dispatcher over which it abstracts. We conjecture that a) any other macro translation will
suffer from the same issue and b) adding polymorphism to the base calculus is sufficient to
adapt this translation to one that does preserve typeability.

6.6.1 Alternative Translation Using a Free Monad

An alternative to interpreting effect handlers using a continuation monad is to use a free
monad:

op V B µ(return (injop (V ,λx.return x))) handle M with H B H? [M]H†

(
{return x 7→ Nret}
] {opi pk 7→ Ni}i

)†

B

where {
return x = return (injret x);
y�= f = case y of {

injret x→ k! x
(injopi

(p,k)→ return (injopi
(p,λx.k! x�= f)))i

}
}

(
{return x 7→ Nret}
] {opi pk 7→ Ni}i

)?

B

h = λy.case y of {
injret x→ Nret

(injopi
(p,k′)→ k← return {λx.y← k′! x; h! y}; Ni)i

}

Both the bind operation for the free monad H† and the function h that interprets the free
monad H? are recursive. Given that we are in an untyped setting we can straightforwardly
implement the recursion using a suitable variation of the Y combinator. This translation
does not extend to the typed calculi as they do not support recursion. Nevertheless, we
conjecture that it can be adapted to a typed translation if we extend our base calculus to
include inductive data types, as the recursive functions are structurally recursive.

6.7 Nonexistence Results

Theorem 27. The following macro translations do not exist:

• TYPED EFF→TYPED MON satisfying: M N =⇒ M ' N.
• TYPED EFF→TYPED DEL satisfying: M N =⇒ M ' N.
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Proof
Our proof of the first part hinges on the finite denotation property (Lemma 16). Assume
to the contrary that there was such a translation. Consider a single effect operation symbol
tick : 1→ 1 and set tick0 B return (), and tickn+1 B tick(); tickn. All these terms have
the same type, and by the homomorphic property of the hypothesised translation, their
translations all have the same type. By the finite denotation property two of them are
observationally equivalent and by virtue of a macro translation the two source terms are
observationally equivalent in EFF. But every distinct pair of tickn terms is observationally
distinguishable using an appropriate handler. See Forster’s thesis (2016) for the full details.
The second part follows from Theorem 20. �

Regarding the remaining four possibilities, we have seen that there is a
typeability-preserving macro translation TYPED DEL→TYPED MON (Theorem 20), but we
conjecture that there are no typeability-preserving translations TYPED MON→TYPED DEL,
TYPED DEL→TYPED EFF, or TYPED MON→TYPED EFF.

Returning to the untyped translations, we emphasise that though macro expressivity
captures some of the intuitive differences in expressiveness of programming language
features, it leaves something to be desired, as not all macro translations have equal status.

A concrete feature that distinguishes the translations into EFF is that they satisfy simulation
on the nose, whereas all of the other translations only satisfy simulation up to congruence.
In principle, this could have practical consequences as administrative reductions may be
deferred and slow down computation. That said, we do not have concrete evidence that this
is a problem in practice.

Inspecting the translations between EFF and the other calculi, there is a clear sense in
which the translations into EFF are “simpler” than those from EFF. This intuition extends
to the polymorphically typed translations of Piróg et al. (2019). Their translation from
delimited continuations into effect handlers relies only on a natural notion of polymorphic
operations, whilst the converse translation relies on a bespoke variant of answer-type-
polymorphism. In our setting, whilst the translations from DEL and MON into EFF are direct,
those from EFF into MON and DEL have the flavour of a double-negation translation using
the continuation monad, or a deep-embedding using a free monad.

7 Abella Experience Report

We have mechanised the proofs of safety (Theorems 1, 6, 11, 17) for each calculus and the
correctness theorems for all translations (Theorems 19, 20, 22, 23, 24, 25, 26) in the Abella
proof assistant (Gacek, 2008). Additionally, we have mechanised the proofs of correctness
for the two alternative translations described in Sections 6.2.1 and 6.4.1.

We already had positive prior experience (Bauer & Pretnar, 2014; Kammar & Pretnar,
2017) with the concise higher-order abstract syntax (HOAS) encoding in Twelf, and it made
sense to follow the same approach in this development, especially with the large number
of bindings in the programming abstractions we considered. Fig. 20 confirms this, as even
with all the repetition, both the specification and the proofs are reasonable in size. We chose
Abella because in addition to HOAS, it provides a simple tactic language for interactively
building proofs and allows one to write propositions in terms of a first-order logic with
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Specification
automatically generated (template LoC)

calculi 4×223 892
translations 6×74 444

manual
calculi 224
translations 292

sub-total 1,852

Proofs
lemmas 465
safety 351
correctness of untyped translations 1,392
type preservation for DEL→MON 544

sub-total 2,752
total 4,604

Fig. 20: Abella formalisation size in lines-of-code (LoC)

equality. This is in contrast to Twelf where proof terms are constructed manually, while
theorems amount to the existence of a total relation between input and output types of
∀∃-statements.

