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Effect handlers allow the programmer to implement computational effects, such as custom error handling,

various forms of lightweight concurrency, and dynamic binding, inside the programming language. We

introduce cpp-effects, a C++ library for effect handlers with a typed high-level, object-oriented interface.

We demonstrate that effect handlers can be successfully applied in imperative systems programming languages

with manual memory management. Through a collection of examples, we explore how to program effectively

with effect handlers in C++, discuss the intricacies and challenges of the implementation, and show that despite

its limitations, cpp-effects performance is competitive and in some cases even outperforms state-of-the-art

approaches such as C++20 coroutines and the libmprompt library for multiprompt delimited control.
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1 INTRODUCTION

Effect handlers [Plotkin and Pretnar 2009, 2013] are an expressive control mechanism that allows
programmers to define and manage bespoke, fit-for-purpose computational effects. Typical ex-
amples include customised error handling, mutable state, input/output, lightweight concurrency,
dependency injection, and dynamic binding. Handlers also allow for transparent composition of
effects Ð both with each other and with native effects built into the language. From an engineering
methodology perspective, the advantage of handlers is the explicit separation of effect definitions
from their programming interface, a collection of commands (also known elsewhere in the literature
as operations). This makes the abstraction ergonomic, as it does not require any exotic conventions
to use an effect, in contrast to programming with monads, for instance. It also makes the job of
instrumenting existing code possible without extensive rewriting.
One application of effect handlers which is emerging as increasingly important is lightweight

cooperative concurrency, that is, concurrency in which all tasks are realised on a single OS thread,
without pre-emption. Effect handlers can lead to streamlined and efficient implementations of
lightweight (green) threads with different kinds of schedulers, fibers, generators, async/await,
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message-passing actors, etc. Multiple such user-defined concurrency abstractions compose seam-
lessly, to obtain, for example, nested generators, or threads in which every thread has its own
scheduled pool of message-passing actors. The advantage of using handlers is that the program-
mer can fine-tune all the details (schedulers, communication channels, cancellation policy, error
handling), while being able to define them at a relatively high level in a type-safe manner, which
would be hard to achieve with lower-level tools, such as a bare context-switching mechanism.

The origins of effect handlers [Plotkin and Pretnar 2009, 2013] lie in the realm of functional
programming [Kammar et al. 2013], first as a tool to extend the capabilities of the formal semantics
of algebraic effects [Plotkin and Power 2001, 2002, 2003], and later as a distinctive feature of several
experimental programming languages [Bauer and Pretnar 2015; Biernacki et al. 2019; Convent et al.
2020; Hillerström and Lindley 2016; Leijen 2017b]. Now more mainstream programming languages
are beginning to adopt them as built-in features, for example, Multicore OCaml [Sivaramakrishnan
et al. 2021] (soon to be released as part of OCaml 5.0) and Uber’s Pyro language for probabilistic
programming [Bingham et al. 2019]. Effect handlers heavily influenced the design of the React GUI
framework [Meta 2022], for instance, inspiring the design of łReact Hooksž. Effect handlers are
also central to the code navigation functionality of GitHub via the Semantic library [GitHub 2022],
which itself depends fundamentally on effect handlers in order to allow analyses to scale modularly
to support multiple languages and features.
In this paper, we address the open question of whether effect handlers can be meaningfully

exploited in system programming languages, such as C++, which allow for low-level program-
ming with a focus on performance, but also include sophisticated mechanisms for high-level
low-cost abstractions, such as classes, templates, and advanced techniques for memory manage-
ment. We address this problem by implementing and evaluating cpp-effects, a C++ library for
programming with effect handlers. It is built around the stack-switching mechanism provided
by the boost.context library [Boost 2022]. Our handlers are one-shot, meaning that suspended
computations can only be resumed once. In this style, resumptions are more akin to mutable linear
resources, rather than the immutable (and copyable) continuations of functional languages, which
is in accord with how stack and memory are manipulated in C++ via the RAII idiom and move
semantics [Combette and Munch-Maccagnoni 2018].
The main contributions of this paper are the following:

(1) A usable library for effect handlers in C++. The design goal of our library is to reconcile
an ergonomic API with type, memory, and performance guarantees commensurate with
existing C++ practice. The library requires no additional compiler support and incurs no
performance penalties for code that does not use its features. We argue that this library is not
merely a proof-of-concept exercise, but can offer a decisive step towards the incorporation of
effect handlers into C++ programming practice.

(2) An evaluation of programming with handlers in an object-oriented system pro-

gramming language. Effect handlers have been previously implemented in object-oriented
languages with automatically managed (garbage-collected) memory [Brachthäuser et al. 2018;
Inostroza and van der Storm 2018]. They have also been implemented in C [Leijen 2017a]
but without a typed API. We show that abstractions characteristic of system programming
(and C++ in particular), such as templates and techniques for direct memory management in
the absence of garbage collection, allow for a high-level typed API, and a reasonably efficient
implementation. We discuss in depth some further difficulties of programming with effect
handlers in such a setting. For example, the style of programming cannot be ported wholesale
from functional languages, since such naive implementations will quickly overflow the stack.
Such problems require specific solutions, which we provide.
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(3) Higher-level library on top of a low-level core. The core boost.context library suffers
from limited functionality, but enjoys the benefits of small size and wide availability. Our
library is built on top of it, in pure C++, so it is as portable as boost.context itself. In fact
it should be easy to replace boost.context with alternative low-level stack manipulation
backends. Our design allows for a clear separation between the architecture-specific core
and the implementation of handlers using abstractions provided by the language. It can
serve as a recipe for libraries in other languages, and in the implementation of compilers of
languages with native effect handlers. In the particular case of a compiler, the benefit is that
the compiler’s backend need only provide a basic stack-switching mechanism, while the rest
of the abstraction can be implemented entirely in the frontend.

The focus of this paper is twofold: the programmer’s experience of using effect handlers in C++
and the implementation of the library.

Section 2 discusses effects and their handlers on some typical examples: mutable state, cooperative
threads, message-passing actors, and generators. These examples also illustrate the way effect
handlers can be used in the OO setting: mutable state can be implemented using native mutable
state; a scheduler has the familiar shape of a while-loop that picks the process to be resumed; actors
can be implemented as a composition of state and threads. We discuss how the lack of tail-call
optimisation and the use of value types and templates can adversely affect the experience of using
handlers, when compared to Java or functional languages, but we also show how some commonly
used workarounds can be successfully applied here. We also discuss how the design of the library
allows for some optimisations that can be applied by the programmer to make the code faster
and more readable, e.g., a tail- and self-resumptive command clause in a handler can be explicitly
marked as such, and in effect can be sped up by avoiding context switching altogether.
Section 3 takes a closer look at the implementation details of effect handlers. Our approach is

