
The Arrow Calculus

(Technical Report)

Sam Lindley Philip Wadler Jeremy Yallop

Abstract

We introduce the arrow calculus, a metalanguage for manipulating Hughes’s arrows with close rela-
tions both to Moggi’s metalanguage for monads and to Paterson’s arrow notation.

1 Introduction

Arrows [Hughes, 2000] generalise the monads of Moggi [1991] and the idioms of McBride and Paterson [2008].
They are closely related to Freyd categories, discovered independently from Hughes by Power, Robinson and
Thielecke [Power and Robinson, 1997, Power and Thielecke, 1999]. Arrows enjoy a wide range of applications,
including parsers and printers [Jansson and Jeuring, 1999], web interaction [Hughes, 2000], circuits [Paterson,
2001], graphic user interfaces [Courtney and Elliott, 2001], and robotics [Hudak et al., 2003].

Formally, arrows are defined by extending simply-typed lambda calculus with three constants satisfying
nine laws. And here is where the problems start. While some of the laws are easy to remember, others are
not. Further, arrow expressions written with these constants use a ‘pointless’ style of expression that can be
hard to read and to write. (Not to mention that ‘pointless’ is the last thing arrows should be.)

Fortunately, Paterson [2001] introduced a notation for arrows that is easier to read and to write, and
in which some arrow laws may be directly expressed. But for all its benefits, Paterson’s notation is only a
partial solution. It simply abbreviates terms built from the three constants, and there is no claim that its
laws are adequate for all reasoning with arrows. Syntactic sugar is an apt metaphor: it sugars the pill, but
the pill still must be swallowed.

Here we define the arrow calculus, which closely resembles both Paterson’s notation for arrows and Moggi’s
metalanguage for monads. Instead of augmenting simply typed lambda calculus with three constants and
nine laws, we augment it with four constructs satisfying five laws. Two of these constructs resemble function
abstraction and application, and satisfy beta and eta laws. The remaining two constructs resemble the unit
and bind of a monad, and satisfy left unit, right unit, and associativity laws. So instead of nine (somewhat
idiosyncratic) laws, we have five laws that fit two well-known patterns.

The arrow calculus is equivalent to the classic formulation. We give a translation of the four constructs
into the three constants, and show the five laws follow from the nine. Conversely, we also give a translation
of the three constants into the four constructs, and show the nine laws follow from the five. Hence, the arrow
calculus is no mere syntactic sugar. Instead of understanding it by translation into the three constants, we
can understand the three constants by translating them to it!

Elsewhere, we have already applied the arrow calculus to elucidate the connections between idioms,
arrows, and monads Lindley et al. [2008]. Arrow calculus was not the main focus of that paper, where it
was a tool to an end, and that paper has perhaps too terse a description of the calculus. This paper was in
fact written before the other, and we hope provides a readable introduction to the arrow calculus.

Our notation is a minor syntactic variation of Paterson’s notation, and Paterson’s paper contains essen-
tially the same laws we give here. So what is new?

• Paterson translates his notation into classic arrows, and shows the five laws follow from the nine
(Soundness). We are the first to give the inverse translation, and show that the nine laws follow from

1

the five (Completeness).

Completeness isn’t just a nicety: Paterson regards his notation as syntactic sugar for the classic arrows;
completeness lets us claim our calculus can supplant classic arrows.

• We are also the first to publish concise formal type rules. The type rules are unusual in that they
involve two contexts, one for variables bound by ordinary lambda abstraction and one for variables
bound by arrow abstraction. Discovering the rules greatly improved our understanding of arrows.

Or rather, we should say rediscovering. It turns out that the type rules were known to Paterson,
and he used them to implement the arrow notation extension to the Glasgow Haskell Compiler. But
Paterson never published the type rules; he explained to us that “Over the years I spent trying to get
the arrow notation published, I replaced formal rules with informal descriptions because referees didn’t
like them.” We are glad to help the formal rules finally into print.

• We show the two translations from classic arrows to arrow calculus and back are exactly inverse,
providing an equational correspondence in the sense of Sabry and Felleisen [1993].

The reader’s reaction may be to say, ‘Of course the translations are inverses, how could they be
otherwise?’ But in fact the more common situation is for forward and backward translations to compose
to give an isomorphism (category theorists call this an equivalence of categories), rather than compose
to give the identity on the nose (an isomorphism of categories). Lindley et al. [2008] gives forward
and backward translations between variants of idioms, arrows, and monads, and only some turn out
to be equational correspondences; we had to invent a more general notion of equational equivalence to
characterize the others.

• The first fruit of our new calculus is to reveal a redundancy: the nine classic arrow laws can be reduced
to eight. Notation alone was not adequate to lead to this discovery; it flowed from our attempts to
show the translations between classic arrows and arrow calculus preserve the laws.

• The arrow calculus has already proven useful in practice. It enabled us to clarify the relationship
between idioms, arrows and monads [Lindley et al., 2008]. Further, it provided the inspiration for the
categorical semantics of arrows [Atkey, 2008].

The rest of this report is organized as follows. Section 2 reviews the classic formulation of arrows.
Section 3 introduces the arrow calculus. Section 4 translates the arrow calculus into classic arrows, and vice
versa, showing that the laws of each can be derived from the other. Section 5 outlines two specialisations
of arrow calculus: static arrows and higher-order arrows. Section 6 outlines a strongly normalising and
confluent rewriting theory for arrow calculus. Section 7 highlights some of the fruits of our work on the
arrow calculus.

2 Classic arrows

We refer to the classic presentation of arrows as classic arrows, and to our new metalanguage as the arrow
calculus.

The core of both is an entirely pedestrian simply-typed lambda calculus with products and functions, as
shown in Figure 1. Let A,B,C range over types, L,M,N range over terms, and Γ,∆ range over environments.
A type judgment Γ `M : A indicates that in environment Γ term M has type A. We use a Curry formulation,
eliding types from terms. Products and functions satisfy beta and eta laws. (The laws define an equational
judgement between well-typed terms. Each law M = N is shorthand for Γ ` M = N : A for all Γ, A such
that Γ ` M : A and Γ ` N : A. The equational judgement is defined as the contextual and equivalence
closure of the laws.)

Classic arrows extends the core lambda calculus with one type and three constants satisfying nine laws,
as shown in Figure 2. The type A ; B denotes a computation that accepts a value of type A and returns
a value of type B, possibly performing some side effects. The three constants are: arr, which promotes a

2

Syntax
Types A,B, C ::= X | A×B | A→ B
Terms L,M,N ::= x | 〈M,N〉 | fst L | snd L | λx.N | L M
Environments Γ,∆ ::= x1 : A1, . . . , xn : An

Types
(x : A) ∈ Γ
Γ ` x : A

Γ `M : A
Γ ` N : B

Γ ` 〈M,N〉 : A×B

Γ ` L : A×B

Γ ` fst L : A

Γ ` L : A×B

Γ ` snd L : B

Γ, x : A ` N : B

Γ ` λx.N : A→ B

Γ ` L : A→ B
Γ `M : A

Γ ` L M : B

Laws
(β×1) fst 〈M,N〉 = M
(β×2) snd 〈M,N〉 = N
(η×) 〈fst L, snd L〉 = L
(β→) (λx.N) M = N [x := M]
(η→) λx. (L x) = L

Figure 1: Lambda calculus

function to a pure arrow with no side effects; >>>, which composes two arrows; and first, which extends
an arrow to act on the first component of a pair leaving the second component unchanged. We allow infix
notation as usual, writing M >>> N in place of (>>>) M N .

The figure defines ten auxiliary functions, all of which are standard. The identity function id, selector
fst, associativity assoc, function composition f ·g, and product bifunctor f ×g are required for the nine laws.
Functions dup and swap are used to define second, which is like first but acts on the second component of a
pair, and f &&& g, which applies arrows f and g to the same argument and pairs the results. We also define
the selector snd.

The nine laws state that arrow composition has a left and right unit (;1,;2), arrow composition is
associative (;3), composition of functions promotes to composition of arrows (;4), first on pure functions
rewrites to a pure function (;5), first is a homomorphism for composition (;6), first commutes with a pure
function that is the identity on the first component of a pair (;7), and first pushes through promotions of
fst and assoc (;8,;9).

Every arrow of interest comes with additional operators, which perform side effects or combine arrows in
other ways (such as choice or parallel composition). The story for these additional operators is essentially
the same for classic arrows and the arrow calculus, so we say little about them.

3 The arrow calculus

Arrow calculus extends the core lambda calculus with four constructs satisfying five laws, as shown in
Figure 3. As before, the type A ; B denotes a computation that accepts a value of type A and returns a
value of type B, possibly performing some side effects.

We now have two syntactic categories. Terms, as before, are ranged over by L, M, N , and commands are
ranged over by P,Q,R. In addition to the terms of the core lambda calculus, there is one new term form:

3

Syntax
Types A,B,C ::= · · · | A; B
Terms L,M,N ::= · · · | arr | (>>>) | first

Types
arr : (A→ B)→ (A; B)

(>>>) : (A; B)→ (B ; C)→ (A; C)
first : (A; B)→ (A×C ; B×C)

Definitions

id : A→ A
id = λx. x

fst : A×B → A
fst = λz. fst z

snd : A×B → B
snd = λz. snd z

assoc : (A×B)×C → A×(B×C)
assoc = λz. 〈fst (fst z), 〈snd (fst z), snd z〉〉

(·) : (B → C)→ (A→ B)→ (A→ C)
(·) = λf. λg. λx. f (g x)

(×) : (A→ C)→ (B → D)→ (A×B → C×D)
(×) = λf. λg. λz. (f (fst z), g (snd z))

dup : A→ A×A
dup = λx. (x, x)

swap : A×B → B×A
swap = λz. 〈snd z, fst z〉

second : (A; B)→ (C×A; C×B)
second = λf. arr swap >>> first f >>> arr swap

(&&&) : (C ; A)→ (C ; B)→ (C ; A×B)
(&&&) = λf. λg. arr dup >>> first f >>> second g

Laws
(;1) arr id >>> f = f
(;2) f >>> arr id = f
(;3) (f >>> g) >>> h = f >>> (g >>> h)
(;4) arr (g · f) = arr f >>> arr g
(;5) first (arr f) = arr (f × id)
(;6) first (f >>> g) = first f >>> first g
(;7) first f >>> arr (id× g) = arr (id× g) >>> first f
(;8) first f >>> arr fst = arr fst >>> f
(;9) first (first f) >>> arr assoc = arr assoc >>> first f

Figure 2: Classic arrows

4

Syntax
Types A,B,C ::= · · · | A; B
Terms L,M,N ::= · · · | λ•x.Q
Commands P,Q,R ::= L •M | [M] | let x = P in Q

Types

Γ; x : A ` Q ! B

Γ ` λ•x.Q : A; B

Γ ` L : A; B
Γ,∆ `M : A

Γ; ∆ ` L •M ! B

Γ, ∆ `M : A

Γ; ∆ ` [M] ! A

Γ; ∆ ` P ! A
Γ; ∆, x : A ` Q ! B

Γ; ∆ ` let x = P in Q ! B

Laws
(β;) (λ•x. Q) •M = Q[x := M]
(η;) λ•x. (L • x) = L
(left) let x = [M] in Q = Q[x := M]
(right) let x = P in [x] = P
(assoc) let y = (let x = P in Q) in R = let x = P in (let y = Q in R)

Figure 3: Arrow calculus

arrow abstraction λ•x. Q. There are three command forms: arrow application L •M , arrow unit [M] (which
resembles unit in a monad), and arrow bind let x = P in Q (which resembles bind in a monad).

