Using Links to prototype a Database Wiki

James Cheney, Sam Lindley
University of Edinburgh

jcheney@inf.ed.ac.uk,
Sam.Lindley@ed.ac.uk

ABSTRACT

Both relational databases and wikis have strengths that make
them attractive for use in collaborative applications. In the last
decade, database-backed Web applications have been used exten-
sively to develop valuable shared biological references called cu-
rated databases. Databases offer many advantages such as scala-
bility, query optimization and concurrency control, but are not easy
to use and lack other features needed for collaboration. Wikis have
become very popular for early-stage biocuration projects because
they are easy to use, encourage sharing and collaboration, and pro-
vide built-in support for archiving, history-tracking and annotation.
However, curation projects often outgrow the limited capabilities of
wikis for structuring and efficiently querying data at scale, necessi-
tating a painful phase transition to a database-backed Web applica-
tion. We perceive a need for a new class of general-purpose system,
which we call a Database Wiki, that combines flexible wiki-like
support for collaboration with robust database-like capabilities for
structuring and querying data. This paper presents DBWiki, a de-
sign prototype for such a system written in the Web programming
language Links. We present the architecture, typical use, and wiki
markup language design for DBWiki and discuss features of Links
that provided unique advantages for rapid Web/database applica-
tion prototyping.

Keywords

curated databases, web programming, Links, rapid prototyping

1. INTRODUCTION

Relational databases underlie many of the commercial systems
and Web applications in use today, and play a central role in large-
scale scientific data management, especially in biological sciences.
However, direct access to databases has largely remained the pre-
serve of professional programmers and database administrators. Re-
lational databases remain hard to use, in part because their high-
level interfaces — usually variants of SQL — have remained es-
sentially unchanged since their introduction in the 1970s and re-
main difficult to reconcile with other programming models. More-
over, relational databases lack native support for features such as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:

DBPL’11.

Copyright 2011.

Heiko Muller
Tasmanian ICT Centre
CSIRO
Hobart, Australia

heiko.mueller@csiro.au

versioning, annotation, and provenance, which are especially im-
portant for scientific databases [7]. Many of these features can be
added to existing systems in ad hoc ways, but this can be expensive.

Wikis are user-editable Web sites that have grown very popular
in the last decade. A prime example is Wikipedia, which is displac-
ing standard print reference works. Wikis allow users to edit their
content almost as casually as they search or browse. Wikis support
collaboration and transparency by recording detailed change histo-
ries and allowing space for discussion. Because they are free and
relatively simple to set up and configure, wikis are becoming popu-
lar for nascent biological database projects: for example, the Gene
Wiki Portal' lists over 15 biological wiki projects, and a wiki was
used to coordinate scientific response to the swine flu outbreak in
early 2009°.

There is a basic tension between structure and flexibility. Sys-
tems such as MediaWiki (used by Wikipedia and many biological
database projects) employ relational database technology internally
to provide efficient and robust concurrent access to many users,
but the data managed by these systems is still (essentially) text or
HTML. Many kinds of data stored in wikis actually have regular
structure, but are stored as HTML tables or lists. Wikis encourage
writing unstructured text, which can be searched using standard
information-retrieval techniques, but this approach does not scale
to the data sizes and complex queries that are needed, for example,
in curated biological databases.

Biocuration projects are expensive, in part because the data is
manually selected and edited by experts. It is important to record
not only the data (including past versions) but also provenance
metadata about the creation and history of the data and annotations
describing opinions or discussion of the data [7]. This extra func-
tionality is often neglected, or reimplemented in different systems
in ad hoc or unreliable ways. We believe that the needs of database
curation projects could be met more reliably and cost-effectively by
developing new general-purpose systems that combine the advan-
tages of databases and wikis. We call such systems Database Wikis.
Much of the basic research on curated databases needed to imple-
ment database wikis, such as archiving, citation, provenance, and
annotation management, has already been conducted [8, 22, 5, 4,
7]. However, there is no single system that draws these techniques
together.

In this paper, we present a Database Wiki design prototype called
DBWiki, implemented in Links [12]. The contributions of this pa-
per include lessons learned about both the design of Links and Web
programming languages, and about the tradeoffs involved in incor-
porating database query and update features into a wiki markdown

| http://en.wikipedia.org/wiki/
Portal:Gene_Wiki/Other Wikis
"http://tree.bio.ed.ac.uk/groups/influenza/

language. We are incorporating these lessons into Links and into a
production Database Wiki system.

Outline. Section 2 presents the design of the DBWiki system at a
high level, with examples of use, while Section 3 briefly introduces
Links. Section 4 discusses salient aspects of the implementation
in Links. Section 5 discusses the advantages and disadvantages
of using Links compared to a Java reimplementation. Section 6
discusses related work, and Section 7 concludes.