based on a stack of active handlers, each storing a call-stack segment (a stacklet), used to evaluate the
handled computation. This is a known implementation strategy, used for example in the Multicore
OCaml compiler [Sivaramakrishnan et al. 2021]. However, due to the peculiarities or our particular
setting, we must address a number of novel obstacles. One example is reusing the same handler
for computations of different types. In existing implementations (functional, OO, and in C), such
reuse is realised via reference types, that is, the handler actually manipulates pointers to data. Our
library uses templates to allow for value types, that is, direct manipulation of memory, which can be
more efficient. This forces us to pay additional attention to the type structure of different elements
of the implementation. Another example is managing the lifetime of OO-style handlers, which
turns out to be surprisingly subtle. For this reason, the library takes responsibility for allocating
and deallocating handlers, but the user is still able to configure this process: for handlers of a
certain shape, the user can trade the guaranteed memory safety for performance. The result is a
library with explicitly typed commands, handlers, and resumptions, which does not require the
user to perform any type casts, but still allows for the convenient dynamic pairing of commands
and handlers. (It is still possible to encounter a runtime error when a command does not have a
corresponding handler in the context, as we do not provide an effect-tracking system.)
Section 4 presents some microbenchmarks. Though our main focus is the ergonomics of pro-

gramming with cpp-effects, and we are sure there is plenty of scope to improve performance,
these benchmarks provide evidence that cpp-effects performance can be competitive with the
existing mainstream. In particular, we compare with generators built on top of C++20 coroutines,
and mutable state built using Section 5 discusses related work and Section 6 concludes.
Our library is available at: https://github.com/maciejpirog/cpp-effects.
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2 THE PROGRAMMER’S INTERFACE

In this section, we introduce the features of cpp-effects through a collection of examples including
mutable state, lightweight cooperative threads, actors, and generators. These examples and more
(e.g., async/await and a toy GUI library inspired by React) are available with the library.

2.1 Mutable State

We begin with an implementation of basic mutable state effect in order to illustrate how effects
and handlers work in our library. The main purpose of this example is not to illustrate anything
like the full power of effects and handlers, but rather to give a minimal overview of the syntax and
semantics of the core features of our library. Having said that, it turns out that mutable state as an
effect is a crucial component for our implementation of actors (Section 2.3).
The aim is to abstract over what it means to read and write to a single state cell. The interface

will be given by two commands: Put writes a value to the state cell, and Get reads the current value.
Different effect handlers provide different implementations of these commands: an implementation
might implement the state cell on the local heap in the standard way, but it might alternatively
store it remotely or apply more complex policies such as caching.
Our library occupies the cpp_effects namespace, but in this paper we shorten it to eff. First let

us define the two commands that constitute the effect interface.

#include "cpp-effects/cpp-effects.h"

namespace eff = cpp_effects;

template <typename S>

struct Put : eff::command<> {

S newState;

};

template <typename S>

struct Get : eff::command<S> { };

A command is defined as a class (or a struct, which is really just a class whose members are all
public) that inherits from the eff::command class. The optional template parameter of command is the
return type for the command. Arguments are supplied to the command as fields of the class. The two
commands are defined as templates in order to enable them to be parameterised by the underlying
type of the state cell (S). The Put command takes a single argument newState of type S and does not
return a value. The Get command takes no arguments and returns a value of type S.
In order to invoke a command we use the eff::invoke_command function. For convenience, we

define templated wrapper functions for invoking each of our two commands.

template <typename S>

void put(S s) {

eff::invoke_command(Put<S>{{}, s});

}

template <typename S>

S get() {

return eff::invoke_command(Get<S>{});

}

(Note that the {} braces in the initialiser of Put is a required trivial initialiser of Put’s base class,
eff::command. Since command does not have any member variables, it is always empty, but C++ still
requires its initialiser when constructing an object of type Put.)We can nowwrite state computations,
such as an increment function inc for integer state.
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int inc()

{

put(get<int>() + 1);

return get<int>();

}

This function increments the current value of the state and returns the updated value of the state.
So far we have given the state interface as a pair of commands and shown how to invoke them.

However, we have not yet given them a meaning. In order to do that, we must define a handler. We
now define a state handler that simply represents the state cell as a private member.

template <typename Answer, typename S>

class Stateful : public eff::handler<Answer, Answer, Put<S>, Get<S>> {

public:

Stateful(S initialState) : state(initialState) { }

private:

S state;

Answer handle_command(Put<S> p, eff::resumption<Answer()> r) override

{

state = p.newState;

return std::move(r).tail_resume();

}

Answer handle_command(Get<S>, eff::resumption<Answer(S)> r) override

{

return std::move(r).tail_resume(state);

}

Answer handle_return(Answer a) override

{

return a;

}

};

A handler is defined as a class that inherits from the eff::handler class. The general idea is that a
handler handles some computation by interpreting the commands used by that computation and
the return value of the computation appropriately. Although not the case here, the return type of
the handler and the return type of the computation being handled may differ. These are determined
respectively by the return and argument types of the return clause. The template parameters are:
the return type of the handler, the return type of the computation being handled, and a list of all
handled commands. In this case the final return type and original return type are both Answer. We
abstract over this answer type and the type of the state cell using a template.
Each command (here Put and Get) is given a meaning by overloading the handle_command virtual

member function. The second argument r to the handle_command function is a resumption. It is an
object that captures the rest of the computation being handled. Its template parameter reflects the
type of the captured computation Ð it is a function type from the return type of the command to the
answer type of the handler. Our use of resumptions in this example is not particularly interesting
(we pass the return value to the resumption once at the end of each command clause), but as we
shall soon see resumptions are central for allowing effect handlers to express features such as
concurrency.

An important aspect of resumptions that is visible here is that they are one-shot. They are movable
but not copyable. After resuming, the resumption object becomes invalid. When a resumption
object goes out of scope the computation it captures is deleted (i.e., the corresponding stack is
unwound). Being one-shot allows resumptions to be implemented efficiently using non-copyable
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data structures such as various kinds of system stack or fibers. Indeed, our implementation is built
on the non-copyable fibers of the boost.context library.
Both boost.context and our library rely on a common C++ idiom known as move semantics,

which provides a degree of safety to programming with single-use resources, even without a linear
type system. The idea is that one can call resume only on so-called r-value references, and not
expressions that represent actual objects in memory (l-values). This means that one cannot write
res.resume(), because res is an l-value. The sole purpose of std::move here is to lift an l-value to
an r-value reference, forcing the programmer to include std::move in the code, which is supposed
to explicitly mark that the programmer gives up the łownershipž of a resource. This approach
does not statically preclude using the resource twice, e.g. calling std::move(res).resume() twice will
compile (a form of linear or ownership type system would be able to rule out such cases), but it
will lead to a run time error.

The Put command clause updates the state member with the new value and then invokes the
resumption with no argument. The Get command clause invokes the resumption with the current
state. The handle_return member function defines how to process the final result value. In this case
it is simply returned as is.
Having defined a handler we can now invoke it on a computation.

int main()

{

std::cout << eff::handle<Stateful<int, int>>(inc, 100); // Output: 101

}

A computation is handled using the function eff::handle. The first argument is the computation.
Subsequent arguments are forwarded as arguments to the constructor of Stateful.

