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Introduction

Linear Classifiers

I Go onto ACL Anthology

I Search for: “Naive Bayes”, “Maximum Entropy”, “Logistic
Regression”, “SVM”, “Perceptron”

I Do the same on Google Scholar
I “Maximum Entropy” & “NLP” 11,000 hits, 240 before 2000
I “SVM” & “NLP” 15,000 hits, 556 before 2000
I “Perceptron” & “NLP”, 4,000 hits, 147 before 2000

I All are examples of linear classifiers
I All have become tools in any NLP/CL researchers tool-box in

past 15 years
I One the most important tools
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Introduction

Experiment

I Document 1 – label: 0; words: ? � ◦
I Document 2 – label: 0; words: ? ♥ 4
I Document 3 – label: 1; words: ? 4 ♠
I Document 4 – label: 1; words: � 4 ◦

I New document – words: ? � ◦; label ?

I New document – words: ? � ♥; label ?

I New document – words: ? � ♠; label ?

I New document – words: ? 4 ◦; label ?

Why and how can we do this?
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Introduction

Experiment

I Document 1 – label: 0; words: ? � ◦
I Document 2 – label: 0; words: ? ♥ 4
I Document 3 – label: 1; words: ? 4 ♠
I Document 4 – label: 1; words: � 4 ◦

I New document – words: ? 4 ◦; label ?

Label 0 Label 1

P(0|?) = count(? and 0)
count(?)

= 2
3

= 0.67 vs. P(1|?) = count(? and 1)
count(?)

= 1
3

= 0.33

P(0|4) = count(4 and 0)
count(4)

= 1
3

= 0.33 vs. P(1|4) = count(4 and 1)
count(4)

= 2
3

= 0.67

P(0|◦) = count(◦ and 0)
count(◦)

= 1
2

= 0.5 vs. P(1|◦) = count(◦ and 1)
count(◦)

= 1
2

= 0.5
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Introduction

Machine Learning

I Machine learning is well-motivated counting
I Typically, machine learning models

1. Define a model/distribution of interest
2. Make some assumptions if needed
3. Count!!

I Model: P(label|doc) = P(label|word1, . . .wordn)
I Prediction for new doc = argmaxlabel P(label|doc)

I Assumption: P(label|word1, . . . ,wordn) = 1
n

∑
i P(label|wordi )

I Count (as in example)
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Introduction

Lecture Outline

I Preliminaries
I Data: input/output, assumptions
I Feature representations
I Linear classifiers and decision boundaries

I Classifiers
I Naive Bayes
I Generative versus discriminative
I Logistic-regression
I Perceptron
I Large-Margin Classifiers (SVMs)

I Regularization

I Online learning

I Non-linear classifiers

Introduction to Machine Learning 6(129)



Preliminaries

Inputs and Outputs

I Input: x ∈ X
I e.g., document or sentence with some words x = w1 . . .wn, or

a series of previous actions

I Output: y ∈ Y
I e.g., parse tree, document class, part-of-speech tags,

word-sense

I Input/Output pair: (x,y) ∈ X × Y
I e.g., a document x and its label y
I Sometimes x is explicit in y, e.g., a parse tree y will contain

the sentence x
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Preliminaries

General Goal

When given a new input x predict the correct output y

But we need to formulate this computationally!
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Preliminaries

Feature Representations

I We assume a mapping from input x to a high dimensional
feature vector

I φ(x) : X → Rm

I For many cases, more convenient to have mapping from
input-output pairs (x,y)

I φ(x,y) : X × Y → Rm

I Under certain assumptions, these are equivalent

I Most papers in NLP use φ(x,y)

I (Was?) not so common in NLP: φ ∈ Rm (but see word
embeddings)

I More common: φi ∈ {1, . . . ,Fi}, Fi ∈ N+ (categorical)

I Very common: φ ∈ {0, 1}m (binary)

I For any vector v ∈ Rm, let vj be the j th value
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Preliminaries

Examples

I x is a document and y is a label

φj(x,y) =


1 if x contains the word “interest”

and y =“financial”
0 otherwise

We expect this feature to have a positive weight, “interest” is
a positive indicator for the label “financial”
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Preliminaries

Examples

I x is a document and y is a label

φj(x,y) =


1 if x contains the word “president”

and y =“sports”
0 otherwise

We expect this feature to have a negative weight?
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Preliminaries

Examples

φj(x,y) = % of words in x containing punctuation and y =“scientific”

Punctuation symbols - positive indicator or negative indicator for
scientific articles?
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Preliminaries

Examples

I x is a word and y is a part-of-speech tag

φj(x,y) =

{
1 if x = “bank” and y = Verb
0 otherwise

What weight would it get?
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Preliminaries

Example 2

I x is a name, y is a label classifying the name

φ0(x,y) =

 1 if x contains “George”
and y = “Person”

0 otherwise

φ1(x,y) =

 1 if x contains “Washington”
and y = “Person”

0 otherwise

φ2(x,y) =

 1 if x contains “Bridge”
and y = “Person”

0 otherwise

φ3(x,y) =

 1 if x contains “General”
and y = “Person”

0 otherwise

φ4(x,y) =

 1 if x contains “George”
and y = “Object”

0 otherwise

φ5(x,y) =

 1 if x contains “Washington”
and y = “Object”

0 otherwise

φ6(x,y) =

 1 if x contains “Bridge”
and y = “Object”

0 otherwise

φ7(x,y) =

 1 if x contains “General”
and y = “Object”

0 otherwise

I x=General George Washington, y=Person → φ(x,y) = [1 1 0 1 0 0 0 0]

I x=George Washington Bridge, y=Object → φ(x,y) = [0 0 0 0 1 1 1 0]