2. DESIGN OVERVIEW AND EXAMPLES

The Links Database Wiki prototype is essentially a basic wiki
combined with a semi-structured database (or data tree) with built-
in archiving, annotation and provenance tracking. The data tree is
an unordered, edge-labeled deterministic tree. Determinism means
that each path addresses exactly one subtree. The motivation for
this is to ensure that paths can be used as unique identifiers for sub-
trees. This is a flexible and generic data model that has been em-
ployed in previous work on different facets of curated databases [8,
5, 22]; although we believe a more sophisticated model is needed
for real applications, we adopted this simple data model to facilitate
rapid prototyping.

DBWiki also includes “wiki pages”, which are written in a sim-
ple concrete syntax based on that of common wikis. We adapted a
wiki syntax parser developed in the SEWiki application for SELinks
(and made available by the SEWiki developers [15]). Wiki pages
have the following abstract syntax:

p =/l /Sz;|pp
A = string | [A] | {fl : A1, - ,Ek : Ak}
| editable(A) | link
tag := hl|h2|em|b | blockquote | br | ---
P = s|tagls] | [[Name]] | [s] (url) | [s] (url) || P P’

p? | 2(A)p? | 1p! | [[Name(z1 = s1,...,Tn = sn)]]

Paths p are essentially just sequences of labels or variables $x;.
Types A include base type string, record types {¢1 : A1,..., 0l :
Ay}, list types [A] and additional types used for rendering, dis-
cussed below. HTML tags include all of the standard tags used in
Wiki-like markup languages.

Pages P are, essentially, sequences consisting of strings inter-
spersed with markup and some special constructs that support in-
teraction with the data component of the wiki. Here, € stands for
the empty page, P P’ stands for page concatenation, and tag|s]
stands for an HTML element with content string s. The constructs
[s] (url) and ![s] (url) provide links and image links to exter-
nal resources addressed by URLSs respectively, while the construct
[[Name]] is a “wiki link” pointing to a page named Name. So
far, these constructs are standard elements of wiki page syntax; in
addition, we provide syntax for embedding views, typed views and
data links to the data in the tree. We also support templates (that is,
pages with parameters and parameterized wiki links).

A view, or embedded query, is written as ?p?, and by default this
renders the data at path p in a generic way. This is not always read-
able, so in addition we allow views to take an optional rendering
type A, which describes the expected form of the data at p. Thus, a
typed view ?(A)p? instructs the system to extract the data at path p
and render it as if it were of type A. Rendering types include base
type, record and set constructors as well as a special editable type
editable(A) and a link type link that indicates a string that should
be rendered as a clickable URL.

Rendering a path query as a list of records is treated as a special
case: as lists of records often correspond to tables, they are pre-
sented as HTML tables with a single header row for the field names.

IDBWiki : ConferencePapers

|View Edit History

FrontPage

DtaTree 'Some conference papers
Recent Changes
lan bl e

title author booktitle year pages
Typechecking for Semistructured Data. Dan Suciu DBPL 2001 | 120

View-Based Query Answering and Query Containment over Diego Calvanese
Semistructured Data. De

DBPL 2001 | 4061

Moshe Y. Vardi

Optimization Properties for Classes of Conjunctive Regular Path Queries. | Alin Deutsch DBPL 2001 | 2139
Val Tannen

[Edit

(a) |Last modified: 14:53:48, June 6, 2011

IDBWiki : EditTyped / dbpl / inproceedings

FrontPage
IDataTree
[Recent Changes

booktitle year pages

) owL 2001 =)

) owL 2001 =

2001 2138

b)

Some conference papers

An editable table:

© ?<editable([{title:string,author: [string],
booktitle:string,year:string,
pages:string}])>/dbpl/inproceedings?

DBWiki : DataTree

(Cimport xML...)
Displayed Verson:
[FrontPage [root
DataTree B dbpl
Recent Changes B] inproceedings
B0

B author
o
Dan Suciu

D Sucts
@) (peie)

Explore From Here
[booktitle

(d) DBPL
IDBWiki : ConferencePaperTemplate

[View Edit History

e Typechecking for Semistructured Data.
[Recent Changes
|Authors:

Dan Suciu

[Conference: DBPL
Year: 2001

[Pages: 1-20

(e) \Last modified: 11:22:28, June 6, 2011

7<string>/dbpl/inproceedings/$id;/title?

Authors:
?<[string]>/dbpl/inproceedings/$id;/author?

Conference:
) ?<string>/dbpl/inproceedings/$id;/booktitle?

Year:
?<string>/dbpl/inproceedings/$id;/year?

Pages:
?<string>/dbpl/inproceedings/$id;/pages?

Figure 1: DBWiki screenshots and source code examples. (a)
A Wiki page rendering the data at /dbpl/inproceedings as a
table. (b) An editable version of the table. (c) Source for (a,b).
(d) The data tree editor. (e) A template page. (f) Source for (e).

