
Mixing Metaphors: Actors as Channels and
Channels as Actors
Simon Fowler, Sam Lindley, and Philip Wadler

University of Edinburgh, Edinburgh, United Kingdom
simon.fowler@ed.ac.uk, sam.lindley@ed.ac.uk, wadler@inf.ed.ac.uk

Abstract
Channel- and actor-based programming languages are both used in practice, but the two are often
confused. Languages such as Go provide anonymous processes which communicate using buffers
or rendezvous points—known as channels—while languages such as Erlang provide addressable
processes—known as actors—each with a single incoming message queue. The lack of a common
representation makes it difficult to reason about translations that exist in the folklore. We define
a calculus λch for typed asynchronous channels, and a calculus λact for typed actors. We define
translations from λact into λch and λch into λact and prove that both are type- and semantics-
preserving. We show that our approach accounts for synchronisation and selective receive in
actor systems and discuss future extensions to support guarded choice and behavioural types.

1998 ACM Subject Classification D.1.3 Concurrent Programming

Keywords and phrases Actors, Channels, Communication-centric Programming Languages

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.90

1 Introduction

When comparing channels (as used by Go) and actors (as used by Erlang), one runs into an
immediate mixing of metaphors. The words themselves do not refer to comparable entities!

In languages such as Go, anonymous processes pass messages via named channels, whereas
in languages such as Erlang, named processes accept messages from an associated mailbox.
A channel is either a named rendezvous point or buffer, whereas an actor is a process. We
should really be comparing named processes (actors) with anonymous processes, and buffers
tied to a particular process (mailboxes) with buffers that can link any process to any process
(channels). Nonetheless, we will stick with the popular names, even if it is as inapposite as
comparing TV channels with TV actors.

a

b

c

(a) Asynchronous Channels

A B

C

(b) Actors

Figure 1 Channels and Actors

© S. Fowler, S. Lindley, and P. Wadler;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 90; pp. 90:1–90:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.90
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

90:2 Mixing Metaphors

Figure 1 compares asynchronous channels with actors. On the left, three anonymous processes
communicate via channels named a, b, c. On the right, three processes named A,B,C

send messages to each others’ associated mailboxes. Actors are necessarily asynchronous,
allowing non-blocking sends and buffering of received values, whereas channels can either be
asynchronous or synchronous (rendezvous-based). Indeed, Go provides both synchronous
and asynchronous channels, and libraries such as core.async [24] provide library support
for asynchronous channels. However, this is not the only difference: each actor has a single
buffer which only it can read—its mailbox—whereas asynchronous channels are free-floating
buffers that can be read by any process with a reference to the channel.

Channel-based languages such as Go enjoy a firm basis in process calculi such as CSP [25]
and the π-calculus [38]. It is easy to type channels, either with simple types (see [46], p.
231) or more complex systems such as session types [17, 26, 27]. Actor-based languages such
as Erlang are seen by many as the "gold standard" for distributed computing due to their
support for fault tolerance through supervision hierarchies [6, 7].

Both models are popular with developers, with channel-based languages and frameworks
such as Go, Concurrent ML [45], and Hopac [28]; and actor-based languages and frameworks
such as Erlang, Elixir, and Akka.

1.1 Motivation
This paper provides a formal account of actors and channels as implemented in programming
languages. Our motivation for a formal account is threefold: it helps clear up confusion; it
clarifies results that have been described informally by putting practice into theory; and it
provides a foundation for future research.

Confusion. There is often confusion over the differences between channels and actors. For
example, the following questions appear on StackOverflow and Quora respectively:

“If I wanted to port a Go library that uses Goroutines, would Scala be a good choice
because its inbox/[A]kka framework is similar in nature to coroutines?” [31], and

“I don’t know anything about [the] actor pattern however I do know goroutines and
channels in Go. How are [the] two related to each other?” [29]

In academic circles, the term actor is often used imprecisely. For instance, Albert et al. [5]
refer to Go as an actor language. Similarly, Harvey [21] refers to his language Ensemble
as actor-based. Ensemble is a language specialised for writing distributed applications
running on heterogeneous platforms. It is actor-based to the extent that it has lightweight,
addressable, single-threaded processes, and forbids co-ordination via shared memory. However,
Ensemble communicates using channels as opposed to mailboxes so we would argue that it is
channel-based (with actor-like features) rather than actor-based.

Putting practice into theory. The success of actor-based languages is largely due to their
support for supervision. A popular pattern for writing actor-based applications is to arrange
processes in supervision hierarchies [6], where supervisor processes restart child processes
should they fail. Projects such as Proto.Actor [44] emulate actor-style programming in a
channel-based language in an attempt to gain some of the benefits, by associating queues
with processes. Hopac [28] is a channel-based library for F#, based on Concurrent ML [45].
The documentation [1] contains a comparison with actors, including an implementation
of a simple actor-based communication model using Hopac-style channels, as well as an

Fowler, Lindley, and Wadler 90:3

P1 P1

P2 P2

P3 P3

sender receiver

(a) Channel

P1 P1

P2 P2

P3 P3

sender receiver

(b) Mailbox

Figure 2 Mailboxes as pinned channels

implementation of Hopac-style channels using an actor-based communication model. By
comparing the two, this paper provides a formal model for the underlying techniques, and
studies properties arising from the translations.

A foundation for future research. Traditionally, actor-based languages have had untyped
mailboxes. More recent advancements such as TAkka [22], Akka Typed [4], and Typed
Actors [47] have added types to mailboxes in order to gain additional safety guarantees. Our
formal model provides a foundation for these innovations, characterises why naïvely adding
types to mailboxes is problematic, and provides a core language for future experimentation.

1.2 Our approach

We define two concurrent λ-calculi, describing asynchronous channels and type-parameterised
actors, define translations between them, and then discuss various extensions.

Why the λ calculus? Our common framework is that of a simply-typed concurrent λ-
calculus: that is, a λ-calculus equipping a term language with primitives for communication
and concurrency, as well as a language of configurations to model concurrent behaviour.
We work with the λ-calculus rather than a process calculus for two reasons: firstly, the
simply-typed λ-calculus has a well-behaved core with a strong metatheory (for example,
confluent reduction and strong normalisation), as well as a direct propositions-as-types
correspondence with logic. We can therefore modularly extend the language, knowing which
properties remain; typed process calculi typically do not have such a well-behaved core.

Secondly, we are ultimately interested in functional programming languages; the λ calculus
is the canonical choice for studying such extensions.

Why asynchronous channels? While actor-based languages must be asynchronous by
design, channels may be either synchronous (requiring a rendezvous between sender and
receiver) or asynchronous (where sending happens immediately). In this paper, we consider
asynchronous channels since actors must be asynchronous, and it is possible to emulate
asynchronous channels using synchronous channels [45]. We could adopt synchronous channels,
use these to encode asynchronous channels, and then do the translations. We elect not to
since it complicates the translations, and we argue that the distinction between synchronous
and asynchronous communication is not the defining difference between the two models.

ECOOP 2017

90:4 Mixing Metaphors

1.3 Summary of results
We identify four key differences between the models, which are exemplified by the formalisms
and the translations: process addressability, the restrictiveness of communication patterns,
the granularity of typing, and the ability to control the order in which messages are processed.

Process addressability. In channel-based systems, processes are anonymous, whereas chan-
nels are named. In contrast, in actor-based systems, processes are named.

Restrictiveness of communication patterns. Communication over full-duplex channels is
more liberal than communication via mailboxes, as shown in Figure 2. Figure 2a shows the
communication patterns allowed by a single channel: each process Pi can use the channel
to communicate with every other process. Conversely, Figure 2b shows the communication
patterns allowed by a mailbox associated with process P2: while any process can send to
the mailbox, only P2 can read from it. Viewed this way, it is apparent that the restrictions
imposed on the communication behaviour of actors are exactly those captured by Merro and
Sangiorgi’s localised π-calculus [37].

Readers familiar with actor-based programming may be wondering whether such a
characterisation is too crude, as it does not account for processing messages out-of-order.
Fear not—we show in §7 that our minimal actor calculus can simulate this functionality.

Restrictiveness of communication patterns is not necessarily a bad thing; while it is
easy to distribute actors, delegation of asynchronous channels is more involved, requiring a
distributed algorithm [30]. Associating mailboxes with addressable processes also helps with
structuring applications for reliability [7].

Granularity of typing. As a result of the fact that each process has a single incoming
message queue, mailbox types tend to be less precise; in particular, they are most commonly
variant types detailing all of the messages that can be received. Naïvely implemented, this
gives rise to the type pollution problem, which we describe further in §2.

Message ordering. Channels and mailboxes are ordered message queues, but there is no
inherent ordering between messages on two different channels. Channel-based languages
allow a user to specify from which channel a message should be received, whereas processing
messages out-of-order can be achieved in actor languages using selective receive.

The remainder of the paper captures these differences both in the design of the formalisms,
and the techniques used in the encodings and extensions.

1.4 Contributions and paper outline
This paper makes five main contributions:

1. A calculus λch with typed asynchronous channels (§3), and a calculus λact with type-
parameterised actors (§4), based on the λ-calculus extended with communication primit-
ives specialised to each model. We give a type system and operational semantics for each
calculus, and precisely characterise the notion of progress that each calculus enjoys.

2. A simple translation from λact into λch (§5), and a more involved translation from λch
into λact (§6), with proofs that both translations are type- and semantics-preserving.
While the former translation is straightforward, it is global, in the sense of Felleisen [12].
While the latter is more involved, it is in fact local. Our initial translation from λch to
λact sidesteps type pollution by assigning the same type to each channel in the system.