2.2 Cooperative Lightweight Threads

Nowwemove onto an example, cooperative lightweight threads, that begins to demonstrate the real
power of effect handlers. We begin by defining two commands and convenient wrapper functions.

struct Yield : eff::command<> { };

struct Fork : eff::command<> {

std::function<void()> proc;

};

void yield()

{

eff::invoke_command(Yield{});

}

void fork(std::function<void()> proc)

{

eff::invoke_command(Fork{{}, proc});

}

The Yield command yields control to another lightweight thread. The Fork command forks off a
new lightweight thread. They can be used in the following code, where starter starts a number of
threads, each printing out a number in a loop.

void worker(int k)

{

for (int i = 0; i < 10; ++i) {

std::cout << k;

yield();
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}

}

void starter()

{

for (int i = 0; i < 5; ++i) {

fork(std::bind(worker, i));

}

}

The intention is that calling starter in a scheduler will print out a stream of interleaved digits. The
std::bind function in the body of starter yields a zero-argument function (a thunk), which when
called applies worker to iÐ alternatively, we could use a lambda expression fork([=](){ worker(i); }).
A handler for Yield and Fork defines a scheduler. Here we implement a round-robin strategy.

using Res = eff::resumption<void()>;

class Scheduler : public eff::handler<void, void, Yield, Fork> {

public:

static void Start(std::function<void()> f)

{

queue.push_back(eff::wrap<Scheduler>(f));

while (!queue.empty()) {

Res resumption = std::move(queue.front());

queue.pop_front();

std::move(resumption).resume();

}

}

private:

static std::list<Res> queue;

void handle_command(Yield, Res r) override

{

queue.push_back(std::move(r));

}

void handle_command(Fork f, Res r) override

{

queue.push_back(std::move(r));

queue.push_back(eff::wrap<Scheduler>(f.proc));

}

void handle_return() override { }

};

The scheduler maintains a queue of lightweight threads represented as resumptions. Execution is
initiated by the static Start member function, which is passed a function as an argument, which
becomes the body of the first thread. Each thread is created using the function eff::wrap, which lifts
a function to a resumption by wrapping a handler around its body. For instance, eff::handle<H>(f)
is equivalent to eff::wrap<H>(f).resume().

The interesting control flow is provided by the command clauses. The Yield clause simply pushes
the current resumption onto the queue, causing control to return to the scheduling loop. The Fork

clause again pushes the current resumption onto the queue, but then also places the new forked
thread onto the queue too.
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In functional programming languages, this example is typically written using a tail-recursive
scheduler function [Bauer and Pretnar 2015; Biernacki et al. 2020; Convent et al. 2020; Sivaramakr-
ishnan et al. 2021]. But here we see that it works perfectly well using a loop instead, implementing
the familiar pattern of control switching between threads and a central scheduler loop.
One message we would like to convey is that though effect handlers do require a way of

capturing resumptions, they do not depend on functional programming and work perfectly well
when programming in a primarily imperative style. We can run the scheduler as follows.

int main()

{

Scheduler::Start(starter);

}

This will print out 01021032104321043210432104321043210432104321432434.

2.3 Actors

One of the key strengths of effect handlers is that they are composable. We now show how to
compose our state and lightweight thread handlers in order to implement message-passing actors
similar to those of Erlang [Armstrong et al. 1996]. For simplicity, we here give a fixed implementation
of actors, but in Section 2.5 we observe that we can treat actors themselves as an effect whose
implementation can itself be given by a handler (or indeed different handlers corresponding to
different implementation strategies).

Following Erlang, we refer to actors as processes. Each process has its own mailbox. Any process
can send messages to the mailbox of any other process, but only the owner of a mailbox can read
messages from it. We begin by representing a process identifier as a pointer to a queue of messages.

using Pid = std::shared_ptr<std::queue<std::any>>;

Weuse the std::any type, becausemailboxes are heterogeneous, whichmeans that different messages
for the same actor can be of different types.
The actor interface is given by the following four functions.

Pid spawn(std::function<void()> body); // spawn a new process and return its process id

Pid self(); // return the process id of the current process

template <typename T> void send(Pid p, T msg) // send msg to p

template <typename T> T receive(); // read a message from my mailbox

Here is a simple ping-pong example that uses the interface to spawn a process. The main process
then sends a sequence of messages to the child process which just sends the messages back again.

void pong()

{

while (true) {

auto [pid, n] = receive<std::tuple<Pid, int>>();

if (n == 0) { return; }

send<int>(pid, n);

}

}

void ping()

{

auto pongPid = spawn(pong);

for (int i = 1; i <= 10; i++) {

send<std::tuple<Pid, int>>(pongPid, {self(), i});

std::cout << receive<int>() << std::endl;
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}

send<std::tuple<Pid, int>>(pongPid, {self(), 0});

}

Now we give the implementation of the actor interface, which uses the effects defined in previous
sections: state and threads.

Pid spawn(std::function<void()> body)

{

auto mailbox = std::make_shared<std::queue<std::any>>();

fork([=]() {

eff::handle<Stateful<void, Pid>>(body, mailbox);

});

return mailbox;

}

Pid self()

{

return get<Pid>();

}

template <typename T>

void send(Pid p, T msg)

{

p->push(msg);

}

template <typename T>

T receive()

{

auto mailbox = get<Pid>();

while (mailbox->empty()) { yield(); }

auto msg = mailbox->front();

mailbox->pop();

return std::any_cast<T>(msg);

}

The spawn function makes use of the Fork command to implement the new process as a lightweight
thread. It also uses the Stateful handler to manage the mailbox in the body of the process. The
self and receive functions access the mailbox using the Get command. (It turns out that for this
example we only really need a read-only state effect Ð we don’t use Put Ð as the mailbox itself is
accessed through a further indirection.) We make use of templates and std::any_cast in order to
support different message types. If we try to receive a message when the mailbox is empty, then
the current process will yield until the mailbox is no longer empty.

We can now run our ping example using the Scheduler handler for lightweight threads, with the
Stateful handler used internally.

int main()

{

Scheduler::Start(std::bind(spawn, ping));

}

This outputs the sequence of integers as expected.
A notable aspect of our implementation is that the state effect is bound dynamically as a result of

being implemented using handlers. Whenever we call receive or self, we dynamically bind to the
mailbox, so we do not have to carry any information about the current process id around, and the
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body of the actor looks natural, even if it uses features such as recursion or higher-order functions.
Crucially, we could not use a global variable to maintain the state, because each process has its
own mailbox.

2.4 Ergonomics

Sometimes the full power of effect handlers is overkill. For instance, in the Stateful handler we
always invoke the resumption argument in tail position at the end of each command clause.
Moreover, the return clause just returns the value it is passed. It is possible to avoid writing some
of this boilerplate. Here is a more ergonomic version of Stateful.

template <typename Answer, typename S>

class Stateful : public eff::flat_handler<Answer, eff::plain<Put<S>>, eff::plain<Get<S>>> {

public:

Stateful(S initialState) : state(initialState) { }

private:

S state;

void handle_command(Put<S> p) override

{

state = p.newState;

}

S handle_command(Get<S>) override

{

return state;

}

};

The eff::flat_handler class automatically inserts an identity return clause Ð hence it only takes
a single Answer template argument before the commands. Flat handlers make it easier to define
handlers that are truly parametric in the final result type. The problem is due to the C++ template
system. For example, in our original definition of the Stateful handler, it is not possible to instantiate
Answer with void, as it is used as the argument type of the handle_return method.