In addition to the term typing judgment

Γ `M : A.

we now also have a command typing judgment

Γ; ∆ ` P ! A.

An important feature of the arrow calculus is that the command type judgment has two environments, Γ
and ∆, where variables in Γ come from ordinary lambda abstractions λx.N , while variables in ∆ come from
arrow abstractions λ•x. Q.

We will give a translation of commands to classic arrows, such that a command P satisfying the judgment

Γ; ∆ ` P ! A

translates to a term [[P]]∆ satisfying the judgment

Γ ` [[P]]∆ : ∆; A.

That is, the command P denotes an arrow, taking argument of type ∆ and returning a result of type A. We
explain this translation further in Section 4.

Here are the type rules for the four constructs. Arrow abstraction converts a command into a term.

Γ; x : A ` Q ! B

Γ ` λ•x. Q : A; B

Arrow abstraction closely resembles function abstractions, save that the body Q is a command (rather than
a term) and the bound variable x goes into the second environment (separated from the first by a semicolon).

5

Conversely, arrow application embeds a term into a command.

Γ ` L : A; B
Γ,∆ `M : A

Γ; ∆ ` L •M ! B

Arrow application closely resembles function application. The arrow to be applied is denoted by a term, not
a command; this is because there is no way to apply an arrow that is itself yielded by another arrow. This
is why we distinguish two environments, Γ and ∆: variables in Γ may be used to compute arrows that are
applied to arguments, but variables in ∆ may not. (As we shall see in Section 5, an arrow with an apply
operator—which is equivalent to a monad—relinquishes precisely this restriction.)

Arrow unit promotes a term to a command.

Γ, ∆ `M : A

Γ; ∆ ` [M] ! A

Note that in the hypothesis we have a term judgment with one environment (there is a comma between Γ
and ∆), while in the conclusion we have a command judgment with two environments (there is a semicolon
between Γ and ∆). This is the analogue of promotion of a function to an arrow in the classic formulation.
It also resembles the unit of a monad.

Lastly, the value returned by a command may be bound.

Γ; ∆ ` P ! A
Γ; ∆, x : A ` Q ! B

Γ; ∆ ` let x = P in Q ! B

This resembles a traditional let term, save that the bound variable goes into the second environment, not
the first. This is the analogue of arrow composition in the classic formulation, but (though this may not be
immediately obvious) it also embodies the operation first. It also resembles the bind of a monad.

Arrow abstraction and application satisfy beta and eta laws, (β;) and (η;), while arrow unit and bind
satisfy left unit, right unit, and associativity laws, (left), (right), and (assoc). Similar laws appear in the
computational metalanguage of Moggi [1991]. The beta law equates the application of an abstraction to a
bind; substitution is not part of beta, but instead appears in the left unit law.

(The laws on commands define an equational judgement between well-typed commands. Each law P = Q
is shorthand for Γ; ∆ ` P = Q ! A for all Γ,∆, A such that Γ; ∆ `M ! A and Γ; ∆ ` N ! A. The equational
judgement is defined as the contextual and equivalence closure of the laws.)

Paterson’s notation is closely related to ours. Here is a translation table, with our notation on the left
and his on the right.

λ•x. Q proc x→ Q
L •M L −≺ M
[M] arrowA −≺ M
let x = P in Q do {x← P ;Q}

In essence, each is a minor syntactic variant of the other. The only difference of note is that we introduce
arrow unit as an explicit construct, [M], while Paterson uses the equivalent form arrowA −≺ M where
arrowA is arr id. Our introduction of a separate construct for arrow unit is slightly neater, and avoids the
need to introduce arrowA as a constant in the arrow calculus.

4 Translations

We now consider translations between our two formulations, and show they are equivalent.

6

Translation
[[x]] = x

[[(M,N)]] = ([[M]], [[N]])
[[fst L]] = fst [[L]]

[[snd L]] = snd [[L]]
[[λx.N]] = λx. [[N]]
[[L M]] = [[L]] [[M]]

[[λ•x. Q]] = [[Q]]x
[[L •M]]∆ = arr (λ∆. [[M]]) >>> [[L]]

[[[M]]]∆ = arr (λ∆. [[M]])
[[let x = P in Q]]∆ = (arr id &&& [[P]]∆) >>> [[Q]]∆,x

Translation preserves types

[[
Γ; x : A ` Q ! B

Γ ` λ•x.Q : A; B

]]
=

Γ ` [[Q]]x : A; B

Γ ` [[Q]]x : A; B

Γ ` L : A; B
Γ,∆ `M : A

Γ; ∆ ` L •M ! B

 =
Γ ` [[L]] : A; B
Γ,∆ ` [[M]] : A

Γ ` arr (λ∆. [[M]]) >>> [[L]] : ∆; B[[
Γ, ∆ `M : A

Γ; ∆ ` [M] ! A

]]
=

Γ, ∆ ` [[M]] : A

Γ ` arr (λ∆. [[M]]) : ∆; A

Γ; ∆ ` P ! A
Γ; ∆, x : A ` Q ! B

Γ; ∆ ` let x = P in Q ! B

 =
Γ ` [[P]]∆ : ∆; A
Γ ` [[Q]]∆,x : ∆×A; B

Γ ` (arr id &&& [[P]]∆) >>> [[Q]]∆,x : ∆; B

Figure 4: Translating Arrow Calculus into Classic Arrows
Translation

[[x]]−1 = x
[[(M,N)]]−1 = ([[M]]−1, [[N]]−1)

[[fst L]]−1 = fst [[L]]−1

[[snd L]]−1 = snd [[L]]−1

[[λx.N]]−1 = λx. [[N]]−1

[[L M]]−1 = [[L]]−1 [[M]]−1

[[arr]]−1 = λf. λ•x. [f x]
[[(>>>)]]−1 = λf. λg. λ•x. let y = (f • x) in g • y

[[first]]−1 = λf. λ•z. let x = f • fst z in [〈x, snd z〉]

Figure 5: Translating Classic Arrows into Arrow Calculus

7

The translation from the arrow calculus into classic arrows is shown in Figure 4. An arrow calculus term
judgment

Γ `M : A

maps into a classic arrow judgment
Γ ` [[M]] : A

while an arrow calculus command judgment

Γ; ∆ ` P ! A

maps into a classic arrow judgment
Γ ` [[P]]∆ : ∆; A.

In [[P]]∆, we take ∆ to stand for the sequence of variables in the environment, and in ∆; A we take ∆ to
stand for the product of the types in the environment. Hence, the denotation of a command is an arrow,
with arguments corresponding to the environment ∆ and result of type A.

The translation of the constructs of the core lambda calculus are straightforward homomorphisms. The
translations of the remaining four constructs are shown twice, in the top half of the figure as equations on
syntax, and in the bottom half in the context of type derivations; the latter are longer, but may be clearer
to read. We comment briefly on each of the four:

• λ•x.N translates straightforwardly; it is a no-op.

• L •M translates to >>>.

• [M] translates to arr.

• let x = P in Q translates to pairing &&& (to extend the environment with P) and composition >>> (to
then apply Q). The pairing operator &&& is defined using first (and second), as shown in Figure 2.

The translation uses the notation λ∆. N , which is given the obvious meaning: λx.N stands for itself, and
λx1, x2. N stands for λz. N [x1 := fst z, x2 := snd z], and λx1, x2, x3. N stands for λz. N [x1 := fst (fst z), x2 :=
snd (fst z), x3 := snd z], and so on.

The inverse translation, from classic arrows to the arrow calculus, is given in Figure 5. Again, the
translation of the constructs of the core lambda calculus are straightforward homomorphisms. Each of the
three constants translates to an appropriate term in the arrow calculus.

We can now show the following four properties.

• The five laws of the arrow calculus follow from the nine laws of classic arrows. That is,

M = N implies [[M]] = [[N]]
and

P = Q implies [[P]]∆ = [[Q]]∆

for all arrow calculus terms M , N and commands P , Q. The proof requires five calculations, one for
each law of the arrow calculus.

• The nine laws of classic arrows follow from the five laws of the arrow calculus. That is,

M = N implies [[M]]−1 = [[N]]−1

for all classic arrow terms M , N . The proof requires nine calculations, one for each classic arrow law.

8

• Translating a term from the arrow calculus into classic arrows and back again is the identity (up to
equivalence). That is,

[[[[M]]]]−1 = M

for all arrow calculus terms M . Translating a command of the arrow calculus into classic arrows and
back again is the identity (up to equivalence). That is,

[[[[P]]∆]]−1 •∆ = P

for all arrow calculus commands P . The proof requires four calculations, one for each construct of the
arrow calculus.

• Translating from classic arrows into the arrow calculus and back again is the identity (up to equiva-
lence). That is,

[[[[M]]−1]] = M

for all classic arrow terms M . The proof requires three calculations, one for each classic arrow constant.

These four properties together constitute an equational correspondence between classic arrows and the arrow
calculus Sabry and Felleisen [1993]. The proofs that these properties hold are given in the Appendix.

5 Specialising arrows

Arrows generalise a whole range of different notions of computation. We can obtain specific kinds of arrows
by adding extra syntax and extra laws to the arrow calculus. Here we describe how to capture monads and
idioms in the arrow calculus. One might also capture other variants of arrows such as arrows with choice
and arrows with fixed points.

5.1 Higher-order arrows

A higher-order arrow permits us to apply an arrow that is itself yielded by another arrow. As explained by
Hughes [2000], an arrow with apply is equivalent to a monad. It is equipped with an additional constant

app : (A; B)×A; B

which is an arrow analogue of function application. For the arrow calculus, equivalent structure is provided
by a second version of arrow application, where the arrow to apply may itself be computed by an arrow.

Γ,∆ ` L : A; B
Γ,∆ `M : A

Γ,∆ ` L ? M ! B

This lifts the central restriction on arrow application. Now the arrow to apply may be the result of a
command, and the command denoting the arrow may contain free variables in both Γ and ∆.

For classic arrows the additional laws for arrows with apply are:

(;H1) first (arr (λx. arr (λy. 〈x, y〉))) >>> app = arr id
(;H2) first (arr (g>>>)) >>> app = second g >>> app
(;H3) first (arr (>>>h)) >>> app = app >>> h

For the arrow calculus the additional laws are simply the beta and eta laws for ?:

(βapp) (λ•x. Q) ? M = Q[x := M]
(ηapp) λ•x. (L ? x) = L

9

There is a slight subtlety here. The βapp law does not necessarily preserve well-typing. Consider:

λ•f. (λ•x. f • x) ? M = λ•f. f •M

The left-hand-side can be assigned a type, but the right-hand-side cannot (f is a ∆-variable, but appears
on the left of an arrow application). However, this is not a problem because the equational judgement on
commands is only defined when both sides can be assigned types.

Remark The ηapp laws is in fact redundant.