Fowler, Lindley, and Wadler 90:5

chanStack(ch) , rec loop(st).
let cmd⇐ take ch in
case cmd {

Push(v) 7→ loop(v :: st)
Pop(resCh) 7→

case st {
[] 7→ give (None) resCh;

loop []
x :: xs 7→ give (Some(x)) resCh;

loop xs }
}

chanClient(stackCh) ,
give (Push(5)) stackCh;
let resCh⇐ newCh in
give (Pop(resCh)) stackCh;
take resCh

chanMain ,
let stackCh⇐ newCh in
fork (chanStack(stackCh) []);
chanClient(stackCh)

(a) Channel-based stack

actorStack , rec loop(st).
let cmd⇐ receive in
case cmd {

Push(v) 7→ loop(v :: st)
Pop(resPid) 7→

case st {
[] 7→ send (None) resPid;

loop []
x :: xs 7→ send (Some(x)) resPid;

loop xs }
}

actorClient(stackPid) ,
send (Push(5)) stackPid;
let selfPid⇐ self in
send (Pop(selfPid)) stackPid;
receive

actorMain ,
let stackP id⇐ spawn (actorStack []) in
actorClient(stackPid)

(b) Actor-based stack

Figure 3 Concurrent stacks using channels and actors

3. An extension of λact to support synchronous calls, showing how this can alleviate type
pollution and simplify the translation from λch into λact (§7.1).

4. An extension of λact to support Erlang-style selective receive, a translation from λact with
selective receive into plain λact, and proofs that the translation is type- and semantics-
preserving (§7.2).

5. An extension of λch with input-guarded choice (§7.3) and an outline of how λact might
be extended with behavioural types (§7.4).

The rest of the paper is organised as follows: §2 displays side-by-side two implementations of
a concurrent stack, one using channels and the other using actors; §3–7 presents the main
technical content; §8 discusses related work; and §9 concludes.

2 Channels and actors side-by-side

Let us consider the example of a concurrent stack. A concurrent stack carrying values of type
A can receive a command to push a value onto the top of the stack, or to pop a value and return
it to the process making the request. Assuming a standard encoding of algebraic datatypes,
we define a type Operation(A) = Push(A) | Pop(B) (where B = ChanRef(A) for channels, and
ActorRef(A) for actors) to describe operations on the stack, and Option(A) = Some(A) | None
to handle the possibility of popping from an empty stack.

Figure 3 shows the stack implemented using channels (Figure 3a) and using actors
(Figure 3b). Each implementation uses a common core language based on the simply-typed
λ-calculus extended with recursion, lists, and sums.

At first glance, the two stack implementations seem remarkably similar. Each:

1. Waits for a command

ECOOP 2017

90:6 Mixing Metaphors

chanClient2(intStackCh, stringStackCh) ,
let intResCh⇐ newCh in
let strResCh⇐ newCh in
give (Pop(intResCh)) intStackCh;
let res1⇐ take intResCh in
give (Pop(strResCh)) stringStackCh;
let res2⇐ take strResCh in
(res1, res2)

actorClient2(intStackPid, stringStackPid) ,
let selfPid⇐ self in
send (Pop(selfPid)) intStackPid;
let res1⇐ receive in
send (Pop(selfPid)) stringStackPid;
let res2⇐ receive in
(res1, res2)

Figure 4 Clients interacting with multiple stacks

2. Case splits on the command, and either:
Pushes a value onto the top of the stack, or;
Takes the value from the head of the stack and returns it in a response message

3. Loops with an updated state.

The main difference is that chanStack is parameterised over a channel ch, and retrieves
a value from the channel using take ch. Conversely, actorStack retrieves a value from its
mailbox using the nullary primitive receive.

Let us now consider functions which interact with the stacks. The chanClient function
sends commands over the stackCh channel, and begins by pushing 5 onto the stack. Next, it
creates a channel resCh to be used to receive the result and sends this in a request, before
retrieving the result from the result channel using take. In contrast, actorClient performs
a similar set of steps, but sends its process ID (retrieved using self) in the request instead of
creating a new channel; the result is then retrieved from the mailbox using receive.

Type pollution. The differences become more prominent when considering clients which
interact with multiple stacks of different types, as shown in Figure 4. Here, chanClient2
creates new result channels for integers and strings, sends requests for the results, and creates
a pair of type (Option(Int) × Option(String)). The actorClient2 function attempts to do
something similar, but cannot create separate result channels. Consequently, the actor must
be able to handle messages either of type Option(Int) or type Option(String), meaning that
the final pair has type (Option(Int) + Option(String))× (Option(Int) + Option(String)).

Additionally, it is necessary to modify actorStack to use the correct injection into the
actor type when sending the result; for example an integer stack would have to send a
value inl (Some(5)) instead of simply Some(5). This type pollution problem can be addressed
through the use of subtyping [22], or synchronisation abstractions such as futures [10].

3 λch: A concurrent λ-calculus for channels

In this section we introduce λch, a concurrent λ-calculus extended with asynchronous channels.
To concentrate on the core differences between channel- and actor-style communication, we
begin with minimal calculi; note that these do not contain all features (such as lists, sums,
and recursion) needed to express the examples in §2.

3.1 Syntax and typing of terms
Figure 5 gives the syntax and typing rules of λch, a λ-calculus based on fine-grain call-by-
value [34]: terms are partitioned into values and computations. Key to this formulation are two
constructs: returnV represents a computation that has completed, whereas let x⇐M in N

Fowler, Lindley, and Wadler 90:7

Syntax

Types A,B ::= 1 | A→ B | ChanRef(A)
Variables and names α ::= x | a
Values V,W ::= α | λx.M | ()
Computations L,M,N ::= V W

| let x⇐M in N | returnV
| forkM | giveV W | takeV | newCh

Value typing rules Γ ` V : A
Var
α : A ∈ Γ
Γ ` α : A

Abs
Γ, x : A `M : B

Γ ` λx.M : A→ B

Unit

Γ ` () : 1

Computation typing rules Γ `M : A
App
Γ ` V : A→ B Γ `W : A

Γ ` V W : B

EffLet
Γ `M : A Γ, x : A ` N : B

Γ ` let x⇐M in N : B

Return
Γ ` V : A

Γ ` returnV : A

Give
Γ ` V : A

Γ `W : ChanRef(A)
Γ ` giveV W : 1

Take
Γ ` V : ChanRef(A)

Γ ` takeV : A

Fork
Γ `M : 1

Γ ` forkM : 1

NewCh

Γ ` newCh : ChanRef(A)

Figure 5 Syntax and typing rules for λch terms and values

evaluates M to returnV , substituting V for x in M . Fine-grain call-by-value is convenient
since it makes evaluation order explicit and, unlike A-normal form [13], is closed under
reduction.

Types consist of the unit type 1, function types A → B, and channel reference types
ChanRef(A) which can be used to communicate along a channel of type A. We let α range
over variables x and runtime names a. We write letx = V inM for (λx.M)V and M ;N for
let x⇐M in N , where x is fresh.

Communication and concurrency for channels. The giveV W operation sends value V
along channel W , while takeV retrieves a value from a channel V . Assuming an extension of
the language with integers and arithmetic operators, we can define a function neg(c) which
receives a number n along channel c and replies with the negation of n as follows:

neg(c) , let n⇐ take c in let negN⇐ (−n) in givenegN c

The forkM operation spawns a new process to evaluate term M . The operation returns
the unit value, and therefore it is not possible to interact with the process directly. The
newCh operation creates a new channel. Note that channel creation is decoupled from process
creation, meaning that a process can have access to multiple channels.

3.2 Operational semantics

Configurations. The concurrent behaviour of λch is given by a nondeterministic reduction
relation on configurations (Figure 6). Configurations consist of parallel composition (C ‖ D),
restrictions ((νa)C), computations (M), and buffers (a(−→V), where −→V = V1 · . . . · Vn).

ECOOP 2017

90:8 Mixing Metaphors

Syntax of evaluation contexts and configurations

Evaluation contexts E ::= [] | let x⇐ E in M
Configurations C,D, E ::= C ‖ D | (νa)C | a(−→V) |M
Configuration contexts G ::= [] | G ‖ C | (νa)G

Typing rules for configurations Γ; ∆ ` C
Par
Γ; ∆1 ` C1 Γ; ∆2 ` C2

Γ; ∆1,∆2 ` C1 ‖ C2

Chan
Γ, a : ChanRef(A); ∆, a:A ` C

Γ; ∆ ` (νa)C

Buf
(Γ ` Vi : A)i

Γ; a : A ` a(−→V)

Term
Γ `M : 1
Γ; · `M

Figure 6 λch configurations and evaluation contexts

Evaluation contexts. Reduction is defined in terms of evaluation contexts E, which are
simplified due to fine-grain call-by-value. We also define configuration contexts, allowing
reduction modulo parallel composition and name restriction.

Reduction. Figure 7 shows the reduction rules for λch. Reduction is defined as a determin-
istic reduction on terms (−→M) and a nondeterministic reduction relation on configurations
(−→). Reduction on configurations is defined modulo structural congruence rules which
capture scope extrusion and the commutativity and associativity of parallel composition.

Typing of configurations. To ensure that buffers are well-scoped and contain values of the
correct type, we define typing rules on configurations (Figure 6). The judgement Γ; ∆ ` C
states that under environments Γ and ∆, C is well-typed. Γ is a typing environment for
terms, whereas ∆ is a linear typing environment for configurations, mapping names a to
channel types A. Linearity in ∆ ensures that a configuration C under a name restriction
(νa)C contains exactly one buffer with name a. Note that Chan extends both Γ and ∆,
adding an (unrestricted) reference into Γ and the capability to type a buffer into ∆. Par
states that C1 ‖ C2 is typeable if C1 and C2 are typeable under disjoint linear environments,
and Buf states that under a term environment Γ and a singleton linear environment a:A, it
is possible to type a buffer a(−→V) if Γ ` Vi:A for all Vi ∈

−→
V . As an example, (νa)(a(−→V)) is

well-typed, but (νa)(a(−→V) ‖ a(−→W)) and (νa)(return ()) are not.

Relation notation. Given a relation R, we write R+ for its transitive closure, and R∗ for
its reflexive, transitive closure.

Properties of the term language. Reduction on terms preserves typing, and pure terms
enjoy progress. We omit most proofs in the body of the paper which are mainly straightforward
inductions; selected full proofs can be found in the extended version [15].

I Lemma 1 (Preservation (λch terms)). If Γ `M : A and M −→M M ′, then Γ `M ′ : A.