The clause modifier eff::plain in the type arguments of Handler indicates that a command is a plain
command, meaning that the resumption given as the argument of handle_command must be invoked
in tail position at the end of the command clause (we say that it is tail- and self-resumptive). As a
consequence there is no need to expose the resumption at all to the programmer. The corresponding
handle_command no longer includes a resumption argument, and the return type is now that of the
command instead of the final return type of the handler. As well as improving readability, plain
commands also improve performance as there is no need to perform any kind of context switch. So
where possible, it is worth marking a command as plain.

Plain clauses are not to be confused with two ways in which we can resume: resume (used in the
handler for threads) and tail_resume (used in the handler for state in Section 2.1). The reason for
the latter is the lack of general tail-call optimisation in C++. If we used return std::move(r).resume()

in the state handler, the handle_command frames created when we invoke a command would stay on
the call stack until the very end of the handled computation. Since we need to be able to perform
any number of commands in a computation, tail_resume allows us to avoid stack overflow. It can be
used for any resumption as the last handler-related statement in a command clause (or a function
called by a command clause), and it can be used to replace the top-most handle_command call-frame
with the resumed computation. However, from a code-engineering perspective, if the tail-resumed
resumption is the one we get as an argument, it makes more sense to use the eff::plain modifier,
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while if the effect juggles a number of resumptions, it is, in our experience, more convenient to
trampoline them in a loop as in the lightweight threads example.

The library provides a further clause modifier eff::no_resume. This is used to indicate a command
clause that never invokes its resumption at all, in other words an exception. As with plain command
clauses, the resumption argument is omitted from a no_resume command clause. For instance, we
might want to extend the lightweight threading interface to support a command to kill the current
thread.

struct Kill : eff::command<> { };

We could then adapt the Scheduler handler as follows:

class Scheduler : public eff::handler<void, void, Yield, Fork, eff::no_resume<Kill>> {

// ...

void handle_command(Kill) override { }

};

Themain benefit here is clarity. Because of the techniqueswe use to optimise creation of resumptions
(described in Section 3.4), the performance benefit is minimal.

2.5 Actors Revisited

In Section 2.3, we gave a fixed implementation of actors. Now we decouple that implementation
into an effect interface and a handler, opening up the possibility of easily plugging in alternative
implementations. For instance, we might want to swap out the underlying implementation of
lightweight threads to use a different scheduler, or we may wish to give a completely different
implementation that does not factor through the lightweight threads implementation at all.
The commands and wrapper functions are as follows.

using Pid = std::shared_ptr<std::queue<std::any>>;

struct Spawn : eff::command<> {

std::function<void()> body;

};

struct Self : eff::command<Pid> { };

struct Send : eff::command<> {

Pid p;

std::any msg;

};

struct Receive : eff::command<std::any> { };

Pid spawn(std::function<void()> body)

{

return eff::invoke_command(Spawn({}, body));

}

Pid self()

{

return eff::invoke_command(Self{});

}

template <typename T>

void send(Pid p, T msg)

{

eff::invoke_command(Send({}, p, msg));

}
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template <typename T>

T receive()

{

return std::any_cast<T>(eff::invoke_command(Receive{}));

}

The commands themselvesmake use of std::any, but thewrapper functions for sending and receiving
are template functions and, in particular, the receive wrapper performs the type cast.
Now we can move the actual implementation of the commands into a handler.

template <typename Answer>

class Act : public eff::flat_handler<Answer, eff::plain<Spawn>, eff::plain<Self>,

eff::plain<Send>, eff::plain<Receive>> {

Pid handle_command(Self) override

{

return get<Pid>();

}

Pid handle_command(Spawn s) override

{

auto mailbox = std::make_shared<std::queue<std::any>>();

fork([=]() {

eff::handle<Stateful<void, Pid>>(s.body, mailbox);

});

return mailbox;

}

void handle_command(Send s) override

{

s.p->push(s.msg);

}

std::any handle_command(Receive) override

{

auto mailbox = get<Pid>();

while (mailbox->empty()) { yield(); }

auto msg = mailbox->front();

mailbox->pop();

return msg;

}

}

All of the commands are plain and the handler is a parametric flat handler. Now if we want to
change the implementation, we can just define a different handler to use in place of Act.
This example illustrates a more general problem that we encounter with defining an API for

effect handlers as a library: commands cannot be handled polymorphically. This is because if we
wanted to handle a command such as

template <typename T> struct Receive<T> { };

polymorphically in T, then the corresponding command clauses for the handler would have to be
both virtual and templates, which is illegal in C++.

The solution, which is folklore and applicable in many different scenarios, is to split the command
into the monomorphic łcorež and a polymorphic wrapper. This, however, often requires other types
to be factorised in this way. For example, here is a snippet from our implementation of async/await:

struct GenericFuture {

std::vector<eff::resumption<void()>> awaiting;

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 183. Publication date: October 2022.



High-Level Effect Handlers in C++ 183:13

};

template <typename T>

class Future : public GenericFuture {

std::optional<T> value;

...

};

struct Await : eff::command<> {

GenericFuture* future;

};

template <typename T>

T await(Future<T>* future)

{

if (*future) { return *(future->value); }

eff::invoke_command(Await{{}, future}); // Suspend until the value is ready

return future->Value();

}

template <typename T>

class Scheduler : public eff::handler<void, T, Yield, Await> {

void handle_command(Await f, Res r) override

{

f.future->awaiting.push_back(std::move(r));

// going back to the scheduler loop...

}

// ...

};

In this example, we allow the user to create and await a future of any type, but we cannot make
Await a template. Instead, we decouple the behaviour from the data. Though the Await command
itself is monomorphic, including a pointer to the GenericFuture base class as a member, we wrap its
invocation using a template function. The handler itself does not need to know what the concrete
type of the future is, just that it inherits from GenericFuture.

2.6 Generators

Generators provide a convenient interface for producing a stream of results. They can be imple-
mented using effect handlers in such a way that the user only sees the generator interface and
is not exposed to any underlying commands or handlers. Because the type of the handler used
internally is statically known, this provides an opportunity for performance gains.
The interface is given by a single Yield command which yields a value to the caller (not to be

confused with the Yield command used by our earlier lightweight threads examples).

template <typename T>

struct Yield : eff::command<> {

T value;

};

(Note that there is no issue in defining Yield with a template parameter, as long as any handler for
Yield fixes T, and hence handles it monomorphically.) Our wrapper function takes an additional
label argument. This argument is passed to an overloaded variant of eff::invoke_command. It identifies
the handler that will be used to handle the command.

template <typename T>

void yield(int64_t label, T x)
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{

eff::static_invoke_command(label, Yield<T>{{}, x});

}

By default, and for all the examples we have seen up to now, the handler is chosen as the
inner-most one that supports the invoked command. This requires dynamically checking runtime
type information (RTTI) stored in the handler’s vtable: note that when invoking a command, we
statically know its type, but we have to dynamically inspect the types of active handlers. However,
RTTI has a performance penalty, which can often be avoided. By using eff::static_invoke_command

we are asserting that we know the exact type of the handler associated with label and in particular
that it handles the Yield command with the correct type. This is a potentially dangerous assumption,
but offers significant performance benefits, and can be done relatively safely if, as in this case, we
encapsulate the command and handler inside a library, so that the user of the library will never
need to interact with either.
We now give an implementation of a handler for generators.

