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Parallel hardware has the potential for accelerating awide class of algorithms. However, expert programming
skills are required to achieve maximum performance. Typical parallel architectures expose low-level hardware
details through imperative programming interfaces where programmers explicitly encode device-specific
optimisation strategies. This inevitably results in non-performance-portable programs that deliver suboptimal
performance on other devices.

Functional programming models have recently seen a renaissance in the systems community as they
offer solutions for tackling the performance-portability challenge. Recent work has demonstrated how to
automatically choose high-performance parallelisation strategies for a wide range of hardware architectures
encoded in a functional representation. However, the translation of such functional representations to the
imperative program demanded by the hardware interface is typically performed ad hoc with no correctness
guarantees and no guarantee to preserve the intended parallelisation strategy.

We introduce Data Parallel Idealised Algol (DPIA), a parallel dialect of Reynolds’ Idealised Algol, which
supports both high-level functional code and low-level imperative code. We define and prove correct a transla-
tion from parallel high-level functional code to low-level data-race-free imperative code. Our performance
results show that the translation yields performance on a par with hand-written low-level code.

CCS Concepts: • Software and its engineering→ Parallel programming languages; Functional languages;
Imperative languages; Multiparadigm languages;
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1 INTRODUCTION
Modern parallel hardware promises unprecedented performance, but only for those who can
program it correctly. A single program must simultaneously describe the functional process for
generating the result, as well as how to exploit the hardware’s resources to deliver it. These
programs are commonly written in imperative languages like OpenMP, OpenCL, and CUDA, which
are difficult to reason about, and difficult to refactor to try different parallelisation strategies.

To mitigate this problem, there has been an old, but now accelerating, trend towards functional
languages for parallel computation. The programmer specifies the program they want in a high
level language, using higher order functions and compositional abstractions. The compiler then
takes responsibility for generating efficient low level imperative code. Nesl [Blelloch 1993], Copper-
Head [Catanzaro et al. 2011], LiquidMetal [Dubach et al. 2012], Accelerate [McDonell et al. 2013],
and Delite [Sujeeth et al. 2014] are examples. Since the “Sufficiently Smart Compiler” that always
produces the highest performance code is yet to be fully realised, many modern systems have ways
of describing the parallelisation strategy to be used either alongside or within the functional code.
Such a strategy describes matters such as when and where parallelism ought to be used, and how
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0:2 Robert Atkey, Michel Steuwer, Sam Lindley, and Christophe Dubach

data ought to be chunked for parallel processing. Ideally, we separate the concerns of functional
behaviour from strategy and reason about each separately. Halide [Ragan-Kelley et al. 2018] is an
example of a system where the strategy is given “on the side”. Lift [Steuwer et al. 2015, 2017] and
parallel Haskell [Trinder et al. 1998] are examples of systems where strategies are embedded within
the functional code. The latter approach has the advantage that we cannot write strategies that do
not make sense for the computation that we wish to perform. We will primarily concern ourselves
with this embedded strategy approach in this paper.

Given such a strategic functional programming system, the question is how to compile the
combination down to the imperative code required by the hardware, preserving the given strategy,
and maintaining correctness. In previous works, this question has been treated as a mere matter of
code generation from the high level functional code. However, code generation can be subtle. It is
easy to formulate code generation procedures that do not work for all inputs, or produce code that
does not compile, or has race conditions. Moreover, it would be beneficial to know that the code
generation process not only produces functionally correct code, but also strategically correct code.
In this paper, we formalise a semantics and strategy preserving translation from functional to

parallel imperative code using Data Parallel Idealised Algol (DPIA), a novel variant of Reynolds’ Ide-
alised Algol [Reynolds 1997]. Idealised Algol orthogonally combines typed functional programming
with imperative programming, a property that DPIA inherits. This allows us to start in the purely
functional subset with a high level specification of the computation we wish to perform, and then
to systematically rewrite it to “purely imperative” code (Section 4.1) that has a straightforward
translation into OpenMP annotated C code that can be executed in parallel (Section 4.3). DPIA
incorporates a substructural type system, incorporating ideas from Reynolds’ Syntactic Control of
Inteference [O’Hearn et al. 1999; Reynolds 1978], which ensures that the generated programs are
data race free. We show that our translation from functional to imperative is correct (Section 5).
Our use of Idealised Algol provides a greater benefit than just a correctness proof. Reynolds’

Syntactic Control of Interference discipline provides a framework inwhich to explore the boundaries
between functional and imperative parallel programming. We demonstrate the generality of our
approach in Section 6 where we augment the basic design of DPIA with vectorisation and double
buffering support. Our primary conceptual contribution is to promote Idealised Algol and its
variants as expressive and flexible intermediate languages for compilation to low level imperative
code that efficiently and correctly use the facilities provided by the hardware. In particular, syntactic
interference control allows us to given types to the primitive hardware operations that stops us
from incorrectly applying them. We explain the process of designing new primitives for DPIA in
Section 3, when we introduce the type system.

Contributions. This paper makes three major contributions:

(1) We introduce Data Parallel Idealised Algol (DPIA). This is an extension of O’Hearn et al.’s
[1999] Syntactic Control of Inteference Revisited with indexed types, array and tuple data types,
and primitives for data parallel programming. These extensions are fundamental for data
parallel imperative programs. We describe DPIA in Section 3.

(2) We describe a formal translation from high level functional code annotated with parallelism
strategies to parallel imperative code. We describe this translation fully in Section 4 and
prove it functionally correct in Section 5.

(3) We have implemented our framework using OpenMP as the backend and evaluate the
performed achieved by our generated code in Section 7.

(4) To demonstrate the flexibility of the DPIA framework, we extend our whole approach in Sec-
tion 6 to include vectorisation and iterative computations implemented by double buffering.
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In the next section we introduce and motivate our approach and the use of Idealised Algol as
a foundation. After the technical body of the paper in Sections 3-7, we discuss related work in
Section 8 and our conclusions and future work in Section 9.

2 STRATEGY PRESERVING COMPILATION
We describe a compilation method that takes high level functional array code to low level parallel
imperative code. Our approach is characterised by (a) expression of parallelisation strategies in
high level functional code, where their semantic equivalence to the original code can be easily
checked, and new strategies readily derived; and (b) a predictable and principled translation to low
level imperative code that preserves parallelisation strategies.

2.1 Expressing Parallelisation Strategies in Functional Code
Here is an expression that describes the dot product of two vectors xs and ys:

reduce (+) 0 (map (λx . fst x ∗ snd x ) (zip xs ys)) (1)

This expression is a declarative specification of the dot product which does not specify how the
computation should be performed. There are many possible strategies to execute the dot product
computation in parallel. A naive strategy is to first perform the pairwise multiplication of xs and ys
in parallel before sequentially summing up the intermediate results. We rewrite our expression to
make this “parallel map, sequential reduce” strategy explicit:

reduceSeq (+) 0 (mapPar (λx . fst x ∗ snd x ) (zip xs ys)) (2)

Such a naive strategy is not always best. If we try to execute one parallel job per element of the
input arrays, the runtime might generate so many threads that coordination of them will dominate
the runtime. The overall strategy of “parallel, then sequential” is likely not the most efficient, either.
We can give a more refined strategy better exploiting the target architecture. For instance,

modern CPUs support SIMD vector instructions which perform arithmetic operations in parallel on
multiple scalar values in a single clock cycle. We would also like to trade off the amount of work that
every thread performs with the number of threads launched to best exploit the available hardware
cores while minimising the coordination overhead between the threads. The following expression
groups the input data as vectors of 4 scalar elements before distributing the work across multiple
threads usingmapPar. Each thread then performs multiple sequential reductions in parallel on
the vectorised data using SIMD multiplication and addition instructions, before a final sequential
reduction adds up all remaining results.

reduceSeq (+) 0 (asScalar (join (mapPar
(mapSeq (λzs. reduceSeq (λx a. (fst x ∗ snd x ) + a) 0 (split 2048 zs)))
(split (2048 ∗ 64) (zip (asVector 4 xs) (asVector 4 ys))) )))

(3)

Although this expression gives much more information about how to perform the computation
in parallel, we have not left the functional paradigm.mapPar,mapSeq, and reduceSeq are just
annotated variations of the standard map and reduce functions which still allows the straightfor-
ward mathematical reading of this expression. We can use equational reasoning to prove that this
expression is semantically equivalent to (1). Equational reasoning can even be used to generate
(2) and (3) from (1). Indeed Steuwer et al. [2016] have shown that stochastic search techniques are
effective at automatically discovering parallelisation strategies that match hand-coded ones.
However, even with a specified parallelisation strategy we cannot execute this code directly.

We need to translate the functional code to an imperative language like OpenMP or OpenCL in
a way that preserves our chosen strategy. This paper presents a formal approach to solving this
translation problem.
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2.2 Strategy Preserving Translation to Imperative Code
What is the simplest way of converting a functional program to an imperative one? Starting with
our naive “parallel map, sequential reduce” strategy of dot-product (2), we can turn it into an
imperative program simply by assigning its result to an output variable out:

out := reduceSeq (+) 0 (mapPar (λx . fst x ∗ snd x ) (zip xs ys))

Unfortunately, this is not suitable for compilation targets like OpenMP or OpenCL. While assign-
ment statements are the bread-and-butter of such languages, their expression languages certainly
do not include such modern amenities as higher order map and reduce functions. To translate
these away, we introduce a novel acceptor-passing translation ALEMδ (out). The key idea is that for
any expression E producing data of type δ , the translation ALEMδ (out) is an imperative program
that has the same effect as the assignment out := E and is free from higher-order combinators.
This translation is mutually defined with a continuation passing translation CLEMδ (C ) that takes a
parameterised command C that will consume the output, instead of taking an output variable.

The definition of the translation is given in Section 4.1. We introduce it here by example. Applied
to our dot-product code, our translation first replaces the reduceSeq by a corresponding imperative
combinator reduceSeqI. We will see below that reduceSeqI is straightforwardly implemented in
terms of variable allocation and a for-loop.

ALreduceSeq (+) 0 (mapPar (λx . fst x ∗ snd x ) (zip xs ys))Mnum (out)
= CLmapPar (λx . fst x ∗ snd x ) (zip xs ys)Mn .num (λx .