I Lemma 2 (Progress (λch terms)). Assume Γ is empty or only contains channel references
ai:ChanRef(Ai). If Γ `M :A, then either:

1. M = returnV for some value V , or
2. M can be written E[M ′], where M ′ is a communication or concurrency primitive (i.e.,

giveV W, takeV, forkM , or newCh), or
3. There exists some M ′ such that M −→M M ′.

Fowler, Lindley, and Wadler 90:9

Reduction on terms

(λx.M)V −→M M{V/x} let x⇐ returnV in M −→M M{V/x} E[M1] −→M E[M2]
(if M1 −→M M2)

Structural congruence

C ‖ D ≡ D ‖ C C ‖ (D ‖ E) ≡ (C ‖ D) ‖ E C ‖ (νa)D ≡ (νa)(C ‖ D) if a 6∈ fv(C)

G[C] ≡ G[D] if C ≡ D

Reduction on configurations

Give E[giveW a] ‖ a(−→V) −→ E[return ()] ‖ a(−→V ·W)
Take E[take a] ‖ a(W · −→V) −→ E[returnW] ‖ a(−→V)
Fork E[forkM] −→ E[return ()] ‖M
NewCh E[newCh] −→ (νa)(E[return a] ‖ a(ε)) (a is a fresh name)
LiftM G[M1] −→ G[M2] (if M1 −→M M2)
Lift G[C1] −→ G[C2] (if C1 −→ C2)

Figure 7 Reduction on λch terms and configurations

Reduction on configurations. Concurrency and communication is captured by reduction
on configurations. Reduction is defined modulo structural congruence rules, which capture
the associativity and commutativity of parallel composition, as well as the usual scope
extrusion rule. The Give rule reduces giveW a in parallel with a buffer a(−→V) by adding
the value W onto the end of the buffer. The Take rule reduces take a in parallel with a
non-empty buffer by returning the first value in the buffer. The Fork rule reduces forkM
by spawning a new thread M in parallel with the parent process. The NewCh rule reduces
newCh by creating an empty buffer and returning a fresh name for that buffer.

Structural congruence and reduction preserve the typeability of configurations.

I Lemma 3. If Γ; ∆ ` C and C ≡ D for some configuration D, then Γ; ∆ ` D.

I Theorem 4 (Preservation (λch configurations)). If Γ; ∆ ` C1 and C1 −→ C2 then Γ; ∆ ` C2.

3.3 Progress and canonical forms
While it is possible to prove deadlock-freedom in systems with more discerning type systems
based on linear logic [35,48] or those using channel priorities [41], more liberal calculi such
as λch and λact allow deadlocked configurations. We thus define a form of progress which
does not preclude deadlock; to help with proving a progress result, it is useful to consider the
notion of a canonical form in order to allow us to reason about the configuration as a whole.

I Definition 5 (Canonical form (λch)). A configuration C is in canonical form if it can be
written (νa1) . . . (νan)(M1 ‖ . . . ‖Mm ‖ a1(−→V1) ‖ . . . ‖ an(−→Vn)).

Well-typed open configurations can be written in a form similar to canonical form, but
without bindings for names already in the environment. An immediate corollary is that
well-typed closed configurations can always be written in a canonical form.

I Lemma 6. If Γ; ∆ ` C with ∆ = a1 : A1, . . . , ak : Ak, then there exists a C′ ≡ C such that
C′ = (νak+1) . . . (νan)(M1 ‖ . . . ‖Mm ‖ a1(−→V1) ‖ . . . ‖ an(−→Vn)).

I Corollary 7. If ·; · ` C, then there exists some C′ ≡ C such that C′ is in canonical form.

ECOOP 2017

90:10 Mixing Metaphors

Syntax

Types A,B,C ::= 1 | A→C B | ActorRef(A)
Variables and names α ::= x | a
Values V,W ::= α | λx.M | ()
Computations L,M,N ::= V W

| let x⇐M in N | returnV
| spawnM | sendV W | receive | self

Value typing rules Γ ` V : A
Var
α : A ∈ Γ
Γ ` α : A

Abs
Γ, x : A | C `M : B
Γ ` λx.M : A→C B

Unit

Γ ` () : 1

Computation typing rules Γ | B `M : A

App
Γ ` V : A→C B

Γ `W : A
Γ | C ` V W : B

EffLet
Γ | C `M : A

Γ, x : A | C ` N : B
Γ | C ` let x⇐M in N : B

EffReturn
Γ ` V : A

Γ | C ` returnV : A

Send
Γ ` V : A

Γ `W : ActorRef(A)
Γ | C ` sendV W : 1

Recv

Γ | A ` receive : A

Spawn
Γ | A `M : 1

Γ | C ` spawnM : ActorRef(A)

Self

Γ | A ` self : ActorRef(A)

Figure 8 Syntax and typing rules for λact

Armed with a canonical form, we can now state that the only situation in which a well-typed
closed configuration cannot reduce further is if all threads are either blocked or fully evaluated.
Let a leaf configuration be a configuration without subconfigurations, i.e., a term or a buffer.

I Theorem 8 (Weak progress (λch configurations)).
Let ·; · ` C, C 6−→, and let C′ = (νa1) . . . (νan)(M1 ‖ . . . ‖ Mm ‖ a1(−→V1) ‖ . . . an(−→Vn)) be a
canonical form of C. Then every leaf of C is either:

1. A buffer ai(
−→
Vi);

2. A fully-reduced term of the form returnV , or;
3. A term of the form E[take ai], where

−→
Vi = ε.

Proof. By Lemma 2, we know each Mi is either of the form returnV , or can be written
E[M ′] where M ′ is a communication or concurrency primitive. It cannot be the case that
M ′ = forkN or M ′ = newCh, since both can reduce. Let us now consider give and take,
blocked on a variable α. As we are considering closed configurations, a blocked term must
be blocked on a ν-bound name ai, and as per the canonical form, we have that there exists
some buffer ai(

−→
Vi). Consequently, giveV ai can always reduce via Give. A term take ai can

reduce by Take if −→Vi = W ·
−→
V ′i ; the only remaining case is where −→Vi = ε, satisfying (3). J

4 λact: A concurrent λ-calculus for actors

In this section, we introduce λact, a core language describing actor-based concurrency. There
are many variations of actor-based languages (by the taxonomy of De Koster et al,̇ [11], λact
is process-based), but each have named processes associated with a mailbox.

Fowler, Lindley, and Wadler 90:11

Syntax of evaluation contexts and configurations

Evaluation contexts E ::= [] | let x⇐ E in M
Configurations C,D, E ::= C ‖ D | (νa)C | 〈a,M,

−→
V 〉

Configuration contexts G ::= [] | G ‖ C | (νa)G

Typing rules for configurations Γ; ∆ ` C

Par
Γ; ∆1 ` C1 Γ; ∆2 ` C2

Γ; ∆1,∆2 ` C1 ‖ C2

Pid
Γ, a : ActorRef(A); ∆, a : A ` C

Γ; ∆ ` (νa)C

Actor
Γ, a : ActorRef(A) | A `M : 1
(Γ, a : ActorRef(A) ` Vi : A)i

Γ, a : ActorRef(A); a : A ` 〈a,M,
−→
V 〉

Figure 9 λact evaluation contexts and configurations

Typed channels are well-established, whereas typed actors are less so, partly due to the
type pollution problem. Nonetheless, Akka Typed [4] aims to replace untyped Akka actors,
so studying a typed actor calculus is of practical relevance.

Following Erlang, we provide an explicit receive operation to allow an actor to retrieve a
message from its mailbox: unlike take in λch, receive takes no arguments, so it is necessary
to use a simple type-and-effect system [18]. We treat mailboxes as a FIFO queues to keep
λact as minimal as possible, as opposed to considering behaviours or selective receive. This
is orthogonal to the core model of communication, as we show in §7.2.

4.1 Syntax and typing of terms
Figure 8 shows the syntax and typing rules for λact. As with λch, α ranges over variables and
names. ActorRef(A) is an actor reference or process ID, and allows messages to be sent to
an actor. As for communication and concurrency primitives, spawnM spawns a new actor to
evaluate a computation M ; sendV W sends a value V to an actor referred to by reference W ;
receive receives a value from the actor’s mailbox; and self returns an actor’s own process ID.

Function arrows A →C B are annotated with a type C which denotes the type of the
mailbox of the actor evaluating the term. As an example, consider a function which receives
an integer and converts it to a string (assuming a function intToString):

recvAndShow , λ().let x⇐ receive in intToString(x)

Such a function would have type 1→Int String, and as an example would not be typeable
for an actor that could only receive booleans. Again, we work in the setting of fine-grain
call-by-value; the distinction between values and computations is helpful when reasoning
about the metatheory. We have two typing judgements: the standard judgement on values
Γ ` V : A, and a judgement Γ | B ` M : A which states that a term M has type A under
typing context Γ, and can receive values of type B. The typing of receive and self depends
on the type of the actor’s mailbox.

4.2 Operational semantics
Figure 9 shows the syntax of λact evaluation contexts, as well as the syntax and typing rules
of λact configurations. Evaluation contexts for terms and configurations are similar to λch.
The primary difference from λch is the actor configuration 〈a,M,

−→
V 〉, which can be read as

“an actor with name a evaluating term M , with a mailbox consisting of values −→V ”. Whereas
a term M is itself a configuration in λch, a term in λact must be evaluated as part of an

ECOOP 2017

90:12 Mixing Metaphors

Reduction on terms

(λx.M)V −→M M{V/x} let x⇐ returnV in M −→M M{V/x} E[M] −→M E[M ′]
(if M −→M M ′)

Structural congruence

C ‖ D ≡ D ‖ C C ‖ (D ‖ E) ≡ (C ‖ D) ‖ E C ‖ (νa)D ≡ (νa)(C ‖ D) if a 6∈ fv(C)

G[C] ≡ G[D] if C ≡ D

Reduction on configurations

Spawn 〈a,E[spawnM],−→V 〉 −→ (νb)(〈a,E[return b],−→V 〉 ‖ 〈b,M, ε〉)
(b is fresh)

Send 〈a,E[sendV ′ b],−→V 〉 ‖ 〈b,M,
−→
W 〉 −→ 〈a,E[return ()],−→V 〉 ‖ 〈b,M,

−→
W · V ′〉

SendSelf 〈a,E[sendV ′ a],−→V 〉 −→ 〈a,E[return ()],−→V · V ′〉
Self 〈a,E[self],−→V 〉 −→ 〈a,E[return a],−→V 〉

Receive 〈a,E[receive],W · −→V 〉 −→ 〈a,E[returnW],−→V 〉
Lift G[C1] −→ G[C2] (if C1 −→ C2)

LiftM 〈a,M1,
−→
V 〉 −→ 〈a,M2,

−→
V 〉 (if M1 −→M M2)

Figure 10 Reduction on λact terms and configurations

actor configuration in order to support context-sensitive operations such as receiving from
the mailbox. We again stratify the reduction rules into functional reduction on terms, and
reduction on configurations. The typing rules for λact configurations ensure that all values
contained in an actor mailbox are well-typed with respect to the mailbox type, and that a
configuration C under a name restriction (νa)C contains an actor with name a. Figure 10
shows the reduction rules for λact. Again, reduction on terms preserves typing, and the
functional fragment of λact enjoys progress.

