
Sessions as Propositions

Sam Lindley and J. Garrett Morris

The University of Edinburgh
{Sam.Lindley,Garrett.Morris}@ed.ac.uk

Abstract

Recently, Wadler presented a continuation-passing translation from a session-typed
functional language, GV, to a process calculus based on classical linear logic, CP. However,
this translation is one-way: CP is more expressive than GV. We propose an extension
of GV, called HGV, and give translations showing that it is as expressive as CP. The
new translations shed light both on the original translation from GV to CP, and on the
limitations in expressiveness of GV.

1 Introduction

Linear logic has long been regarded as a potential typing discipline for concurrency. Girard [7]
observes that the connectives of linear logic can be interpreted as parallel computation. Abram-
sky [1] and Bellin and Scott [2] interpret linear logic proofs as π-calculus processes. Caires and
Pfenning [3] give a propositions-as-types correspondence between intuitionistic linear logic and
session types, interpreting proofs as processes in a restricted π-calculus, πDILL.

Wadler [8] adapts Caires and Pfenning’s work to classical linear logic, interpreting proofs as
processes in a restricted π-calculus, CP. Furthermore, Wadler shows that a core session-typed
linear functional language, GV, patterned after a similar language due to Gay and Vasconce-
los [6], may be translated into CP. However, GV is less expressive than CP: there are proofs
which do not correspond to any GV program.

Our primary contribution is HGV (Harmonious GV), a version of GV extended with con-
structs for session forwarding, replication, and polymorphism. We identify HGVπ, the session-
typed fragment of HGV, and give a type-preserving translations from HGV to HGVπ ((−)?);
this translation depends crucially on the new constructs of HGV. We show that HGV is suf-
ficient to express all linear logic proofs by giving type-preserving translations from HGVπ to
CP (J−K), and from CP to HGVπ (L−M). Factoring the translation of HGV into CP through
(−)? simplifies the presentation, and illuminates regularities that are not apparent in Wadler’s
original translation of GV into CP. Finally, we show that HGV, HGVπ, and CP are all equally
expressive.

2 The HGV Language

This section describes our session-typed language HGV, contrasting it with Gay and Vasconce-
los’s functional language for asynchronous session types [6], which we call LAST, and Wadler’s
GV [8]. In designing HGV, we have opted for programming convenience over uniformity, while
insisting on a tight correspondence with linear logic. The session types of HGV are given by
the following grammar:

S ::= !T.S | ?T.S | ⊕{li : Si}i | N{li : Si}i | end! | end? | X | X | ![X].S | ?[X].S | [S |]S

Types for input (?T.S), output (!T.S), selection (⊕{li : Si}i) and choice (N{li : Si}i) are stan-
dard. Like GV, but unlike LAST, we distinguish output (end!) and input (end?) session ends;

1

Sessions as Propositions Lindley and Morris

this matches the situation in linear logic, where there is no conveniently self-dual proposition
to represent the end of a session. Variables and their duals (X,X) and type input (?[X].S) and
output (![X].S), permit definition of polymorphic sessions. We include a notion of replicated
sessions, corresponding to exponentials in linear logic: a channel of type]S is a “service”, pro-
viding any number of channels of type S; a channel of type [S is the “server” providing such a
service. Each session type S has a dual S (with the obvious dual for variables X):

!T.S = ?T.S ⊕{li : Si}i = N{li : Si}i end! = end? ![X].S = ?[X].S]S = [S

?T.S = !T.S N{li : Si}i = ⊕{li : Si}i end? = end! ?[X].S = ![X].S [S =]S

Note that dualisation leaves input and output types unchanged. In addition to sessions, HGV’s
types include linear pairs, and linear and unlimited functions:

T,U, V ::= S | T ⊗ U | T (U | T → U

Every type T is either linear (lin(T)) or unlimited (un(T)); the only unlimited types are services
(un(]S)), unlimited functions (un(T → U)), and end input session types (un(end?)). In GV,
end? is linear. We choose to make it unlimited in HGV because then we can dispense with
GV’s explicit terminate construct while maintaining a strong correspondence with CP—end?
corresponds to ⊥ in CP, for which weakening and contraction are derivable.