CL0Mnum (λy. reduceSeqI n (λx y o. ALx + yMnum (o)) y x (λr . ALrMnum (out))))

The mapPar is translated, by the continuation passing translation, into allocation of a temporary
array and an imperativemapParI combinator. As with reduceSeqI, themapParI combinator is
straightforwardly implementable in terms of a parallel for-loop. The operator new δ var declares a
new storage cell of type δ named var , where storage cells are represented as pairs of an acceptor (i.e.,
“writer”, “l-value”) part var .1 and an expression (i.e. “reader”, “r-value”) part var .2. Our language,
which we introduce in Section 3, is a variant of Reynolds’ Idealised Algol [Reynolds 1978].
= new (n.num) (λtmp. CLzip xs ysMn .(num×num) (λx .mapParI n (λx o. ALfst x ∗ snd xMnum (o)) x tmp.1);

CL0Mnum (λy. reduceSeqI n (λx y o. ALx + yMnum (o)) y tmp.2 (λr . ALrMnum (out))))

Readers familiar with other translations of data parallel functional programs into imperative loops
may be surprised at the allocation of a temporary array here. Typically, the compiler would be
expected to automatically fuse the computation of themap into the translation of the reduce . How-
ever, this is precisely what we do not want from a predictable compilation process for parallelism.
If fusion is desired, it is carried out before this translation is applied and directly encoded in the
strategy of the functional program, as seen earlier in example (3). The parallelism strategy described
by the functional code here precisely states “parallel map, followed by sequential reduce”.
Continuing the translation process, we substitute out, the arithmetic expressions and the zip,

leaving two uses of the “intermediate-level” macros mapParI and reduceSeqI:
= new (n.num) (λtmp.mapParI n (λx o. o := fst x ∗ snd x ) (zip xs ys) tmp.1;

reduceSeqI n (λx y o. o := x + y) 0 tmp.2 (λr . out := r ))

These combinators are now replaced by parallel and sequential for-loops, which we describe in a
further translation stage in Section 4.2.
= new (n.num) (λtmp. parfor n tmp.1 (λi o. o := fst (idx (zip xs ys) i ) ∗ snd (idx (zip xs ys) i ));

new num (λaccum. accum.1 := 0;
for n (λi . accum.1 := accum.2 + idx tmp.2 i );
out := accum.2))

(4)
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The sequential for loops of our intermediate language are standard; for n (λi . b) executes the body
b n times with iteration counter i . Parallel parfor loops are slightly more complex due to the way
they explicitly take a parameter (here named tmp.1) that describes where to place the results of
each iteration in a data-race free way. We describe this fully in Section 3.3.
We are now left with an imperative program, albeit with a non-standard parallel-for construct

and complex data access expressions involving fst, zip, idx and so on. Our final translation to C and
OpenMP (Section 4.3) resolves these data layout expressions into explicit indexing computations:

1 float tmp[N];
2 #pragma omp parallel for
3 for (int i = 0; i < N; i += 1)
4 tmp[i] = xs[i] * ys[i];
5 float accum = 0.0;
6 for (int i = 0; i < N; i += 1)
7 accum = accum + tmp[i];
8 out = accum;

This resulting low level imperative code precisely implements the strategy “parallel map (lines
2–4), followed by sequential reduce (lines 5–8)” described by our functional expression (2).
Our naive dot-product code does not produce particularly complex code, but our translation

method scales to more detailed parallelism strategies. The alternative dot-product execution strategy
in (3), which rearranges the abstractmap and reduce combinators in order to better exploit parallel
hardware, yields the following code using OpenMP pragmas for thread level parallelism (omp
parallel for) as well as for SIMD vector instructions (omp simd):

1 float tmp[N/(4*131072/64)];
2 #pragma omp parallel for
3 for (int i = 0; i < (N / (4 * 131072)); i += 1) {
4 for (int j = 0; j < 64; j += 1) {
5 float accum [4];
6 #pragma omp simd
7 for (int k = 0; k < 4; k += 1) { accum[k] = (( float [4]){0.0f})[k]; }
8 for (int l = 0; l < 2048; l += 1) {
9 #pragma omp simd
10 for (int k = 0; k < 4; k += 1) {
11 accum[k] = (xs [(524288 * i) + (8192 * j) + (4 * l) + k]
12 * ys [(524288 * i) + (8192 * j) + (4 * l) + k]) + accum[k];}}
13 #pragma omp simd
14 for (int k = 0; k < 4; k += 1) { tmp[k + (4 * j) + (256 * i)] = accum[k];}
15 }
16 }
17 float accum = 0.0;
18 for (int i = 0; i < N/(4*131072/64); i += 1)
19 accum = accum + tmp[i];
20 out = accum;

As we shall see in Section 7, given a target-architecture optimised parallelisation strategy defined
in functional code, our translation process produces OpenMP code with performance on a par with
hand-written code.
Key to our translation methodology is a single intermediate language that can express pure

functional expressions and deterministic race free parallel imperative programs, and which is
amenable to formal reasoning. In the next section, we describe our language for this task, DPIA:
Data Parallel Idealised Algol.
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3 DATA PARALLEL IDEALISED ALGOL
Our intermediate language for code generation is a dialect of Reynolds’s [1997] Idealised Algol,
extended with interference control via a substructural type system [O’Hearn et al. 1999]. We saw
some examples of DPIA in the previous section. We now highlight the major features of DPIA, and
then give the formal presentation of its types (Section 3.1), typing (Section 3.2), and data parallel
programming primitives (Section 3.3). We discuss the formal semantics of DPIA in Section 5.
Idealised Algol is built around Reynolds’ observation that we can use typed λ-calculus as a

powerful macro language for imperative programming. The base types of the system are what
would normally be the syntactic categories of a first order imperative language: comm is the type of
commands, or statements; exp is the type of expressions, or r-values; and acc is the type of acceptors
or l-values (entities that can be assigned to). The syntactic constructs of the language are expressed
as constants in the language. For imperative programming, these include: skip : comm for doing
nothing; (; ) : comm×comm→ comm for sequencing; and (:=) : acc×exp→ comm for assignment.
Declaration of new variables has a higher order type, new : (acc × exp → comm) → comm: we
supply a command that requires an additional piece of storage to work with, and new allocates the
variable, runs the command, and deallocates, following a block structured stack discipline.

The typing of new indicates a useful programming pattern in Idealised Algol. We can think
of terms with types of the form Y → (X → comm) → comm as implementing “objects” with
interfaces X , using existing objects with interface Y . A canonical example is the counter object:

counter : acc→ (comm→ comm) → comm
counter o body = new (λ⟨vwr ,vrd ⟩. body (vwr := vrd + 1);o := vrd )

Given a client, body, and a place to write the final count to, o, counter allocates a new variable
using new and hands body the restricted capability to only affect this variable by incrementing it.
Once body has finished, the final value of the counter is written to o.

This implementation of counter uses λ-abstraction to hide its internal state from body, preventing
any programming errors that would occur if body were able to interfere with counter’s internal state.
However, in original Idealised Algol, counter can only encapsulate what it creates. It is possible for
both counter and body to write to o, potentially producing confusing results. Reynolds’s [1978]
Syntactic Control of Interference proposed a discipline that prevents such interference from taking
place. Under interference control, body and o may only share identifiers that are used passively (i.e.,
read only). In use, interference control acts like Rust’s borrow checker [Klabnik and Nichols 2018].
In a term of the form counter o (λinc. P );Q , the variable o may not be used in P , except through
inc. We may say that inc, the interface to the counter, has borrowed the resources owned by o. In
the continuation command Q , this borrow ends and o’s resources may be used directly again.
We use this safe resource reinterpretation pattern multiple times in DPIA to provide abstracted

access to low level parallelisation capabilities. At the lowest level, we have the parfor primitive:

parfor : (n : nat) → (t : data) → acc[n.t]→ (exp[idx[n]]→ acc[t]→p comm) → comm

The type of parfor is more elaborate than before to allow for datatype and size polymorphism,
but the essence is this: the latter two of parfor’s arguments are an acceptor for writing results to,
and a command for implementing the body of the loop. The same interference control discipline
as above ensures that the body of the loop cannot write to the array chosen for output, except
through the acceptor it is give, eliminating some potential data races. The p subscript on the type
of the body indicates that this command must be passive, meaning that it cannot write to any state
which it is not explicitly handed. Thus, it is possible to safely implement parfor as a parallel for
loop. We use this same pattern to safely implement our intermediate level data parallel functions in
Section 4.2 and our vectorisation and double buffering extensions in Section 6.
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κ ::= data | phrase | nat

(a) Kinds

x : κ ∈ ∆
∆ ⊢ x : κ

(b) Kinding Structural Rules

|= ∀σ : dom(∆) → N.σ (M ) = σ (N )

∆ ⊢ M ≡ N : nat

(c) Type Equality

∆ ⊢ ℓ : nat
∆ ⊢ M : nat ∆ ⊢ N : nat

∆ ⊢ M + N : nat
∆ ⊢ M : nat ∆ ⊢ N : nat

∆ ⊢ M ∗ N : nat

(d) Natural numbers

∆ ⊢ num : data
∆ ⊢ N : nat

∆ ⊢ idx[N ] : data

∆ ⊢ N : nat
∆ ⊢ δ : data

∆ ⊢ N .δ : data

∆ ⊢ δ1 : data
∆ ⊢ δ2 : data

∆ ⊢ δ1 × δ2 : data

(e) Data Types

∆ ⊢ δ : data
∆ ⊢ exp[δ ] : phrase

∆ ⊢ δ : data
∆ ⊢ acc[δ ] : phrase ∆ ⊢ comm : phrase

∆ ⊢ θ1 : phrase ∆ ⊢ θ2 : phrase
∆ ⊢ θ1 × θ2 : phrase

∆ ⊢ θ1 : phrase
∆ ⊢ θ2 : phrase

∆ ⊢ θ1 → θ2 : phrase

∆ ⊢ θ1 : phrase
∆ ⊢ θ2 : phrase

∆ ⊢ θ1 →p θ2 : phrase

∆,x : κ ⊢ θ : phrase κ ∈ {nat, data}

∆ ⊢ (x :κ) → θ : phrase

(f) Phrase Types

∆ ⊢ δ : data
∆ ⊢ exp[δ ] : passive

∆ ⊢ ϕ1 : passive ∆ ⊢ ϕ2 : passive
∆ ⊢ ϕ1 × ϕ2 : passive

∆ ⊢ θ : phrase ∆ ⊢ ϕ : passive
∆ ⊢ θ → ϕ : passive

∆ ⊢ θ1 : phrase ∆ ⊢ θ2 : phrase
∆ ⊢ θ1 →p θ2 : passive

∆,x : κ ⊢ ϕ : passive κ ∈ {nat, data}

∆ ⊢ (x :κ) → ϕ : passive

(g) Passive Types

Fig. 1. Well-formed Types

3.1 The Types of DPIA
The type system ofDPIA refines the exp, acc, comm phrase types described above by parameterising
expressions and acceptors by data types, which classify data (integers, floats, arrays, etc.). To
facilitate interference control, we identify a subset of phrase types which are passive (Section 3.1.2),
i.e. essentially read-only, and so are safe to share across parallel threads. (We elaborate on what
“essentially read-only” means in Section 3.1.2 and Section 3.2.)