I Lemma 9 (Preservation (λact terms)). If Γ `M : A and M −→M M ′, then Γ `M ′ : A.

I Lemma 10 (Progress (λact terms)). Assume Γ is either empty or only contains entries of
the form ai : ActorRef(Ai). If Γ | B `M : A, then either:

1. M = returnV for some value V , or
2. M can be written as E[M ′], where M ′ is a communication or concurrency primitive (i.e.

spawnN , sendV W , receive, or self), or
3. There exists some M ′ such that M −→M M ′.

Reduction on configurations. While λch makes use of separate constructs to create new
processes and channels, λact uses a single construct spawnM to spawn a new actor with
an empty mailbox to evaluate term M . Communication happens directly between actors
instead of through an intermediate entity: as a result of evaluating sendV a, the value V
will be appended directly to the end of the mailbox of actor a. SendSelf allows reflexive
sending; an alternative would be to decouple mailboxes from the definition of actors, but this
complicates both the configuration typing rules and the intuition. Self returns the name of
the current process, and Receive retrieves the head value of a non-empty mailbox.

As before, typing is preserved modulo structural congruence and under reduction.

I Lemma 11. If Γ; ∆ ` C and C ≡ D for some D, then Γ; ∆ ` D.

Fowler, Lindley, and Wadler 90:13

I Theorem 12 (Preservation (λact configurations)). If Γ; ∆ ` C1 and C1 −→ C2, then Γ; ∆ ` C2.

4.3 Progress and canonical forms
Again, we cannot guarantee deadlock-freedom for λact. Instead, we proceed by defining
a canonical form, and characterising the form of progress that λact enjoys. The technical
development follows that of λch.

I Definition 13 (Canonical form (λact)). A λact configuration C is in canonical form if C can
be written (νa1) . . . (νan)(〈a1,M1,

−→
V1〉 ‖ . . . ‖ 〈an,Mn,

−→
Vn〉).

I Lemma 14. If Γ; ∆ ` C and ∆ = a1 : A1, . . . ak : Ak, then there exists C′ ≡ C such that
C′ = (νak+1) . . . (νan)(〈a1,M1,

−→
V1〉 ‖ . . . ‖ 〈an,Mn,

−→
Vn〉).

As before, it follows as a corollary of Lemma 14 that closed configurations can be written in
canonical form. We can therefore classify the notion of progress enjoyed by λact.

I Corollary 15. If ·; · ` C, then there exists some C′ ≡ C such that C′ is in canonical form.

I Theorem 16 (Weak progress (λact configurations)).
Let ·; · ` C, C 6−→, and let C′ = (νa1) . . . (νan)(〈a1,M1,

−→
V1〉 ‖ . . . ‖ 〈an,Mn,

−→
Vn〉) be a

canonical form of C. Each actor with name ai is either of the form 〈ai, returnW,−→Vi〉 for some
value W , or 〈ai, E[receive], ε〉.

5 From λact to λch

With both calculi in place, we can define the translation from λact into λch. The key idea is to
emulate a mailbox using a channel, and to pass the channel as an argument to each function.
The translation on terms is parameterised over the channel name, which is used to implement
context-dependent operations (i.e., receive and self). Consider again recvAndShow.

recvAndShow , λ().let x⇐ receive in intToString(x)

A possible configuration would be an actor evaluating recvAndShow (), with some name a
and mailbox with values −→V , under a name restriction for a.

(νa)(〈a, recvAndShow (),−→V 〉)

The translation on terms takes a channel name ch as a parameter. As a result of the
translation, we have that:

J recvAndShow () K ch = let x⇐ take ch in intToString(x)

with the corresponding configuration (νa)(a(J−→V K) ‖ J recvAndShow () K a). The values from
the mailbox are translated pointwise and form the contents of a buffer with name a. The
translation of recvAndShow is provided with the name a which is used to emulate receive.

5.1 Translation (λact to λch)
Figure 11 shows the formal translation from λact into λch. Of particular note is the translation
on terms: J− K ch translates a λact term into a λch term using a channel with name ch
to emulate a mailbox. An actor reference is represented as a channel reference in λch;
we emulate sending a message to another actor by writing to the channel emulating the

ECOOP 2017

90:14 Mixing Metaphors

Translation on types

J ActorRef(A) K = ChanRef(JA K) JA→C B K = JA K→ ChanRef(JC K)→ JB K J 1 K = 1

Translation on values

Jx K = x J a K = a Jλx.M K = λx.λch.(JM K ch) J () K = ()

Translation on computation terms
J let x⇐M in N K ch = let x⇐ (JM K ch) in JN K ch

JV W K ch = let f ⇐ (JV K JW K) in f ch
J returnV K ch = return JV K

J self K ch = return ch
J receive K ch = take ch

J spawnM K ch = let chMb⇐ newCh in
fork (JM K chMb);
return chMb

J sendV W K ch = give (JV K) (JW K)

Translation on configurations

J C1 ‖ C2 K = J C1 K ‖ J C2 K J (νa)C K = (νa) J C K J 〈a,M,
−→
V 〉 K = a(J−→V K) ‖ (JM K a)

Figure 11 Translation from λact into λch

recipient’s mailbox. Key to translating λact into λch is the translation of function arrows
A→C B; the effect annotation C is replaced by a second parameter ChanRef(C), which is
used to emulate the mailbox of the actor. Values translate to themselves, with the exception
of λ abstractions, whose translation takes an additional parameter denoting the channel used
to emulate operations on a mailbox. Given parameter ch, the translation function for terms
emulates receive by taking a value from ch, and emulates self by returning ch.

Though the translation is straightforward, it is a global translation [12], as all functions
must be modified in order to take the mailbox channel as an additional parameter.

5.2 Properties of the translation
The translation on terms and values preserves typing. We extend the translation function
pointwise to typing environments: Jα1 : A1, . . . , αn : An K = α1 : JA1 K, . . . , αn : JAn K.

I Lemma 17 (J− K preserves typing (terms and values)).

1. If Γ ` V : A in λact, then J Γ K ` JV K : JA K in λch.
2. If Γ | B `M : A in λact, then J Γ K, α : ChanRef(JB K) ` JM K α : JA K in λch.

The proof is by simultaneous induction on the derivations of Γ ` V :A and Γ | B `M :A.
To state a semantics preservation result, we also define a translation on configurations; the
translations on parallel composition and name restrictions are homomorphic. An actor
configuration 〈a,M,

−→
V 〉 is translated as a buffer a(J−→V K), (writing J

−→
V K = JV0 K·, . . . , ·JVn K

for each Vi ∈
−→
V), composed in parallel with the translation of M , using a as the mailbox

channel. We can now see that the translation preserves typeability of configurations.

I Theorem 18 (J− K preserves typeability (configurations)).
If Γ; ∆ ` C in λact, then J Γ K; J ∆ K ` J C K in λch.

We describe semantics preservation in terms of a simulation theorem: should a configura-
tion C1 reduce to a configuration C2 in λact, then there exists some configuration D in λch
such that J C1 K reduces in zero or more steps to D, with D ≡ J C2 K. To establish the result,
we begin by showing that λact term reduction can be simulated in λch.

Fowler, Lindley, and Wadler 90:15

Syntax
Types A,B,C ::= . . . | A×B | A+B | List(A) | µX.A | X
Values V,W ::= . . . | rec f(x) .M | (V,W) | inlV | inrW | roll V
Terms L,M,N ::= . . . | let (x, y) = V inM | case V {inl x 7→M ; inr y 7→ N} | unroll V

Additional value typing rules Γ ` V : A
Rec
Γ, x : A, f : A→ B `M : B

Γ ` rec f(x) .M : A→ B

Pair
Γ ` V : A Γ `W : B

Γ ` (V,W) : A×B

Inl
Γ ` V : A

Γ ` inlV : A+B

Roll
Γ ` V : A{µX.A/X}

Γ ` roll V : µX.A

Additional term typing rules Γ `M : A
Let

Γ ` V : A×A′
Γ, x : A, y : A′ `M : B

Γ ` let (x, y) = V inM : B

Case
Γ ` V : A+A′

Γ, x : A `M : B Γ, y : A′ ` N : B
Γ ` case V {inlx 7→M ; inr y 7→ N} : B

Unroll
Γ ` V : µX.A

Γ ` unroll V : A{µX.A/X}

Additional term reduction rules M −→M M ′

(rec f(x) .M)V −→M M{(rec f(x) .M)/f, V/x}
let (x, y) = (V,W) inM −→M M{V/x,W/y}

case (inlV) {inlx 7→M ; inr y 7→ N} −→M M{V/x}
unroll (roll V) −→M returnV

Encoding of lists
List(A) , µX.1 + (A×X) [] , roll (inl ()) V :: W , roll (inr (V,W))

case V {[] 7→M ;x :: y 7→ N} , let z ⇐ unroll V in case z {inl () 7→M ; inr (x, y) 7→ N}

Figure 12 Extensions to core languages to allow translation from λch into λact

I Lemma 19 (Simulation of λact term reduction in λch).
If Γ `M1 : A and M1 −→M M2 in λact, then given some α, JM1 K α −→∗M JM2 K α in λch.