Figure 1 gives the terms and typing rules for HGV; the first block contains the structural
rules, the second contains the (standard) rules for lambda terms, and the third contains the
session-typed fragment. The fork construct provides session initiation, filling the role of GV’s
with . . . connect . . . to . . . structure, but without the asymmetry of the latter. The two are in-
terdefinable, as follows:

fork x.M ≡ with x connect M to x with x connect M to N ≡ let x = fork x.M in N

We add a construct linkM N to implement channel forwarding; this form is provided in neither
GV nor LAST, but is necessary to match the expressive power of CP. (Note that while we could
define session forwarding in GV or LAST for any particular session type, it is not possible to do
so in a generic fashion.) We add terms sendType S M and receiveType X.M to provide session
polymorphism, and serve x.M and request M for replicated sessions. Note that, as the body
M of serve x.M may be arbitrarily replicated, it can only refer to the unlimited portion of the
environment. Channels of type]S offer arbitrarily many sessions of type S; correspondingly,
channels of type [S must consume arbitrarily many S sessions. The rule for serve x.M parallels
that for fork: it defines the server (which replicates M) and returns the channel by which it
may be used (of type [S =]S). As a consequence, there is no rule involving type [S. We
experimented with having such a rule, but found that it was always used immediately inside a
fork, while providing no extra expressive power. Hence we opted for the rule presented here.

3 From HGV to HGVπ

The language HGVπ is the restriction of HGV to session types, that is, HGV without (, →,
or ⊗. In order to avoid ⊗, we disallow plain receive M , but do permit it to be fused with a pair
elimination let (x, y) = receive M in N . We can simulate all non-session types as session types
via a translation from HGV to HGVπ. The translation on types is given by the homomorphic
extension of the following equations:

(T (U)? = !(T)?.(U)? (T → U)? =](!(T)?.(U)?) (T ⊗ U)? = ?(T)?.(U)?

2

Sessions as Propositions Lindley and Morris

Structural rules

x : T ` x : T

Φ ` N : U un(T)

Φ, x : T ` N : U

Φ, x : T, x′ : T ` N : U un(T)

Φ, x : T ` N [x/x′] : U

Lambda rules

Φ, x : T ` N : U

Φ ` λx.N : T (U

Φ ` L : T (U Ψ `M : T

Φ,Ψ ` L M : U

Φ ` L : T (U un(Φ)

Φ ` L : T → U

Φ ` L : T → U

Φ ` L : T (U

Φ `M : T Ψ ` N : U

Φ,Ψ ` (M,N) : T ⊗ U
Φ `M : T ⊗ U Ψ, x : T, y : U ` N : V

Φ,Ψ ` let (x, y) = M in N : V

Session rules

Φ `M : T Ψ ` N : !T.S

Φ ` send M N : S

Φ `M : ?T.S

Φ ` receive M : T ⊗ S

Φ `M : ⊕{li : Si}i
Φ ` select lj M : Sj

Φ `M : N{li : Si}i {Ψ, x : Si ` Ni : T}i
Φ,Ψ ` case M of {li(x).Ni}i : T

Φ, x : S `M : end!

Φ ` fork x.M : S

Φ `M : S Φ ` N : S

Φ ` link M N : end!

Φ `M : ![X].S′

Φ ` sendType S M : S′[S/X]

Φ `M : ?[X].S X /∈ FV (Φ)

Φ ` receiveType X.M : S

Φ, x : S `M : end! un(Φ)

Φ ` serve x.M : [S

Φ `M :]S

Φ ` request M : S

Figure 1: Typing rules for HGV

Each target type is the interface to the simulated source type. A linear function is simulated
by input on a channel; its interface is output on the other end of the channel. An unlimited
function is simulated by a server; its interface is the service on the other end of that channel.
A tensor is simulated by output on a channel; its interface is input on the other end of that
channel. This duality between implementation and interface explains the flipping of types in
Wadler’s original CPS translation from GV to CP. The translation on terms is given by the
homomorphic extension of the following equations:

(λx.M)? = fork z.let (x, z) = receive z in link (M)? z
(L M)? = send (M)? (L)?

(M,N)? = fork z.link (send (M)? z) (N)?

(let (x, y) = M in N)? = let (x, y) = receive (M)? in (N)?

(L : T → U)? = serve z.link (L)? z
(L : T (U)? = request (L)?

(receive M)? = (M)?