3.1.1 Kinding rules. We extend SCIR with both data type and size polymorphism, so we need
a kind system. Figure 1 presents the kinding rules for DPIA types. The kinds κ of DPIA include
the major classifications into data types (data) and phrase types (phrase), along with the kind of
type-level natural numbers (nat). Types may contain variables, so we use a kinding judgement
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∆ ⊢ τ : κ, which states that type τ has kind κ in kinding context ∆. Figure 1b gives the variable
rule that permits the use of type variables in well-kinded types. Figure 1d presents the rules for
type-level natural numbers: either numeric literals ℓ, addition M + N , or multiplication M ∗ N
(whereM and N range over terms of kind nat). We writeMN as syntactic sugar forM ∗ N .

The rules for data types are presented in Figure 1e. We use δ to range over data types. The base
types are num for numbers; and a data type of array indexes idx[M], parameterised by the size of
the array. There are two compound types of data. For any data type δ and natural number term
M ,M .δ is the data type of homogeneous arrays of δs of sizeM . We opt for a concise notation for
array types as they are pervasive in data parallel programming. Heterogeneous compound data
types (records) are built using the rule for δ1 × δ2.

The phrase types of DPIA are given in Figure 1f. We use θ to range over phrase types. For each
data type δ , there are phrase types exp[δ] for expression phrases that produce data of type δ , and
acc[δ ] for acceptor phrases that consume data of type δ . The comm phrase type classifies command
phrases that may modify the store. Phrases that can be used in two different ways, θ1 or θ2, are
classified using the phrase product type θ1 × θ2. This type is distinct from the data product type
δ1 × δ2: the data type represents a pair of data values; the phrase type represents an “interface” that
offers two possible “methods”. The final three phrase types are all variants of parameterised phrase
types. The phrase types θ1 → θ2 and θ1 →p θ2 classify phrase functions. The p subscript denotes
passive functions. The phrase type (x :κ) → θ classifies a phrase that is parameterised either by a
data type or a natural number. We find it convenient to allow lowercase letters to range over both
term variables and type variables.
The types of DPIA include arithmetic expressions, so we have a non trivial notion of equality

between types, written ∆ ⊢ τ1 ≡ τ2 : κ. The key type equality rule is given in Figure 1c: two
arithmetic expressions are equal if they are equal as natural numbers for all interpretations (σ ) of
their free variables. This equality is lifted to all other types by structural congruence.

3.1.2 Passive Types. Figure 1g identifies the subset of phrase types that classify passive phrases.
The opposite of passive is active. We use ϕ to range over passive phrase types. An expression
phrase type exp[δ ] is always passive — phrases of this type can, by definition, only read the store. A
compound phrase type is always passive if its component phrase types are all passive. Furthermore,
a passive function type θ1 →p θ2 is always passive, and a plain function type is passive whenever
its return type is passive (irrespective of the argument type). Passive types are essentially read-only.
The one exception whereby a phrase of passive type may modify the store is a passive function with
active argument and return types. Such a function can only modify the part of the store addressable
through the active phrase it is supplied with as an argument.

3.2 Typing Rules for DPIA
The typing judgement of DPIA follows the SCIR system of O’Hearn et al. [1999] in distinguishing
between passive and active uses of identifiers. Our judgement also has a kinding context for size
and data type polymorphism. The judgement form has the following structure:

∆ | Π; Γ ⊢ P : θ

where ∆ is the kinding context, Π is a context of passively used identifiers, Γ is a context of actively
used identifiers, P is a program phrase, and θ is a phrase type. All the types in Π and Γ are phrase
types well-kinded by ∆. The phrase type θ must also be well-kinded by ∆. The order of entries does
not matter. The contexts ∆ and Π allow contraction and weakening; context Γ does not.
The typing rules of DPIA are given in Figure 2. These rules define how variable phrases are

formed, how parameterised and compound phrases are introduced and eliminated, and how passive
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x : θ ∈ Γ
∆ | Π; Γ ⊢ x : θ

Var

∆ | Π; Γ ⊢ P : θ1
∆ ⊢ θ1 ≡ θ2 : phrase
∆ | Π; Γ ⊢ P : θ2

Conv
prim : θ ∈ Primitives
∆ | Π; Γ ⊢ prim : θ

Prim

(a) Structural Rules

∆ | Π; Γ,x : θ1 ⊢ P : θ2
∆ | Π; Γ ⊢ λx .P : θ1 → θ2

Lam
∆ | Π; Γ1 ⊢ P : θ1 → θ2 ∆ | Π; Γ2 ⊢ Q : θ1

∆ | Π; Γ1, Γ2 ⊢ P Q : θ2
App

∆,x : κ | Π; Γ ⊢ P : θ x < ftv (Π, Γ)

∆ | Π; Γ ⊢ Λx .P : (x :κ) → θ
TLam

∆ | Π; Γ ⊢ P : (x :κ) → θ ∆ ⊢ τ : κ
∆ | Π; Γ ⊢ P τ : θ[τ/x]

TApp

∆ | Π; Γ ⊢ P : θ1 ∆ | Π; Γ ⊢ Q : θ2
∆ | Π; Γ ⊢ ⟨P ,Q⟩ : θ1 × θ2

Pair
∆ | Π; Γ ⊢ P : θ1 × θ2
∆ | Π; Γ ⊢ P .i : θi

Proj

(b) Introduction and Elimination Rules

∆ | Π,x : θ ; Γ ⊢ P : θ ′

∆ | Π; Γ,x : θ ⊢ P : θ ′
Activate

∆ | Π; Γ,x : θ ⊢ P : ϕ
∆ | Π,x : θ ; Γ ⊢ P : ϕ

Passify

∆ | Π; · ⊢ P : θ1 → θ2

∆ | Π; · ⊢ P : θ1 →p θ2
Promote

∆ | Π; Γ ⊢ P : θ1 →p θ2

∆ | Π; Γ ⊢ P : θ1 → θ2
Derelict

(c) Active and Passive Phrase Rules

Fig. 2. Typing Rules: Indexed Affine λ-Calculus with Passivity [O’Hearn et al. 1999]

and active types are managed. Any particular application of DPIA is specified by giving a collection
of primitive phrases Primitives, each of which has a closed phrase type. We describe a collection
for data parallel programming in Section 3.3, and extend it in Section 6.

Figure 2a presents the rule for forming variable phrases, implicit conversion between equal types,
and the use of primitives. At point of use, all variables are considered to be used actively. If the
final phrase type is passive, then an active use may be converted to a passive one by the Passify
rule. Primitives may be used in any context. Figure 2b presents the rules for parameterised and
compound phrases. These are all standard typed λ-calculus style rules, except the use of separate
contexts for a function and its arguments in the App rule. This ensures that every function and its
argument use non-interfering active resources, maintaining the invariant that distinct identifiers
refer to non-interfering phrases. Note that we do not require separate contexts for the two parts
of a compound phrase in the Pair rule. Compound phrases offer two ways of interacting with the
same underlying resource (as in the with (&) rule from Linear Logic).
Figure 2c describes how passive and active uses of variables are managed. The Activate rule

allows any variable that has been used passively to be treated as if it were used actively. The
Passify rule allows active uses to be treated as passive, as long as the final phrase type is passive.
The Promote rule turns functions into passive functions, as long as they do not contain any free
variables used actively. The Derelict rule indicates that a passive function can always be seen as a
normal function, if required.

DPIA’s functional sub-language. By inspection of the rules, we can see that if we restrict to phrase
types constructed from exp[δ ], functions, polymorphic functions, and tuples, then the constraints
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on multiple uses of variables in DPIA cease to apply. Therefore, DPIA has a sub-language that has
the same type system as a normal (non-substructural) typed λ-calculus with base types for numbers,
arrays and tuples, and a limited form of polymorphism.Whenwe introduce the functional primitives
for DPIA in the next section, we will enrich this λ-calculus with arithmetic, array manipulators,
and higher-order array combinators. It is this purely functional sub-language of DPIA that allows
us to embed functional data parallel programs in a semantics preserving way.

3.3 Data Parallel Programming Primitives
The SCIR framework may be instantiated in arbitrary ways by specifying a collection of primitives.
Here we instantiate it with typed primitive operations for data parallel programming, outlined
in Figure 3. Our primitives fall into two principal categories: high-level functional primitives and
low-level imperative primitives. Source programs include abstract high-level functional primitives
map and reduce. Programs that are the input to our translation process are composed of concrete
high-level functional primitives. All uses of map must be replaced by mapSeq (a sequential
implementation ofmap) ormapPar (a parallel implementation ofmap), and all uses of reduce
by reduceSeq (a sequential implementation of reduce). (An OpenCL backend might have other
concrete implementations of map corresponding to the parallelisation hierarchy and a parallel
implementation of reduce makes sense for some backends.) Uses of mapPar, mapSeq, and
reduceSeq have no immediate counterpart in low-level languages for data-parallel computation.
Our translation process converts these into low-level combinators (Section 4.1). A final lowering
translation removes all functional primitives except arithmetic (Section 4.3).

As primitives are treated specially by the Prim rule they can (with the aid of a little η-expansion)
always be promoted to be passive. Thus, it is never necessary to annotate the arrows of a first-order
primitive with a p subscript. The only such annotations that are necessary are those final arrows of
function types occurring inside the type of a higher-order primitive that is required to be passive
(in our case, only parfor andmapParI).

Functional Primitives. Figure 3a lists the type signatures of the primitives used for constructing
purely functional data parallel programs. These fit into four groups. The first group consists of
numeric literals (ℓ) and first-order operations on scalars (negate, (+), (−), (∗), (/)). The second
group contains the abstract higher-order functional combinators for constructing array processing
programs: map and reduceSeq. These have (the Idealised Algol renditions of) the standard types
for map and reduce, extended with size information. The third group contains the concrete higher-
order functional combinators for constructing array processing programs: mapPar,mapSeq and
reduceSeq. The fourth group comprises functions for manipulating data layouts: zip joins two
arrays of equal length into an array of pairs, split breaks a one dimensional array into a two
dimensional array and join flattens a two dimensional array into a one dimensional array, pair
constructs a pair, fst and snd deconstruct a pair, and idx looks up a value in an array. All of these
primitives are data type indexed and those that operate on arrays are also size indexed.