λ•x. L ? x
= (η;)

λ•x. (λ•y. L • y) ? x
= (βapp)

λ•x. L • x
= (η;)

L

These extensions to classic arrows and the arrow calculus maintain the equational correspondence. The
translations are each extended with an extra clause.
Higher-order arrows to classic arrows with apply:

[[L ? M]]∆ = arr (λ∆. [[L]] &&& [[M]]) >>> app

Classic arrows with apply to higher-order arrows:

[[app]]−1 = λ•p. (fst p) ? (snd p)

5.2 Static arrows

A static arrow is a kind of arrow that is equivalent to an idiom (also known as applicative functor) [McBride
and Paterson, 2008]. Static arrow computations are oblivious in the sense that they do not allow subsequent
computations to depend on the result of prior computations.

In order to model static arrows in the framework of classic arrows we extend our base lambda calculus
to include a unit type 1 along with the unit term () and add an additional constant

delay : (A; B)→ (1; (A→ B))

which allows the input to a computation be delayed until after the side-effects have taken place.
For the arrow calculus, equivalent structure is provided by a restriction of arrow application which runs

an arrow computation without supplying it with an input, producing a value of function type.

Γ ` L : A; B

Γ; ∆ ` run L ! A→ B

Note that the variables from the ∆ environment cannot occur in L.
For classic arrows the additional laws for are:

(;S1) force (delay a) = a
(;S2) delay (force a) = a

where

force : (1; (A→ B))→ (A; B)
force = λf. arr (λx. ((), x)) >>> first f >>> arr (λz. fst z (snd z))

10

For the arrow calculus the additional laws are:
(ob1) L •M = let f = run L in [f M]
(ob2) run (λ•x. [M]) = [λx.M]
(ob3) run (λ•x. let y = P in Q) = let y = P in let f = run (λ•〈x, y〉. Q) in [λx. f 〈x, y〉]

The first law eliminates arrow applications by decomposing them into two parts. The first part runs the
side-effects without looking at the input and returns a function value. The second part passes the input into
the function obtained from the first part. The second law eliminates run commands. Running a pure arrow
computation gives a pure function. The third law allows computation that is independent of the input to be
lifted out of a run command. By repeated application of (ob1) and (ob2) in conjunction with the other laws
we can reduce all run commands in a term to the canonical form run (f x1 . . . xn).

These extensions to classic arrows and the arrow calculus maintain the equational correspondence. The
translations are each extended with an extra clause.

Static arrows to classic arrows with delay:

[[run L]]∆ = arr (λ∆. ()) >>> delay [[L]]

Classic arrows with delay to static arrows:

[[delay]]−1 = λx. λ•u. run x

Robert Atkey suggested to us an alternative formulation of static arrows. His suggestion is to replace
run L with a command level lambda abstraction.

Γ; ∆, x : A ` P ! B

Γ; ∆ ` λ?x. P ! A→ B

with beta and eta laws
(βob) let f = λ?x. P in [f M] = P [x := M]
(ηob) λ?x. let f = P in [f x] = P

Run and command-level lambda abstraction are inter-definable.

λ?x. P = run (λ•x. P)
run L = λ?x. L • x

An advantage of this version of static arrows is that it gives a nice duality between static arrows and higher-
order arrows. For higher-order arrows we add a new kind of application, whereas for static arrows we add
a new kind of abstraction. Further, his oblivious laws fit the standard pattern of beta and eta laws. A
disadvantage is that (βob) and (ηob) are not so convenient to use, and it is not clear how to obtain rewrite
rules from them.

Remark Though we have defined languages for higher-order arrows and static arrows, it is not clear how
useful they are for practical programming.

For programming arrows the syntactic sugar introduced by Ross Paterson, which amounts to the same
thing as the arrow calculus, is often much more convenient than classic arrows as it does not force the
programmer to write programs in a point-free style. However, if all you want is a monad then using something
like Haskell do notation is considerably simpler than using higher-order arrows. Similarly, if all you want is
an idiom, then using static arrows is overkill. For point-free programming the pure and apply combinators
defined by McBride and Paterson [2008] work well. Our syntactic sugar for formlets [Cooper et al., 2008]
illustrates a simpler approach than static arrows to programming static arrows without forcing a point-free
style on the programmer (throwing away the XML from that syntax gives a general metalanguage that can
be used for any idiom).

The reason we wanted to define static arrows and higher-order arrows was to bring idioms, arrows and
monads into the same framework in order to make it easier to compare their relative expressive powers. One
situation in which it may be desirable to use static arrows or higher-order arrows in practical programs is if
you want to apply a generic arrow meta program to an idiom or a monad.

11

Beta rules
(β→) (λx.N)M −→ N [x := M]
(β;) (λ•x.Q) •M −→ Q[x := M]
(β!) let x = [M] in Q −→ Q[x := M]

Commuting conversions

(assoc) let y = (let x = P in Q) in R −→ let x = P in (let y = Q in R)

Eta rules
(η→) E[SA→B] −→ E[λx. S x]
(η;) E[SA;B] −→ E[λ•x. S • x]
(η!) F [T] −→ F [let x = T in [x]]

Neutral forms
Terms S ::= x | L M
Commands T ::= L •M

Eta contexts
Term contexts E[] ::= [] | λx. [] | L [] | L • [] | [[]]
Command contexts F [] ::= [] | λ•x. [] | let x = P in []

Normal forms
Terms L, M, N ::= SX | λx.M | λ•x. P
Commands P,Q,R ::= [M] | let x = T in P

Neutral terms SA ::= x | SB→AM
Neutral commands TA ::= SB;A •M

Figure 6: Arrow calculus rewriting rules and normal forms

6 Rewriting and normal forms

It is relatively straightforward to obtain confluent and strongly normalising rewrite rules for the arrow
calculus. Essentially we orient the β-laws and commuting conversion from left to right, and as advocated by
Jay and Ghani [1995] orient the η-laws from right to left (as expansions). The eta rules are restricted in the
usual way to operate only on neutral forms in non-elimination contexts. In order to handle the type-directed
η-expansions and the subtleties of ∆ contexts, we assume that writing takes place with respect to a typing
environment (or two environments for commands), and terms are well-typed with respect to the typing
environment. In other words when we write M −→ N this really means: Γ ` M −→ N : A whenever
Γ `M : A and Γ ` N : A, and similarly for P −→ Q.

Theorem 1. The reduction rules are strongly normalising.

Proof. The proof is by translation into the computational metalanguage, which is known to be strongly
normalising [Lindley and Stark, 2005]. We define the translation T (·) on types, terms and commands (the
missing cases are homorphisms):

T (A; B) = T (A)→ T (T (B))

T (λ•x. P) = λx. T (P)
T (L •M) = T (L) T (M)

12

(Note that both terms and commands map to terms in the computational metalanguage.) We now need
to show that every reduction on an arrow calculus term M corresponds to one or more computational
metalanguage reductions on T (M) (similarly for arrow calculus commands P). The only interesting cases
are those involving arrow abstraction and application.

(β;) (λx.Q) •M −→ Q[x := M]:

T ((λ•x. Q) •M)
=

(λx. T (Q)) T (M)
−→

T (Q)[x := T (M)]
=

T (Q[x := M])

(η;) E[SA;B] −→ E[λ•x. (S • x)]:

T (E[SA;B])
=

T (E)[T (SA;B)]
=

T (E)[T (S)A→T B]
−→

T (E)[λx. T (S)A→T B x]
=

T (E)[λx. T (SA;B • x)]
=

T (E[λ•x. SA;B • x])

Thus every arrow calculus reduction maps to exactly one computational metalanguage reduction.

(Note that the proof of strong normalisation in [Lindley and Stark, 2005] does not include η-rules, but
they are easy to add as illustrated in the more complicated setting of sums [Lindley, 2007].)

Theorem 2. The reduction rules are confluent.

Proof. It is straightforward to check weak confluence: that all the “critical pairs” of overlapping reductions
are joinable. Confluence then follows from strong normalisation and Newman’s lemma [Newman, 1942].

6.1 Rewriting with higher-order arrows

In order to extend the rewriting theory to accomodate higher-order arrows, we orient (βapp) left-to-right and
(ηapp) right-to-left as reduction rules (Figure 7). We also need an extra rule for converting standard arrow
applications to higher-order arrow applications.

(relax) L •M = L ? M

The (relax) law is easily derived from the existing laws.

L •M
= (ηapp)

(λ•x. L ? x) •M
= (β;)

L ? M

13

Beta rules
. . .
(βapp) (λ•x.Q) ? M −→ Q[x := M]

Eta rules
. . .
(ηapp) E[SA;B] −→ E[λ•x. S ? x]

Neutral forms
Commands T ::= · · · | L ? M

Eta contexts
Command contexts F [] ::= · · · | L ? []

Relaxation rule
(relax) L •M −→ L ? M

Normal forms
Terms L,M,N ::= SX | λx.M | λ•x. P
Commands P,Q,R ::= [M] | let x = T in P

Neutral terms SA ::= x | SB→AM
Neutral commands TA ::= SB;A ? M

Figure 7: Higher-order arrows rewriting rules and normal forms

14

Neutral forms
Commands T ::= · · · | run L

The oblivious laws

(ob1) L •M −→ let f = run L in [f M]
(ob2) run (λ•x. [M]) −→ [λx.M]
(ob3) run (λ•x. let y = P in Q) −→ let y = P in let f = run (λ•〈x, y〉. Q) in [λx. f 〈x, y〉]

Normal forms
Terms L,M,N ::= SX | λx.M | λ•x. P
Commands P,Q,R ::= [M] | let x = T in P

Neutral terms SA ::= x | SB→AM
Neutral commands TA ::= run SA

Figure 8: Static arrows rewriting rules and normal forms

Strong normalisation and confluence follow from essentially the same argument as before. The only
minor technicality is that we need to account for the relaxation rule. One way of doing so is to amend the
translation to introduce a dummy β-redex on arguments. Then the relaxation rule can be simulated by
contracting this redex.

T (A; B) = T (A)→ T (T (B))

T (λ•x. P) = λx. T (P)
T (L •M) = T (L) (λx. T (M) x)
T (L ? M) = T (L) T (M)

6.2 Rewriting with static arrows

In order to extend the rewriting theory to accomodate static arrows, we orient the additional laws left-to-right
as reduction rules (Figure 8).

Proving strong normalisation and confluence for static arrows is somewhat complicated by the oblivious
laws. We believe that the rewriting theory is strongly normalising and confluent but do not have a proof.

6.3 Normalisation for equality checking

Based on the rewriting rules described above we have implemented an arrow calculus normaliser in OCaml
along with a translation from classic arrows to arrow calculus. This provides a simple way of checking
whether two classic arrow terms are equivalent: translate to arrow calculus, reduce to normal form and
compare for syntactic equality.

7 Fruits

7.1 First surprise

A look at the proof of (right) reveals a mild surprise: (;2), the right unit law of classic arrows, is not
required to prove (right), the right unit law of the arrow calculus. Further, it turns out that (;2) is also not

15

required to prove the other four laws. But this is a big surprise! From the classic laws—excluding (;2)—we
can prove the laws of the arrow calculus, and from these we can in turn prove the classic laws—including
(;2). It follows that (;2) must be redundant.