Figure 1(a) shows the rendering of some DBLP bibliographic data
about DBPL 2001, stored at path /dbpl/inproceedings, as a ta-
ble. It also illustrates the use of the link type. Wrapping a type
in editable causes an edit hyperlink to be inserted in the rendering
of the corresponding binding. Clicking on this link takes the user
to the form-based editing interface for that binding. For example,
Figure 1(b) shows the form generated for 1(a); Figure 1(c) shows
the markdown source for the editable table.

A data link !p! simply provides a link to the data at path p. Fol-
lowing this link yields a tree viewer/editor rooted at p. For example,
Figure 1(d) shows a (partial) tree editor view of the subtree at path
/dbpl. The tree editor supports arbitrary changes to the data tree
via a Web browser, including inserting, deleting, renaming edges
and copying and pasting subtrees. XML data can also be parsed
and imported into the tree.

Path steps can be parameter references $x;. These refer to ad-
ditional optional arguments (passed in as CGI parameters in the
URL), making it possible to write femplates that can be filled in
with data from different parts of the tree. Likewise, wiki links can
be written with explicit parameters [[Name(z1 = $1,...,Zn =
sn)]]- These links are translated to URLs which link to the appro-
priate template page and fill in the CGI arguments with the speci-
fied strings. This makes it possible to write “index” pages that link
to a number of different instantiations of a template. Figure 1(e)
illustrates an example of a page rendered using a template to fill
in data from a record in the /dbpl/inproceedings subtree, and
Figure 1(f) shows the template source.

We are developing a formal semantics of page rendering and the
behavior of updates (including versioning and provenance behav-
ior), extending the approach described in prior work [5]. This se-
mantics will be needed to ensure correctness and type-safety in the
presence of concurrent access (a topic for future work).

3. LINKS OVERVIEW

Links is a functional programming language that allows writing
a Web application as a single program and splitting it into a server-
side program, client-side JavaScript and HTML, and SQL queries
against relational databases [12, 14, 11].

Basic concepts. Links is a functional, higher-order, call-by-
value, impure, typed language. Its expression syntax is loosely
based on JavaScript, while its type syntax is loosely based on that
of Haskell. The type language supports ordinary polymorphism,
polymorphic variants, row types, and effect polymorphism (which
is currently used to support concurrency and database queries). In
addition to standard functional programming constructs such as
pattern matching (switch/case), Links provides list comprehen-
sions (for) and XML literals with antiquoting, similar to XQuery
or Scala. The latter allows code and HTML to be freely mixed, gen-
eralizing the functionality of mainstream web scripting languages
such as PHP and JSP.

Execution model. A Links program running in web mode is
split, by the Links runtime, into two parts: an HTML page that is
sent to the client when the program is first invoked (via an HTTP
request), and a server-side component (currently implemented as
an interpreter) which responds to further XML HTTP Requests
(XHRs) from the client. The client-side code may contain embed-
ded JavaScript that responds to user interaction events and makes
XHR calls back to the server. Links functions can be explicitly de-
clared client or server; in the absence of an explicit annotation,
most code can run in either domain (exceptions include queries and

concurrency, as highlighted below).

Like a number of other Web programming languages, Links pro-
grams support arbitrary transfer of control flow between client and
server by serializing server-side continuations. Such continuations
can appear in URLs, HTTP POST requests and values returned
from XML HTTP Requests (for implementing server—>client calls).
Serializing continuations has limitations: it can yield URLs with
large, unreadable CGI arguments, and many Web servers (includ-
ing Apache) place an upper limit of around 4KB on URL length. In
DBWiki we wanted to keep URLs readable and stable over time in
order to allow external sites or searches to link to particular wiki
pages, as most wikis do, so we deliberately avoided the use of
serialized continuations in URLs. Links also provides advanced
features for creating Web forms and handling the resulting HTTP
POST requests, through an interface called formlets [13]. However,
currently formlets are targeted at classical synchronous Web 1.0-
style forms, and since most forms in DBWiki are dynamic we did
not make heavy use of formlets.

Types and effects. The Links type system explicitly captures
certain effects in the source language. The idea of an effect type
systems is best understood in terms of functions. In a plain type
system, each function has an argument type (or collection of argu-
ment types for multi-argument functions) and a return type. In an
effect type system, each function also has an effect rype. Whereas
the argument and return types capture the shape of inputs and out-
puts, the effect type captures what kind of operations the function
is allowed to perform. For instance, Java supports a kind of ef-
fect type in the form of exception specifications that indicate which
exceptions a method is allowed to raise.

Currently only two effects are captured in Links, to deal with
concurrency and database programming. The first effect hear : A
is used for concurrency. It indicates that the current process can
hear messages of type A. The second effect wild indicates code
that cannot be compiled to the database, such as code involving
general recursion or concurrency.