Finally, we can see that the translation preserves structural congruences, and that λch
configurations can simulate reductions in λact.

I Lemma 20. If Γ; ∆ ` C and C ≡ D, then J C K ≡ JD K.

I Theorem 21 (Simulation of λact configurations in λch).
If Γ; ∆ ` C1 and C1 −→ C2, then there exists some D such that J C1 K −→∗ D, with D ≡ J C2 K.

6 From λch to λact

The translation from λact into λch emulates an actor mailbox using a channel to implement
operations which normally rely on the context of the actor. Though global, the translation is
straightforward due to the limited form of communication supported by mailboxes. Trans-
lating from λch into λact is more challenging, as would be expected from Figure 2. Each
channel in a system may have a different type; each process may have access to multiple
channels; and (crucially) channels may be freely passed between processes.

6.1 Extensions to the core language
We require several more language constructs: sums, products, recursive functions, and
iso-recursive types. Recursive functions are used to implement an event loop, and recursive
types to maintain a term-level buffer. Products are used to record both a list of values in the

ECOOP 2017

90:16 Mixing Metaphors

b

a

(a) Before Translation

a

c

a

d b e

(b) After Translation

Figure 13 Translation strategy: λch into λact

buffer and a list of pending requests. Sum types allow the disambiguation of the two types
of messages sent to an actor: one to queue a value (emulating give) and one to dequeue a
value (emulating take). Sums are also used to encode monomorphic variant types; we write
〈`1 : A1, . . . , `n : An〉 for variant types and 〈`i = V 〉 for variant values.

Figure 12 shows the extensions to the core term language and their reduction rules;
we omit the symmetric rules for inr. With products, sums, and recursive types, we can
encode lists. The typing rules are shown for λch but can be easily adapted for λact, and it is
straightforward to verify that the extended languages still enjoy progress and preservation.

6.2 Translation strategy (λch into λact)
To translate typed actors into typed channels (shown in Figure 13), we emulate each channel
using an actor process, which is crucial in retaining the mobility of channel endpoints.
Channel types describe the typing of a communication medium between communicating
processes, where processes are unaware of the identity of other communicating parties, and
the types of messages that another party may receive. Unfortunately, the same does not hold
for mailboxes. Consequently, we require that before translating into actors, every channel has
the same type. Although this may seem restrictive, it is both possible and safe to transform
a λch program with multiple channel types into a λch program with a single channel type.

As an example, suppose we have a program which contains channels carrying values
of types Int, String, and ChanRef(String). It is possible to construct a recursive variant
type µX.〈`1 : Int, `2 : String, `3 : ChanRef(X)〉 which can be assigned to all channels in the
system. Then, supposing we wanted to send a 5 along a channel which previously had type
ChanRef(Int), we would instead send a value roll 〈`1 = 5〉 (where roll V is the introduction
rule for an iso-recursive type). Appendix A [15] provides more details.

6.3 Translation
We write λch judgements of the form {B} Γ `M : A for a term where all channels have type
B, and similarly for value and configuration typing judgements. Under such a judgement,
we can write Chan instead of ChanRef(B).

Meta level definitions. The majority of the translation lies within the translation of newCh,
which makes use of the meta-level definitions body and drain. The body function emulates
a channel. Firstly, the actor receives a message recvVal, which is either of the form inlV to
store a message V , or inrW to request that a value is dequeued and sent to the actor with

Fowler, Lindley, and Wadler 90:17

Translation on types (wrt. a channel type C)

L Chan M = ActorRef(LC M + ActorRef(LC M)) LA→ B M = LA M→L C M LB M

Translation on communication and concurrency primitives

L forkM M = let x⇐ spawn LM M in return ()
L giveV W M = send (inl LV M) LW M

L newCh M = spawn (body ([], []))

L takeV M = let selfPid⇐ self in
send (inr selfPid) LV M;
receive

Translation on configurations

L C1 ‖ C2 M = L C1 M ‖ L C2 M L (νa)C M = (νa)L C M LM M = (νa)(〈a, LM M, ε〉)
a is a fresh name

L a(−→V) M = 〈a, body (L−→V M, []), ε〉 where L
−→
V M = LV0 M :: . . . :: LVn M :: []

Meta level definitions
body , rec g(state) .

let recvVal⇐ receive in
let (vals, pids) = state in
case recvVal {

inl v 7→ let vals′ ⇐ vals++ [v] in
let state′ ⇐ drain (vals′, pids) in
g (state′)

inr pid 7→ let pids′ ⇐ pids ++ [pid] in
let state′ ⇐ drain (vals, pids′) in
g (state′) }

drain , λx.

let (vals, pids) = x in
case vals {

[] 7→ return (vals, pids)
v :: vs 7→

case pids {
[] 7→ return (vals, pids)
pid :: pids 7→ send v pid;

return (vs, pids)
} }

Figure 14 Translation from λch into λact

ID W . We assume a standard implementation of list concatenation (++). If the message is
inlV , then V is appended to the tail of the list of values stored in the channel, and the new
state is passed as an argument to drain. If the message is inrW , then the process ID W is
appended to the end of the list of processes waiting for a value. The drain function satisfies
all requests that can be satisfied, returning an updated channel state. Note that drain does
not need to be recursive, since one of the lists will either be empty or a singleton.

Translation on types. Figure 14 shows the translation from λch into λact. The translation
function on types L− M is defined with respect to the type of all channels C and is used
to annotate function arrows and to assign a parameter to ActorRef types. The (omitted)
translations on sums, products, and lists are homomorphic. The translation of Chan is
ActorRef(LC M+ActorRef(LC M)), meaning an actor which can receive a request to either store
a value of type LC M, or to dequeue a value and send it to a process ID of type ActorRef(LC M).

Translation on communication and concurrency primitives. We omit the translation on
values and functional terms, which are homomorphisms. Processes in λch are anonymous,
whereas all actors in λact are addressable; to emulate fork, we therefore discard the reference
returned by spawn. The translation of give wraps the translated value to be sent in the left
injection of a sum type, and sends to the translated channel name LW M. To emulate take,
the process ID (retrieved using self) is wrapped in the right injection and sent to the actor
emulating the channel, and the actor waits for the response message. Finally, the translation
of newCh spawns a new actor to execute body.

ECOOP 2017

90:18 Mixing Metaphors

Translation on configurations. The translation function L− M is homomorphic on parallel
composition and name restriction. Unlike λch, a term cannot exist outwith an enclosing actor
context in λact, so the translation of a process evaluating term M is an actor evaluating LM M
with some fresh name a and an empty mailbox, enclosed in a name restriction. A buffer is
translated to an actor with an empty mailbox, evaluating body with a state containing the
(term-level) list of values previously stored in the buffer.

Although the translation from λch into λact, is much more verbose than the translation
from λact to λch, it is (once all channels have the same type) a local transformation [12].

6.4 Properties of the translation
Since all channels in the source language of the translation have the same type, we can
assume that each entry in the codomain of ∆ is the same type B.

I Definition 22 (Translation of typing environments wrt. a channel type B).

1. If Γ = α1:A1, . . . , αn : An, define L Γ M = α1 : LA1 M, . . . , αn : LAn M.
2. Given a ∆ = a1 : B, . . . , an : B, define L ∆ M =

a1 : (LB M + ActorRef(LB M)), . . . , an : (LB M + ActorRef(LB M)).

The translation on terms preserves typing.

I Lemma 23 (L− M preserves typing (terms and values)).

1. If {B} Γ ` V :A, then L Γ M ` LV M:LA M.
2. If {B} Γ `M :A, then L Γ M | LB M ` LM M:LA M.

The translation on configurations also preserves typeability. We write Γ � ∆ if for each
a : A ∈ ∆, we have that a : ChanRef(A) ∈ Γ; for closed configurations this is ensured by
Chan. This is necessary since the typing rules for λact require that the local actor name is
present in the term environment to ensure preservation in the presence of self, but there is
no such restriction in λch.

I Theorem 24 (L− M preserves typeability (configurations)).
If {A} Γ; ∆ ` C with Γ � ∆, then L Γ M; L ∆ M ` L C M.

It is clear that reduction on translated λch terms can simulate reduction in λact.

I Lemma 25. If {B} Γ `M1 : A and M1 −→M M2, then LM1 M −→M LM2 M.

Finally, we show that λact can simulate λch.

I Lemma 26. If Γ; ∆ ` C and C ≡ D, then L C M ≡ LD M.

I Theorem 27 (Simulation (λact configurations in λch)).
If {A} Γ; ∆ ` C1, and C1 −→ C2, then there exists some D such that L C1 M −→∗ D with
D ≡ L C2 M.

Remark. The translation from λch into λact is more involved than the translation from λact
into λch due to the asymmetry shown in Figure 2. Mailbox types are less precise; generally
taking the form of a large variant type.

Typical implementations of this translation use synchronisation mechanisms such as
futures or shared memory (see §7.1); the implementation shown in the Hopac documentation
uses ML references [1]. Given the ubiquity of these abstractions, we were surprised to discover

Fowler, Lindley, and Wadler 90:19

Additional types, terms, configuration reduction rule, and equivalence

Types ::= ActorRef(A,B) | . . . Terms ::= waitV | . . .