template <typename T>

struct GenState;

template <typename T>

using Result = std::optional<GenState<T>>;

template <typename T>

struct GenState {

T value;

eff::resumption<Result<T>()> resumption;

};

template <typename T>

class GeneratorHandler : public eff::handler<Result<T>, void, Yield<T>> {

Result<T> handle_command(Yield<T> y, eff::resumption<Result<T>()> r) override

{

return GenState<T>{y.value, std::move(r)};

}

Result<T> handle_return() override

{

return {};

}

};

A generator state comprises a value and a current resumption. The return value of the handler is a
Result<T> object, which is an optional generator state.
The more interesting part of the implementation is in a separate Generator class.

template <typename T>

class Generator {

public:

Generator(std::function<void(std::function<void(T)>)> f)

{

auto label = eff::fresh_label();

result = eff::handle<GeneratorHandler<T>>(label, [f, label](){

f([label](T x) { yield<T>(label, x); });

});

}

Generator() { } // A dummy generator that generates nothing
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T Value() const

{

if (!result) { throw std::out_of_range("Generator::Value"); }

return result.value().value;

}

bool Next()

{

if (!result) { throw std::out_of_range("Generator::Next"); }

result = std::move(result->resumption).resume();

return result.has_value();

}

explicit operator bool() const

{

return result.has_value();

}

private:

Result<T> result = {};

};

The idea is that when a generator is created its body is executed until the first value is yielded.
The constructor takes the body as a higher-order function parameterised by a yield function
whose implementation is supplied by the constructor itself. This implementation invokes the Yield

command using a fresh label that identifies the generator handler. (The library maintains a global
counter of labels and the user can create a fresh label using eff::fresh_label.) This label is also
passed to an overloaded version of eff::handle in order to associate it with the handler. Notice that
generators are not copyable, since GenState is not copyable, since eff::resumption is not copyable.

The Value member function returns the current value and the Next member function moves onto
the next value by invoking the resumption, returning true if the stream of values has not been
exhausted. The following example illustrates how to use a generator to output a stream of 100
natural numbers.

int main()

{

Generator<int> naturals([](auto yield) {

int i = 1;

while (true) { yield(i++); }

});

for (int i = 0; i < 100; i++) {

std::cout << naturals.Value() << std::endl;

naturals.Next();

}

}

Again notice that this user code makes no reference to any commands or effect handlers.

3 IMPLEMENTATION

In this section, we give an overview of the implementation, and detail a few aspects specific to our
setting. In general, our approach is based on a stack of handlers, similar to how effect handlers
are implemented, for example, in Multicore OCaml [Sivaramakrishnan et al. 2021]. We discuss the
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Fig. 1. Unwinding the call-stack on throwing an exception
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Fig. 2. Invoking a command

inheritance structure of the handler class, and memory management of handlers and resumptions.
In the code snippets in this section, we frequently assume that the code is inside the namespace eff.

3.1 Metastack (The Stack of Handlers)

We begin by explaining the semantics of effect handlers via manipulation of the call stack, and
show how an optimised version of this semantics can directly inform the implementation. Since
handlers are a form of generalised resumable exceptions, we first draw a parallel between effect
handlers and exception handlers.
The familiar semantics (but not necessarily implementation) of exceptions can be described

as follows. The try comp catch(const E& f) catchClause statement pushes a handler frame (which
corresponds to catch(const E& f) catchClause) onto the stack, and proceeds with comp. Execution of
the throw e statement, assuming e is of type E, unwinds the stack until it finds a frame of the shape
that corresponds to some catch(const E& f) catchClause, and then continues with catchClause with
the value e bound to the reference f. Figure 1 depicts the process of throwing an exception.
In the case of effect handlers, the function eff::handle<H>(f) pushes a new frame, which corre-

sponds to a new object of type H, and proceeds with f(). A call to eff::invoke_command<Cmd>(c) finds
the first frame on the stack that corresponds to a handler that can interpret Cmd, and then continues
with its handle_command(Cmd, eff::resumption<...>), which receives as arguments the value c and a
new resumption that stores the stack segment above and including the handler frame. Importantly,
we do not unwind the stack. The stack stored in a resumption is unwound only when the resumption
is deleted (that is, goes out of scope). Figure 2 depicts the invocation of a command.
The stack used in this semantics of effect handlers consists of segments of regular call frames,

separated by handler frames. In practice, we can keep each segment of the stack (a stacklet) in a
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Fig. 3. Different representations of stack

separate chunk of memory, and use a metastack: a stack of handlers, each with a pointer to the
segment of regular frames above (see Figure 3). This representation has two advantages over a
flat representation. First, it is faster to search the metastack for the right handler, as we do not
have to traverse every frame on the stack. Second, we need not physically move the memory that
contains regular frames when we create or resume a resumption; we need only manipulate pointers
to stacklets.

3.2 Commands and Handlers

The informal semantics given above is the basis of the implementation of the library. It does not
require any additional support from the compiler, since the metastack is simply a global data
structure (a linked list of pointers to handler objects), while the boost.context library provides
the mechanism for stacklet allocation and switching.
There are three main class templates in the library: command, handler, and resumption. The command

template, used as a parent class for user-defined commands, does not provides any functionality of
its own. It just specifies the return type of the command and the corresponding resumption type.
There are two specialisations of command, depending on the number of supplied type parameters:

template <typename... Outs>

struct command;

template <typename Out> // Specialisation for a single type parameter

struct command<Out> {

using out_type = Out;

template <typename Answer> using resumption_type = Answer(Out);

};

template <> // Specialisation for no type parameters

struct command<> {

using out_type = void;

template <typename Answer> using resumption_type = Answer();

};

In both cases out_type is the return type of the command (the return type of eff::invoke_command<Cmd>)
and resumption_type is the type of resumptions created when a computation is suspended on this
command. A command can be handled by different handlers with different Answer types, hence
resumption_type is a template instantiated in the handle_command member function of a handler. We
require two separate specialisations of command, instead of simply defaulting Out to void, because
Answer(void) is not a well-formed type in C++.
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handler<Answer, Body, Cmd1, ..., Cmdn>

# virtual Answer handle_return(Body) = 0
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command_clause<Answer, Cmd1>

# virtual Answer handle_command(

Cmd1, resumption<typename Cmd1::

template resumption_type<Answer>>) = 0

...

...

command_clause<Answer, Cmdn>

...

UserDefinedHandler

# Answer handle_command(Cmd1, resumption<...>) override

# ...

# Answer handle_command(Cmdn, resumption<...>) override

# Answer handle_return(Body) override

Fig. 4. API for defining handlers

Handlers are defined viamultiple inheritance to implement functionality that allows them to serve
as frames on the metastack and provide interpretations to commands. Every handler inherits from
the metaframe class, which groups a pointer to the stacklet (a fiber in boost.context’s terminology)
and a label that can be used to select a handler as in the generator example in Section 2.6.

class metaframe {

virtual ~metaframe() { }

boost::context::fiber fiber;

int64_t label;

// ...

};

The virtual destructor allows us to use runtime type information to implement the (optional)
dynamic pairing of commands and handlers described in Section 3.3.