Functions in Links take n-tuple arguments. Function types

(A1, ..., An) {E}-> B

have n argument types A1, ..., An, an effect E, which is written as
an annotation on the arrow, and a return type B. In common with
Blume et al. [3], row types are used to encode effects. In order to
make types (and errors) more readable to users, effects are often
hidden or abbreviated with syntactic sugar. For the purposes of
this paper, all the reader needs to know is that —> indicates a tame
(i.e., non-wild) function that can be used inside a query, whereas
~> indicates a wild function that cannot be used inside a query, and
~e”~> indicates a wild function with polymorphic effect variable e.

Language-integrated query. Links provides high-level sup-
port for connecting to relational databases (including MySQL and
PostgreSQL), extracting data using queries, and updating data.
Links provides comprehension syntax for queries. Comprehen-
sions suffice to express many common database queries [9], and
using comprehension syntax instead of explicit recursion or fold
operations over lists makes it possible to recognize many query id-
ioms automatically. Links will also attempt to translate nested for-
loops to single queries. For example:

for(x <-- foo)
for(y <-- bar)
where (x.a == y.c)
[(a=x.a,d=y.d)]

turns into (modulo renaming):
SELECT x.a, y.d FROM foo x, bar y WHERE x.a = y.c

Note that this query could be written in a number of other ways, e.g.
using SQL’s JOIN keyword; Links generates queries in a SELECT-
FROM-WHERE form and does not try to identify idiomatic SQL, in-
stead relying on the relational optimizer.

Links provides a keyword query that asserts that a block of code
translates to at most one query. The effect-type system statically en-
forces this constraint by disallowing code that cannot be translated
to a query inside a query block. At run time, Links uses a nor-
malization procedure (generalizing an approach taken in Wong’s
Kleisli system [27]) to convert query blocks to normal forms that
correspond to isomorphic SQL queries. Operationally, this is a
form of run-time code generation: actually, run-time guery gen-
eration. Moreover, query blocks can refer to higher-order func-
tions, as long as they are tame (that is, only use features that can
be performed by SQL queries). Violations are reported as type er-
rors if the query block contains computations that cannot be ex-
pressed using queries, such as unbounded recursion or concurrency.
Cooper [11] presents the initial design of this feature of Links (in-
cluding both the type/effect system and rewrite system with proof
of strong normalization), which inspired the current implementa-
tion.

An important property of the normalization procedure is pre-
dictability. It produces idiomatic SQL. If the programmer writes
a comprehension that is in normal form, then it is translated to the
isomorphic SQL query. If the programmer abstracts over part of
a where clause then the query is the same as the query one would
obtain by inlining the abstraction in the where clause.

The form for (x <-- t) e is syntactic sugar for

query {for (x <- asList(t)) e},

where the built-in function asList presents a table as a list of rows.

4. IMPLEMENTATION OF DBWIKI

Data model. We implement the nested record structure in Links
as a list of bindings, where a binding maps a string label to another
record.

records as lists of bindings
typename Binding(a) = mu b.(String, ([b], a));
typename Record(a) = [Binding(a)l;

(These typename declarations introduce type aliases. The mu form
introduces an equi-recursive type [23, ch. 20-21].) We also use
a standard zipper data structure for navigating through the nested
record structure [19]. For convenience, we parameterize these types
by an annotation type a, such as a unique identifier to link a binding
to its location in a user interface, or a flag to indicate whether it has
been saved to the database. Often, these in-memory data structures
(or their HTML/JavaScript presentations) essentially correspond to
updatable views of the underlying database. We use the identi-
fiers to translate updates to these views to updates to the underly-
ing database. This is relatively straightforward because the class
of views is relatively small; bidirectional programming techniques
could be applied to handle richer classes of views, and this is an
interesting direction for future work. In particular, Foster et al. [16]
consider views on a tree-structured data model very similar to ours.

Relational back-end. The persistent data of a DBWiki instance
is stored in tables for bindings, binding names, time intervals, wiki

pages, and provenance. The Links database and table declarations
for DBWiki are shown in Figure 2. For the moment, note that it de-
clares a database dbwiki and a table in the dbwiki database whose
name is bindings, with columns id, row and child of type Int,
and name of type String. The constraint id readonly expresses
that the id column is read-only. The id column is the primary
key for bindings. Its presence allows us to change the name of
a binding (and preserve its history) without deleting and inserting
an entire subtree. The row field identifies the record in which this
binding appears. The name field is the name of the binding, and the
child field identifies the record containing its children.

We use query blocks to construct queries for looking up a path in
the tree. First consider a naive implementation that generates mul-
tiple SQL queries, shown in Figure 3. The function 1ookupPathO
takes a path consisting of a list of strings, and returns the binding
id and row id for the binding at the end of the path. The auxiliary
function lookup recursively traverses the supplied path, generating
a query to look up the next binding at each step. We assume that
paths are unique. If Nothing is returned, this indicates either that
the path is not present, or that it is not unique.