Example: dot-product. The naive strategy for the dot-product example from Section 2 is written
using the functional primitives like so, for input vectors xs and ys of length n, the only difference
being that all of the size and data type information is described in detail (often we can infer these
arguments and so in practice we often omit them):

reduceSeq n num num (λx y. x + y) 0 (mapPar n (num × num) num
(λx . fst num num x ∗ snd num num x )
(zip n num num xs ys))
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ℓ : exp[num]
negate : exp[num]→ exp[num]
(+, ∗, /, −) : exp[num] × exp[num]→ exp[num]

map : (n : nat) → (s t : data) → (exp[s]→ exp[t ]) → exp[n .s]→ exp[n .t ]
reduce : (n : nat) → (s t : data) → (exp[s]→ exp[t ]→ exp[t ]) → exp[t ]→ exp[n .s]→ exp[t ]

mapSeq : (n : nat) → (s t : data) → (exp[s]→ exp[t ]) → exp[n .s]→ exp[n .t ]
mapPar : (n : nat) → (s t : data) → (exp[s]→ exp[t ]) → exp[n .s]→ exp[n .t ]
reduceSeq : (n : nat) → (s t : data) → (exp[s]→ exp[t ]→ exp[t ]) → exp[t ]→ exp[n .s]→ exp[t ]

zip : (n : nat) → (s t : data) → exp[n .s]→ exp[n .t ]→ exp[n .(s × t )]
split : (n m : nat) → (t : data) → exp[nm .t ]→ exp[m .n .t ]
join : (n m : nat) → (t : data) → exp[n .m .t ]→ exp[nm .t ]
pair : (s t : data) → exp[s]→ exp[t ]→ exp[s × t ]
fst : (s t : data) → exp[s × t ]→ exp[s]
snd : (s t : data) → exp[s × t ]→ exp[t ]
idx : (n : nat) → (t : data) → exp[n .t ]→ exp[idx[n]]→ exp[t ]

(a) Functional primitives

(;) : comm × comm→ comm
skip : comm
new : (t : data) → (var[t ]→ comm) → comm (where var[t ] = acc[t ] × exp[t ] : phrase)
(:=) : acc[num] × exp[num]→ comm
for : (n : nat) → (exp[idx[n]]→ comm) → comm
parfor : (n : nat) → (t : data) → acc[n .t ]→ (exp[idx[n]]→ acc[t ]→p comm) → comm

zipAcc1 : (n : nat) → (s t : data) → acc[n .s × t ]→ acc[n .s]
zipAcc2 : (n : nat) → (s t : data) → acc[n .s × t ]→ acc[n .t ]
splitAcc : (n m : nat) → (t : data) → acc[m .n .t ]→ acc[nm .t ]
joinAcc : (n m : nat) → (t : data) → acc[nm .t ]→ acc[n .m .t ]
pairAcc1 : (s t : data) → acc[s × t ]→ acc[s]
pairAcc2 : (s t : data) → acc[s × t ]→ acc[t ]
idxAcc : (n : nat) → (t : data) → acc[n .t ]→ exp[idx[n]]→ acc[t ]

(b) Imperative primitives

mapSeqI : (n : nat) → (s t : data) → (exp[s]→ acc[t ]→ comm) → exp[n .s]→ acc[n .t ]→ comm
mapParI : (n : nat) → (s t : data) → (exp[s]→ acc[t ]→p comm) → exp[n .s]→ acc[n .t ]→ comm
reduceSeqI : (n : nat) → (s t : data) → (exp[s]→ exp[t ]→ acc[t ]→ comm) →

exp[t ]→ exp[n .s]→ (exp[t ]→ comm) → comm

(c) Intermediate imperative macros

Fig. 3. Data Parallel Programming Primitives, Functional and Imperative

Likewise, the more sophisticated strategy of dot-product from Section 2 with nested splits and
joins can be expressed with detailed size and type information throughout.

Imperative Primitives. Figure 3b gives the type signatures for the imperative primitives. These are
split into two groups. The first group includes the standard Idealised Algol combinators that turn
DPIA into an imperative programming language: (;) sequences commands, skip is the command
that does nothing; new δ allocates a new mutable variable on the stack, where a variable is a
pair of an acceptor and an expression; and (:=) assigns the value of an expression to an acceptor.
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For-loops are constructed by the combinators for and parfor. Sequential for-loops for N B take
a number of iterations N and a loop body B, a command parameterised by the iteration number.
Parallel for-loops parfor N δ A B differ from normal for-loops by taking an additional acceptor
argument A : acc[B.δ ] that is used for the output of each iteration. As described in the introduction
to this section, this allows an implementation of parfor that can safely be implemented using
actual parallelism. We will see how the acceptor-transforming behaviour of our parfor primitive is
translated into a normal, potentially racy, parallel for loop in OpenMP C in Section 4.3. Formally,
newly allocated variables are zero initialised (and pointwise zero initialised for compound data),
but in our implementation we typically optimise away the initialisation. In particular, it is never
necessary to initialise dynamic memory allocations that are introduced by the translation of the
functional primitives into imperative code as all dynamically allocated memory is always written
to before being read.

The second group of imperative primitives include the acceptor variants of the zip, split, join,
pair and idx functional primitives. The acceptor primitives transform acceptors of compound data
into acceptors of their components. They are used to funnel data into the correct positions in the
imperative translations of functional programs. In the final translation to parallel C code, described
in Section 4.3, all acceptor phrases are translated into l-values with explicit index computations.

Intermediate Imperative Macros. Figure 3c gives type signatures for the intermediate imperative
counterparts ofmapPar,mapSeq and reduceSeq. These macros will be used in our translation
from higher-order functional programs to higher-order imperative programs in Section 4.1. In the
second stage of the translation they will be substituted by implementations in terms of variable
allocation and for-loops (Section 4.2).

4 FROM FUNCTIONAL TO IMPERATIVE
In this section we spell out the three stages of translation from higher-order functional array
programs to parallel C-like code (as sketched in Section 2). First, the higher-order functional combi-
nators mapPar,mapSeq and reduceSeq are translated into the higher-order imperative macros
mapParI,mapSeqI and reduceSeqI using an acceptor-passing translation defined mutually re-
cursively with a continuation-passing translation (Section 4.1). Second, the higher-order imperative
macros are expanded into for-loops (Section 4.2). Finally, low-level parallel pseudo-C code is pro-
duced by translating expression and acceptor phrases into indexing operations (Section 4.3). We
prove the correctness of the first two stages of our translation in Section 5.

4.1 Translation Stage I: Higher-order Functional to Higher-order Imperative
The goal of the first stage of the translation is to take a phrase E : exp[δ], constructed from the
functional primitives in Figure 3a, and an acceptor out : acc[δ ] and to produce a comm phrase that
has the same semantics as the command

out :=δ E

where (:=δ ) is an assignment operator for non-base types defined by induction on δ below. The
resulting program will be an imperative program that acts as if we could compute the functional
expression in one go and assign it to the output acceptor. Since our compilation targets know
nothing of higher-order functional combinators like mapPar,mapSeq and reduceSeq they will
have to be translated away. We do not use any of the traditional methods for compiling higher-order
functions, such as closure conversion [Steele 1978] or defunctionalisation [Reynolds 1998]. Instead,
we rely on the whole-program nature of our translation, our lack of recursion, and the special
form of our functional primitives. Specifically, we are relying on a version of Gentzen’s subformula
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ALxMδ (A) = A :=δ x

ALℓMnum (A) = A := ℓ
ALnegate EMnum (A) = CLEMnum (λx . A := negate x )
ALE1 + E2Mnum (A) = CLE1Mnum (λx . CLE2Mnum (λy. A := x + y))

ALmapPar N δ1 δ2 F EMN .δ2 (A) = CLEMN .δ1 (λx .mapParI N δ1 δ2 (λx o.ALF xMδ2 (o)) x A)
ALmapSeq N δ1 δ2 F EMN .δ2 (A) = CLEMN .δ1 (λx .mapSeqI N δ1 δ2 (λx o.ALF xMδ2 (o)) x A)
ALreduceSeq N δ1 δ2 F I EMδ2 (A) = CLEMN .δ1 (λx . CLIMδ2 (λy.

reduceSeqI N δ1 δ2 (λx y o.ALF x yMδ2 (o)) y x (λr .ALrM(A))))

ALzip N δ1 δ2 E1 E2MN .δ1×δ2 (A) = ALE1MN .δ1 (zipAcc1 N δ1 δ2 A);ALE2MN .δ2 (zipAcc2 N δ1 δ2 A)
ALsplit N M δ EMN .M .δ (A) = ALEMNM .δ (splitAcc N M δ A)
ALjoin N M δ EMNM .δ (A) = ALEMN .M .δ (joinAcc N M δ A)
ALpair δ1 δ2 E1 E2Mδ1×δ2 (A) = ALE1Mδ1 (pairAcc1 δ1 δ2 A);ALE2Mδ2 (pairAcc2 δ1 δ2 A)
ALfst δ1 δ2 EMδ1 (A) = CLEMδ1×δ2 (λx . A :=δ1 fst δ1 δ2 x )
ALsnd δ1 δ2 EMδ2 (A) = CLEMδ1×δ2 (λx . A :=δ2 snd δ1 δ2 x )

(a) Acceptor-passing Translation

CLxMδ (C ) = C (x )

CLℓMnum (C ) = C (ℓ)
CLnegate EMnum (C ) = CLEMnum (λx . C (negate x ))
CLE1 + E2Mnum (C ) = CLE1Mnum (λx . CLE2Mnum (λy. C (x + y) ) )

CLmapPar N δ1 δ2 F EMN .δ2 (C ) = new (N .δ2) (λtmp. ALmapPar N δ1 δ2 F EMN .δ2 (tmp.2); C (tmp.1) )
CLmapSeq N δ1 δ2 F EMN .δ2 (C ) = new (N .δ2) (λtmp. ALmapSeq N δ1 δ2 F EMN .δ2 (tmp.2); C (tmp.1) )
CLreduceSeq N δ1 δ2 F I EMδ2 (C ) = CLEMN .δ1 (λx . CLIMδ2 (λy. reduceSeqI N δ1 δ2 (λx y o. ALF x yMδ2 (o)) y x ) C )

CLzip N δ1 δ2 E1 E2MN .δ1×δ2 (C ) = CLE1MN .δ1 (λx . CLE2MN .δ2 (λy. C (zip N δ1 δ2 x y) ) )
CLsplit N M δ EMN .M .δ (C ) = CLEMNM .δ (λx . C (split N M δ x ) )
CLjoin N M δ EMNM .δ (C ) = CLEMN .M .δ (λx . C (join N M δ x ) )
CLpair δ1 δ2 E1 E2Mδ1×δ2 (C ) = CLE1Mδ1 (λx . CLE2Mδ2 (λy. C (pair δ1 δ2 x y) ) )
CLfst δ1 δ2 EMδ1 (C ) = CLEMδ1×δ2 (λx . C (fst δ1 δ2 x ) )
CLsnd δ1 δ2 EMδ2 (C ) = CLEMδ1×δ2 (λx . C (snd δ1 δ2 x ) )

(b) Continuation-passing Translation

Fig. 4. Acceptor and Continuation-passing Translations

principle (identified by Gentzen [1935] and named by Prawitz [1965]). Our approach is reminiscent
of that of Najd et al. [2016] who use quotation and normalisation, making essential use of the
subformula principle, to embed domain-specific languages. An obvious difference with our work
is that rather than stratifying a language into a host functional language and a quoted functional
language, we seamlessly combine a functional and an imperative language.