For each command listed in the template arguments pack, handler inherits from the command_clause

class. It provides the virtual member function handle_command that particular implementations of
handlers must override.

template <typename Answer, typename Cmd>

class command_clause {

protected:

virtual Answer handle_command(Cmd, resumption<typename Cmd::template resumption_type<Answer>>)

= 0;

// ...

};

Then, the handler is defined as:

template <typename Answer, typename Body, typename... Cmds>

class handler : public metaframe, public command_clause<Answer, Cmds>... {

using command_clause<Answer, Cmds>::handle_command...;
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protected:

virtual Answer handle_return(Body b) = 0;

// ...

};

The using declaration in the definition of handler exposes handle_command from every command_clause

base, in effect combining them together into one overloaded function. The API of handlers is
summarised in Figure 4.

The metastack is a list of pointers to objects of the common superclass of all handlers, metaframe.
This allows us, for example, to access the label of a handler on the metastack without knowing its
actual type. Note that handler is a template, so it would be cumbersome, if not impossible, to make
the metastack a list of (well-typed pointers to) handler objects.

std::list<std::shared_ptr<metaframe>> metastack;

The fact that the metastack is implemented as a linked list means that we can easily move parts of
the metastack to resumptions when invoking a command (as in Figure 2) and back when resuming.
Alternatively, we could use a vector, which provides faster handler lookup, but requires allocation
every time we create a resumption. In practice, a metastack usually contains no more than a handful
of frames, and our experiments suggest that performance of the two possible implementations is
similar. We detail why we need reference-counting shared pointers in Section 3.5.

The expression eff::handle<H>(comp) first creates a new object of class H, pushes a pointer to it on
the metastack, and uses its metaframe::fiber to evaluate comp(). When comp() returns, the result is
given to the handle_return of the handler, which produces the final answer of the call to eff::handle.

3.3 Invoking and Handling a Command

When the user invokes a command Cmd, we first need to find the appropriate matching handler
on the metastack, as shown in Figure 2. When looking for a handler dynamically, using RTTI, we
encounter a problem, which stems from the fact that we have to deal with value types in C++: we
cannot dynamically check if a value on the stack inherits from command_clause<Answer, Cmd>, simply
because in general we cannot know the Answer template parameter.
On the other hand, it is easy to find a handler by its label, as we need only compare with the

label member of the frames on the stack. But then we encounter the same problem when we want
to call the handle_command function with appropriate arguments later on: we would have to cast the
found metaframe to (a class that inherits from) command_clause<Answer, Cmd>, while we cannot know in
general what the Answer type is.

We solve this problem by observing that Answer is not needed at the site of the command invocation.
Thus, we implement the entire logic (creating the resumption, switching stacks, and calling the
virtual function handle_command) inside the class command_clause where Answer is available, but trigger
it by making command_clause implement the following interface that does not depend on Answer.

template <typename Cmd>

class can_invoke_command {

protected:

virtual typename Cmd::out_type invoke_command(

std::list<std::shared_ptr<metaframe>>::iterator it, const Cmd& cmd) = 0;

};

template <typename Answer, typename Cmd>

class command_clause : public can_invoke_command<Cmd> {

protected:

virtual typename Cmd::out_type invoke_command(
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Fig. 5. Internals of handlers needed to invoke commands

std::list<std::shared_ptr<metaframe>>::iterator it, const Cmd& cmd) final override;

virtual Answer handle_command(Cmd, resumption<typename Cmd::template resumption_type<Answer>>)

= 0;

// ...

};

The can_invoke_command<Cmd>::invoke_command function takes as its arguments the command and an
iterator pointing below the found metaframe. The handler for Cmd can be found on the metastack using
RTTI by trying to dynamically cast to can_invoke_command<Cmd>. The complete diagram of inheritance
for a user-defined handler is shown in Figure 5.
Thus, the overall process of invoking a command is as follows.

(1) The user calls eff::invoke_command<Cmd>, which is responsible for finding the right handler on
the metastack. Depending on the overload, it does so using runtime type information (the
first handler for which the dynamic cast to can_invoke_command<Cmd> succeeds) or the handler’s
label (in which case we use the dynamic cast only on the first handler with the given label). In
Figure 5, this cast from metaframe to can_invoke_command<Cmd1> is indicated by the dashed arrow.
The user can also call eff::static_invoke_command<H, Cmd>, in which case we find the handler
by the label, and statically cast it to H.

(2) The function eff::invoke_command calls the found can_invoke_command<Cmd>::invoke_commandmem-
ber function, providing it with the command and the metaframe below the found handler,
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since the found handler’s command clause is run on the stacklet of the previous handler (see
Figure 2). We create the resumption by moving the top segment of the metastack, switch the
stack, and run the result’s handle_command. If the stack is ever switched back to this place, we
return the value with which the resumption was resumed.

The virtual function call to can_invoke_command<Cmd>::invoke_command (implemented in the derived
class command_clause<Answer, Cmd>) solves the problem of the unknown Answer type of the handler,
but it is also useful for implementing the optimisations provided by clause modifiers. Each clause
modifier is implemented as a specialisation of command_clause. For example, the implementation
of invoke_command in command_clause<Answer, plain<Cmd>> simply does not create a resumption, and
does not switch stacks, but only calls handle_command, temporarily removing the top segment of the
metastack in case handle_command itself uses effects.

3.4 Resumptions

Resumptions are implemented as smart pointers to the resumption_data class, which stores a segment
of the metastack and some additional members used for transferring data when resuming (which
we omit from this description).

template <typename Out, typename Answer>

class resumption_data {

std::list<std::shared_ptr<metaframe>> stored_metastack;

// ...

};

template <typename Out, typename Answer>

class resumption {

resumption_data<Out, Answer>* data;

// ...

};

When the user invokes a command, the computation is suspended, a resumption is created
by moving an appropriate segment of the metastack to resumption_data::stored_metastack, and the
appropriate command clause of a handler is called. In our design goals, we assumed that this process
should be as fast as possible. As allocation is relatively expensive, we want to avoid allocating a
new resumption resumption_data object every time a command is called, and deleting it when it is
resumed or goes out of scope.

Fortunately, we observe that since our resumptions are one-shot, the user cannot copy them, and
so there can exist at most one resumption per suspended computation at a given time. Hence, we
can pre-allocate all resumptions that will ever be needed for a particular handler object: one for each
supported command. Hence, all resumption_data objects can be kept as data members of the handler

class. In particular, each command_clause<Answer, Cmd> base provides a storage for a resumption that
łhangsž on Cmd:

template <typename Answer, typename Cmd>

class command_clause : public can_invoke_command<Cmd> {

// ...

resumption_data<typename Cmd::out_type, Answer> resumption_buffer;

};

A local resumption object is created as a pointer to the resumption_buffer and given as argument to
the command clause, which leads to an interesting circular dependency. A resumption contains a
stored metastack (as a list, so via pointers), the first metaframe of which is a pointer to a handler
which contains the resumption as a member. This cycle is problematic when a resumption goes out
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of scope, as its destructor needs to break this cycle first, which means that it is not enough to use
std::unique_ptr to implement the resumption class.