It is often more efficient to evaluate a single query per path rather
than one query per path step. As a first attempt, we could simply
wrap the call to lookup in a query block, to try to force the re-
sult to be obtained by a query. This leads to a type error, because
lookup is recursive and so the effect analysis infers that calls to it
cannot be compiled to SQL. The solution is to move the recursion
out of the query itself. We use recursion to assemble the query,
but no recursion appears in the resulting query, as shown in Fig-
ure 4. Now the auxiliary lookup function takes the path and also
the query constructed so far. The query is built up as a function
from the root binding to a list of bindings (which we expect to be
a singleton). The lookup function is recursive, but the result it re-
turns is not. The query block surrounding the call to q does not give
a type error, so we can now be sure that it will compile to at most
one query.

The encoding of query components as functions is important for
two reasons. First, it allows the query components to be composed
before the query is actually run. Second, it allows inner compo-
nents to depend on values computed from outer components. The
pattern we use may be familiar to Haskell programmers, where one
monad might be used to construct a computation which is subse-
quently run in a different monad. A difference with Haskell is
that one can take advantage of the monad structure to represent
the components using monad computations directly rather than as
functions.

Archiving. Following the XArch archiving system of Buneman
et al. [8, 22], all versions of the data are stored, using time-interval
annotations in an intervals table. Each interval provides a start
and end time during which the associated binding is active. As
a convenience, the value O is used to indicate that the end of an
interval is open, that is, the binding in question is present now. We
also track previous names for bindings in table names, in order
to support efficient renaming (not considered in XArch [8, 22]).
We only include the start of the interval in which a binding had
a particular name. The end is given by the start of the interval
in which the binding next changes its name, or O if there are no
subsequent name changes. The name field of the bindings table
also contains (redundantly, as a convenience) the current name of
the binding.

To further illustrate query integration in Links, we show how to
implement looking up a path at a particular time. First, we define
a function nameAt which returns the name of a binding at a given

var db = "dbwiki";

var bindings = table "bindings" with (id : Int, row : Int, name : String, child : Int)
where id readonly from db;

var intervals = table "intervals" with (id : Int, binding : Int, start : Int, end : Int)
where id readonly from db;

var names = table "names" with (id : Int, binding : Int, name : String, start : Int)

where id readonly from db;
var provenance = table "provenance" with (id :
totime

Int, fromtime :
Int, tobinding :

Int, frombinding : Int,
Int) where id readonly from db;

var pages = table "pages" with (id:Int, name:String, content:String, timestamp:Int)

where id readonly from db;

Figure 2: Relational database table declarations for DBWiki

sig lookupPathO : ([String]) ~> Maybe(BindingInfo)
fun lookupPathO(path) server {
fun lookup(path,
(binding=_, row=row) as bindInfo) {
switch (path) {
case [] -> Just(bindInfo)
case label::path ->
switch (for (b <-- bindings)
where (b.row == row
&& b.name == label)
[(binding=b.id, row=b.child)]) {
case [bindInfo] -> lookup(path, bindInfo)
case _ -> Nothing
}
}
}
lookup(path, (binding=0, row=0))
}

Figure 3: Implementation of 1ookupPathO generating multiple
queries.

time, shown in Figure 5. Notice that the arrow type in the func-
tion signature is tame (->), so it can be used inside other queries.
Now, we can define the function lookupPathAt, which looks up
the binding at the end of a path at a specified time, and generates a
single SQL query. The only difference compared to 1ookupPath
is that the recursive argument to lookup uses nameAt instead of
a name test b.name == label. The implementation of nameAt
is rather more complicated than one might hope due to limitations
in the current version of Links. In particular, Links does not cur-
rently support aggregation (for example, maximum) inside queries.
This is not a fundamental limitation, though; Ferry [18] supports
nested data, grouping and aggregation, and these features are being
incorporated into Links [25].

Annotations and Provenance. The archiving data immedi-
ately provides us with some provenance information. It tells us
when a binding was created or deleted, and when a binding had
its name changed. In addition we support a copy-and-paste op-
eration, which allows a binding (including all of its descendants)
to be copied elsewhere in the database. In this case, we record
where it (and the copies of its descendants) came from in a sepa-
rate provenance table. We implement annotations on top of the
underlying data model. To annotate a binding, we simply attach a
special child binding with the label _annotation, and any chil-

sig lookupPath : ([String]) ~> Maybe(BindingInfo)
fun lookupPath(path) server {
fun lookup(path, q) {
switch (path) {

case [] ->q
case label::path ->
lookup(path,
fun ((binding=_, row=row)) {
for (b <-- bindings)
where (b.row == row

&& b.name == label)
q((binding=b.id, row=b.child))
b
}
}
var q = lookup(reverse(path),
fun (bindInfo) {[(bindInfo)l});
switch (query {q((binding=0, row=0))}) {
case [v] -> Just(v)
case _ -> Nothing
}
}

Figure 4: Implementation of lookupPath generating a single
query.

dren of this node are deemed to be annotations of the original bind-
ing. This provides history and provenance tracking for annotations
at no extra effort.