In general, the user experience with Abella was pleasant. We managed to discover a bug
in the logic programming engine6, but that was quickly resolved. On the top of our wish
list for a future release of Abella is support for tactic automation, as a significant portion of
our proofs amounts to routine proofs by induction. In fact, a lot of proofs would already
be much shorter with a construct that attempts to use the same tactic for all subgoals (as in
Coq). A smaller improvement would be an abbreviation mechanism similar to %abbrev in
Twelf, which would allow us to transparently annotate the considerably large translations of
effect constructs with a single term.

Avoiding boilerplate when formalising multiple calculi. As we are comparing different
calculi, our specification uses separate syntactic sorts for each calculus. Each calculus
has a significant number of distinct sorts: effects, value types, computation types, values,
computations, and contexts. In addition, variants require auxiliary sorts of computation
and value type lists. Finally, we need type kinding judgements for each type sort, typing
judgements for each term sort, and translation relations for each sort and each pair of
calculi. The calculi share most constructs and judgements, while macro translations are
mostly trivial, so a lot of the listed specification is boilerplate. In order to reduce it, we used
two mechanisms. First, a simple Python script that instantiates a template for a calculus
and a translation definition. Next, instead of modifying the generated files, we used the
specification accumulation mechanism of Abella, which allowed us to provide the additional
parts of the specification in a separate file that imports the automatically generated one. In
this way, the generated files can be replaced without a problem if the base calculus changes.

6https://github.com/abella-prover/abella/issues/107

https://github.com/abella-prover/abella/issues/107
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The extension mechanism works well. It allows one to import multiple such signatures,
while Abella keeps track that they all agree on the common definitions.

Encoding of translations. Abella has no function definitions, and we formalise type and
term translations as relations. Thus, we formalise statements like M N =⇒ M +

cong N
as:

∀M,N,M. (M N∧M→trans M) =⇒ ∃N.(N→trans N∧M +
cong N)

In a proof assistant that incorporates inductive types, such as Coq or Agda, the existence of
translations could be proven by induction on the structure of M. In Abella, which provides
induction only over relations, one needs to define an define auxiliary predicate on terms
that traces their structure (Baelde et al., 2014, page 21). In our case, the existence of N
could also be proven by induction on the relation M N, so we did not have to modify the
theorem statement.

Well-kindedness of types. The most significant extension to our previous mechanisa-
tion (Forster et al., 2017) is the proof of Theorem 20, i.e. a well-typed phrase Θ;Γ `E P : X
in DEL implies Θ;Γ `E P : X in MON. Again, one can show that P exists by induction on the
typing derivation, while for types, effects and environments, we again needed an inductive
relation, amounting to the well-kindedness relation, which we now include. To minimise the
overhead, this was done by splitting each typing judgement into two: one stating the usual
conditions of the typing rule, and the second one requiring the first and well-kindedness of
all types involved. This change did break all of our previous safety proofs, though with the
aid of a good text editor, the rewriting of proofs was straightforward. In a proof assistant
with inductively defined types, we could get away with induction on their structure, but this
would swiftly break when moving to a polymorphic type-system, where well-kindedness is
not trivial.

Environment translations. Following the HOAS approach, the value environments are
encoded in Abella by assuming typing judgements for fresh value terms. For example,
Θ;x : A `E M : C is given by stating that for any fresh value x, the computation M x (recall
that in HOAS, a term with a free variable is represented by a term abstraction) has the type
C under the assumption that x has type A. The type environment Θ is encoded implicitly
by assuming appropriate fresh types. Theorems about such judgements are given through
an auxiliary predicate, which limits the form of possible assumptions (Baelde et al., 2014,
page 40).

For translation of environments, we require a fresh value x and three judgements with
synchronised assumptions (Baelde et al., 2014, page 75): first, we require that M x has
type C under the assumption x : A as before; next, we similarly require that M x has type C
under the assumption x : A; finally, we require that M x→trans M x under the assumption
x→trans x. (Through subordination, Abella can infer that M cannot depend on x as they
belong to distinct syntactic sorts.) Since fresh values in Abella are represented with nominal
constants, there are infinitely many fresh values x that x can be translated to. This breaks the
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obvious inductive proof of the Theorem 20, which in terms of relations is written as:

∀Γ,E,P,X . (Γ `E P : X) =⇒
∃Γ,E,P,X . (Γ→trans Γ)∧ (E→trans E)∧ (P→trans P)∧ (X →trans X)∧ (Γ `E P : X)

The reason is that each inductive hypothesis Θ;Γi `Ei Pi : Xi gives us a different translation Γi.
A workaround is to first prove

∀Γ,E,P,X ,Γ. (Γ `E P : X)∧ (Γ→trans Γ) =⇒
∃E,P,X . (E→trans E)∧ (P→trans P)∧ (X →trans X)∧ (Γ `E P : X)

and then show separately that each well-kinded environment Γ has a suitable translation Γ,
and appealing to well-kindedness.