We have already mentioned the use of assignment at compound data types. This is defined by:
A :=num E = A := E
A :=N .δ E = mapParI N δ δ (λx a.a :=δ x ) E A
A :=δ1×δ2 E = pairAcc1 A :=δ1 fst E;pairAcc2 A :=δ2 snd E

The translation of functional expressions to imperative code is accomplished by two type-
directed mutually defined translations: the acceptor-passing translation AL−Mδ (Figure 4a) and the
continuation-passing translation CL−Mδ (Figure 4b). The acceptor-passing translation takes a data
type δ , an expression of type exp[δ ] and an acceptor of type acc[δ ], and produces a comm phrase.
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Likewise, the continuation-passing translation takes a data type δ , an expression of type exp[δ]
and a continuation of type exp[δ ]→ comm, and produces a comm phrase.
It is straightforward to see by inspection, and using the fact that weakening is admissible in

DPIA, that the two translations are type-preserving:
Theorem 4.1.
(1) If ∆ | Π; Γ1 ⊢ E : exp[δ ] and ∆ | Π; Γ2 ⊢ A : acc[δ ] then ∆ | Π; Γ1, Γ2 ⊢ ALEMδ (A) : comm.
(2) If ∆ | Π; Γ1 ⊢ E : exp[δ] and ∆ | Π; Γ2 ⊢ C : exp[δ] → comm then ∆ | Π; Γ1, Γ2 ⊢ CLEMδ (C ) :

comm.

It is also important that these translations satisfy the following equivalences.
ALEMδ (A) ≃ A :=δ E CLEMδ (C ) ≃ C (E)

We define observational equivalence (≃) for DPIA and establish these particular equivalences in
Section 5. Ultimately, our goal is to compute the result ofALEMδ (out). It might appear that we could
dispense with the acceptor-passing translation and simply use CLEMδ (λx . out :=δ x ). However,
this would create unnecessary temporary storage, violating our desire for an efficient translation.
There are clear similarities between our mutually-defined translations and tail-recursive one-pass
CPS translations that avoid producing unnecessary administrative redexes [Danvy et al. 2007].
The clauses for both translations split into four groups. The first group consists only of the

clause for translating functional expression phrases that are identifiers x . In the acceptor-passing
case, we defer to the generalised assignment defined above; in the continuation-passing case, we
simply apply the continuation to the variable. The second group handles first-order operations on
numeric data. In all cases, we defer to the continuation-passing translation for sub-expressions,
with appropriate continuations. The third group is the most interesting: the translations of the
higher ordermapPar,mapSeq and reduceSeq primitives. FormapPar/mapSeq: in the acceptor-
passing case, we can immediately translate to mapParI/mapSeq which already takes an acceptor
to place its output into; in the continuation-passing case, we must create a temporary array as
storage, invoke mapParI/mapSeqI, and then let the continuation read from the temporary array.
This indirection is required because we do not know what random access strategy the continuation
C will use to read the array it is given. For reduceSeq, in both cases we translate to the reduceSeqI
combinator. The fourth group handles the translations of the functional data layout combinators.
The CPS translation, passes them straight through; they are handled by the final translation to
low-level C-like code in Section 4.3. The acceptor-passing translation translates the combinators
that construct data into corresponding acceptors. In the fst and snd cases, which project out data,
we defer to the continuation-passing translation. In practice, the case of a projection in tail position
rarely arises, since it corresponds to disposal of part of the overall computation.

Limits of Strategy-Preservation. Our translation is almost, but not quite, strategy-preserving. There
are two places where the strategy is hard-wired. First, array assignments are always computed in
parallel usingmapParI. Second, the CPS translations ofmapPar andmapSeq each introduce a
temporary array, and there is no choice as to where in the memory hierarchy the array is allocated.
If we were targetting a heterogeneous backend such as a GPU then we would likely require more
fine-grained control over these choices. We defer study of such systems as well as a formal treatment
of precisely what strategy-preservation means to future work.

4.2 Translation Stage II: Higher-order Imperative to For-loops
The next stage in the translation expands the intermediate level imperative macros mapParI,
mapSeqI and reduceSeqI as lower-level implementations in terms of (parallel and sequential)
for-loops. This is accomplished by substitution and β-reduction (DPIA includes full βη reasoning
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principles). The combinatormapParI is implemented as a parallel loop:

mapParI = Λn s t .λ f xs out. parfor n t out (λi o. f (idx n s xs i ) o)

mapSeqI is implemented as a sequential loop:

mapSeqI = Λn s t .λ f xs out. for n (λ i . f (idx n s xs i ) (idxAcc n t out i ) )

The implementation of reduceI is more complex, involving the allocation of a temporary variable
to store the accumulated value during the reduction. In this case, the for loop is sequential, since
the semantics of reduction demands that we visit each element in turn:

reduceSeqI = Λn s t .λ f init xs c . new t (λacc. acc .2 :=s init;
for n (λi . f (idx n s xs i ) (acc .2) (acc .1) );
c (acc .1) )

4.3 Translation Stage III: For-loops to Parallel Pseudo-C
After performing the translation steps in the previous two sections, we have generated a com-
mand phrase that does not use the higher-order functional combinators mapPar, mapSeq and
reduceSeq, but still contains uses of the data layout combinators zip, split etc., and their acceptor
counterparts. We now define a translation to OpenMP C, an extension of the C language adding
parallel for loops. This translation resolves the data layout expressions into explicit indexing.
The translation in Figure 5 is split into three parts: the translation of DPIA commands into

OpenMP C statements, the translation of acceptors into l-values, and the translation of expressions
into r-values. (Recall the analogymade in Section 3.1 between the phrase types ofDPIA and syntactic
categories in an imperative language; we are now reaping the rewards of Reynolds’ careful design
of Idealised Algol.) We assume that the input to the translation process is in βη-normal form, so all
new-block and loop bodies are fully expanded.

The translation of commands in Figure 5a straightforwardly translates each DPIA command into
the corresponding C statement. The translation is parameterised by an environment η that maps
from DPIA identifiers to C variable names. There is a small discrepancy that we overcome in that
semicolons are statement terminators in C, but separators in DPIA, and that doing nothing useful is
unremarkable in a C program, but is explicitly written skip in DPIA. The translation of assignment
relies on the translations for acceptors and expression, which we define below. Variable allocation
is translated using a { ... } block to limit the scope. We omit initialisation of the new variable
because we know by inspection of our previous translation steps that newly allocated variables
will always be completely initialised before reading. Note how we explicitly substitute a pair of
identifiers for the acceptor and expression parts of the variable in DPIA, but that these both refer
to the same C variable in the extended environment. Translation of variable allocation makes use
of generator CodeGendata (δ , v) that generates the appropriate C-style variable declaration for the
data type δ . Since C does not have anonymous tuple types, this entails on-the-fly generation of
the appropriate struct definitions. DPIA for loops are translated into C for loops, DPIA parfor
loops are translated into pseudo-parallel-for loops. In the body of the parfor loop, we substitute in
an idxAcc phrase which will be resolved later by the translation of acceptors. The variable names
introduced by translating new, for and parfor are all assumed to be fresh.

The translation of acceptors (Figure 5b) is parameterised by an environment η, as for commands,
as well as a path ps, consisting of a list of C-expressions of type int denoting array indexes, and
struct fields, .x1, .x2, denoting projections from pairs. The path must always agree with the type
of the acceptor being translated. During command translation, all acceptors being translated have
type num so the access path starts empty. The acceptor translation clauses in Figure 5b all proceed
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CodeGencomm (skip,η) = /* skip */
CodeGencomm (P1; P2,η) = CodeGencomm (P1,η) CodeGencomm (P2,η)
CodeGencomm (A := E,η) = CodeGenacc[num] (A,η, []) = CodeGenexp[num] (E,η, []);
CodeGencomm (new δ (λv . P ),η) = { CodeGendata (δ ) v;

CodeGencomm (P[(va ,ve )/v],η[va 7→ v,ve 7→ v]) }
CodeGencomm (for n (λi . P ),η) = for(int i = 0; i < n; i += 1) {

CodeGencomm (P ,η[i 7→ i]) }
CodeGencomm (parfor n δ A (λi o. P ) E,η) = #pragma omp parallel for

for(int i = 0; i < n; i += 1) {
CodeGencomm (P[idxAcc n δ A i/o],η[i 7→ i]) }

(a) DPIA commands to OpenMP C statements

CodeGenacc[δ ] (x ,η, ps) = η(x ) (reverse ps)
CodeGenacc[δ ] (idxAcc N δ A I ,η, ps) = CodeGenacc[N .δ ] (A,η,

CodeGenexp[idx[n]] (I ,η, []) :: ps))
CodeGenacc[NM .δ ] (splitAcc N M δ A,η, i :: ps) = CodeGenacc[N .M .δ ] (A,η, i/M :: i%M :: ps)
CodeGenacc[N .M .δ ] (joinAcc n M δ A,η, i :: j :: ps) = CodeGenacc[NM .δ ] (A,η, i*M+j :: ps)
CodeGenacc[δ1] (pairAcc1 δ1 δ2 A,η, ps) = CodeGenacc[δ1×δ2] (A,η, .x1 :: ps)
CodeGenacc[δ2] (pairAcc2 δ1 δ2 A,η, ps) = CodeGenacc[δ1×δ2] (A,η, .x2 :: ps)
CodeGenacc[N .δ1] (zipAcc1 N δ1 δ2 A,η, i :: ps) = CodeGenacc[N .(δ1×δ2 )] (A,η, i :: .x1 :: ps)
CodeGenacc[N .δ2] (zipAcc2 N δ1 δ2 A,η, i :: ps) = CodeGenacc[N .(δ1×δ2 )] (A,η, i :: .x2 :: ps)