Once the arrow calculus provided the insight, it was not hard to find a direct proof of redundancy.

f >>> arr id
= (;1)

arr id >>> f >>> arr id
= (fst · dup = id)

arr (fst · dup) >>> f >>> arr id
= (;4)

arr dup >>> arr fst >>> f >>> arr id
= (;8)

arr dup >>> first f >>> arr fst >>> arr id
= (;4)

arr dup >>> first f >>> arr (id · fst)
= (id · fst = fst)

arr dup >>> first f >>> arr fst
= (;8)

arr dup >>> arr fst >>> f
= (;4)

arr (fst · dup) >>> f
= (fst · dup = id)

arr id >>> f
= (;1)

f

We believe we are the first to observe that the nine classic arrow laws can be reduced to eight.

7.2 Second surprise

A look at the proof of (βapp) reveals another surprise: (;H2), is not required to prove (βapp). From the
classic laws—with apply but excluding (;H2)—we can prove the laws of higher-order arrows, and from these
we can in turn prove the classic laws—including (;H2). It follows that (;H2) must be redundant.

We believe we are the first to observe that the three classic arrow laws for apply can be reduced to two.

7.3 Applications

The arrow calculus has already proven useful in practice. It enabled us to clarify the relationship between
idioms, arrows and monads [Lindley et al., 2008]. Further, it provided the inspiration for the categorical
semantics of arrows [Atkey, 2008].

Acknowledgements

We thank Robert Atkey and John Hughes for their comments.

References

Robert Atkey. What is a categorical model of arrows? In Mathematical Structures in Functional Program-
ming, ENTCS, 2008.

16

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. An idiom’s guide to formlets. Technical
Report EDI-INF-RR-1263, School of Informatics, University of Edinburgh, 2008.

Antony Courtney and Conal Elliott. Genuinely functional user interfaces. In Haskell Workshop, pages 41–69,
September 2001.

Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, robots, and functional reactive
programming. In Johan Jeuring and Simon Peyton Jones, editors, Advanced Functional Programming, 4th
International School, volume 2638 of LNCS. Springer-Verlag, 2003.

John Hughes. Generalising monads to arrows. Science of Computer Programming, 37:67–111, May 2000.

Patrik Jansson and Johan Jeuring. Polytypic compact printing and parsing. In European Symposium on
Programming, volume 1576 of LNCS, pages 273–287. Springer-Verlag, 1999.

C. Barry Jay and Neil Ghani. The virtues of eta-expansion. J. Funct. Program., 5(2):135–154, 1995.

Sam Lindley. Extensional rewriting with sums. In TLCA, pages 255–271, 2007.

Sam Lindley and Ian Stark. Reducibility and tt-lifting for computation types. In TLCA, pages 262–277,
2005.

Sam Lindley, Philip Wadler, and Jeremy Yallop. Idioms are oblivious, arrows are meticulous, monads are
promiscuous. In Mathematical Structures in Functional Programming, ENTCS, 2008.

Conor McBride and Ross Paterson. Applicative programming with effects. Journal of Functional Program-
ming, 18(1):1–13, 2008.

Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92, 1991.

M. H. A. Newman. On theories with a combinatorial definition of ”equivalence”. Annals of Mathematics,
43(2):223–243, 1942.

Ross Paterson. A new notation for arrows. In International Conference on Functional Programming, pages
229–240. ACM Press, September 2001.

John Power and Edmund Robinson. Premonoidal categories and notions of computation. Mathematical
Structures in Computer Science, 7(5):453–468, October 1997.

John Power and Hayo Thielecke. Closed Freyd- and kappa-categories. In ICALP, volume 1644 of LNCS.
Springer, 1999.

Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style. Lisp and
Symbolic Computation, 6(3/4):289–360, 1993.

A Lemmas

Lemma 3. [Weakening] Suppose that ∆1,∆2 are well-formed environments and P is an arrow calculus
command. Suppose further that (viewing environments as sequences) ∆2 is a subsequence of ∆1 and (viewing
environments as sets) fv(P) ⊆ ∆2. Then

[[P]]∆1 = arr (λ∆1.∆2) >>> [[P]]∆2

Proof. By induction on the structure of P. There is one case for each command form.

17

1. Case P = L •M .

[[L •M]]∆1

= (def [[−]]∆1)
arr (λ∆1. [[M]]) >>> [[L]]

= ((λ∆2. [[M]]) · (λ∆1.∆2) = λ∆1.M)
arr ((λ∆2. [[M]]) · (λ∆1.∆2)) >>> [[L]]

= (;4)
arr (λ∆1.∆2) >>> arr (λ∆2. [[M]]) >>> [[L]]

= (def [[−]]∆2)
arr (λ∆1.∆2) >>> [[L •M]]∆2

2. Case P = [M].

[[[M]]]∆1

= (def [[−]]∆1)
arr (λ∆1. [[M]])

= ((λ∆2. [[M]]) · (λ∆1.∆2) = λ∆1.M)
arr ((λ∆2. [[M]]) · (λ∆1.∆2))

= (;4)
arr (λ∆1.∆2) >>> arr (λ∆2. [[M]])

= (def [[−]]∆2)
arr (λ∆1.∆2) >>> [[[M]]]∆2

3. Case P = let x = P in Q.

18

[[let x = P in Q]]∆1

= (def [[−]]∆1)
(arr id &&& [[P]]∆1) >>> [[Q]]∆1,x

= (induction hypothesis)
(arr id &&& (arr (λ∆1.∆2) >>> [[P]]∆2)) >>> arr ((λ∆1.∆2)× id) >>> [[Q]]∆2,x

= (def &&&)
arr dup >>> first (arr id) >>> arr swap >>> first (arr (λ∆1.∆2) >>> [[P]]∆2) >>>

arr swap >>> arr ((λ∆1.∆2)× id) >>> [[Q]]∆2,x

= (;6)
arr dup >>> first (arr id) >>> arr swap >>> first (arr (λ∆1.∆2)) >>> first [[P]]∆2 >>>

arr swap >>> arr ((λ∆1.∆2)× id) >>> [[Q]]∆2,x

= (;5)
arr dup >>> arr (id× id) >>> arr swap >>> arr ((λ∆1.∆2)× id) >>> first [[P]]∆2 >>>

arr swap >>> arr ((λ∆1.∆2)× id) >>> [[Q]]∆2,x

= (;4)
arr (((λ∆1.∆2)× id) · swap · (id× id) · dup) >>> first [[P]]∆2 >>>

arr (((λ∆1.∆2)× id) · swap) >>> [[Q]]∆2,x

= (swap · (id× id) · dup = dup)
arr (((λ∆1.∆2)× id) · dup) >>> first [[P]]∆2 >>> arr (((λ∆1.∆2)× id) · swap)[[Q]]∆2,x

= (((λ∆1.∆2)× id) · dup = λ∆1. (∆2,∆1))
arr (λ∆1. (∆2,∆1)) >>> first [[P]]∆2 >>> arr (((λ∆1.∆2)× id) · swap)[[Q]]∆2,x

= ((f × id) · swap = swap · (id× f))
arr (λ∆1. (∆2,∆1)) >>> first [[P]]∆2 >>> arr (swap.(id× (λ∆1.∆2)))[[Q]]∆2,x

= (;4)
arr (λ∆1. (∆2,∆1)) >>> first [[P]]∆2 >>> arr (id× (λ∆1.∆2)) >>> arr swap >>> [[Q]]∆2,x

= (;7)
arr (λ∆1. (∆2,∆1)) >>> arr (id× (λ∆1.∆2)) >>> first [[P]]∆2 >>> arr swap >>> [[Q]]∆2,x

= (;4)
arr ((id× (λ∆1.∆2)) · (λ∆1. (∆2,∆1))) >>> first [[P]]∆2 >>> arr swap >>> [[Q]]∆2,x

= ((id× (λ∆1.∆2)) · (λ∆1. (∆2,∆1)) = λ∆1. (∆2,∆2))
arr (λ∆1. (∆2,∆2)) >>> first [[P]]∆2 >>> arr swap >>> [[Q]]∆2,x

= (swap · (id× id) · dup · (λ∆1.∆2) = λ∆1. (∆2,∆2))
arr (swap · (id× id) · dup · (λ∆1.∆2)) >>> first [[P]]∆2 >>> arr swap >>> [[Q]]∆2,x

= (;4)
arr (λ∆1.∆2) >>> arr dup >>> arr (id× id) >>> arr swap >>> first [[P]]∆2 >>>

arr swap >>> [[Q]]∆2,x

= (;5)
arr (λ∆1.∆2) >>> arr dup >>> first (arr id) >>> arr swap >>> first [[P]]∆2 >>>

arr swap >>> [[Q]]∆2,x

= (def &&&)
arr (λ∆1.∆2) >>> (arr id &&& [[P]]∆2) >>> [[Q]]∆2,x

= (def [[−]]∆2)
arr (λ∆1.∆2) >>> [[let x = P in Q]]∆2

Lemma 4. [Interchange] If P is an arrow calculus command and ∆1 and ∆2 are environments such that
dom(∆1) = dom(∆2) and ∆1(x) = ∆2(x) for all x ∈ dom(∆1) then

[[P]]∆1 = arr (λ∆1.∆2) >>> [[P]]∆2

19

Proof. By induction on the structure of P .

Lemma 5. The translations of substitution on terms and commands is as follows.

[[P [x := N]]]∆ = arr (λ∆. (∆, [[N]])) >>> [[P]]∆,x

[[M [x := N]]] = [[M]][x := [[N]]]

Proof. By mutual induction on the derivations of P and M . There is one case for each command form and
each term form. We give only the cases for command forms here.

1. Case P = L •M .

[[(L •M)[x := N]]]∆
= (def substitution)

[[L • (M [x := N])]]∆
= (def [[−]]∆)

arr (λ∆. [[M [x := N]]]) >>> [[L]]
= (induction hypothesis)

arr (λ∆. [[M]][x := [[N]]]) >>> [[L]]
= (;4)

arr (λ∆. (∆, [[N]])) >>> arr (λ〈∆, x〉. [[M]]) >>> [[L]]
= (def [[−]]∆,x)

arr (λ∆. (∆, [[N]])) >>> [[L •M]]∆,x

2. Case P = [M].

[[[M][x := N]]]∆
= (def substitution)

[[[M [x := N]]]]∆
= (def [[−]]∆)

arr (λ∆. [[M [x := N]]])
= (induction hypothesis)

arr (λ∆. [[M]][x := [[N]]])
= (;4)

arr (λ∆. 〈∆, [[N]]〉) >>> arr (λ〈∆, x〉. [[M]])
= (def [[−]]∆,x)

arr (λ∆. 〈∆, [[N]]〉) >>> [[[M]]]∆,x

3. Case P = let y = P in Q.

20

[[(let y = P in Q)[x := N]]]∆
= (def substitution)

[[let y = P [x := N] in Q[x := N]]]∆
= (def [[−]]∆)

(arr id &&& [[P [x := N]]]∆) >>> [[Q[x := N]]]∆,y

= (induction hypothesis)
(arr id &&& (arr (λ∆. 〈∆, [[N]]〉) >>> [[P]]∆,x)) >>> arr (λ〈∆, y〉. 〈∆, y, [[N]]〉) >>> [[Q]]∆,y,x