Concurrency and fresh name generation. Links imple-
ments an Erlang-style mailbox concurrency model [1]. In web
mode, concurrency takes place only on the client. This model sup-
ports a standard idiom for handling user interface (UI) events: we
spawn an auxiliary handler process for each independent UI com-
ponent that waits for messages dispatched to the component. UI
events are dispatched by a special process spawned by the Links
run-time. In order to ensure that the UI stays responsive, the dis-
patcher typically just sends a message to the auxiliary handler pro-
cess.

A UI component handler typically maintains component state
that is updated each time it receives a message. Thus one might
view the handler process as the model component of a “model-
view-controller” architecture. Though the events are fired, and
messages are sent, asynchronously, the messages are handled syn-
chronously, ensuring that the model always remains in a consistent

sig nameAt : (Int, Int) -> [(name:String)]
fun nameAt(binding, t) {
fun p(n, £) {
n.binding == binding && f(n) &%
empty (for (m <-- names)
where (m.binding == binding
&& n.start < m.start && f(m))
[(id=m.binding)1)
}
for (n <-- names)
where ((t == 0 && p(n, fun (x) {true})) ||
(t <> 0 && p(n, fun (x) {x.start < t})))
[(name=n.name)]

Figure 5: Function nameAt returning a binding name at a par-
ticular point in time

state. This approach is a common idiom for the Erlang-style con-
currency model adopted by Links.

In several places we need to generate fresh names (e.g. for dy-
namically generated Ul components). An obvious way to imple-
ment this is to use mutable state. Links does not provide direct
support for mutable references.

Fresh name generation (and, in principle, arbitrary stateful ref-
erences) can also be implemented safely and systematically using
concurrency, and this is the approach taken in DBWiki. Although
Links processes are in principle extremely light-weight (just like
Erlang processes [1]), in practice there can be a significant penalty
for a context switch on the client. This is because context switch-
ing uses JavaScript’s setTimeout function, which is a well-known
source of performance problems. (On the server, context switches
are essentially free.) We tried this approach for generating fresh
names, and ran into problems when generating hundreds of names
at once. To fix this we support generating an arbitrary number of
names in one go, amortizing the high per-switch cost.

A more subtle issue arose due to effect typing. The issue is really
a limitation of the Hindley-Milner type system. Suppose we create
a new name supply:

sig nameSupply : () "> (freshId:() ~> Int)
var gen = nameSupply();

Now, gen is assigned the type (freshId: () {E}~> Int) forsome
fixed effect type E. This means we cannot call gen.freshId from
different effect contexts; in particular we cannot call it from pro-
cesses with different mailbox types. But, we use the same name
generator in the main process during initialisation and in the tree-
view handler process. In previous versions of Links, circumventing
this problem required an ugly hack. The current version of Links
supports first-class (arbitrary rank) type and effect polymorphism,
which allows us to assign the more general type

freshIld:forall e.() “e™> Int

to gen, permitting reuse with arbitrary mailbox types.

S. DISCUSSION

Developing the DBWiki prototype revealed both strengths and
weaknesses of Links. Links’ declarative approach to language in-
tegrated query has many benefits. Like other approaches such as
LINQ [21] or Ur/Web [10], Links prevents SQL injection by auto-
matically escaping parameters, but unlike any other language of

which we are aware, Links also allows queries to be composed
using higher-order abstraction mechanisms, mediated by an effect
system. We believe that the ability to seamlessly modularize queries
using the native Links abstraction mechanisms is powerful and help-
ful; we leveraged this extensively for lookupPath and also for
checking database integrity constraints, such as checking that no
two intervals for the same binding overlap.

On the other hand, the DBWiki prototype has also pushed the
limits of the current Links implementation. DBWiki is one of the
largest Links programs written so far, at approximately 4500 lines
of code. Developing DBWiki forced us to address some perfor-
mance issues that had been lurking in the Links interpreter, and
strongly motivates developing a compiler for full Links (pending
further research on how to compile code that performs run-time
query generation). The main obstacles to working entirely in Links
at the moment are performance and functionality: there are some
common tasks (such as parsing large wiki pages) where Links’ per-
formance is not competitive, and others (such as creating new tables
and initializing the database) that Links at present cannot perform.