(b) DPIA acceptors to C l-values

CodeGenexp[δ ] (x ,η, ps) = η(x ) (reverse ps)
CodeGenexp[num] (ℓ,η, []) = ℓ

CodeGenexp[num] (negate E,η, []) = (- CodeGenexp[num] (E,η, []))
CodeGenexp[num] (E1 + E2,η, []) = (CodeGenexp[num] (E1,η, [])

+ CodeGenexp[num] (E2,η, []))
CodeGenexp[N .(δ1×δ2 )] (zip N δ1 δ2 E1 E2,η, i :: .xj :: ps) = CodeGenexp[N .δj ] (Ej ,η, i :: ps)
CodeGenexp[M .N .δ ] (split N M δ E,η, i :: j :: ps) = CodeGenexp[MN .δ ] (E,η, i*n+j :: ps)
CodeGenexp[MN .δ ] (join N M δ E,η, i :: ps) = CodeGenexp[M .N .δ ] (E,η, i/n :: i%n :: ps)
CodeGenexp[δ1×δ2] (pair δ1 δ2 E1 E2,η, .xj :: ps) = CodeGenexp[δj ] (Ej ,η, ps)
CodeGenexp[δ1] (fst δ1 δ2 E,η, ps) = CodeGenexp[δ1×δ2] (E,η, .x1 :: ps)
CodeGenexp[δ2] (snd δ1 δ2 E,η, ps) = CodeGenexp[δ1×δ2] (E,η, .x2 :: ps)
CodeGenexp[δ ] (idx N δ E I ,η, ps) = CodeGenexp[N .δ ] (E,η,

CodeGenexp[idx[N ]] (I ,η, []) :: ps)

(c) DPIA expressions to C r-values

Fig. 5. Translation of Purely Imperative DPIA to parallel OpenMP C

by manipulating the access path appropriately until an identifier is reached. At this point, the DPIA
identifier is replaced with its corresponding C variable and the access path is appended.

Translation of expressions (Figure 5c) is parameterised similarly to the acceptor translation, and
contains similar clauses for all the data layout combinators. Expressions also include literals and
arithmetic expressions, which are translated to the corresponding notion in C.
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Example. We demonstrate how the translation to C works by applying it to the parfor loop in
the translation (4) of the simple dot product in Section 2. We use the environment η = [out 7→
out, xs 7→ xs, ys 7→ ys]. The command translation translates, in two steps, the parfor loop and
the assignment, substituting in the indexing acceptor for the acceptor in the loop body:

CodeGencomm (parfor ℓ out (λi o.o := fst (idx (zip xs ys) i ) ∗ snd (idx (zip xs ys) i )),η)
= #pragma omp parallel for

for(int i = 0; i < ℓ; i+=1) {
CodeGencomm (idxAcc out i := fst (idx (zip xs ys) i ) ∗ snd (idx (zip xs ys) i )),η[i 7→ i])

}
= #pragma omp parallel for

for(int i = 0; i < ℓ; i+=1) {
CodeGenacc[num] (idxAcc out i,η[i 7→ i], []) =

CodeGenexp[num] (fst (idx (zip xs ys) i ) ∗ snd (idx (zip xs ys) i )),η[i 7→ i], []);
}

The acceptor part of the assignment is translated as follows:
CodeGenacc[num] (idxAcc out i,η[i 7→ i], []) = CodeGenacc[ℓ.num] (out,η[i 7→ i], [i])

= out[i]

The expression part of the assignment is translated as follows, where we only spell out the left-hand
side of the multiplication in detail; the right hand side is similar.

CodeGenexp[num] (fst (idx (zip xs ys) i ),η[i 7→ i], [])
= CodeGenexp[num×num] (idx (zip xs ys) i,η[i 7→ i], [.x1])
= CodeGenexp[ℓ.(num×num)] (zip xs ys,η[i 7→ i], [i, .x1])
= CodeGenexp[ℓ.num] (xs,η[i 7→ i], [i])
= xs[i]

Putting everything together, we get the following translation of the original parfor loop, which
has had all the data layout combinators translated away.

#pragma omp parallel for
for(int i = 0; i < ℓ; i+=1) { out[i] = xs[i] * ys[i]; }

A similar translation was recently presented in a more informal style by Steuwer et al. [2017].
Their experimental results show that in practice it is important to keep the indices concise and short
for generating efficient imperative code and discuss how to simplify index expressions making use
of range information of the indices involved.

5 CORRECTNESS OF THE TRANSLATION
We now justify the translation process described in Section 4.1 and Section 4.2. We have not yet
formalised a correctness proof for the final translation to C (Section 4.3); this is future work.

As we stated in Section 4, the goal of the translation process was to generate a “purely imperative”
commandALEMδ (A) that is equivalent to the assignment commandA :=δ E. To make this statement
formal, we must define equivalence of DPIA programs. We do this in Section 5.1. We then state the
functional coincidence property that establishes that our correctness property means just what we
intend (Section 5.2). Finally, we prove the correctness of our translation in Section 5.3.

5.1 Semantics and Observational Equivalence for DPIA
We use Reddy’s relationally parametric automata-theoretic semantics of SCIR [Reddy 2013]. In this
model, the interpretations of phrase types are parameterised by automata describing permitted state
transitions. The model supports relationally parametric reasoning [Reynolds 1983], which enables
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reasoning about locality and information hiding (following [O’Hearn and Tennent 1995]). The use
of automata permits reasoning about phrases that do not affect the state (i.e. passive phrases).
Reddy’s model does not include indexed types or compound data types, as we do in DPIA,

but these are straightforward to add. Indexed types are interpreted by set-theoretic functions
whose codomain depends on the input (we do not interpret the data type polymorphism using
parametricity because we are only interested in parametric reasoning for local state). Compound
data types are interpreted as the following sets when they appear in expressions:

JnumK = num Jδ1 × δ2K = Jδ1K × Jδ2K Jℓ.δK = {0, . . . , ℓ − 1} → JδK

where the set num is some set of number-like objects used for scalar values. This interpretation
of data types allows us to straightforwardly interpret the functional primitives of Figure 3a in
the model, using the standard interpretation of map and reduce explicitly given in [Steuwer
et al. 2015]. This yields a coincidence property that we state in Section 5.2 below. Acceptors for
compound data types are interpreted using the separating product construction, which ensures
that disjoint components of compound acceptors are always non-interfering. This allows us to
interpret parfor n as n parallel transformations on n pieces of disjoint state.

Reddy’s semantics assigns an interpretation to every DPIA phrase. For observational equivalence
of DPIA programs, we are interested in closed programs. A closed program is a command phrase
whose free identifiers are all have types of the form var[δ] for possibly different δ . Our notion of
observational equivalence is standard. Two well-typed phrases ∆ | Π; Γ ⊢ P ,Q : θ are equivalent iff
for all closing contexts C[−], the programs C[P] and C[Q], when instantiated with the standard
interpretation of variables ([Reddy 2013], Figure 2), describe the same mapping of initial to final
values. We formally write ∆ | Π; Γ ⊢ P ≃ Q : θ , or informally P ≃ Q . Note that this relation is
automatically an equivalence and is congruent with all the constructs of DPIA.

For the purposes of compilation, this notion of equivalence is justifiable: we are only interested
in the relationship between the initial and final values of each variable, not the intermediate states.

5.2 Functional Coincidence
Our correctness criterion will have no force if we do not first establish that the assignment out :=δ E
means what we think it means. We state our coincidence property formally as follows. Let · | x1 :
exp[δ1], ...,xn : exp[δn]; · ⊢ E : exp[δ ] be some expression phrase of DPIA built from the functional
primitives in Figure 3a. Let JEK : Jδ1K × ... × JδnK→ JδK be the functional reference semantics of E.
Use E to construct a closed phrase:

· | ·;v1 : var[δ1], ...,vn : var[δn], out : var[δ ] ⊢ out.1 :=δ E[v1.2/x1, ...,vn .2/xn] : comm

Then for all a1 ∈ Jδ1K, ...,an ∈ JδnK,a ∈ JδK, the interpretation of this command maps the store
(v1 7→ a1, ...,vn 7→ an , out 7→ a) to the store (v1 7→ a1, ...,vn 7→ an , out 7→ JEK(a1, ...,an )). In other
words, this program updates the variable out with the result of the expression, and leaves every
other variable unaffected. We use Steuwer et al. [2015]’s interpretation of the functional primitives
in our DPIA semantics, so this property is immediate.

5.3 Correctness of the Translation from Functional to Imperative
We structure our proof by first stating a collection of equivalences that can be proved in Reddy’s
model, and then use them to prove that the translation of Section 4.1 and Section 4.2 is correct
(Theorem 5.1). The properties of contextual equivalences that we use in our proof, in addition to
the fact that ≃ is a congruent equivalence relation, are as follows.
(1) βη-equality for non-dependent and dependent functions:

(λx . P ) Q ≃ P[Q/x] P ≃ (λx . P x ) (Λx . P ) τ ≃ P[τ/x] P ≃ (Λx . P x )
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Full βη-equality for functions is one of the defining features of Idealised Algol and its
descendants [Reynolds 1997]. These are all justified by Reddy’s model.

(2) The parfor implementation of mapParI (Section 4.2) satisfies the following equivalence:
mapParI N δ1 δ2 (λx o. o :=δ2 F x ) E A ≃ A :=N .δ2 mapPar N δ1 δ2 F E (5)

By the definition of array assignment given in Section 4.1, this property is equivalent to:
mapParI N δ1 δ2 (λx o. o :=δ2 F x ) E A ≃ mapParI N δ2 δ2 (λx o. o :=δ2 x ) (mapPar δ1 δ2 F E) A

Expanding the definition of mapParI, and β-reducing, we must show:
parfor N A (λi o. o :=δ2 F (idx N δ1 E i )) ≃ parfor N A (λi o. o :=δ2 idx N δ2 (mapPar N δ1 δ2 F E) i )

which is immediate from the interpretation of arrays as functions from indices to values.
(3) Reddy’s model validates the following equivalence involving the use of temporary storage.

For all expressions E and continuations C that are non-interfering, we have:
new δ (λtmp. tmp.1 :=δ E;C (tmp.2)) ≃ C (E) (6)

This equivalence relies crucially on the fact that C and E cannot interfere, so we can take a
complete copy of E before invoking C . If C were able to write to storage read by E, then it
would be unsafe to cache E before invoking C . In Reddy’s model, we use parametricity to
relate the two uses of C : one in a store that contains the state E reads, and one in a store that
contains the result of evaluating E. Using parametricity and restriction to only the identity
state transition on E’s portion of the store further ensures that C does not interfere with E.