= (def &&&)
arr dup >>> first (arr id) >>> arr swap >>> first (arr (λ∆. 〈∆, [[N]]〉) >>> [[P]]∆,x)>>>

arr swap >>> arr (λ〈∆, y〉. 〈∆, y, [[N]]〉) >>> [[Q]]∆,y,x

= (;6)
arr dup >>> first (arr id) >>> arr swap >>> first (arr (λ∆. 〈∆, [[N]]〉)) >>> first [[P]]∆,x>>>

arr swap >>> arr (λ〈∆, y〉. 〈∆, y, [[N]]〉) >>> [[Q]]∆,y,x

= (;5)
arr dup >>> arr (id× id) >>> arr swap >>> arr ((λ∆. 〈∆, [[N]]〉)× id) >>> first [[P]]∆,x>>>

arr swap >>> arr (λ〈∆, y〉. 〈∆, y, [[N]]〉) >>> [[Q]]∆,y,x

= (;4)
arr (λ∆. (〈∆, [[N]]〉,∆)) >>> first [[P]]∆,x>>>

arr (λ〈y, ∆〉. 〈∆, y, [[N]]〉) >>> [[Q]]∆,y,x

= (lemma 4)
arr (λ∆. (〈∆, [[N]]〉,∆)) >>> first [[P]]∆,x>>>

arr (λ〈y, ∆〉. 〈∆, y, [[N]]〉) >>> arr (λ〈∆, y, x〉. 〈∆, x, y〉) >>> [[Q]]∆,x,y

= (;4)
arr (λ∆. 〈〈∆, [[N]]〉, 〈∆, [[N]]〉〉) >>> arr (id× fst) >>> first [[P]]∆,x>>>

arr (λ〈y, ∆〉. 〈∆, [[N]], y〉) >>> [[Q]]∆,x,y

= (;7)
arr (λ∆. 〈〈∆, [[N]]〉, 〈∆, [[N]]〉〉) >>> first [[P]]∆,x>>>

arr (id× fst) >>> arr (λ〈y, ∆〉. 〈∆, [[N]], y〉) >>> [[Q]]∆,x,y

= (;4)
arr (λ∆. 〈〈∆, [[N]]〉, 〈∆, [[N]]〉〉) >>> first [[P]]∆,x>>>

arr (swap · (id× (id× (λx. [[N]])))) >>> arr ((λ〈y, 〈∆, x〉〉. 〈∆, [[N]], y〉)) >>> [[Q]]∆,x,y

= (;4)
arr (λ∆. 〈〈∆, [[N]]〉, 〈∆, [[N]]〉〉) >>> first [[P]]∆,x>>>

arr (id× (id× (λx. [[N]]))) >>> arr swap >>> arr ((λ〈y, 〈∆, x〉〉. 〈∆, [[N]], y〉)) >>> [[Q]]∆,x,y

= (;7)
arr (λ∆. 〈〈∆, [[N]]〉, 〈∆, [[N]]〉〉) >>> arr (id× (id× (λx. [[N]]))) >>> first [[P]]∆,x>>>

arr swap >>> arr ((λ〈y, 〈∆, x〉〉. 〈∆, [[N]], y〉)) >>> [[Q]]∆,x,y

= (;4)
arr ((id× (id× (λx. [[N]]))) · (λ∆. 〈〈∆, [[N]]〉, 〈∆, [[N]]〉〉)) >>> first [[P]]∆,x>>>

arr swap >>> arr ((λ〈y, 〈∆, x〉〉. 〈∆, [[N]], y〉)) >>> [[Q]]∆,x,y

= ((id× (id× (λx. [[N]]))) · (λ∆. 〈〈∆, [[N]]〉, 〈∆, [[N]]〉)) = (λ∆. (〈∆, [[N]]〉, 〈∆, [[N]]〉〉))
arr (λ∆. 〈〈∆, [[N]]〉, 〈∆, [[N]]〉〉) >>> first [[P]]∆,x>>>

arr swap >>> arr ((λ〈y, 〈∆, x〉〉. 〈∆, [[N]], y〉)) >>> [[Q]]∆,x,y

21

= (;4)
arr (λ∆. 〈∆, [[N]]〉) >>> arr dup >>> arr (id× id) >>> arr swap >>> first [[P]]∆,x>>>

arr swap >>> [[Q]]∆,x,y

= (;5)
arr (λ∆. 〈∆, [[N]]〉) >>> arr dup >>> first (arr id) >>> arr swap >>> first [[P]]∆,x>>>

arr swap >>> [[Q]]∆,x,y

= (def &&&)
arr (λ∆. 〈∆, [[N]]〉) >>> (arr id &&& [[P]]∆,x) >>> [[Q]]∆,x,y

= (def [[−]]∆,x)
arr (λ∆. 〈∆, [[N]]〉) >>> [[let y = P in Q]]∆,x

B Arrow calculus proofs

B.1 The arrow laws follow from the laws of the metalanguage

For each law M = N we must show [[M]]−1 = [[N]]−1.

1. [[arr id >>> f]]−1 = [[f]]−1

[[arr id >>> f]]−1

= (def [[−]]−1)
λ•x. (let y = (λ•z. [id z]) • x in [[f]]−1 • y)

= (β→)
λ•x. (let y = (λ•z. [z]) • x in [[f]]−1 • y)

= (β;)
λ•x. (let y = [x] in [[f]]−1 • y)

= (left)
λ•x. ([[f]]−1 • x)

= (η;)
[[f]]−1

2. [[f >>> arr id]]−1 = [[f]]−1

[[f >>> arr id]]−1

= (def [[−]]−1)
λ•x. (let y = [[f]]−1 • x in (λ•z. [id z]) • y)

= (β→)
λ•x. (let y = [[f]]−1 • x in (λ•z. [z]) • y)

= (β;)
λ•x. (let y = [[f]]−1 • x in [y])

= ((right))
λ•x. ([[f]]−1 • x)

= (η;)
[[f]]−1

22

3. [[(f >>> g) >>> h]]−1 = [[f >>> (g >>> h)]]−1

[[(f >>> g) >>> h]]−1

= (def [[−]]−1)
λ•z. (let w = (λ•x. (let y = [[f]]−1 • x in [[g]]−1 • y)) • z in [[h]]−1 • w)

= (β;)
λ•z. (let w = (let y = [[f]]−1 • z in [[g]]−1 • y) in [[h]]−1 • w)

= (assoc)
λ•z. (let w = [[f]]−1 • z in (let y = [[g]]−1 • y) in [[h]]−1 • w)

= (β;)
λ•x. (let w = [[f]]−1 • x in (λ•z. (let y = [[g]]−1 • z in [[h]]−1 • y)) • w)

= (def [[−]]−1)
[[f >>> (g >>> h)]]−1

4. [[arr (g · f)]]−1 = [[arr f >>> arr g]]−1

[[arr (g · f)]]−1

= (def [[−]]−1)
λ•x. [([[g]]−1 · [[f]]−1) x]

= (def ·)
λ•x. ([[[g]]−1 ([[f]]−1 x)])

= (left)
λ•x. (let y = [[[f]]−1 x] in [[[g]]−1 y])

= (β;(×2))
λ•x. (let y = (λ•x. [[[f]]−1 x]) • x in (λ•x. [[[g]]−1 x]) • y)

= (def [[−]]−1)
[[arr f >>> arr g]]−1

5. [[first (f >>> g)]]−1 = [[first f >>> first g]]−1

[[first (f >>> g)]]−1

= (def [[−]]−1)
λ•z. let w = (λ•x. (let y = [[f]]−1 • x in [[g]]−1 • y)) • fst z in [〈w, snd z〉]

= (β;)
λ•z. let w = (let y = [[f]]−1 • fst z in [[g]]−1 • y) in [〈w, snd z〉]

= (assoc)
λ•z. let y = [[f]]−1 • fst z in let w = [[g]]−1 • y in [〈w, snd z〉]

= (β×1 , β×2)
λ•z. (let y = [[f]]−1 • fst z in let w = [[g]]−1 • fst 〈y, snd z〉 in [〈w, snd 〈y, snd z〉〉])

= (left)
λ•z. (let y = [[f]]−1 • fst z in let v = [〈y, snd z〉] in let w = [[g]]−1 • fst v in [〈w, snd v〉])

= (assoc)
λ•z. (let v = (let y = [[f]]−1 • fst z in [〈y, snd z〉]) in let w = [[g]]−1 • fst v in [〈w, snd v〉])

= (β;(×2))
λ•z. (let v = (λ•x. (let y = [[f]]−1 • fst x in [〈y, snd x〉])) • z in

(λ•x. (let w = [[g]]−1 • fst x in [〈w, snd x〉])) • v)
= (def [[−]]−1)

[[first f >>> first g]]−1

23

6. [[first (arr f)]]−1 = [[arr (f × id)]]−1

[[first (arr f)]]−1

= (def [[−]]−1)
λ•z. (let x = (λ•w. ([[[f]]−1 w])) • fst z in [〈x, snd z〉])

= (β;)
λ•z. (let x = [[[f]]−1 fst z] in [〈x, snd z〉])

= (left)
λ•z. [〈[[f]]−1 fst z, snd z〉]

= (def ×)
λ•z. [([[f]]−1 × id) z]

= (def [[−]]−1)
[[arr (f × id)]]−1

7. [[first f >>> arr (id× g)]]−1 = [[arr (id× g) >>> first f]]−1

[[first f >>> arr (id× g)]]−1

= (def [[−]]−1)
λ•x. (let y = (λ•z. (let v = [[f]]−1 • fst z in [〈v, snd z〉])) • x in (λ•w. [(id× [[g]]−1) w]) • y)

= (β;(×2))
λ•x. (let y = (let v = [[f]]−1 • fst x in [〈v, snd x〉]) in [(id× [[g]]−1) y])

= (assoc)
λ•x. (let v = [[f]]−1 • fst x in let y = [〈v, snd x〉] in [(id× [[g]]−1) y])

= (left)
λ•x. (let v = [[f]]−1 • fst x in [(id× [[g]]−1) 〈v, snd x〉])

= (def ×)
λ•x. (let v = [[f]]−1 • fst x in [〈v, [[g]]−1snd x〉])

= (β×1 , β×2)
λ•x. (let v = [[f]]−1 • fst 〈fst x, [[g]]−1 x〉 in [〈v, snd 〈fst x, [[g]]−1 snd x〉〉])

= (def ×)
λ•x. (let v = [[f]]−1 • fst (id× [[g]]−1) x in [〈v, snd ((id× [[g]]−1) x)〉])

= (left)
λ•x. (let y = [(id× [[g]]−1) x] in let v = [[f]]−1 • fst y in [〈v, snd y〉])

= (β;(×2))
λ•x. (let y = (λ•w. [(id× [[g]]−1) w]) • x in (λ•z. (let v = [[f]]−1 • fst z in [〈v, snd z〉])) • y)

= (def [[−]]−1)
[[arr (id× g) >>> first f]]−1

8. [[first (first f) >>> arr assoc]]−1 = [[arr assoc >>> first f]]−1

24

[[first (first f) >>> arr assoc]]−1

= (def [[−]]−1)
λ•a. (let b = (λ•z. (let x = (λ•q. (let r = [[f]]−1 • fst q in [〈r, snd q〉])) • fst z in [〈x, snd z〉])) • a in

(λ•w. [assoc w]) • b)
= (β;(×3))

λ•a. (let b = (let x = (let r = [[f]]−1 • fst (fst a) in [〈r, snd (fst a)〉]) in [〈x, snd a〉]) in [assoc b])
= (assoc(×3))