〈a,E[wait b],−→V 〉 ‖ 〈b, returnV ′,−→W 〉 −→ 〈a,E[returnV ′],−→V 〉 ‖ 〈b, returnV ′,−→W 〉
(νa)(〈a, returnV,−→V 〉) ‖ C ≡ C

Modified typing rules for terms Γ | A,B `M : A

Sync-Spawn
Γ | A,B `M : B

Γ | C,C′ ` spawnM : ActorRef(A,B)

Sync-Wait
Γ ` V : ActorRef(A,B)
Γ | C,C′ ` waitV : B

Sync-Self

Γ | A,B ` self : ActorRef(A,B)

Modified typing rules for configurations Γ; ∆ ` C
Sync-Actor

Γ, a:ActorRef(A,B) `M :B
(Γ, a:ActorRef(A,B) ` Vi:A)i

Γ, a : ActorRef(A,B); a:(A,B) ` 〈a,M,
−→
V 〉

Sync-Nu
Γ, a : ActorRef(A,B); ∆, a : (A,B) ` C

Γ; ∆ ` (νa)C

Modified translation
L ChanRef(A) M =

ActorRef(LA M + ActorRef(LA M, LA M),1)
LA→ B M = LA M→C,1 LB M

L takeV M = let requestorPid⇐ spawn (
let selfPid⇐ self in
send (inr selfPid) LV M;
receive) in

wait requestorPid

Figure 15 Extensions to add synchronisation to λact

that the additional expressive power of synchronisation is not necessary. Our original attempt
at a synchronisation-free translation was type-directed. We were surprised to discover that
the translation can be described so succinctly after factoring out the coalescing step, which
precisely captures the type pollution problem.

7 Extensions

In this section, we discuss common extensions to channel- and actor-based languages. Firstly,
we discuss synchronisation, which is ubiquitous in practical implementations of actor-inspired
languages. Adding synchronisation simplifies the translation from channels to actors, and
relaxes the restriction that all channels must have the same type. Secondly, we consider an
extension with Erlang-style selective receive, and show how to encode it in λact. Thirdly, we
discuss how to nondeterministically choose a message from a collection of possible sources,
and finally, we discuss what the translations tell us about the nature of behavioural typing
disciplines for actors. Establishing exactly how the latter two extensions fit into our framework
is the subject of ongoing and future work.

7.1 Synchronisation
Although communicating with an actor via asynchronous message passing suffices for many
purposes, implementing “call-response” style interactions can become cumbersome. Practical
implementations such as Erlang and Akka implement some way of synchronising on a result:
Erlang achieves this by generating a unique reference to send along with a request, selectively
receiving from the mailbox to await a response tagged with the same unique reference.

ECOOP 2017

90:20 Mixing Metaphors

Another method of synchronisation embraced by the Active Object community [10,32,33]
and Akka is to generate a future variable which is populated with the result of the call.

Figure 15 details an extension of λact with a synchronisation primitive, wait, which encodes
a deliberately restrictive form of synchronisation capable of emulating futures. The key idea
behind wait is it allows some actor a to block until an actor b evaluates to a value; this value
is then returned directly to a, bypassing the mailbox. A variation of the wait primitive is
implemented as part of the Links [9] concurrency model. This is but one of multiple ways of
allowing synchronisation; first-class futures, shared reference cells, or selective receive can
achieve a similar result. We discuss wait as it avoids the need for new configurations.

We replace the unary type constructor for process IDs with a binary type constructor
ActorRef(A,B), where A is the type of messages that the process can receive from its mailbox,
and B is the type of value to which the process will eventually evaluate. We assume that
the remainder of the primitives are modified to take the additional effect type into account.
We can now adapt the previous translation from λch to λact, making use of wait to avoid
the need for the coalescing transformation. Channel references are translated into actor
references which can either receive a value of type A, or the PID of a process which can
receive a value of type A and will eventually evaluate to a value of type A. Note that the
unbound annotation C, 1 on function arrows reflects that the mailboxes can be of any type,
since the mailboxes are unused in the actors emulating threads.

The key idea behind the modified translation is to spawn a fresh actor which makes the
request to the channel and blocks waiting for the response. Once the spawned actor has
received the result, the result can be retrieved synchronously using wait without reading from
the mailbox. The previous soundness theorems adapt to the new setting.

I Theorem 28. If Γ; ∆ ` C with Γ � ∆, then L Γ M; L ∆ M ` L C M.

I Theorem 29. If Γ; ∆ ` C1 and C1 −→ C2, then there exists some D such that L C M −→∗ D
with D ≡ L C2 M.

The translation in the other direction requires named threads and a join construct in λch.

7.2 Selective receive

The receive construct in λact can only read the first message in the queue, which is cumbersome
as it often only makes sense for an actor to handle a subset of messages at a given time.

In practice, Erlang provides a selective receive construct, matching messages in the mailbox
against multiple pattern clauses. Assume we have a mailbox containing values V1, . . . Vn

and evaluate receive {c1, . . . , cm}. The construct first tries to match value V1 against clause
c1—if it matches, then the body of c1 is evaluated, whereas if it fails, V1 is tested against c2
and so on. Should V1 not match any pattern, then the process is repeated until Vn has been
tested against cm. At this point, the process blocks until a matching message arrives.

More concretely, consider an actor with mailbox type C = 〈PriorityMessage :Message,
StandardMessage :Message,Timeout : 1〉 which can receive both high- and low-priority mes-
sages. Let getPriority be a function which extracts a priority from a message.

Fowler, Lindley, and Wadler 90:21

Additional syntax

Receive Patterns c ::= (〈` = x〉 when M) 7→ N

Computations M ::= receive {−→c } | . . .

Additional term typing rule
Sel-Recv−→c = {〈`i = xi〉 when Mi 7→ Ni}i i ∈ J
Γ, xi : Ai `P Mi : Bool Γ, xi : Ai | 〈`j : Aj〉j∈J ` Ni : C

Γ | 〈`j : Aj〉j∈J ` receive {−→c } : C

Additional configuration reduction rule

∃k, l.∀i.i < k ⇒ ¬(matchesAny(−→c , Vi)) ∧matches(cl, Vk) ∧ ∀j.j < l⇒ ¬(matches(cj , Vk))

〈a,E[receive {−→c }],−→W · Vk ·
−→
W ′〉 −→ 〈a,E[Nl{V ′k/xl}],

−→
W ·
−→
W ′〉

where

−→c = {〈`i = xi〉 when Mi 7→ Ni}i
−→
W = V1 · . . . ·Vk−1

−→
W ′ = Vk+1 · . . . ·Vn Vk = 〈`k = V ′k〉

matches((〈` = x〉 when M) 7→ N, 〈`′ = V 〉) , (` = `′) ∧ (M{V/x} −→∗M return true)
matchesAny(−→c , V) , ∃c ∈ −→c .matches(c, V)

Figure 16 Additional syntax, typing rules, and reduction rules for λact with selective receive

Now consider the following actor:

receive {
〈PriorityMessage = msg〉 when (getPrioritymsg) > 5 7→ handleMessagemsg
〈Timeout = msg〉 when true 7→ ()

};
receive {
〈PriorityMessage = msg〉 when true 7→ handleMessagemsg
〈StandardMessage = msg〉 when true 7→ handleMessagemsg
〈Timeout = msg〉 when true 7→ ()

}

This actor begins by handling a message only if it has a priority greater than 5. After the
timeout message is received, however, it will handle any message—including lower-priority
messages that were received beforehand.

Figure 16 shows the additional syntax, typing rule, and configuration reduction rule
required to encode selective receive; the type Bool and logical operators are encoded using
sums in the standard way. We write Γ `P M : A to mean that under context Γ, a term M

which does not perform any communication or concurrency actions has type A. Intuitively,
this means that no subterm of M is a communication or concurrency construct.

The receive {−→c } construct models an ordered sequence of receive pattern clauses c of the
form (〈` = x〉 when M) 7→ N , which can be read as “If a message with body x has label `
and satisfies predicate M , then evaluate N”. The typing rule for receive {−→c } ensures that for
each pattern 〈`i = xi〉 when Mi 7→ Ni in −→c , we have that there exists some `i : Ai contained
in the mailbox variant type; and when Γ is extended with xi : Ai, that the guard Mi has
type Bool and the body Ni has the same type C for each branch.

The reduction rule for selective receive is inspired by that of Fredlund [16]. Assume that
the mailbox is of the form V1 · . . . ·Vk · . . . Vn, with

−→
W = V1 · . . . ·Vk−1 and

−→
W ′ = Vk+1 · . . . ·Vn.

ECOOP 2017

90:22 Mixing Metaphors

Translation on types

bActorRef(〈`i : Ai〉i)c = ActorRef(〈`i : bAic〉i) bA×Bc = bAc × bBc bA+Bc = bAc+ bBc

bµX.Ac = µX.bAc bA→C Bc = bAc →bCc List(bCc)→bCc (bBc × List(bCc))

where C = 〈`i : A′i〉i, and bCc = 〈`i : bA′ic〉i
Translation on values

bλx.Mc = λx.λmb.(bMcmb) brec f(x) .Mc = rec f(x) . λmb.(bMcmb)

Translation on computation terms (wrt. a mailbox type 〈`i : Ai〉i)
bV W cmb = let f⇐ (bV c bW c) in f mb

breturnV cmb = return (bV c,mb)
blet x⇐M in Ncmb = let resPair⇐ bMcmb in let (x,mb′) = resPair in bNcmb′

bselfcmb = let selfPid⇐ self in return (selfPid,mb)
bsendV W cmb = let x⇐ send (bV c) (bW c) in return (x,mb)
bspawnMcmb = let spawnRes⇐ spawn(bMc[]) in return (spawnRes,mb)

breceive {−→c }cmb = find(−→c ,mb)
Translation on configurations

b(νa)Cc = {(νa)D | D ∈ bCc}
bC1 ‖ C2c = {D1 ‖ D2 | D1 ∈ bC1c ∧ D2 ∈ bC2c}

b〈a,M,
−→
V 〉c = {〈a, bMc [], b

−→
V c 〉} ∪

{〈a, (bMc
−→
W 1

i),
−→
W 2

i 〉 | i ∈ 1..n}

where
−→
W 1

i = bV1c :: . . . :: bVic :: []
−→
W 2

i = bVi+1c · . . . · bVnc

Figure 17 Translation from λact with selective receive into λact

The matches(c, V) predicate holds if the label matches, and the branch guard evaluates to
true. The matchesAny(−→c , V) predicate holds if V matches any pattern in −→c . The key idea
is that Vk is the first value to satisfy a pattern. The construct evaluates to the body of the
matched pattern, with the message payload V ′k substituted for the pattern variable xk; the
final mailbox is −→W ·

−→
W ′ (that is, the original mailbox without Vk).

Reduction in the presence of selective receive preserves typing.