Formally, this is a translation on derivations. We write type annotations to indicate → in-
troduction and elimination. For all other cases, it is unambiguous to give the translation on
plain term syntax. Each introduction form translates to an interface fork z.M of type S, where

3

Sessions as Propositions Lindley and Morris

w ↔ x ` w : A⊥, x : A

P ` Γ, x : A Q ` ∆, x : A⊥

νx.(P | Q) ` Γ,∆

P ` Γ, y : A Q ` ∆, x : B

x[y].(P | Q) ` Γ,∆, x : A⊗B

R ` Θ, y : A, x : B

x(y).R ` Θ, x : AOB

P ` Γ, x : Ai

x[li].P ` Γ, x : ⊕{li : Ai}i
{Qi ` ∆, xi : Ai}i

x.case {li.Qi}i ` ∆, x : N{li : Ai}i

P ` ?Γ, y : A

!x(y).P ` ?Γ, x : !A

Q ` ∆, y : A

?x[y].Q ` ∆, x : ?A

Q ` ∆

Q ` ∆, x : ?A

Q ` ∆, x : ?A, x′ : ?A

Q[x/x′] ` ∆, x : ?A

P ` Γ, x : B[A/X]

x[A].P ` Γ, x : ∃X.B
Q ` ∆, x : B X /∈ ∆

x(X).Q ` ∆, x : ∀X.B x[].0 ` x : 1

P ` Γ

x().P ` Γ, x : ⊥

Figure 2: Typing rules for CP

M : end! provides the implementation, with z : S bound in M . We can extend the translation
on types to a translation on contexts:

(x1 : T1, . . . , xn : Tn)? = x1 : (T1)?, . . . , xn : (Tn)?

It is straightforward to verify that our translation preserves typing.

Theorem 1. If Φ `M : T then (Φ)? ` (M)? : (T)?.

4 From HGVπ to CP

We present the typing rules of CP in Figure 2. The cut relation −→ for CP is given in
Appendix A. A detailed description of CP can be found in Wadler’s work [8]. Note that the
propositions of CP are exactly those of classical linear logic, as are the cut rules (if we ignore
the terms). Thus, CP enjoys all of the standard meta theoretic properties of classical linear
logic, including confluence and weak normalisation. A minor syntactic difference between our
presentation and Wadler’s is that our sum (⊕) and choice (N) types are n-ary, matching the
corresponding session types in HGV, whereas he presents binary and nullary versions of sum
and choice. Duality on CP types ((−)

⊥
) is standard:

(A⊗B)
⊥

=A⊥ OB⊥ (⊕{li : Ai}i)⊥=N{li : Ai
⊥}i 1⊥=⊥ (∃X.B)

⊥
=∀X.B⊥ (!A)

⊥
=?A⊥

(AOB)
⊥

=A⊥ ⊗B⊥ (N{li : Ai}i)⊥=⊕{li : Ai
⊥}i ⊥⊥=1 (∀X.B)

⊥
=∃X.B⊥ (?A)

⊥
=!A⊥

We now give a translation from HGVπ to CP. Post composing this with the embedding of
HGV in HGVπ yields a semantics for HGV. The translation on session types is as follows:

J!T.SK = JT K⊥ ⊗ JSK
J?T.SK = JT K O JSK
Jend!K = 1

J⊕{li : Si}iK = ⊕{li : JSiK}i
JN{li : Si}iK = N{li : JSiK}i

Jend?K = ⊥

J[SK = !JSK
J]SK = ?JSK
JXK = X

J![X].SK = ∃X.JSK
J?[X].SK = ∀X.JSK

JXK = X⊥

The translation is homomorphic except for output, where the output type is dualised. This
accounts for the discrepancy between !T.S = ?T.S and (A⊗B)

⊥
= A⊥ OB⊥.

4

Sessions as Propositions Lindley and Morris

The translation on terms is formally specified as a CPS translation on derivations as in
Wadler’s presentation. We provide the full translations of weakening and contraction for end?,
as these steps are implicit in the syntax of HGV terms. The other constructs depend only on
the immediate syntactic structure, so we abbreviate their translations as mappings on plain
terms:

t
Φ ` N : S

Φ, x : end? ` N : S

|

z =
JNKz ` JΦK, z : JSK⊥

x().JNKz ` JΦK, x : ⊥, z : JSK⊥
t

Φ, x : end?, x
′ : end? ` N : S

Φ, x : end? ` N [x/x′] : S

|

z =
JNKz ` JΦK, x : ⊥, x′ : ⊥, z : JSK⊥

νx′.(JNKz | x′[].0) ` JΦK, x : ⊥, z : JSK⊥

JxKz = x↔ z
Jsend M NKz = νx.(x[y].(JMKy | x↔ z) | JNKx)

Jlet (x, y) = receive M in NKz = νy.(JMKy | y(x).JNKz)
Jselect l MKz = νx.(JMKx | x[l].x↔ z)

Jcase M of {li(x).Ni}iKz = νx.(JMKx | x.case {li.JNiKz}i)
Jfork x.MKz = νx.(νy.(JMKy | y[].0) | x↔ z)
Jlink M NKz = z().νx.(JMKx | JNKx)

JsendType S MKz = νx.(JMKx | x[JSK].x↔ z)
JreceiveType X.MKz = νx.(JMKx | x(X).x↔ z)

Jserve y.MKz = !z(y).νx.(JMKx | x[].0)
Jrequest MKz = νx.(JMKx | ?x[y].y ↔ z)

Channel z provides a continuation, consuming the output of the process representing the original
HGVπ term. The translation on contexts is pointwise.