λ•a. (let r = [[f]]−1 • fst (fst a) in let x = [〈r, snd (fst a)〉] in let b = [〈x, snd a〉] in [assoc b])
= (left(×2))

λ•a. (let r = [[f]]−1 • fst (fst a) in [assoc 〈〈r, snd (fst a)〉, snd a〉])
= (def assoc)

λ•a. (let r = [[f]]−1 • fst (fst a) in
[〈fst fst (〈r, snd (fst a)〉, snd a〉, 〈snd (fst 〈〈r, snd (fst a)〉, snd a〉), snd 〈〈r, snd (fst a)〉, snd a〉〉)])

= (β×1 (×3), β×2 (×2))
λ•a. (let r = [[f]]−1 • fst (fst a) in [〈r, 〈snd (fst a), snd a〉〉])

= (β×1 , β×2)
λ•a. (let r = [[f]]−1 • fst 〈fst (fst a), 〈snd (fst a), snd a〉〉 in [〈r, snd 〈fst (fst a), 〈snd (fst a), snd a〉〉〉])

= (def assoc)
λ•a. (let r = [[f]]−1 • fst assoc a in [〈r, snd assoc a〉])

= (left)
λ•a. (let b = [assoc a] in let r = [[f]]−1 • fst b in [〈r, snd b〉])

= (β;(×2))
λ•a. (let b = (λ•r. [assoc r]) • a in (λ•z. (let r = [[f]]−1 • fst z in [〈r, snd z〉])) • b)

= (def [[−]]−1)
[[arr assoc >>> first f]]−1

9. [[first f >>> arr fst]]−1 = [[arr fst >>> f]]−1

[[first f >>> arr fst]]−1

= (def [[−]]−1)
λ•x. (let y = (λ•z. (let w = [[f]]−1 • fst z in [〈w, snd z〉])) • x in (λ•z. [fst z]) • y)

= (β;(×2))
λ•x. (let y = (let w = [[f]]−1 • fst x in [〈w, snd x〉]) in [fst y])

= (assoc)
λ•x. (let w = [[f]]−1 • fst x in let y = [〈w, snd x〉] in [fst y])

= (left)
λ•x. (let w = [[f]]−1 • fst x in [fst 〈w, snd x〉])

= (β×1)
λ•x. (let w = [[f]]−1 • fst x in [w])

= (right)
λ•x. ([[f]]−1 • fst x)

= (left)
λ•x. (let y = [fst x] in [[f]]−1 • y)

= (β;)
λ•x. (let y = (λ•z. [fst z]) • x in [[f]]−1 • y)

= (def [[−]]−1)
[[arr fst >>> f]]−1

25

B.2 The laws of the metalanguage follow from the arrow laws

For each law M = N we must show [[M]] = [[N]].
We make implicit use of ;3, writing L >>> M >>> N for both (L >>> M) >>> N and L >>> (M >>> N).

1. [[let x = [M] in Q]]∆ = [[Q[x := M]]]∆

[[let x = [M] in Q]]∆
= (def [[−]]∆)

arr dup >>> first (arr (λ∆. [[M]])) >>> arr swap >>> [[Q]]∆,x

= (;5)
arr dup >>> arr ((λ∆. [[M]])× id) >>> arr swap >>> [[Q]]∆,x

= (;4)
arr (swap · ((λ∆. [[M]])× id) · dup) >>> [[Q]]∆,x

= (swap · ((λ∆. [[M]])× id) · dup = λ∆. 〈∆, [[M]]〉)
arr (λ∆. 〈∆, [[M]]〉) >>> [[Q]]∆,x

= (lemma 5)
[[Q[x := M]]]∆

2. [[let x = P in [x]]]∆ = [[P]]∆

[[let x = P in [x]]]∆
= (def [[−]]∆)

(arr id &&& [[P]]∆) >>> arr snd
= (def &&&)

arr dup >>> first (arr id) >>> second [[P]]∆ >>> arr snd
= (;5)

arr dup >>> arr (id× id) >>> second [[P]]∆ >>> arr snd
= (id× id = id)

arr dup >>> arr id >>> second [[P]]∆ >>> arr snd
= (;1)

arr dup >>> second [[P]]∆ >>> arr snd
= (def second)

arr dup >>> arr swap >>> first [[P]]∆ >>> arr swap >>> arr snd
= (;4)

arr (swap · dup) >>> first [[P]]∆ >>> arr (snd · swap)
= (swap · dup = dup, snd · swap = fst)

arr dup >>> first [[P]]∆ >>> arr fst
= (;8)

arr dup >>> arr fst >>> [[P]]∆
= (;4)

arr (fst · dup) >>> [[P]]∆
= (fst · dup = id)

arr id >>> [[P]]∆
= (;1)

[[P]]∆

3. [[λ•x. (L • x)]] = [[L]]

26

[[λ•x. (L • x)]]
= (def [[−]])

arr id >>> [[L]]
= (;1)

[[L]]

4. [[let y = (let x = P in Q) in R]]∆ = [[let x = P in let y = Q in R]]∆

[[let y = (let x = P in Q) in R]]∆
= (def [[−]]∆)

arr dup >>> first (arr dup >>> first [[P]]∆ >>> arr swap >>> [[Q]]∆,x) >>> arr swap >>> [[R]]∆,y

= (;6)
arr dup >>> first (arr dup) >>> first (first [[P]]∆) >>> first (arr swap) >>> first ([[Q]]∆,x) >>>

arr swap >>> [[R]]∆,y

= (;5)
arr dup >>> arr (dup× id) >>> first (first [[P]]∆) >>> arr (swap× id) >>> first ([[Q]]∆,x) >>>

arr swap >>> [[R]]∆,y

= (;4)
arr ((dup× id) · dup) >>> first (first [[P]]∆) >>> arr (first swap) >>> first [[Q]]∆,x >>>

arr swap >>> [[R]]∆,y

= (first swap = (λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉) · assoc)
arr ((dup× id) · dup) >>> first (first [[P]]∆) >>> arr (λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉 · assoc) >>>

first [[Q]]∆,x >>> arr swap >>> [[R]]∆,y

= (;4)
arr ((dup× id) · dup) >>> first (first [[P]]∆) >>> arr assoc >>> arr (λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉) >>>

first [[Q]]∆,x >>> arr swap >>> [[R]]∆,y

= (;9)
arr ((dup× id) · dup) >>> arr assoc >>> first [[P]]∆ >>> arr (λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉) >>>

first [[Q]]∆,x >>> arr swap >>> [[R]]∆,y

= (;r, assoc · (dup× id) · dup = (id× dup) · dup)
arr ((id× dup) · dup) >>> first [[P]]∆ >>> arr (λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉) >>>

first [[Q]]∆,x >>> arr swap >>> [[R]]∆,y

= (;4)
arr dup >>> arr (id× dup) >>> first [[P]]∆ >>> arr (λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉) >>>

first [[Q]]∆,x >>> arr swap >>> [[R]]∆,y

= (;7)
arr dup >>> first [[P]]∆ >>> arr (id× dup) >>> arr (λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉) >>>

first [[Q]]∆,x >>> arr swap >>> [[R]]∆,y

27

= (;4)
arr dup >>> first [[P]]∆ >>> arr ((λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉) · (id× dup)) >>>

first [[Q]]∆,x >>> arr swap >>> [[R]]∆,y

= (λ〈x, 〈y, z〉〉. 〈〈y, x〉, z〉) · (id× dup) = ((id× fst) · (dup · swap))
arr dup >>> first [[P]]∆ >>> arr ((id× fst) · (dup · swap)) >>>

first [[Q]]∆,x >>> arr swap >>> [[R]]∆,y

= (;4,)
arr dup >>> first [[P]]∆ >>> arr (dup · swap) >>>

arr (id× fst) >>> first [[Q]]∆,x >>> arr swap >>> [[R]]∆,y

= (;7)
arr dup >>> (first [[P]]∆ >>> arr (dup · swap) >>>

first [[Q]]∆,x >>> arr (id× fst) >>> arr swap >>> [[R]]∆,y

= (;4)
arr dup >>> first [[P]]∆ >>> arr (dup · swap) >>>

first [[Q]]∆,x >>> arr (swap · (id× fst)) >>> [[R]]∆,y

= (swap · (id× fst) = (λ〈y, 〈∆, x〉〉. 〈∆, y〉))
arr dup >>> first [[P]]∆ >>> arr (dup · swap) >>>

first [[Q]]∆,x >>> arr ((λ〈y, 〈∆, x〉〉. 〈∆, y〉)) >>> [[R]]∆,y

= (;4)
arr dup >>> first [[P]]∆ >>> arr (dup · swap) >>>

first [[Q]]∆,x >>> arr swap >>> arr (λ〈∆, x, y〉. 〈∆, y〉) >>> [[R]]∆,y

= (lemma 3)
arr dup >>> first [[P]]∆ >>> arr (dup · swap) >>>

first [[Q]]∆,x >>> arr swap >>> [[R]]∆,x,y

= (;4)
arr dup >>> first [[P]]∆ >>> arr swap >>> arr dup >>>

first [[Q]]∆,x >>> arr swap >>> [[R]]∆,x,y

= (def [[−]]∆)
[[let x = P in (let y = Q in R)]]∆

5. [[(λ•x.Q) •M]]∆ = [[Q[x := M]]]∆

[[(λ•x. Q) •M]]∆
= (def [[−]]∆)

arr (λ∆. [[M]]) >>> [[Q]]x
= (;4)

arr (λ∆. 〈∆, [[M]]〉) >>> arr (λ〈∆, x〉. x) >>> [[Q]]x
= (lemma 3)

arr (λ∆. 〈∆, [[M]]〉) >>> [[Q]]∆,x

= (lemma 5)
[[Q[x := M]]]∆

B.3 Translating classic arrows to arrow calculus and back

For each classic arrows term M , [[[[M]]−1]] = M . The proof is by induction on the structure of terms. The
only interesting cases are the constants.

1. [[[[arr]]−1]] = arr.

28

[[[[arr]]−1]]
= (def [[−]]−1, β→)

[[λf. λ•x. [f x]]]
= (def [[−]])

λf. arr (λx. (f x))
= (η→, η→)

arr

2. [[(>>>)]] = (>>>).

[[[[(>>>)]]−1]]
= (def [[−]]−1, β→)

[[λf. λg. λ•x. (let y = f • x in g • y)]]
= (def [[−]], (;1))

λf. λg. (arr id &&& f) >>> (arr snd >>> g)
= (def &&&)

λf. λg. arr dup >>> first (arr id) >>> arr swap >>> first f >>> arr swap >>> (arr snd >>> g)
= (;5)

λf. λg. arr dup >>> arr (id× id) >>> arr swap >>> first f >>> arr swap >>> (arr snd >>> g)
= (id× id = id)

λf. λg. arr dup >>> arr id >>> arr swap >>> first f >>> arr swap >>> (arr snd >>> g)
= (;2)

λf. λg. arr dup >>> arr swap >>> first f >>> arr swap >>> (arr snd >>> g)
= (;4, swap · dup = dup)

λf. λg. arr dup >>> first f >>> arr swap >>> (arr snd >>> g)
= (;3)

λf. λg. arr dup >>> first f >>> arr swap >>> arr snd >>> g
= (;4, snd · swap = fst)

λf. λg. arr dup >>> first f >>> arr fst >>> g
= (;8)

λf. λg. arr dup >>> arr fst >>> f >>> g
= (;4, fst · dup = id)

λf. λg. arr id >>> f >>> g
= (;1, η

→(×2))
(>>>)

3. [[[[first]]−1]] = first.