3.5 Lifetime of Handlers

Prior implementations of effect handlers in object-oriented settings take advantage of automatic
memory management: the object representing a handler is created when calling the equivalent
of eff::handle, and is deleted automatically by the garbage collector. In C++, there is no default
garbage collector, and our library manages its own memory, relieving the user from deleting
handlers manually.
When should a handler be deleted? One obvious guess would be: when it is popped from the

metastack (that is, after the return clause returns) or when a resumption that holds a pointer to it is
deleted (the handlers are one-shot, so there can be only one such resumption). However, consider
the following simple example of an effect that logs messages:

struct Log : eff::command<> { std::string msg; };

class Logger : public eff::handler<std::string, void, Log> {

public:

Logger(std::string separator) : separator(separator) { }

private:

const std::string separator;

std::string handle_return() override

{

return "";

}

std::string handle_command(Log l, eff::resumption<std::string()> r) override

{

return l.msg + this->separator + std::move(r).resume();

}

};

Since the order of evaluation of operator arguments is unspecified in C++, the body of the command
clause for the command Log may well be treated by the compiler as equivalent to:

auto&& temp = std::move(r).resume();

return l.msg + this->separator + temp;

Now observe that std::move(r).resume() resumes the entire computation and returns after the return
clause returns. This means that the second line (return l.msg + ...) happens after the object is
deleted, and so the expression this->separator tries to access a member of a deleted object! This
means that we need to keep the handler alive as long as it is on the metastack (or the metastack is
stored in a resumption) or there are live stack frames that can refer to it. Since we have no way to
statically determine where and when such frames might live, we manage the handler’s lifetime
using a shared pointer. It is shared pointers that we actually keep on the metastack, and we create
a copy of the pointer for the duration of each command clause.
Bumping up the counter on each entry to a command clause and running the destructor of a

shared pointer on exit has a performance penalty even up to about 20% of the time of the invokeś
resume cycle (see Section 4.1). It is especially unfortunate, because in most cases, there is no need
for this, as most examples meet at least one of the following conditions:

(a) The handler does not expose the resumption to the outside world. In such a case, we know
that all command clauses are run on top of the eff::handle frame, and so when the frame
is removed from the stack (either the function returns or the frame is unwound), we can
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safely delete the handler, because we know there are no more frames for command clauses
anywhere on the stack or stored metastacks.

(b) The command clauses do not use the internal state of the handler after resume. In this case, we
can safely delete the handler even if there are still command clauses running on the current
stack or any of the stacklets.

In these cases, the library allows the programmer to avoid paying the performance penalty
needed in the general case. It is possible via another clause modifier, no_manage, that allows the
programmer to trade guaranteed memory-safety for performance. This modifier asserts that at least
one of the conditions above is true, and the command clause need not memory-manage the handler.
A clause that is marked as no_manage will not contribute to the reference count of the handler. If
all command clauses in the handler are marked as such, it means that there exist at most two
references to the handler object: the pointer on the metastack, and a local variable in eff::handle.
If (a) happens, the metastack pointer is removed first, but the handler is kept alive by the pointer
in eff::handle. If (b) happens, it might be the case that the pointer in eff::handle is removed first
(for example, when a command clause stores the resumption in a global variable, and returns an
unrelated value), and the handler is deleted after being popped from the metastack, but this will not
cause any problems, as we know that the handled computation has ended (so there will be no new
command clauses called) and all live command clause frames have already been called by resume.

4 PERFORMANCE

In this section we explore the performance of the library. Since this is, as far as we are aware, the
first high-level library for effect handlers in C++, there are no perfect candidates against which to
measure performance. Nevertheless, we believe we can still draw some meaningful conclusions
about the feasibility of using our library in programming practice.

We compare user-defined effects with those built into the language, such as exceptions and C++20
coroutines. Built-in effects are optimised for specific tasks, so unsurprisingly their performance is
markedly better than equivalents implemented via user-defined effects Ð especially given that we
provide just a library without any dedicated compiler optimisations. However, for features beyond
those provided by the language (for example, resumable exceptions, or stackful coroutines), such a
comparison can help to assess the performance penalty of the additional expressiveness.
We also compare cpp-effects with the libmprompt library [Leijen and Sivamarakrishnan

2022], an existing C implementation of effect handlers. Differences in functionality include that
libmprompt does not provide a typed high-level interface, features functional-style parameterised
handlers instead of OO-style stateful handlers, and supports multi-shot resumptions.
All benchmarks were run on a MacBook Pro Intel Core i5 1.5GHz. We compiled and ran the

programs in two set-ups: natively, compiled with Clang 11.0, and in a Docker container running
Debian, compiled with GCC 12.1. Interestingly, the relative numbers in the respective cases differ
noticeably. This is because invoking a command (in cpp-effects and in libmprompt) is a light-
weight task, and one can expect that details such as differences in the memory layout provided by
the compiler or the peculiarities of the system allocator can significantly affect the running time.

4.1 Mutable State

Our first program consists of a loop that increases the value of a piece of mutable state. The core
part of the cpp-effects version is thus:

eff::handle<Stateful<int64_t>>([]() {

for (int i = 0; i < 50000000; i++) {

put(get<int64_t>() + 1);
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Fig. 6. State benchmark using Clang natively (average time per iteration in ns)
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Fig. 7. State benchmark using GCC in Docker (average time per iteration in ns)

}

}, 0);

We tested using four different handlers with a gradation of optimisations: a general handler as
defined in Section 2.1, a version optimised with static command invocation as in Section 2.6
(recall that łstaticž refers to knowing statically the type of the handler, which is still searched for
dynamically on the stack), a łno-managež handler (see Section 3.5), and a plain handler (Section 2.4).
We also compared to general and łplainž equivalents implemented with libmprompt.

The results (average time in nanoseconds of an iteration of the loop) are in Figure 6 for the
Clang/native case and in Figure 7 for the GCC/Docker case. One conclusion we can draw is that the
dynamic type cast in the general case (Section 3.3) is rather expensive, especially when compiled
with GCC. This type cast could be actually avoided if commands were grouped together to form
łeffectsž. This way, each command would determine the rest of the commands in a handler, which
in turn would make the vtable layout of the handler always statically known for a given command,
and so the dynamic cast could be replaced by a (much cheaper) virtual function call. However,
for now we have instead opted for a more readable API. Another conclusion is that the relative
performance of cpp-effects and libmprompt significantly vary with kinds of handlers and the
compiler/OS. We suspect that most handlers in practical programming will fall into either the
łstatic, no-managež category (in which cpp-effects seems to be outperforming libmprompt), or
the łplainž category (in which libmprompt definitively outperforms cpp-effects).
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4.2 C++20 Coroutines

We compare generators implemented via effect handlers with coroutines, which were introduced in
C++20. The C++ coroutines are stackless, which means that they do not run on a separate call-stack,
but instead are compiled via a program transformation. In particular, they are compiled to objects
with a member function representing the body of the coroutine, and data members representing
local variables. Suspending a computation is compiled to returning from the function, and resuming
by jumping to a particular place in the function body.