Jx1 : T1, . . . , xn : TnK = x1 : JT1K, . . . , xn : JTnK

As with the translation from HGV to HGVπ, we can show that this translation preserves typing.

Theorem 2. If Φ `M : S then JMKz ` JΦK, z : JSK⊥.

5 From CP to HGVπ

We now present the translation L−M from CP to HGVπ. The translation on types is as follows:

LA⊗BM = !LAM.LBM
LAOBM = ?LAM.LBM

L1M = end!

L⊕{li : Ai}iM = ⊕{li : LAiM}i
LN{li : Ai}iM = N{li : LAiM}i

L⊥M = end?

L∃X.AM = ![X].LAM
L∀X.AM = ?[X].LAM

LXM = X

L?AM =]LAM
L!AM = [LAM

LX⊥M = X

The translation on terms makes use of let expressions to simplify the presentation; these are
expanded to HGVπ as follows:

let x = M in N ≡ ((λx.N)M)? ≡ send M (fork z.let (x, z) = receive z in link N z).

5

Sessions as Propositions Lindley and Morris

Lx[y].(P | Q)M = let x = send (fork y.LP M) x in LQM
Lx(y).P M = let (y, x) = receive x in LP M
Lx[l].P M = let x = select l x in LP M

Lx.case {li.Pi}iM = case x of {li(x).LPiM}i
Lx[].0M = x

Lx().P M = LP M
Lνx.(P | Q)M = let x = fork x.LP M in LQM

Lx↔ yM = link x y
Lx[A].P M = let x = sendType LAM x in LP M

Lx(X).P M = let x = receiveType X.x in LP M
L!s(x).P M = link s (serve x.LP M)
L?s[x].P M = let x = request s in LP M

Again, we can extend the translation on types to a translation on contexts, and show that the
translation preserves typing.

Theorem 3. If P ` Γ then LΓM ` LP M : end!.

6 Correctness

If we extend J−K to non-session types, as in Wadler’s original presentation (Figure 3), then it
is straightforward to show that this monolithic translation factors through (−)?.

Theorem 4. J(M)?Kz −→∗ JMKz (where −→∗ is the transitive reflexive closure of −→).

The key soundness property of our translations is that if we translate a term from CP to HGVπ
and back, then we obtain a term equivalent to the one we started with.

Theorem 5. If P ` Γ then νz.(z[].0 | JLP MKz) −→∗ P .

Together, Theorem 4 and 5 tell us that HGV, HGVπ, and CP are equally expressive, in the
sense that every X program can always be translated to an equivalent Y program, where
X,Y ∈ {HGV, HGVπ, CP}.

Here our notion of expressivity is agnostic to the nature of the translations. It is instructive
also to consider Felleisen’s more refined notion of expressivity [5]. Both (−)? and L−M are local
translations, thus both HGV and CP are macro-expressible [5] in HGVπ. However, the need
for a global CPS translation from HGVπ to CP illustrates that HGVπ is not macro-expressible
in CP; hence HGVπ is more expressive, in the Felleisen sense, than CP.

7 Conclusions and Future Work

We have proposed a session-typed functional language, HGV, building on similar languages
of Wadler [8] and of Gay and Vasconcelos [6]. We have shown that HGV is sufficient to
encode arbitrary linear logic proofs, completing the correspondence between linear logic and
session types. We have also given an embedding of all of HGV into its session-typed fragment,
simplifying translation from HGV to CP.

Dardha et al [4] offers an alternative foundation for session types through a CPS translation
of π-calculus with session types into a linear π-calculus. There appear to be strong similarities
between their CPS translation and ours. We would like to make the correspondence precise by
studying translations between their systems and ours.