29

[[[[first f]]−1]]
= (def [[−]]−1, β→)

[[λf. λ•z. let x = f • [fst z] in [〈x, snd z〉]]]
= (def [[−]])

λf. (arr id &&& (arr (λu. fst u) >>> f)) >>> arr (λv. 〈snd v, snd (fst v)〉)
= (def fst)

λf. (arr id &&& (arr fst >>> f)) >>> arr (λv. (snd v, snd (fst v)))
= (def &&&)

λf. arr dup >>> first (arr id) >>> second (arr fst >>> f) >>> arr (λv. 〈snd v, snd (fst v)〉)
= (;5)

λf. arr dup >>> arr (id× id) >>> second (arr fst >>> f) >>> arr (λv. 〈snd v, snd (fst v)〉)
= (id× id = id)

λf. arr dup >>> arr id >>> second (arr fst >>> f) >>> arr (λv. 〈snd v, snd (fst v)〉)
= (;1)

λf. arr dup >>> second (arr fst >>> f) >>> arr (λv. 〈snd v, snd (fst v)〉)
= (def second)

λf. arr dup >>> arr swap >>> first (arr fst >>> f) >>> arr swap >>> arr (λv. 〈snd v, snd (fst v)〉)
= (;4)

λf. arr (swap · dup) >>> first (arr fst >>> f) >>> arr swap >>> arr (λv. 〈snd v, snd (fst v)〉)
= (swap · dup = dup)

λf. arr dup >>> first (arr fst >>> f) >>> arr swap >>> arr (λv. 〈snd v, snd (fst v)〉)
= (;4)

λf. arr dup >>> first (arr fst >>> f) >>> arr ((λv. 〈snd v, snd (fst v)〉) · swap)
= ((λv. 〈snd v, snd (fst v)〉) · swap = id× snd)

λf. arr dup >>> first (arr fst >>> f) >>> arr (id× snd)
= (;6)

λf. arr dup >>> first (arr fst) >>> first f >>> arr (id× snd)
= (;5)

λf. arr dup >>> arr (fst× id) >>> first f >>> arr (id× snd)
= (;7)

λf. arr dup >>> arr (fst× id) >>> arr (id× snd) >>> first f
= (;4)

λf. arr ((id× snd) · (fst× id) · dup) >>> first f
= ((id× snd) · (fst× id) · dup = id)

λf. arr id >>> first f
= (;1, η

→)
first

B.4 Translating arrow calculus to classic arrows and back

For each arrow calculus term M , [[[[M]]]]−1 = M .

1. [[[[λ•x. Q]]]]−1 = λ•x. Q.

[[[[λ•x.Q]]]]−1

= (def [[−]])
[[[[Q]]x]]−1

= (induction hypothesis)
λ•x.Q

30

For each arrow calculus command P , [[[[P]]∆]]−1 •∆ = P .

1. [[[[L •M]]∆]]−1 •∆ = L •M .

[[[[L •M]]∆]]−1 •∆
= (def [[−]]∆)

[[arr (λ∆. [[M]]) >>> [[L]]]]−1 •∆
= (def [[−]]−1)

λ•∆. (let y = (λ•z. [(λ∆. [[[[M]]]]−1) z]) •∆ in [[[[L]]]]−1 • y) •∆
= (induction hypothesis)

λ•∆. (let y = (λ•z. [(λ∆.M) z]) •∆ in L • y) •∆
= (β;)

let y = [(λ∆.M) ∆] in L • y
= (β→)

let y = [M] in L • y
= (left)

L •M

2. [[[[[M]]]∆]]−1 •∆ = [M].

[[[[[M]]]∆]]−1 •∆
= (def [[−]]∆)

[[arr (λ∆. [[M]])]]−1 •∆
= (def [[−]]−1)

λ•∆. [(λ∆. [[[[M]]]]−1) ∆] •∆
= (induction hypothesis)

λ•∆. [(λ∆.M) ∆] •∆
= (β;)

[(λ∆.M) ∆]
= (β→)

[M]

3. [[[[let x = P in Q]]∆]]−1 •∆ = let x = P in Q.

31

[[[[let x = P in Q]]∆]]−1 •∆
= (def [[−]]∆)

[[(arr id &&& [[P]]∆) >>> [[Q]]∆,x,]]−1 •∆
= (def &&&)

[[arr dup >>> first (arr id) >>> arr swap >>> first [[P]]∆ >>> arr swap >>> [[Q]]∆,x]]−1 •∆
= (;5)

[[arr dup >>> arr (id× id) >>> arr swap >>> first [[P]]∆ >>> arr swap >>> [[Q]]∆,x]]−1 •∆
= (id× id = id)

[[arr dup >>> arr id >>> arr swap >>> first [[P]]∆ >>> arr swap >>> [[Q]]∆,x]]−1 •∆
= (;2)

[[arr dup >>> arr swap >>> first [[P]]∆ >>> arr swap >>> [[Q]]∆,x]]−1 •∆
= (;4, swap · dup = dup)

[[arr dup >>> first [[P]]∆ >>> arr swap >>> [[Q]]∆,x]]−1 •∆
= (def [[−]]−1)

λ•∆. (let x = (λ•z. [dup z]) •∆ in
(λ•∆′. (let w = (λ•z. (let v = [[[[P]]∆]]−1 • fst z in [〈v, snd z〉])) •∆′ in

(λ•∆′′. (let y = (λ•z. [swap z]) •∆′′ in [[[[Q]]∆,x]]−1 • y)) • w)) • x) •∆
= (β;(×6))

let x = [dup ∆] in
(let w = (let v = [[[[P]]∆]]−1 • fst x in [〈v, snd x〉]) in let y = [swap w] in [[[[Q]]∆,x]]−1 • y)

= (left(×2))
let w = (let x = [[[[P]]∆]]−1 • fst dup ∆ in [〈x, snd dup ∆〉]) in [[[[Q]]∆,x]]−1 • swap w

= (assoc)
let x = [[[[P]]∆]]−1 • fst dup ∆ in let w = [〈x, snd dup ∆〉] in [[[[Q]]∆,x]]−1 • swap w

= (left)
let x = [[[[P]]∆]]−1 • fst dup ∆ in [[[[Q]]∆,x]]−1 • swap 〈x, snd dup ∆〉

= (def swap, dup, β→, β×1 , β×2)
let x = [[[[P]]∆]]−1 •∆ in [[[[Q]]∆,x]]−1 • 〈∆, x〉

= (induction hypothesis)
let x = P in Q

C Higher-order arrows proofs

C.1 The arrow laws follow from the laws of the metalanguage

M = N implies [[M]]−1 = [[N]]−1.
;H1:

32

[[first (arr (λx. arr (λy. 〈x, y〉))) >>> app]]−1

= (def [[−]]−1)
λ•a. let b = (λf. λ•z. let c = f • (fst z) in [〈c, snd z〉])(λ•x. [λ•y. [〈x, y〉]]) • a in

(λ•z. fst z ? snd z) • b
= (β→, β;)

λ•a. let b = (let c = (λ•x. [λ•y. [〈x, y〉]]) • (fst a) in [〈c, snd a〉]) in fst b ? snd b
= (β;, assoc)

λ•a. let c = [λ•y. [〈fst a, y〉]] in let b = [〈c, snd a〉] in fst b ? snd b
= (left, left, β×, β×)

λ•a. (λ•y. [〈fst a, y〉]) ? snd a
= (βapp)

λ•a. [〈fst a, snd a〉]
= (η×)

λ•a. [a]
=

[[arr id]]−1

;H2:

[[first (arr (g >>>)) >>> app]]−1

= (def [[−]]−1)
λ•a. let b = (λ•z. let x = (λ•f. [[[g >>> f]]−1]) • fst z in 〈x, snd z〉) • a in (λ•w. fst w ? snd w) • b

= (β;, β;)
λ•a. let b = (let x = (λ•f. [[[g >>> f]]−1]) • fst a in [〈x, snd a〉]) in fst b ? snd b

= (assoc)
λ•a. let x = (λ•f. [[[g >>> f]]−1]) • fst a in let b = [〈x, snd a〉] in fst b ? snd b

= (β;)
λ•a. let x = [[[g >>> fst a]]−1] in let b = [〈x, snd a〉] in fst b ? snd b

= (left)
λ•a. let x = [[[g >>> fst a]]−1] in x ? snd a

= (def [[−]]−1)
λ•a. let x = [λ•d. let y = g • d in fst a • y] in x ? snd a

= (ηapp, β;)
λ•a. let x = [λ•d. let y = g • d in fst a ? y] in x ? snd a

= (left, βapp)
λ•a. let y = g • snd a in fst a ? y

= (left)
λ•a. let y = g • snd a in let b = [〈fst a, y〉] in fst b ? snd b

= (assoc)
λ•a. let b = (let y = g • snd a in [〈fst a, y〉]) in fst b ? snd b

= (β;, β;)
λ•a. let b = (λ•z. let y = g • snd z in [〈fst z, y〉]) • a in (λ•w. fst w ? snd w) • b

= (def [[−]]−1)
[[second g >>> app]]−1

;H3:

33

[[first (arr (>>> h)) >>> app]]−1

= (def [[−]]−1)
λ•a. let b = (λ•z. let x = (λ•f. [[[f >>> h]]−1]) • fst z in [〈x, snd z〉]) • a in (λ•w. fst w ? snd w) • b

= (as before)
λ•a. let x = [[[fst a >>> h]]−1] in x ? snd a

= (def [[−]]−1)
λ•a. let x = [λ•d. let e = fst a • d in h • e] in x ? snd a

= (ηapp, β;)
λ•a. let x = [λ•d. let e = fst a ? d in h • e] in x ? snd a

= (left, β;)
λ•a. let e = fst a ? snd a in h • e

= (def [[−]]−1)
[[app >>> h]]−1

C.2 The laws of the metalanguage follow from the arrow laws

M = N implies [[M]] = [[N]] and P = Q implies [[P]]∆ = [[Q]]∆.
βapp:

[[(λ•x. Q) ? M]]∆
= (def [[−]]∆)

arr (λ∆. ([[Q]]x, [[M]])) >>> app
= (classic arrow laws)

(arr (λ∆. [[Q]]x) &&& arr (λ∆. [[M]])) >>> app
= (β;)

(arr (λ∆. [[(λ•〈∆, x〉. Q) • 〈∆, x〉]]x) &&& arr (λ∆. [[M]])) >>> app
= (def [[−]]x)

(arr (λ∆. arr (λx. 〈∆, x〉) >>> [[Q]]〈∆,x〉) &&& arr (λ∆. [[M]])) >>> app
= (let j = λx. arr (λy. (x, y)), p = arr (λ∆. [[M]]), q = [[Q]]〈∆,x〉)