Such jumping in and out of the function body can be much faster than stack switching, which we
test on a program that generates consecutive natural numbers in a loop. This generator is resumed
a number times, adding up the generated numbers. The results (GCC/Docker only, as Clang 11 does
not support coroutines) are shown in Figure 8, relative to an implementation that adds numbers
using a loop with no concurrency. Unsurprisingly, native coroutines are much faster than our
implementation using effect handlers.
However, the situation is quite different if we benchmark programs that cannot be compiled

using a pair of jumps, for example, when the body of the generator is a recursive function. In the
case of coroutines, every recursive call corresponds to creating a new coroutine, in effect leading to
a heap-allocated stack represented as a linked list of coroutines. Hence, instead of just jumping in
and out of a function, the coroutine-based generator must perform many allocations, which has a
significant performance cost. We benchmark generators that recursively traverse a full binary tree
with values in the leaves. When a generator reaches a leaf, it yields its value. We add up all the
values in a tree by repeatedly resuming the generator. The results are shown in Figure 9, where the
y-axis is execution time per tree node in nanoseconds, while the x-axis is the depth of the tree. The
version based on effect handlers is at least twice as fast for trees of height 8 and more. (Note that
the result for each node also amortises the one-off cost of creating the generator, hence the cost
per node is relatively high for small trees.)

4.3 Exceptions

Exceptions in idiomatic C++ are primarily used for handling failures which are expected to occur
relatively infrequently. This means that most compilers favour the zero-cost implementation, in
which installing an exception handler is cheap, while handling an exception is allowed to be
expensive, since throw is assumed never to be on the hot path of execution. This is quite different
to the typical scenario for effect handlers, in which we install an effect handler once (which can
therefore be expensive), and then frequently invoke commands (which should therefore be cheap).
Despite the disparity, it is still interesting to compare native exceptions with exceptions imple-

mented using effect handlers. We compare two programs. The first one runs a loop that in each
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iteration installs a handler and throws an exception. The other one only installs a handler, but does
not throw an exception. The results (average time in milliseconds of an iteration of the loop) are
shown in Figure 10 for Clang/native and in Figure 11 for GCC/Docker. If no exception is thrown,
the native version finishes instantaneously. Interestingly, under Clang/native the version that uses
effect handlers and does not throw an exception is slower than the one that throws, whereas the
opposite is the case for GCC/Docker. This reinforces our earlier observation that there can be
significant performance disparities between different compiler/OS combinations.

5 RELATED WORK

Effect handlers in C. Leijen [2017a] describes how to implement effect handlers in C on top of
setjmp and longjmp, exposing them via a rather low-level interface using C preprocessor macros.
The libhandler library [Leijen 2019] is an implementation of this idea. The implementation has
to be used with some care, but concrete features such as async/await can be implemented in such a
way as to expose a relatively safe interface to the programmer. The libmprompt library [Leijen and
Sivamarakrishnan 2022] is an alternative to the original libhandler library. Instead of implementing
effect handlers directly it implements multiprompt delimited continuations and then a separate
library libmpeff builds effect handlers on top. The libmprompt library uses virtual memory as a
way of allowing stacks to grow without ever having to move them.

Effect handlers in OO. JEff [Inostroza and van der Storm 2018] is an experimental design for
an object-oriented programming language with built-in support for effect handlers. The core
of JEff has been formalised and has been implemented in Redex [Klein et al. 2012]. JEff, unlike
cpp-effects, supports an effect type system. However, JEff’s effect type system suffers from similar
limitations to Java’s checked exceptions as it does not support effect polymorphism. Jeff, unlike
cpp-effects which relies on C++-style memory management, assumes a garbage collector. Jeff, in
common with cpp-effects, takes advantage of dynamic dispatch to define the semantics of effect
handlers. However, Jeff hardwires special support for handling effects rather than building all of the
functionality on top of existing features as in cpp-effects. As such, JEff also providesmild syntactic
sugar for writing effect handlers. Similarly to Koka’s resume keyword, which is automatically bound
to the resumption of the current handler clause, JEff binds the current resumption to a special there
variable somewhat analogous to this.

The Java Effekt library [Brachthäuser et al. 2018] is an implementation of effect handlers for Java.
Like libmprompt it builds effect handlers on top of delimited continuations, which are implemented
in Java using a form of CPS translation. The Scala Effekt library [Brachthäuser et al. 2020] is a similar
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library for Scala, which takes advantage of Scala’s rich type system to incorporate a full-featured
effect type system based on capabilities.

Stack switching in WebAssembly. WebAssembly [Rossberg et al. 2018] is a portable low-level
bytecode for the web supported by all of the main browser vendors. Work is underway to ex-
tend web WebAssembly to support switching between stacks [WebAssembly Community Group
2022] in order to support exactly the kind of features that effect handlers are well-suited for (e.g.
async/await, lightweight threads, and generators). In particular there is a concrete łTyped Con-
tinuationsž proposal [Hillerström et al. 2022] along with an implementation in the WebAssembly
reference interpreter, which amounts to an extension of WebAssembly with effect handlers. Up to
nowWebAssembly has largely been used for compiling C and C++; as such the Typed Continuations
proposal supports an imperative style of effect handling, not dissimilar to cpp-effects, in which
schedulers may be implemented as loops rather than with recursive functions and tail-calls.

Clause modifiers. Clause modifiers for handling commands tail- and self-resumptively (plain) or
as exceptions (no_resume), have been used previously, for instance in the Racket library associated
with Kammar et al.’s early work on libraries for effect handlers [Kammar et al. 2013] and in Koka.

Commands and handlers as objects. The idea of representing commands and handlers as objects
was introduced by Kammar et al. [2013] in their Haskell library for effect handlers. Like us, they
use objects to maintain whatever state is necessary in commands and handlers. However, in their
case, unlike ours, these objects are immutable. Similar ideas arise in later work on designs and
implementations of effect handlers that make use of capability-passing [Brachthäuser et al. 2020;
Zhang and Myers 2019] and evidence-passing [Xie et al. 2020; Xie and Leijen 2021].

6 CONCLUSION

We are not the first to implement effect handlers in an imperative language or the first to implement
effect handlers in an object-oriented programming language. However, as far as we know ours is
the first implementation of effect handlers specifically for C++. This presents a particular challenge
due to the lack of garbage collection in C++. However, we were successfully able to exploit a broad
range of C++ features in order to relatively smoothly integrate effect handlers with C++.
The experience of programming with cpp-effects is an extension of the regular experience

of programming in C++. Commands and handlers are defined as classes, which can be combined
with templates to provide a form of parametric polymorphism in the usual manner. Often a library
can be implemented using effect handlers in such a way that the user of the library need not know
anything at all about effect handlers (as illustrated by our implementation of generators). Though
we have not invested huge effort into trying to optimise cpp-effects, it seems to offer adequate
performance for realistic use-cases, and in some cases it outperforms existing approaches such as
the libmprompt library and C++20 coroutines.
In future we would like to explore plugging in alternative backends with a view to improving

performance. We would also like to explore means for providing some form of effect type system
in order to further tame the complexity of programming in the large with effect handlers. Another
direction which it would be interesting to explore is support for multishot effect handlers. This
would require an alternative implementation mechanism as it would depend on being able to copy
resumptions, but it opens up a range of other applications such as backtracking and probabilistic
programming.
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DATA-AVAILABILITY STATEMENT

The library is available as an open source project. The snapshot described in this paper is available
as an accompanying artifact [Ghica et al. 2022].
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