Links is not yet ready for use in development of a production
Database Wiki system, but the Links prototype has helped signif-
icantly in clarifying design issues. We believe that the design of
the user interface is especially important for this kind of system,
especially the “markdown” language used to query, update, or vi-
sualize structured data from within wiki pages. User interfaces and
domain-specific language designs are challenging to evaluate, and
can benefit significantly from iterative design based on lightweight
prototypes to facilitate iteration and obtain early feedback from po-
tential users. We believe that using Links for rapid prototyping has
helped us explore the design space more quickly than would have
been possible in a production system.

We are now focusing on an alternative Database Wiki implemen-
tation in Java [6], initially due to improved performance and tool
support and to make it easier for others (e.g. MSc students) to con-
nect to existing Java libraries and web services. (For example, we
currently have one student working on connecting Google Maps
and Charts APIs to DBWiki data.) A comparison of the code size
of the systems is revealing: the Java version includes over 30,000
lines of code spread across hundreds of source files. The systems
provide complementary functionality, and this comparison does not
account for features present in the Java version not present in the
Links prototype or vice versa. However, if we compare just the
code for generating queries from paths, the Java version takes over
100 lines of code, including explicit parameter substitution to pre-
vent SQL injection attacks, whereas the Links version takes only
20 lines of code.

Of course, number of lines of code is not an exact measure of
code complexity or maintenance cost. Our experience extending
the Java version and supervizing student projects based on it has
been mixed. On the one hand, using Java gives us access to more
libraries and tools, as well as guaranteeing portability. On the other
hand, developing, maintaining and extending the Java version is
much more labor-intensive, in part because of the sheer size of the
code and in part because of the fact that the Java version performs
both dynamic query generation and dynamic HTML generation by
composing raw strings using JDBC. This illustrates that a declar-
ative high-level language for Web and database programming can
offer significant advantages for rapid prototyping, even in the ab-
sence of an optimizing compiler or extensive libraries. However,
further development effort needs to be invested, and some research
problems may need to be solved, to make the Links approach an
unambiguous win for developing a production system compared to
a conventional approach.

6. RELATED AND FUTURE WORK

Links has a lot in common with other functional Web program-
ming languages and frameworks such as HOP [24], Ur/Web [10],
Ocsigen [2], and Microsoft LINQ for .NET [21]. Like many of
these languages, Links supports language-integrated querying, but
differs in that queries are native (that is, use the same syntax as or-
dinary Links comprehension syntax, not embedded SQL or query
syntax trees) and composable (that is, queries can be built out of
reusable components). This combination of features makes Links
especially useful for rapidly prototyping database-driven Web ap-
plications. Note that in contrast to Ocsigen [2], we do not use phan-
tom types [20] to express invariants relating the SQL type system
to Links; instead, these properties are directly checked in Links’
type system.

Another approach to language integrated queries is Wiederman
and Cook’s batches [26]. A key feature of batches is that they allow
some side-effecting operations to be mixed with queries, subject
to certain dependency constraints. The idea is that the compiler
automatically separates out the side effects from the query. The
query is executed first and the results are subsequently fed into the
side-effecting operations.

The Database Wiki project builds upon extensive prior work on
archiving and curated databases [8, 22, 5, 4, 7]. Other projects,
including SELinks [15], have used Links as a starting point for se-
cure Web programming. SEWiki is a secure wiki system built us-
ing SELinks, which provides systematic (and provably secure) sup-
port for provenance and access control for hierarchically-structured
wiki pages, but did not address querying and editing for semistruc-
tured data.

There are several other Web applications or services, such as
Freebase, DabbleDB, Factual, and Google Fusion Tables [17] that
aim to ease sharing, creating and visualizing data. Fusion Tables,
in particular, provides many of the features of a Database Wiki:
It provides limited SQL-like queries, including creating “views”
that join two existing tables, as well as aggregate queries and vi-
sualizations whose results can be embedded into Web pages using
JavaScript. Fusion Tables also provides some support for history
and annotation. However, it lacks support for querying or editing
nested (semi-)structured data and currently does not provide API
access to annotations or the full history of data. These systems
have a lot in common with our Database Wiki idea. However, these
are closed-source systems and we aim to develop an open-source
system that can in principle be used by anyone — not all scientific
users will entrust a closed or commercial service with their data.
There are also a number of projects to create “structured wikis”
or “semantic wikis” for Semantic Web data (e.g. Semantic Medi-
aWiki) or based on data models such as Atom feeds (e.g. Atom-
icWiki). However, all of these systems are aimed at specific data
models and none of them support querying and editing arbitrary
semistructured data through a wiki interface.

7. CONCLUSIONS

Biologists are using the Web to collaborate in creating and shar-
ing research data, driving major advances in life sciences. How-
ever, at present they build on top of a variety of ad hoc tools,
including relational databases and wikis, because no one system
meets their needs, particularly concerning annotation, versioning
and provenance. These applications share enough functionality to
motivate developing a general-purpose system, called a Database
Wiki, that combines the strengths of both relational databases and
wikis.