6

Sessions as Propositions Lindley and Morris

Types

JT K = VTW⊥, T not a session type
where

VT (UW = VTW⊥ O VUW
VT → UW = !(VTW⊥ O VUW)
VT ⊗ UW = VTW⊗ VUW

VSW = JSK

Terms
Jλx.NKz = z(x).JNKz
JL MKz = νy.(JLKy | y[x].(JMKx | y ↔ z))

JL : T → UKz = !z(y).JLKy
JL : T (UKz = νy.(JLKy | ?y[x].x↔ z)

J(M,N)Kz = z[y].(JMKy | JNKz)
Jlet (x, y) = M in NKz = νy.(JMKy | y(x).JNKz)

The outer dual appears in the type translation because, as in Section 3, we must expose interfaces rather than
implementations of simulated types. As in the definition of (−)? in Section 3, we write type annotations to
indicate → introduction and elimination.

Figure 3: Extension of J−K to non-session types

In addition we highlight several other areas of future work. First, the semantics of HGV
is given only by cut elimination in CP. We would like to give HGV a semantics directly, in
terms of reductions of configurations of processes, and then prove a formal correspondence with
cut elimination in CP. Second, replication has limited expressive power compared to recursion;
in particular, it cannot express services whose behaviour changes over time or in response to
client requests. We believe that the study of fixed points in linear logic provides a mechanism
to support more expressive recursive behaviour without sacrificing the logical interpretation of
HGV. Finally, as classical linear logic proofs, and hence CP processes, enjoy confluence, HGV
programs are deterministic. We hope to identify natural extensions of HGV that give rise to
non-determinism, and thus allow programs to exhibit more interesting concurrent behaviour,
while preserving the underlying connection to linear logic.

Acknowledgements We would like to thank Philip Wadler for his suggestions on the direc-
tion of this work, and for his helpful feedback on the results. This work was funded by EPSRC
grant number EP/K034413/1.

References

[1] Samson Abramsky. Proofs as processes. MFPS ’92, pages 5–9. Elsevier, 1994.

[2] Gianluigi Bellin and Philip J. Scott. On the π-Calculus and linear logic. Theoretical Computer
Science, 135(1):11–65, 1994.

[3] Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In International
Conference on Concurrency Theory, CONCUR ’10, pages 222–236, 2010.

[4] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In PPDP, pages
139–150, 2012.

[5] Matthias Felleisen. On the expressive power of programming languages. Sci. Comput. Program.,
17(1–3):35–75, 1991.

[6] Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous session types. Journal
of Functional Programming, 20(01):19–50, 2010.

[7] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, January 1987.

[8] Philip Wadler. Propositions as sessions. In Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’12, pages 273–286. ACM, 2012.

7

Sessions as Propositions Lindley and Morris

A Cut Reduction for CP

Structural Cut Equivalences

x↔ y ≡ y ↔ x
νx.(P | Q) ≡ νx.(Q | P)

νy.(νx.(P | Q) | R) ≡ νx.(P | νy.(Q | R))

The cut relation −→ is interpreted modulo both α-equivalence and structural cut equivalence.
It is given by the compatible closure of the cut rules and commuting conversions defined below.
We write −→∗ for the transitive reflexive closure of −→.

Cut Rules

νx.(w ↔ x | P) −→ P [w/x]
νx.(x[y].(P | Q) | x(y).R) −→ νy.(P | νx.(Q | R))

νx.(x[lj].P | x.case {li.Qi}i) −→ νx.(P | Qj)
νx.(!x(y).P | ?x[y].Q) −→ νy.(P | Q)

νx.(!x(y).P | Q) −→ Q, x /∈ FV (Q)
νx.(!x(y).P | Q[x/x′]) −→ νx.(!x(y).P | νx′.(!x′(y).P | Q))
νx.(x[A].P | x(X).Q) −→ νx.(P | Q[A/X])

νx.(x[].0 | x().P) −→ P

Commuting Conversions

νz.(x[y].(P | Q) | R) −→ x[y].(νz.(P | R) | Q), z ∈ FV (P)
νz.(x[y].(P | Q) | R) −→ x[y].(P | νz.(Q | R)), z ∈ FV (Q)

νz.(x(y).P | Q) −→ x(y).νz.(P | Q)
νz.(x[l].P | Q) −→ x[l].νz.(P | Q)

νz.(x.case {li.Qi}i | R) −→ x.case {li.νz.(Qi | R)}i
νz.(!x(y).P | Q) −→ !x(y).νz.(P | Q)
νz.(?x[y].P | Q) −→ ?x[y].νz.(P | Q)
νz.(x[A].P | Q) −→ x[A].νz.(P | Q)
νz.(x(X).P | Q) −→ x(X).νz.(P | Q)
νz.(x().P | Q) −→ x().νz.(P | Q)

8

	Introduction
	The HGV Language
	From HGV to HGV
	From HGV to CP
	From CP to HGV
	Correctness
	Conclusions and Future Work
	Cut Reduction for CP