8 Conclusion and Further Work

We have given a uniform family of formal calculi expressing the common abstractions for
user-defined effects: effect handlers (EFF), monadic reflection (MON), and delimited control
(DEL), together with their natural type-and-effect systems. We have used these calculi
to formally analyse the relative expressive power of these abstractions. Effect handlers,
monadic reflection, and delimited control have equivalent expressivity when types are not
taken into consideration. However, neither monadic reflection nor delimited control can
macro-express effect handlers whilst preserving typeability. We have formalised the more
syntactic aspects of our work in the Abella proof assistant, and have used set-theoretic
denotational semantics to establish inexpressivity results.

Our work has already born unexpected if not entirely unsurprising fruit. By composing
our translation from effect handlers to delimited continuations with a CPS translation
for delimited continuations Hillerström et al. (2017) derived a CPS translation for effect
handlers, which they then used as the basis for an implementation.

Further work abounds. We would like to extend each type system until each translation
preserves typeability. We conjecture that adding polymorphic operations to EFF, data type
polymorphism to MON, and a suitable form of answer-type polymorphism to DEL would
enable typed macro-transformations between each pair of calculi. We have reason to believe
this should pan out as Piróg et al. (2019) have recently shown such a correspondence for
call-by-value analogues of EFF and DEL extended respectively with polymorphic operations
and a novel form of answer-type polymorphism. Their calculi also include other features
including a row-polymorphic effect type system in the style of Leijen (2017), supporting
duplicate effect labels and effect subtyping.

We are also interested in analysing global translations between these abstractions. In
particular, whereas MON and DEL allow reflection/shifts to appear anywhere inside a piece
of code, in practice, library designers define a fixed set of primitives using reflection/shifts
and only expose those primitives to users. This observation suggests calculi in which each
reify/reset is accompanied by declarations of this fixed set of primitives. We conjecture that
MON and DEL can be simulated on the nose via a global translation into the corresponding
restricted calculus, and that the restricted calculi can be macro translated into EFF whilst
preserving typeability. Such two-stage translations would give a deeper reason why so
many examples typically used for monadic reflection and delimited control can be directly
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recast using effect handlers. Other global pre-processing may also eliminate administrative
reductions from our translations and establish simulation on the nose.

We hope the basic calculi we have analysed will form a foundation for systematic further
investigation. Supporting answer-type modification (Asai, 2009; Kobori et al., 2016) can
inform more expressive type system design for effect handlers and monadic reflection, and
account for type-state (Atkey, 2009) and session types (Kiselyov, 2016). In practice, effect
systems are often extended with sub-effecting or effect polymorphism (Bauer & Pretnar,
2014; Hillerström & Lindley, 2016; Leijen, 2017; Lindley et al., 2017; Lucassen & Gifford,
1988; Pretnar, 2014; Saleh et al., 2018). To these we add effect forwarding (Kammar et al.,
2013) and rebasing (Filinski, 2010).

Recent work (Brachthäuser et al., 2019; Inostroza & van der Storm, 2018; Zhang &
Myers, 2019) explores alternative formulations of effect handlers with close connections to
object-oriented programming models. We would like to apply our methodology to study
the relative expressiveness of these alternative formulations. Inspired by the suggestion of
Bračevac et al. (2018) to associate effect handlers with implicits, Brachthauser & Leijen
(2019) have recently proposed another basis for user-defined effects. They extend a calculus
of dynamic binding with implicit functions and implicit control. Following our lead, they
give macro translations back and forth between effect handlers and their calculus of dynamic
binding.

We have taken the perspective of a programming language designer deciding which
programming abstraction to select for expressing user-defined effects. In contrast, Schrijvers
et al. (2019) take the perspective of a library designer for a specific programming language,
Haskell, and compare the abstractions provided by libraries based on monads with those
provided by effect handlers. They argue that both libraries converge on the same interface
for user-defined effects via Haskell’s type-class mechanism.

Relative expressiveness results are subtle, and the potentially negative results that are hard
to establish make them a risky line of research. We view denotational models as providing a
fruitful method for establishing such inexpressivity results. It would be interesting to connect
our work with that of Laird (2017, 2002, 2013), who analyses the macro-expressiveness
of a hierarchy of combinations of control operators and exceptions using game semantics,
and in particular uses such denotational techniques to show certain combinations cannot
macro express other combinations. We would like to apply similar techniques to compare
the expressive power of local effects such as ML-style reference cells with effect handlers.
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