(4) The for-loop based implementation of reduceSeqI should satisfy the following equivalence.
reduceSeqI N δ1 δ2 (λx y o. o :=δ2 F x y) I E C ≃ C (reduceSeq N δ1 δ2 F I E) (7)

Expanding reduceSeqI, and β-reducing, this is equivalent to showing:
new δ2 (λv . v .1 :=δ2 I ; for N (λi . v .1 :=δ2 F v .2 (idx E i ));C (v .2)) ≃ C (reduceSeq N δ1 δ2 F I E)

Because the acceptor-expression pair v has been freshly allocated, it acts like a so-called
“good variable” in Idealised Algol terminology. This means that the following equivalence
holds, using the fact that neither F nor E interfere with v :

for N (λi . v .1 :=δ2 F v .2 (idx E i )) ≃ v .1 :=δ2 reduceSeq N δ1 δ2 F v .2 E

Now Equation 7 follows from Equation 6.
(5) Finally, we need agreement between data layout combinators and their acceptor counterparts:
A :=δ1×δ2 pair δ1 δ2 E1 E2 ≃ (pairAcc1 δ1 δ2 A :=δ1 E1;pairAcc2 δ1 δ2 A :=δ2 E2)
A :=N .(δ1×δ2 ) zip N δ1 δ2 E1 E2 ≃ (zipAcc1 N δ1 δ1 A :=N .δ1 E1; zipAcc2 N δ1 δ1 A :=N .δ2 E2)
A :=N .M .δ split N M δ E ≃ splitAcc N M δ A :=NM .δ E
A :=NM .δ join N M δ E ≃ joinAcc N M δ A :=N .M .δ E

The first equivalence follows directly from the definition of assignment at pair type, and
β-reduction for pairs. The others are all straightforwardly justified in Reddy’s model, given
the above interpretation of acceptors for compound data types using separating products.

Theorem 5.1. The translationsAL−M− (−) and CL−M− (−) defined in Figure 4a and Figure 4b satisfy
the following observational equivalences for all acceptors A and functional expressions E with disjoint
sets of active identifiers:

ALEMδ (A) ≃ A :=δ E CLEMδ (C ) ≃ C (E)

Proof. By mutual induction on the steps of the translation process. The cases for variables in
both translations are immediate. The cases for the first-order combinators on numbers follow from
the induction hypotheses and β-reduction. For example, for negate:

ALnegate EMnum (A) = CLEMnum (λx . A := negate x ) ≃ (λx . A := negate x ) (E) ≃ A := negate E
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ℓ ∈ {2, 4, 8, 16}
∆ ⊢ ℓ : width

∆ ⊢W : width
∆ ⊢ ⟨W ⟩num : data

Fig. 6. Extension of DPIA Types with a Vector Data Type

The case for the first-order combinators in the continuation-passing translation are similar.
The acceptor-passing translation of mapPar uses the induction hypothesis to establish the

correctness of the translations of the subterms, β-equality, and then the correctness property of
mapParI (Equation 5):

ALmapPar N δ1 δ2 F EMN .δ2 (A) = CLEMN .δ1 (λx .mapParI N δ1 δ2 (λx o. ALF xMδ2 (o)) x A)
≃ mapParI N δ1 δ2 (λx o. ALF xMδ2 (o)) E A)
≃ mapParI N δ1 δ2 (λx o. o :=δ2 F x ) E A
≃ A :=N .δ2 mapPar N δ1 δ2 F E

The continuation-passing translation of mapPar relies on the acceptor-passing translation and
additionally Equation 6 (temporary storage is unobservable). The acceptor-passing and contination-
passing translations for reduceSeq both rely on Equation 7 establishing correctness of reduceSeqI.
The acceptor-passing translations of the data layout combinators rely on the corresponding

properties for zip, split, join and pair. The acceptor-passing cases for fst and snd follow from the
induction hypothesis and β-equality. The correctness of the contination-passing translations for the
data layout combinators also follow by applying the induction hypothesis and using β-equality. □

6 EXTENSIONS
This section introduces two extensions to our core DPIA language: vectorisation and support for
performing iterative computations. These extensions show the extensibility of DPIA for expressing
more applications as well as execution strategies.

6.1 Vectorisation
Modern processors provide special SIMD vector instructions to perform computations on multiple
scalar values in a single clock cycle. These instructions can significantly increase the performance
of programs. To be able to explicitly encode strategies for vector operations in DPIA we extend the
type system (Figure 6), introduce new primitives to operate on vectors (Figure 7), and extend the
acceptor-passing, CPS, and code generation translations (Figure 8 and Figure 9).

We extend the definition of data types by adding a new vector type ⟨w⟩num (Figure 6) wherew
denotes vector width, i.e., the number of elements grouped in the vector which can only be one of
the sizes for which hardware instructions are available (here we assume 2, 4, 8, or 16). Widths have
kind width, which is a subkind of nat. Thus a widthw can be used as part of an array index.
To operate on vector values we introduce vector-specific primitives which resemble corre-

sponding primitives defined over arrays. The mapVec primitive maps a scalar function over each
component of a vector. Similarly to the split and join primitives, asVector and asScalar transform
arrays of scalar values into arrays of vectors and vice versa. The idxVec primitive is used to access
the individual components of a vector.
On the imperative side we add a vectorised for loop with the forVec primitive as well as the

acceptor version of the aforementioned data layout primitives. Finally, we added the intermediate
macro mapVecI which is expanded in our translation as follows:

mapVecI = Λn. λ f xs out. forVec n out (λi o. f (idxVec n xs i ) o)
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mapVec : (w : width) → (exp[num]→ exp[num]) → exp[⟨w⟩num]→ exp[⟨w⟩num]

asVector : (w : width) → (n : nat) → exp[nw .num]→ exp[n .⟨w⟩num]
asScalar : (w : width) → (n : nat) → exp[n .⟨w⟩num]→ exp[nw .num]
idxVec : (w : width) → exp[⟨w⟩num]→ exp[idx[w]]→ exp[num]

forVec : (w : width) → acc[⟨w⟩num]→ (exp[idx[w]]→ acc[num]→p comm) → comm

asVectorAcc : (w : width) → (n : nat) → acc[n .⟨w⟩num]→ acc[nw .num]
asScalarAcc : (w : width) → (n : nat) → acc[nw .num]→ acc[n .⟨w⟩num]
idxVecAcc : (w : width) → acc[⟨w⟩num]→ exp[idx[w]]→ acc[num]

mapVecI : (w : width) → (exp[num]→ acc[num]→p comm) → exp[⟨w⟩num]→ acc[⟨w⟩num]→ comm

Fig. 7. Primitives for Vectorisation

ALmapVecW F EM⟨W ⟩num (A) = CLEM⟨W ⟩num (λx .mapVecIW (λx o.ALF xMnum (o)) x A)

ALasVectorW N EMN .⟨W ⟩num (A) = ALEMNW .num (asVectorAccW N A)
ALasScalarW N EMNW .num (A) = ALEMN .⟨W ⟩num (asScalarAccW N A)

CLmapVecW F EM⟨W ⟩num (C ) = new (⟨W ⟩num) (λtmp. ALmapVecW F EM⟨W ⟩num (tmp.2); C (tmp.1) )

CLasVectorW N EMN .⟨W ⟩num (C ) = CLEMNW .num (λx . C (asVectorW N x ) )
CLasScalarW N EMWN .num (C ) = CLEMN .⟨W ⟩num (λx . C (asScalarW N x ) )

Fig. 8. Acceptor and Continuation-passing Translations for Vectorisation

CodeGencomm (forVec N A (λi o. P ) E,η) = #pragma omp simd
for(int i = 0; i < n; i += 1) {

CodeGencomm (P[idxVecAcc N A i/o],η[i 7→ i]) }

CodeGenacc[WN .num] (asVectorAccW N A,η, i :: ps) = CodeGenacc[N .⟨W ⟩num] (A,η, i/W :: ps)
CodeGenacc[N .⟨W ⟩num] (asScalarAccW N A,η, i :: j :: ps) = CodeGenacc[NW .num] (A,η, i*N+j :: ps)
CodeGenacc[num] (idxVecAccW A I ,η, ps) = CodeGenacc[⟨W ⟩num] (A,η,

CodeGenexp[idx[W ]] (I ,η, []) :: ps))

CodeGenexp[M .⟨N ⟩num] (asVector N M E,η, i :: j :: ps) = CodeGenexp[MN .num] (E,η, i*N+j :: ps)
CodeGenexp[NW .num] (asScalarW N E,η, i :: ps) = CodeGenexp[N .⟨W ⟩num] (E,η, i/W :: i%W :: ps)
CodeGenexp[num] (idxVec N E I ,η, ps) = CodeGenexp[⟨W ⟩num] (E,η,

CodeGenexp[idx[W ]] (I ,η, []) :: ps))

Fig. 9. Translation of Imperative Vector Primitives DPIA to Parallel OpenMP C

Figure 8 extends the acceptor and continuation-passing translations to account for the vector
primitives. The translations are similar to those of mapPar, split, join, splitAcc, and joinAcc.

Code generation for vectors is defined in Figure 9. The forVec primitive is translated into a for
loop annotated with OpenMP’s simd pragma which indicates to the underlying C compiler that the
instructions in the loop should be vectorised. Code generation for the other primitives is similar to
code generation for the corresponding array primitives.

The assignment operation is extended to support vectors as follows:
A :=⟨W ⟩num E = mapVecIW (λx a.a :=num x ) E A

Proc. ACM Program. Lang., Vol. 0, No. 0, Article 0. Publication date: October 2018.
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iterate : (n m k : nat) → (t : data) →
((l : nat) → exp[ln.t]→ exp[l .t]) → exp[nkm.t]→ exp[m.t]

newDoubleBuffer : (n m k : nat) → (t : data) → exp[n.t]→ acc[m.t]→
(var[k .t]→ comm→ comm→ comm) → comm

truncExp : (n m : nat) → (t : data) → exp[n.t]→ exp[m.t]
truncAcc : (n m : nat) → (t : data) → acc[n.t]→ acc[m.t]

iterateIAcc : (n m k : nat) → (t : data) → acc[m.t]→
((l : nat) → acc[n.t]→ exp[ln.t]→ comm) → exp[nkm.t]→ comm

Fig. 10. Primitives for Iterative Computations

The vector extension allows us to specify strategies for which OpenMP code with vector instruc-
tions is generated. An example with the vectorised dot-product is given in Section 2 (Equation 3)
and its translation into the OpenMP code is shown in Listing 2.2.