We have constructed a pilot prototype in Links. The prototype

revealed both strengths (e.g. rapid turnaround, flexible query com-
position and static typing) and weaknesses (e.g. performance and
state handling) of Links, and helped clarify the tradeoffs between
expressiveness and ease-of-use for language extensions to support
database queries and updates from within wiki pages. Moreover,
the DBWiki implementation can serve as a running example used
to evaluate the performance and design of Links, and perhaps it
can be ported to other systems and used as benchmark for other
declarative approaches to Web programming.

Acknowledgments. Thanks to Peter Buneman, Henry Thomp-
son, and Chris Yocum for discussion of this work, and to Nik Swamy
for contributing the SEWiki parser. This work was supported by the
University of Edinburgh via an IDEA Lab Proof of Principle Pro-
totyping Fund award, EPSRC grant EP/F028288/1, and a Google
Research Award.

8. REFERENCES

[1] Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike
Williams. Concurrent Programming in Erlang, Second
Edition. Prentice Hall International, 1996.

[2] Vincent Balat, Jérome Vouillon, and Boris Yakobowski.
Experience report: Ocsigen, a web programming framework.
In ICFP, 2009.

[3] Matthias Blume, Umut A. Acar, and Wonseok Chae.
Exception handlers as extensible cases. In APLAS, 2008.

[4] Peter Buneman. How to cite curated databases and how to
make them citable. In SSDBM, Washington, DC, USA, 2006.
IEEE.

[5] Peter Buneman, Adriane P. Chapman, and James Cheney.
Provenance management in curated databases. In SIGMOD.
ACM Press, 2006.

[6] Peter Buneman, James Cheney, Sam Lindley, and Heiko
Miiller. DBWiki: A structured wiki for curated databases and
collaborative data management. In SIGMOD, 2011.

[7] Peter Buneman, James Cheney, Wang-Chiew Tan, and Stijn
Vansummeren. Curated databases. In PODS, 2008. Invited
paper.

[8] Peter Buneman, Sanjeev Khanna, Keishi Tajima, and
Wang-Chiew Tan. Archiving scientific data. ACM Trans.
Database Syst., 29, 2004.

[9] Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and
Limsoon Wong. Comprehension syntax. SIGMOD Rec.,
23(1), 1994.

[10] Adam J. Chlipala. Ur: statically-typed metaprogramming
with type-level record computation. In PLDI, 2010.

[11] Ezra Cooper. The script-writer’s dream: How to write great
SQL in your own language, and be sure it will succeed. In
DBPL, 2009.

[12] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy
Yallop. Links: web programming without tiers. In FMCO,
volume 4709 of LNCS, 2007.

[13] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy
Yallop. The essence of form abstraction. In APLAS, 2008.

[14] Ezra Cooper and Philip Wadler. The RPC calculus. In PPDP,
20009.

[15] Brian J. Corcoran, Nikhil Swamy, and Michael Hicks.
Cross-tier, label-based security enforcement for web
applications. In SIGMOD. ACM, 2009.

[16] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore,
Benjamin C. Pierce, and Alan Schmitt. Combinators for

bidirectional tree transformations: A linguistic approach to
the view-update problem. ACM Trans. Program. Lang. Syst.,
29(3), 2007.

[17] Hector Gonzalez, Alon Y. Halevy, Christian S. Jensen, Anno
Langen, Jayant Madhavan, Rebecca Shapley, Warren Shen,
and Jonathan Goldberg-Kidon. Google fusion tables:
web-centered data management and collaboration. In
SIGMOD. ACM, 2010.

[18] Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom
Schreiber. FERRY: database-supported program execution.
In SIGMOD, 2009.

[19] Gérard P. Huet. The zipper. J. Funct. Program., 7(5), 1997.

[20] Daan Leijen and Erik Meijer. Domain specific embedded
compilers. In DSL, pages 109-122, 1999.

[21] Erik Meijer, Brian Beckman, and Gavin M. Bierman. LINQ:
reconciling object, relations and XML in the .NET
framework. In SIGMOD, 2006.

[22] Heiko Miiller, Peter Buneman, and Ioannis Koltsidas. XArch:
archiving scientific and reference data. In SIGMOD, 2008.

[23] Benjamin C. Pierce. Types and programming languages.
MIT Press, Cambridge, MA, USA, 2002.

[24] Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop: a
language for programming the web 2.0. In OOPSLA
Dynamic Languages Symposium, New York, NY, USA,
2006. ACM.

[25] Alexander Ulrich. A Ferry-based query backend for the
Links programming language. Master’s thesis, University of
Tiibingen, 2011.

[26] Ben Wiedermann and William R. Cook. Remote batch
invocation for SQL databases. In DBPL, 2011.

[27] Limsoon Wong. Kleisli, a functional query system. J. Funct.
Program., 10(1), 2000.