I Theorem 30 (Preservation (λact configurations with selective receive)). If Γ; ∆ | 〈`i : Ai〉i ` C1
and C1 −→ C2, then Γ; ∆ | 〈`i : Ai〉i ` C2.

Translation to λact. Given the additional constructs used to translate λch into λact, it is
possible to translate λact with selective receive into plain λact. Key to the translation is
reasoning about values in the mailbox at the term level; we maintain a term-level ‘save queue’
of values that have been received but not yet matched, and can loop through the list to find
the first matching value. Our translation is similar in spirit to the “stashing” mechanism
described by Haller [19] to emulate selective receive in Akka, where messages can be moved
to an auxiliary queue for processing at a later time.

Figure 17 shows the translation formally. Except for function types, the translation on
types is homomorphic. Similar to the translation from λact into λch, we add an additional
parameter for the save queue.

The translation on terms bMcmb takes a variable mb representing the save queue as its
parameter, returning a pair of the resulting term and the updated save queue. The majority of
cases are standard, except for receive {−→c }, which relies on the meta-level definition find(−→c ,
mb): −→c is a sequence of clauses, and mb is the save queue. The constituent findLoop function
takes a pair of lists (mb1,mb2), where mb1 is the list of processed values found not to match,

Fowler, Lindley, and Wadler 90:23

find(−→c ,mb) ,
(recfindLoop(ms) .

let (mb1,mb2) = ms in
casemb2 {

[] 7→ loop(−→c ,mb1)
x :: mb′2 7→

let mb′ ⇐ mb1 ++ mb′2 in
case x {branches(−→c ,mb′,
λy.(let mb′1 ⇐ mb1 ++ [y] in

findLoop (mb′1,mb′2)))}) ([],mb)

label(〈` = x〉 when M 7→ N) = `

labels(−→c) = noDups([label(c) | c← −→c])
matching(`,−→c) = [c | (c← −→c) ∧ label(c) = `]
unhandled(−→c) = [` | (〈` : A〉 ← 〈`i : Ai〉i) ∧ ` 6∈ labels(−→c)]

ifPats(mb, `, y, ε, default) = default 〈` = y〉
ifPats(mb, `, y,

(〈` = x〉 when M 7→ N) · pats, default) =
let resPair⇐ (bMcmb){y/x} in
let (res,mb′) = resPair in
if res then (bNcmb){y/x}
else ifPats(mb, `, y, pats, default)

loop(−→c ,mb) ,
(rec recvLoop(mb) .

let x⇐ receive in
case x {branches(−→c ,mb,
λy.let mb′ ⇐ mb ++ [y] in

recvLoopmb′)})mb

branches(−→c ,mb, default) = patBranches(−→c ,mb, default) · defaultBranches(−→c ,mb, default)
patBranches(−→c ,mb, default) =

[〈` = x〉 7→ ifPats(mb, `, x,−→c` , default) | (`← labels(−→c)) ∧ −→c` = matching(`,−→c) ∧ x fresh]
defaultBranches(−→c ,mb, default) = [〈` = x〉 7→ default 〈` = x〉 | (`← unhandled(−→c)) ∧ x fresh]

Figure 18 Meta level definitions for translation from λact with selective receive to λact (wrt. a
mailbox type 〈`i : Ai〉i)

and mb2 is the list of values still to be processed. The loop inspects the list until one either
matches, or the end of the list is reached. Should no values in the term-level representation
of the mailbox match, then the loop function repeatedly receives from the mailbox, testing
each new message against the patterns.

Note that the case construct in the core λact calculus is more restrictive than selective
receive: given a variant 〈`i : Ai〉i, case requires a single branch for each label. Selective
receive allows multiple branches for each label, each containing a possibly-different predicate,
and does not require pattern matching to be exhaustive.

We therefore need to perform pattern matching elaboration; this is achieved by the
branches meta level definition. We make use of list comprehension notation: for example,
[c | (c← −→c) ∧ label(c) = `] returns the (ordered) list of clauses in a sequence −→c such that
the label of the receive clause matches a label `. We assume a meta level function noDups
which removes duplicates from a list. Case branches are computed using the branches meta
level definition: patBranches creates a branch for each label present in the selective receive,
creating (via ifPats) a sequence of if-then-else statements to check each predicate in turn;
defaultBranches creates a branch for each label that is present in the mailbox type but
not in any selective receive clauses.

Properties of the translation. The translation preserves typing of terms and values.

I Lemma 31 (Translation preserves typing (values and terms)).

1. If Γ ` V :A, then bΓc ` bV c : bAc.
2. If Γ | 〈`i :Ai〉i `M :B, then
bΓc,mb : List(〈`i : bAic〉i) | 〈`i : bAic〉i ` bMcmb : (bBc × List(〈`i : bAic〉i)).

Alas, a direct one-to-one translation on configurations is not possible, since a message in a
mailbox in the source language could be either in the mailbox or the save queue in the target

ECOOP 2017

90:24 Mixing Metaphors

Γ ` V : ChanRef(A) Γ `W : ChanRef(B)
Γ ` chooseV W : A+B

E[choose a b] ‖ a(W1 ·
−→
V1) ‖ b(−→V2) −→ E[return (inlW1)] ‖ a(−→V1) ‖ b(−→V2)

E[choose a b] ‖ a(−→V1) ‖ b(W2 ·
−→
V2) −→ E[return (inrW2)] ‖ a(−→V1) ‖ b(−→V2)

Figure 19 Additional typing and evaluation rules for λch with choice

language. Consequently, we translate a configuration into a set of possible configurations,
depending on how many messages have been processed. We can show that all configurations
in the resulting set are type-correct, and can simulate the original reduction.

I Theorem 32 (Translation preserves typing). If Γ; ∆ ` C, then ∀D ∈ bCc, it is the case that
bΓc; b∆c ` D.

I Theorem 33 (Simulation (λact with selective receive in λact)). If Γ; ∆ ` C and C −→ C′,
then ∀D ∈ bCc, there exists a D′ such that D −→+ D′ and D′ ∈ bC′c.

Remark. Originally we expected to need to add an analogous selective receive construct to
λch in order to be able to translate λact with selective receive into λch. We were surprised (in
part due to the complex reduction rule and the native runtime support in Erlang) when we
discovered that selective receive can be emulated in plain λact. Moreover, we were pleasantly
surprised that types pose no difficulties in the translation.

7.3 Choice
The calculus λch supports only blocking receive on a single channel. A more powerful
mechanism is selective communication, where a value is taken nondeterministically from two
channels. An important use case is receiving a value when either channel could be empty.

Here we have considered only the most basic form of selective choice over two channels.
More generally, it may be extended to arbitrary regular data types [42]. As Concurrent
ML [45] embraces rendezvous-based synchronous communication, it provides generalised
selective communication where a process can synchronise on a mixture of input or output
communication events. Similarly, the join patterns of the join calculus [14] provide a general
abstraction for selective communication over multiple channels.

As we are working in the asynchronous setting where a give operation can reduce
immediately, we consider only input-guarded choice. Input-guarded choice can be added
straightforwardly to λch, as shown in Figure 19. Emulating such a construct satisfactorily in
λact is nontrivial, because messages must be multiplexed through a local queue. One approach
could be to use the work of Chaudhuri [8] which shows how to implement generalised choice
using synchronous message passing, but implementing this in λch may be difficult due to the
asynchrony of give. We leave a more thorough investigation to future work.

7.4 Behavioural types
Behavioural types allow the type of an object (e.g. a channel) to evolve as a program
executes. A widely studied behavioural typing discipline is that of session types [26, 27],
which are channel types sufficiently expressive to describe communication protocols between
participants. For example, the session type for a channel which sends two integers and

Fowler, Lindley, and Wadler 90:25

receives their sum could be defined as !Int.!Int.?Int.end. Session types are suited to channels,
whereas current work on session-typed actors concentrates on runtime monitoring [39].

A natural question to ask is whether one can combine the benefits of actors and of session
types—indeed, this was one of our original motivations for wanting to better understand
the relationship between actors and channels in the first place! A session-typed channel
may support both sending and receiving (at different points in the protocol it encodes), but
communication with another process’ mailbox is one-way. We have studied several variants
of λact with polarised session types [36, 43] which capture such one-way communication, but
they seem too weak to simulate session-typed channels. In future, we would like to find an
extension of λact with behavioural types that admits a similar simulation result to the ones
in this paper.

8 Related work

Our formulation of concurrent λ-calculi is inspired by λ(fut) [40], a concurrent λ-calculus
with threads, futures, reference cells, and an atomic exchange construct. In the presence
of lists, futures are sufficient to encode asynchronous channels. In λch, we concentrate on
asynchronous channels to better understand the correspondence with actors. Channel-based
concurrent λ-calculi form the basis of functional languages with session types [17,35].

Concurrent ML [45] extends Standard ML with a rich set of combinators for synchronous
channels, which again can emulate asynchronous channels. A core notion in Concurrent ML
is nondeterministically synchronising on multiple synchronous events, such as sending or
receiving messages; relating such a construct to an actor calculus is nontrivial, and remains
an open problem. Hopac [28] is a channel-based concurrency library for F#, based on
Concurrent ML. The Hopac documentation relates synchronous channels and actors [1],
implementing actor-style primitives using channels, and channel-style primitives using actors.
The implementation of channels using actors uses mutable references to emulate the take
function, whereas our translation achieves this using message passing. Additionally, our
translation is formalised and we prove that the translations are type- and semantics-preserving.

Links [9] provides actor-style concurrency, and the paper describes a translation into
λ(fut). Our translation is semantics-preserving and can be done without synchronisation.

The actor model was designed by Hewitt [23] and examined in the context of distributed
systems by Agha [2]. Agha et al. [3] describe a functional actor calculus based on the
λ-calculus augmented by three core constructs: send sends a message; letactor creates a new
actor; and become changes an actor’s behaviour. The operational semantics is defined in
terms of a global actor mapping, a global multiset of messages, a set of receptionists (actors
which are externally visible to other configurations), and a set of external actor names.
Instead of become, we use an explicit receive construct, which more closely resembles Erlang
(referred to by the authors as “essentially an actor language”). Our concurrent semantics,
more in the spirit of process calculi, encodes visibility via name restrictions and structural
congruences. The authors consider a behavioural theory in terms of operational and testing
equivalences—something we have not investigated.