(arr ((>>> q) · j) &&& p) >>> app
= (def &&&)

arr dup >>> first (arr ((>>> q) · j))) >>> second p >>> app
= (classic arrow laws)

arr dup >>> second p >>> first (arr ((>>> q) · j))) >>> app
= (classic arrow laws)

arr dup >>> second p >>> first (arr j) >>> first (arr (>>> q)) >>> app
= (;H3)

arr dup >>> second p >>> first (arr j) >>> app >>> q
= (;H1)

arr dup >>> second p >>> arr id >>> q
= (classic arrow laws)

arr dup >>> second p >>> q
= (classic arrow laws)

(arr id &&& p) >>> q
= (p = arr (λ∆. [[M]]), q = [[Q]]〈∆,x〉)

(arr id &&& arr (λ∆. [[M]])) >>> [[Q]]〈∆,x〉
= (Lemma 5)

[[Q[x := M]]]∆

34

C.3 Translating classic arrows to arrow calculus and back

[[[[M]]−1]] = M .
Case app:

[[[[app]]−1]]
= (def [[−]]−1)

[[λ•z. fst z ? snd z]]
= (def [[−]])

arr (λz. 〈fst z, snd z〉) >>> app
= (η×)

arr id >>> app
= (;1)

app

C.4 Translating arrow calculus to classic arrows and back

[[[[M]]]]−1 = M and [[[[P]]∆]]−1 = λ•∆. P .
Case L ? M :

[[[[L ? M]]∆]]−1

= (def [[−]]∆)
[[arr (λ∆. 〈[[L]], [[M]]〉) >>> app]]−1

= (def [[−]]−1)
λ•∆. let y = (λ•∆. [〈[[[[L]]]]−1, [[[[M]]]]−1〉]) •∆ in fst y ? snd y

= (induction hypothesis)
λ•∆. let y = (λ•∆. [〈L,M〉]) •∆ in fst y ? snd y

= (β;)
λ•∆. let y = [〈L,M〉] in fst y ? snd y

= (left, β×, β×)
λ•∆. L ? M

D Static arrows proofs

D.1 The arrow laws follow from the laws of the metalanguage

M = N implies [[M]]−1 = [[N]]−1.
;S1:

35

[[force (delay a)]]−1

= (def force)
[[arr (λx. 〈〈〉, x〉) >>> delay a >>> arr (λz. fst z (snd z))]]−1

= (def [[−]]−1)
λ•x. let y = [〈〈〉, x〉] in let z = (let w = (λ•u. run a) • (fst y) in [〈w, snd y〉]) in [fst z (snd z)]

= (β;)
λ•x. let y = [〈〈〉, x〉] in let z = (let w = run a in [〈w, snd y〉]) in [fst z (snd z)]

= (left, β×)
λ•x. let z = (let w = run a in [〈w, x〉]) in [fst z (snd z)]

= (assoc)
λ•x. let w = run a in let z = [〈w, x〉] in [fst z (snd z)]

= (left, β×, β×)
λ•x. let w = run a in [w x]

= (ob1)
λ•x. a • x

= (η;)
a

= (def [[−]]−1)
[[a]]−1

;S2:

[[delay (force a)]]−1

= (def force)
[[delay (arr (λx. 〈〈〉, x〉) >>> a >>> arr (λz. (fst z (snd z))))]]−1

= (def [[−]]−1)
λ•u. run (λ•x. let y = [〈〈〉, x〉] in let z = (let w = a • (fst y) in [〈w, snd y)]) in [fst z (snd z)])

= (left, β×)
λ•u. run (λ•x. let z = (let w = a • 〈〉 in [〈w, x〉]) in [fst z (snd z)])

= (assoc)
λ•u. run (λ•x. let w = a • 〈〉 in let z = [〈w, x〉] in [fst z (snd z)]

= (left, β×, β×)
λ•u. run (λ•x. let w = a • 〈〉 in [w x])

= (ob3)
λ•u. let w = a • 〈〉 in let f = run (λ•〈x,w〉. [w x]) in [λx. f 〈x, w〉]

= (ob2)
λ•u. let w = a • 〈〉 in let f = [λ〈x,w〉. w x] in [λx. f 〈x,w〉]

= (left, β→)
λ•x. let w = a • x in [λx.w x]

= (η→)
λ•x. let w = a • x in [w]

= (right)
λ•x. a • x

= (η;)
a

= (def [[−]]−1)
[[a]]−1

36

D.2 The laws of the metalanguage follow from the arrow laws

M = N implies [[M]] = [[N]] and P = Q implies [[P]]∆ = [[Q]]∆.
ob1:

[[L •M]]∆
= (def [[−]]∆)

arr (λ∆. [[M]]) >>> [[L]]
= (;S1)

arr (λ∆. [[M]]) >>> force (delay [[L]])
= (def force)

arr (λ∆. [[M]]) >>> arr (λa. (〈〉, a)) >>> first (delay [[L]]) >>> arr (λ〈f, a〉. f a)
= (classic arrow laws)

((arr (λ∆. 〈〉) >>> delay [[L]]) &&& arr (λ∆. [[M]])) >>> arr (λ〈f, a〉. f a)
= (classic arrow laws)

arr (λ∆. [[M]]) &&& (arr (λ∆. 〈〉) >>> delay [[L]])) >>> arr (λ〈a, f〉. f a)
= (classic arrow laws)

(arr id &&& (arr (λ∆. 〈〉) >>> delay [[L]])) >>> arr (λ〈∆, f〉. f [[M]])
= (def [[−]]∆)

[[let f = run L in [f M]]]∆

ob2:

[[run (λ•x. [M])]]∆
= (def [[−]]∆)

arr (λ∆. 〈〉) >>> delay (arr (λx. [[M]]))
= (def force, classic arrow laws)

arr (λ∆. 〈〉) >>> delay (force (arr (λu. λx. [[M]])))
= (;S2)

arr (λ∆. 〈〉) >>> arr (λu. λx. [[M]])
= (classic arrow laws)

arr (λ∆. λx. [[M]])
= (def [[−]]∆)

[[[λx.M]]]∆

ob3:

37

[[run (λ•x. let y = P in Q)]]∆
= (def [[−]]∆)

arr (λ∆. 〈〉) >>> delay ((arr id &&& [[P]]x) >>> [[Q]]〈x,y〉)
= (Lemma 3)

arr (λ∆. 〈〉) >>> delay ((arr id &&& (arr (λx. 〈〉) >>> [[P]]〈〉)) >>> [[Q]]〈x,y〉)
=

arr (λ∆. 〈〉) >>> delay (arr (λx. 〈x, 〈〉〉) >>> second [[P]]〈〉 >>> [[Q]]〈x,y〉)
= (;S1)

arr (λ∆. 〈〉) >>> delay (arr (λx. 〈x, 〈〉〉) >>> second [[P]]〈〉 >>> force (delay [[Q]]〈x,y〉))
= (def force)

arr (λ∆. 〈〉) >>> delay (arr (λx. 〈x, x〉) >>>
first (arr (λx. 〈x, 〈〉〉) >>> second [[P]]〈〉 >>> arr (λa. 〈〈〉, a〉) >>> first (delay [[Q]]〈x,y〉)) >>>

arr (λ〈〈f, (x, a〉〉, z). f 〈x, a〉))
=

arr (λ∆. 〈〉) >>> delay (arr (λx. 〈〈〉, x〉) >>>
first ([[P]]〈〉 >>> arr (λa. 〈〈〉, a〉) >>> first (delay [[Q]]〈x,y〉)) >>>

arr (λ〈〈f, a〉, x〉. f 〈x, a〉)
=

arr (λ∆. 〈〉) >>> delay (arr (λx. 〈〈〉, x〉) >>>
first ([[P]]〈〉 >>> arr (λa. 〈〈〉, a〉) >>> first (delay [[Q]]〈x,y〉)) >>>

arr (λ〈〈f, a〉, z〉. 〈λx. f 〈x, a〉, z〉) >>> arr (λ〈f, a〉. f a))
=

arr (λ∆. 〈〉) >>> delay (arr (λx. 〈〈〉, x〉) >>>
first ([[P]]〈〉 >>> arr (λa. 〈〈〉, a〉) >>> first (delay [[Q]]〈x,y〉)) >>> first (arr (λ〈f, a〉. λx. f 〈x, a〉)) >>>

arr (λ〈f, a〉. f a))
=

arr (λ∆. 〈〉) >>> delay (arr (λx. 〈〈〉, x〉) >>>
first ([[P]]〈〉 >>> arr (λa. 〈〈〉, a〉) >>> first (delay [[Q]]〈x,y〉) >>> arr (λ〈f, a〉. λx. f 〈x, a〉)) >>>

arr (λ〈f, a〉. f a))
= (def force)

arr (λ∆. 〈〉) >>> delay (force ([[P]]〈〉 >>> arr (λa. 〈〈〉, a〉) >>> first (delay [[Q]]〈x,y〉) >>>
arr (λ〈f, a〉. λx. f 〈x, a〉)))

= (;S2)
arr (λ∆. 〈〉) >>> [[P]]〈〉 >>> arr (λa. 〈〈〉, a〉) >>> first (delay [[Q]]〈x,y〉) >>> arr (λ〈f, a〉. λx. f〈x, a〉)

=
arr (λ∆. 〈〉) >>> [[P]]〈〉 >>> (arr (λy. 〈〉) &&& arr id) >>> first (delay [[Q]]〈x,y〉) >>> arr (λ〈f, y〉. λx. f〈x, y〉)

= (Lemma 3)
[[P]]∆ >>> (arr (λy. 〈〉) &&& arr id) >>> first (delay [[Q]]〈x,y〉) >>> arr (λ〈f, y〉. λx. f(x, y))

= (classic arrow laws)
(arr id &&& [[P]]∆) >>> arr(λ〈∆, y〉. 〈〈〉, y〉>>> first (delay [[Q]]〈x,y〉) >>> arr (λ〈f, y〉. λx. f 〈x, y〉)

= (classic arrow laws)
(arr id &&& [[P]]∆) >>> ((arr (λ〈∆, y〉. 〈〉) >>> delay [[Q]]〈x,y〉) &&& arr (λ〈∆, y〉. y)) >>>

arr (λ〈f, y〉. λx. f 〈x, y〉)
= (classic arrow laws)

(arr id &&& [[P]]∆) >>> (arr id &&& (arr (λ〈∆, y〉. 〈〉) >>> delay [[Q]]〈x,y〉)) >>> arr (λ〈〈∆, y〉, f〉. λx. f〈x, y〉)
= (def [[−]]∆)

[[let y = P in let f = run (λ•〈x, y〉. Q) in [λx. f 〈x, y〉]]]∆

38

D.3 Translating classic arrows to arrow calculus and back

[[[[M]]−1]] = M .
Case delay:

[[[[delay]]−1]]
= (def [[−]]−1)

[[λa. λ•u. run a]]
= (def [[−]])

λa. arr (λu. 〈〉) >>> delay a
= (;1, η

→)
delay

D.4 Translating arrow calculus to classic arrows and back

[[[[M]]]]−1 = M and [[[[P]]∆]]−1 = λ•∆. P .
Case run L:

[[[[run L]]∆]]−1 •∆
= (def [[−]])

[[arr (λ∆. 〈〉) >>> delay [[L]]]]−1 •∆
= (def [[−]]∆)

(λ•∆. let x = [〈〉] in (λ•u. run [[[[L]]]]−1) • x) •∆
= (induction hypothesis)

(λ•∆. let x = [〈〉] in (λ•u. run L) • x) •∆
= (left, β;, β;)

run L

39