6.2 Iterative Computations
Our high-level functional language is deliberately restrictive. For example, it does not allow us
to define recursive functions. While this severely limits the expressiveness of our language, the
restrictiveness allows the generation of high performance code.
Here we show how to extend the expressiveness of the language by adding a limited form of

iterative computations for which we provide an efficient implementation using a double buffering
scheme. We believe that other similar extensions can be designed to extend the expressiveness
without losing the ability to generate high performance code.

Figure 10 introduces the iterate primitive which applies a given function a fixed number of
times to an array, by supplying the output of one function application as input to the next. We
take our formulation of iterate from Steuwer et al. [2015] with a type which allows the size of the
array to shrink by a fixed factor n in each iteration, allowing iterate to be used for implementing a
parallel tree-based reduction by iteratively performing multiple sequential reductions in parallel —
an implementation strategy suggested by Nvidia to be used on their GPUs [Harris 2008].
We implement iterate by double buffering, that is, we allocate two intermediate buffers and

switch between which is read from and written to after each iteration. For this we introduce the
newDoubleBuffer primitive:

newDoubleBuffer N M K δ E A (λv swap done . P )

Similar to the new primitive it binds a variable v which can be read from and written to, but in
contrast to new this variable provides an interface to two different buffers in memory: reading
from one and writing to the other. Besides the variable v the primitive also takes two commands:
swap and done . The intention is that when swap is invoked, it swaps which buffer is read from and
which buffer is written to and when done is invoked, the reading buffer is swapped as usual but the
writing buffer is set directly to the output.

Figure 12 shows the code generation fornewDoubleBuffer showing its efficient implementation.
After allocation of two temporary buffers, two pointers are initialised: one pointing to the input
E and the other to the first temporary buffer tmp1. The implementation of swap and done are
added to an extended environment η which as well as mapping from DPIA identifiers to C variable
names, now also maps identifiers of type comm to C statements. Every time swap or done are used
inside of P , the statements from the environment will be emitted. We implement swap efficiently
by swapping the two pointers between the two temporary buffers; a flag is toggled every time to
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ALiterate N M K δ F EMN .δ (A) = CLEMN KN .δ (λx . iterateIAcc N M K δ A (Λl .λo x .ALF l xMl .δ (o)) x )
CLiterate N M K δ F EMN .δ (C ) = new (N .δ ) (λtmp. ALiterate N M K δ F EMN .δ (tmp.2); C (tmp.1) )

Fig. 11. Acceptor and Continuation-passing Translations for the iterate primitive

CodeGencomm (newDoubleBuffer N M K δ E A (λp. P ),η) =
{

CodeGendata (K .δ ) tmp1; CodeGendata (K .δ ) tmp2;
CodeGendata (δ )* in_ptr = &(CodeGenexp[N .δ ] (E,η, [0]));
CodeGendata (δ )* out_ptr = tmp1;
char flag = 1;
CodeGencomm (P[(((va ,ve ), swap), done)/p],
η[va 7→ out_ptr, ve 7→ in_ptr,

swap 7→ {in_ptr = flag ? tmp1 : tmp2;
out_ptr = flag ? tmp2 : tmp1;
flag = flag ^ 1;},

done 7→ {in_ptr = flag ? tmp1 : tmp2;
out_ptr = &(CodeGenacc[M .δ ] (A,η, [0]));} ])

}

Fig. 12. Translation of the Imperative newDoubleBuffer primitive to Parallel OpenMP C

indicate how to configure the buffers. We implement done by setting the pointer used for writing
to the output acceptor A.
The iterate primitive is implemented in terms of newDoubleBuffer via a translation to the

iterateIAcc macro given in Figure 11. iterateIAcc is then defined as follows:
iterateIAcc = Λn m k δ (λa f e . newDoubleBuffer (nkm)m (nkm) δ e a (λv swap done.

for k (λi . f (nk−1m) (truncAcc (nkm.δ ) (nk−i−1m.δ ) δ v .1)
(truncExp (nkm.δ ) (nk−im.δ ) δ v .2) ;

if (i < k − 1) then swap else done) ) )

We assume a standard extension to support booleans. The for loop performs the iterative application
of the function F . After each iteration swap is invoked until the second to last iteration when done
is invoked. This implementation ensures that no unnecessary copies of input or output arrays are
made: the first iteration reads straight from the input and the last writes directly to the output.

The size of the arrays change in each iteration but only two buffers of a fixed size are allocated. To
ensure that the program typechecks we introduce truncExp and truncAcc primitives, which are
no-ops that restrict the size of a larger array. For the implementation of iterateIAcc we also extend
the arithmetic expressions with a subtraction operation. All nat expressions in the implementation
are guaranteed to be non-negative as i is the iteration variable and thus always smaller than k .

7 EXPERIMENTAL RESULTS
We implemented DPIA and the compilation to OpenMP code via the translation described in
Section 4. This section evaluates the quality of the OpenMP code generated with our implementation.
We are interested to see if this formal translation introduces overheads compared to hand-written
OpenMP code. We start by describing our experimental setup and the benchmarks used.

Experimental Setup. We used an Intel Core i7-7700 CPUwith 4 physical cores and hyper-threading
enabled. We measured the runtime of 10 runs and report the median runtime. We compare against
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Fig. 13. Performance of DPIA generated code for five benchmarks compared to sequential C and OpenMP.

hand-written OpenMP code on four simple linear algebra benchmarks as well as the Black-Scholes
application from financial stochastics.

Performance Results. Figure 13 shows the relative performance of sequential C code on the left,
the code generated from out DPIA language in the middle and hand-written OpenMP code on the
right. As can be seen, parallelism is beneficial for most of our benchmarks and our implementation
does not introduce any significant overhead compared to the hand-written OpenMP code. For
the absolute sum benchmark (asum) our DPIA implementation even slightly outperforms the
hand-written OpenMP implementation as we use a more complex strategy using vectorisation
along the lines of the example shown in Section 2.

8 RELATEDWORK
Idealised Algol and Syntactic Control of Interference. We have heavily relied on Reynolds’ in-

sightful design of Idealised Algol (IA) in this work, originally spelt out in [Reynolds 1997]. IA’s
orthogonal combination of typed λ-calculus and imperative programming has given us the ideal
language in which to formalise compilation from functional to imperative code. Moreover, Reynolds’
Syntactic Control of Interference (SCI) [Reynolds 1978] enabled us to ensure that we always produce
deterministic data race free programs. Brookes describes a concurrent version of Idealised Algol
[Brookes 2002] that he calls “parallel”, but is intentionally a non-deterministic concurrent language
that allows threads to communicate through shared memory.

Reynolds presents SCI as a series of principles for a language design, which are formulated as a
substructural type system by O’Hearn et al. [1999]. We have used O’Hearn et al.’s formulation in
our design of DPIA. We do not know of any other work using IA or SCI as an intermediate language
for compilation, although Ghica has used interference controlled Idealised Algol as a high-level
language for hardware synthesis [Ghica 2007].
Reynolds’ original presentation of IA describes its semantics in terms of a functor categories

[Oles 1982]. This semantics models the stack discipline of IA (which Reynolds uses to systematically
derive a compilation strategy for IA [Reynolds 1995]), but does not model non-interference or
the locality of fresh state, both of which we rely upon in Section 5. O’Hearn and Tennent were
the first to use relational parametricity to model locality [O’Hearn and Tennent 1995]. Models of
non-interference are given by O’Hearn [1993],Tennent [1990], and, O’Hearn and Tennent [1993],
refining the original Reynolds/Oles functor category semantics. The semantic insights in this work
later fed into Separation Logic [Ishtiaq and O’Hearn 2001]. Reddy’s object-space semantics [Reddy
1994, 1996] also modelled non-interference, but took an intensional viewpoint based on modelling
interactions with the store, rather than transformations of the store. Reddy later synthesised the
relationally parametric and intensional approaches in his automata-theoretic model [Reddy 2013],
which we used in Section 5.
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Functional Compilation Approaches Targeting Parallel Architectures. There exist multiple func-
tional approaches for generating code for parallel hardware. Steuwer et al. [2015] use a data parallel
language similar to the functional subset of DPIA. Semantics preserving rewrite rules are used to
explore the space of possible implementations showing that achieving high performance across
multiple architectures from functional code is possible. Obsidian [Svensson et al. 2016] is a func-
tional low-level GPU programming language which gives programmers flexibility over how to
write efficient code while still providing functional abstractions. Accelerate is a Haskell embedded
domain specific language providing higher level abstractions with the aim of generating efficient
parallel code [Chakravarty et al. 2011; McDonell et al. 2013]. LiquidMetal [Dubach et al. 2012]
targets Field-Programmable Gate Array (FPGAs) and GPUs by extending Java with a data-flow
programming model with built-in functional map and reduce operators. Bergstrom and Reppy
[2012] compile Nesl, which is a first-order dialect of ML supporting nested data-parallelism and
introduced by Blelloch [1993], to GPU code. Anderson et al. [2017] present an approach to compile
array-code written in Julia to parallel code. Delite [Sujeeth et al. 2014] enables the creation of
domain-specific languages using functional parallel patterns targeting parallel hardware.

9 CONCLUSIONS AND FUTUREWORK
We introduced a novel data parallel programming language DPIA, an interference controlled dialect
of Idealised Algol. We showed how DPIA is used as a foundation for a formal translation of data
parallel functional programs to imperative code for parallel machines. The approach offers strong
guarantees about the absence of data-races in the generated programs and a straightforward
translation strategy for generating efficient OpenMP code. Our experimental results show that our
approach yields efficient code on a par with hand-coded low-level parallel code.

While this paper has presented an implementation targeting OpenMP we are eager to extend this
work to target a diverse set of heterogeneous devices such as GPUs and FPGAs where the choice
of strategy is more challenging than on traditional CPUs. We envision such an extended version
of DPIA as a unifying language for generating efficient code for diverse parallel hardware from a
single high-level portable program, thus obtaining performance portability. To pursue our vision
we intend to model parallelisation and memory hierarchies present in modern parallel devices such
as GPUs in the type system which is for example required to guarantee deadlock freedom. While
OpenMP follows the sequential-by-default fork-join parallelism model, the dominant low-level GPU
programming models OpenCL and CUDA follow a parallelism-by-default model which requires
changes to the presented translation to continue to guarantee race-freedom. Finally, we plan to
push our formalisation further to prove the correctness of the final translation from DPIA to C,
OpenMP, and in the future OpenCL.
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