Scala has native support for actor-style concurrency, implemented efficiently without
explicit virtual machine support [20]. The actor model inspires active objects [33]: objects
supporting asynchronous method calls which return responses using futures. De Boer et
al. [10] describe a language for active objects with cooperatively scheduled threads within
each object. Core ABS [32] is a specification language based on active objects. Using futures
for synchronisation sidesteps the type pollution problem inherent in call-response patterns

ECOOP 2017

90:26 Mixing Metaphors

with actors, although our translations work in the absence of synchronisation. By working in
the functional setting, we obtain more compact calculi.

9 Conclusion

Inspired by languages such as Go which take channels as core constructs for communication,
and languages such as Erlang which are based on the actor model of concurrency, we have
presented translations back and forth between a concurrent λ-calculus λch with channel-based
communication constructs and a concurrent λ-calculus λact with actor-based communication
constructs. We have proved that λact can simulate λch and vice-versa.

The translation from λact to λch is straightforward, whereas the translation from λch to
λact requires considerably more effort. Returning to Figure 2, this is unsurprising!

We have also shown how to extend λact with synchronisation, greatly simplifying the
translation from λch into λact, and have shown how Erlang-style selective receive can be
emulated in λact. Additionally, we have discussed input-guarded choice in λch, and how
behavioural types may fit in with λact.

In future, we firstly plan to strengthen our operational correspondence results by consid-
ering operational completeness. Secondly, we plan to investigate how to emulate λch with
input-guarded choice in λact. Finally, we intend to use the lessons learnt from studying λch
and λact to inform the design of an actor-inspired language with behavioural types.

Acknowledgements

This work was supported by EPSRC grants EP/L01503X/1 (University of Edinburgh CDT
in Pervasive Parallelism) and EP/K034413/1 (A Basis for Concurrency and Distribution).
Thanks to Philipp Haller, Daniel Hillerström, Ian Stark, and the anonymous reviewers for
detailed comments.

References
1 Actors and Hopac. https://www.github.com/Hopac/Hopac/blob/master/Docs/Actors.

md, 2016.
2 Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT

Press, Cambridge, MA, USA, 1986.
3 Gul A Agha, Ian A Mason, Scott F Smith, and Carolyn L Talcott. A foundation for actor

computation. Journal of Functional Programming, 7(01):1–72, 1997.
4 Akka Typed. http://doc.akka.io/docs/akka/current/scala/typed.html, 2016.
5 Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa. Testing of concurrent and im-

perative software using clp. In PPDP, pages 1–8. ACM, 2016.
6 Joe Armstrong. Making reliable distributed systems in the presence of sodware errors. PhD

thesis, The Royal Institute of Technology Stockholm, Sweden, 2003.
7 Francesco Cesarini and Steve Vinoski. Designing for Scalability with Erlang/OTP. "

O’Reilly Media, Inc.", 2016.
8 Avik Chaudhuri. A Concurrent ML Library in Concurrent Haskell. In ICFP, pages 269–280,

New York, NY, USA, 2009. ACM.
9 Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web Programming

Without Tiers. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-
Paul de Roever, editors, FMCO, volume 4709, pages 266–296. Springer Berlin Heidelberg,
2007.

https://www.github.com/Hopac/Hopac/blob/master/Docs/Actors.md
https://www.github.com/Hopac/Hopac/blob/master/Docs/Actors.md
http://doc.akka.io/docs/akka/current/scala/typed.html

Fowler, Lindley, and Wadler 90:27

10 Frank S De Boer, Dave Clarke, and Einar Broch Johnsen. A complete guide to the future.
In ESOP, pages 316–330. Springer, 2007.

11 Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 43 Years of Actors: A
Taxonomy of Actor Models and Their Key Properties. In AGERE. ACM, 2016.

12 Matthias Felleisen. On the expressive power of programming languages. Science of Com-
puter Programming, 17(1-3):35–75, 1991.

13 Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of
compiling with continuations. In PLDI, pages 237–247. ACM, 1993.

14 Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-calculus. In
Hans-Juergen Boehm and Guy L. Steele Jr., editors, POPL, pages 372–385. ACM Press,
1996.

15 Simon Fowler, Sam Lindley, and Philip Wadler. Mixing Metaphors: Actors as Channels
and Channels as Actors (Extended Version). CoRR, abs/1611.06276, 2017. URL: http:
//arxiv.org/abs/1611.06276.

16 Lars-Åke Fredlund. A framework for reasoning about Erlang code. PhD thesis, The Royal
Institute of Technology Stockholm, Sweden, 2001.

17 Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous session types.
Journal of Functional Programming, 20:19–50, January 2010.

18 David K. Gifford and John M. Lucassen. Integrating functional and imperative program-
ming. In LFP, pages 28–38. ACM, 1986.

19 Philipp Haller. On the integration of the actor model in mainstream technologies: the
Scala perspective. In AGERE, pages 1–6. ACM, 2012.

20 Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2):202–220, 2009.

21 Paul Harvey. A linguistic approach to concurrent, distributed, and adaptive programming
across heterogeneous platforms. PhD thesis, University of Glasgow, 2015.

22 Jiansen He, Philip Wadler, and Philip Trinder. Typecasting actors: From Akka to TAkka.
In SCALA, pages 23–33. ACM, 2014.

23 Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR Formalism
for Artificial Intelligence. In IJCAI, pages 235–245, San Francisco, CA, USA, 1973. Morgan
Kaufmann Publishers Inc.

24 Rich Hickey. Clojure core.async Channels. http://clojure.com/blog/2013/06/28/
clojure-core-async-channels.html, 2013.

25 C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM,
21(8):666–677, August 1978.

26 Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR’93, volume 715
of Lecture Notes in Computer Science, pages 509–523. Springer Berlin Heidelberg, 1993.

27 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type dis-
cipline for structured communication-based programming. In Chris Hankin, editor, ESOP,
chapter 9, pages 122–138. Springer Berlin Heidelberg, Berlin/Heidelberg, 1998.

28 Hopac. http://www.github.com/Hopac/hopac, 2016.
29 How are Akka actors different from Go channels? https://www.quora.com/

How-are-Akka-actors-different-from-Go-channels, 2013.
30 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed programming

in java. In ECOOP, pages 516–541. Springer, 2008.

ECOOP 2017

http://arxiv.org/abs/1611.06276
http://arxiv.org/abs/1611.06276
http://clojure.com/blog/2013/06/28/clojure-core-async-channels.html
http://clojure.com/blog/2013/06/28/clojure-core-async-channels.html
http://www.github.com/Hopac/hopac
https://www.quora.com/How-are-Akka-actors-different-from-Go-channels
https://www.quora.com/How-are-Akka-actors-different-from-Go-channels

90:28 Mixing Metaphors

31 Is Scala’s actors similar to Go’s coroutines? http://stackoverflow.com/questions/
22621514/is-scalas-actors-similar-to-gos-coroutines, 2014.

32 Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen.
ABS: A core language for abstract behavioral specification. In FMCO, pages 142–164.
Springer, 2010.

33 R. Greg Lavender and Douglas C. Schmidt. Active object: An object behavioral pattern for
concurrent programming. In John M. Vlissides, James O. Coplien, and Norman L. Kerth,
editors, Pattern Languages of Program Design 2, pages 483–499. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1996.

34 Paul B. Levy, John Power, and Hayo Thielecke. Modelling environments in call-by-value
programming languages. Information and Computation, 185(2):182–210, 2003.

35 Sam Lindley and J. Garrett Morris. A Semantics for Propositions as Sessions. In ESOP,
pages 560–584. Springer, 2015.

36 Sam Lindley and J. Garrett Morris. Embedding session types in haskell. In Haskell, pages
133–145. ACM, 2016.

37 Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi. Mathemat-
ical Structures in Computer Science, 14(5):715–767, 2004.

38 Robin Milner. Communicating and Mobile Systems: The Pi Calculus. Cambridge Univer-
sity Press, 1st edition, June 1999.

39 Rumyana Neykova and Nobuko Yoshida. Multiparty session actors. In COORDINATION,
pages 131–146. Springer, 2014.

40 Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda calculus
with futures. Theoretical Computer Science, 364(3):338–356, 2006.

41 Luca Padovani and Luca Novara. Types for Deadlock-Free Higher-Order Programs. In
Susanne Graf and Mahesh Viswanathan, editors, FORTE, pages 3–18. Springer Interna-
tional Publishing, 2015.

42 Jennifer Paykin, Antal Spector-Zabusky, and Kenneth Foner. choose your own derivative.
In TyDe, pages 58–59. ACM, 2016.

43 Frank Pfenning and Dennis Griffith. Polarized substructural session types. In FoSSaCS,
volume 9034 of Lecture Notes in Computer Science, pages 3–22. Springer, 2015.

44 Proto.Actor. http://www.proto.actor, 2016.

45 John H. Reppy. Concurrent Programming in ML. Cambridge University Press, 2007.

46 Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2003.

47 Typed Actors. https://github.com/knutwalker/typed-actors, 2016.

48 Philip Wadler. Propositions as sessions. Journal of Functional Programming, 24(2-3):384–
418, 2014.

http://stackoverflow.com/questions/22621514/is-scalas-actors-similar-to-gos-coroutines
http://stackoverflow.com/questions/22621514/is-scalas-actors-similar-to-gos-coroutines
http://www.proto.actor
https://github.com/knutwalker/typed-actors

	Introduction
	Motivation
	Our approach
	Summary of results
	Contributions and paper outline

	Channels and actors side-by-side
	ch: A concurrent -calculus for channels
	Syntax and typing of terms
	Operational semantics
	Progress and canonical forms

	act: A concurrent -calculus for actors
	Syntax and typing of terms
	Operational semantics
	Progress and canonical forms

	From act to ch
	Translation (act to ch)
	Properties of the translation

	From ch to act
	Extensions to the core language
	Translation strategy (ch into act)
	Translation
	Properties of the translation

	Extensions
	Synchronisation
	Selective receive
	Choice
	Behavioural types

	Related work
	Conclusion