I x=George Washington George, y=Object → φ(x,y) = [0 0 0 0 1 1 0 0]

Introduction to Machine Learning 14(129)



Preliminaries

Block Feature Vectors

I x=General George Washington, y=Person → φ(x,y) = [1 1 0 1 0 0 0 0]

I x=General George Washington, y=Object → φ(x,y) = [0 0 0 0 1 1 0 1]

I x=George Washington Bridge, y=Object → φ(x,y) = [0 0 0 0 1 1 1 0]

I x=George Washington George, y=Object → φ(x,y) = [0 0 0 0 1 1 0 0]

I Each equal size block of the feature vector corresponds to one
label

I Non-zero values allowed only in one block
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Preliminaries

Feature Representations - φ(x)

I Instead of φ(x,y) : X × Y → Rm over input/outputs (x,y)

I Let φ(x) : X → Rm′ (e.g.,m′ = m/|Y|)
I i.e., feature representation only over inputs x

I Equivalent when φ(x , y) includes y as a non-decomposable
object

I Disadvantages to φ(x) formulation: no complex features over
properties of labels

I Advantages: can make math cleaner, especially with binary
classification

Introduction to Machine Learning 16(129)



Preliminaries

Feature Representations - φ(x) vs. φ(x,y)

I φ(x,y)
I x=General George Washington, y=Person → φ(x,y) = [1 1 0 1 0 0 0 0]
I x=General George Washington, y=Object → φ(x,y) = [0 0 0 0 1 1 0 1]

I φ(x)
I x=General George Washington → φ(x) = [1 1 0 1]

I Different ways of representing same thing

I In this case, can deterministically map from φ(x) to φ(x,y)
given y
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Linear Classifiers

Linear Classifiers

I Linear classifier: score (or probability) of a particular
classification is based on a linear combination of features and
their weights

I Let ω ∈ Rm be a high dimensional weight vector
I Assume that ω is known

I Multiclass Classification: Y = {0, 1, . . . ,N}

y = argmax
y

ω · φ(x,y)

= argmax
y

m∑
j=0

ωj × φj(x,y)

I Binary Classification just a special case of multiclass
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Linear Classifiers

Linear Classifiers – φ(x)

I Define |Y| parameter vectors ωy ∈ Rm′

I I.e., one parameter vector per output class y

I Classification
y = argmax

y
ωy · φ(x)

I φ(x,y)
I x=General George Washington, y=Person → φ(x,y) = [1 1 0 1 0 0 0 0]
I x=General George Washington, y=Object → φ(x,y) = [0 0 0 0 1 1 0 1]
I Single ω ∈ R8

I φ(x)
I x=General George Washington → φ(x) = [1 1 0 1]
I Two parameter vectors ω0 ∈ R4, ω1 ∈ R4
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Linear Classifiers

Linear Classifiers - Bias Terms

I Often linear classifiers presented as

y = argmax
y

m∑
j=0

ωj × φj(x,y) + by

I Where b is a bias or offset term

I Sometimes this is folded into φ

x=General George Washington, y=Person → φ(x,y) = [1 1 0 1 1 0 0 0 0 0]

x=General George Washington, y=Object → φ(x,y) = [0 0 0 0 0 1 1 0 1 1]

φ4(x,y) =

{
1 y =“Person”
0 otherwise φ9(x,y) =

{
1 y =“Object”
0 otherwise

I ω4 and ω9 are now the bias terms for the labels
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Linear Classifiers

Binary Linear Classifier

Let’s say ω = (1,−1) and by = 1, ∀y
Then ω is a line (generally a hyperplane) that divides all points:

1 2-2 -1

1

2

-2

-1

Points along line
have scores of 0
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Linear Classifiers

Multiclass Linear Classifier

Defines regions of space. Visualization difficult.

I i.e., + are all points (x,y) where + = argmaxy ω · φ(x,y)
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Linear Classifiers

Separability

I A set of points is separable, if there exists a ω such that
classification is perfect

Separable Not Separable

I This can also be defined mathematically (and we will do that
shortly)
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Linear Classifiers

Machine Learning – finding ω

We now have a way to make dcisions... If we have a ω. But where
do we get this ω?

I Supervised Learning

I Input: training examples T = {(xt ,yt)}|T |t=1

I Input: feature representation φ
I Output: ω that maximizes some important function on the

training set
I ω = argmaxL(T ;ω)

I Equivalently minimize: ω = argmin−L(T ;ω)
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Linear Classifiers

Objective Functions

I L(·) is called the objective function
I Usually we can decompose L by training pairs (x,y)

I L(T ;ω) ∝
∑

(x,y)∈T loss((x,y);ω)
I loss is a function that measures some value correlated with

errors of parameters ω on instance (x,y)

I Defining L(·) and loss is core of linear classifiers in machine
learning

I Example: y ∈ {1,−1}, f (x |w) is the prediction we make for x
using w

I Loss is:
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Linear Classifiers

Supervised Learning – Assumptions

I Assumption: (xt ,yt) are sampled i.i.d.
I i.i.d. = independent and identically distributed
I independent = each sample independent of the other
I identically = each sample from same probability distribution

I Sometimes assumption: The training data is separable
I Needed to prove convergence for Perceptron
I Not needed in practice
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Naive Bayes

Naive Bayes
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Naive Bayes

Probabilistic Models

I Let’s put aside linear classifiers for a moment

I Here is another approach to decision making

I Probabilistically model P(y|x)

I If we can define this distribution, then classification becomes
I argmaxy P(y|x)
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Naive Bayes

Bayes Rule

I One way to model P(y|x) is through Bayes Rule:

P(y|x) =
P(y)P(x|y)

P(x)

argmax
y

P(y|x) ∝ argmax
y

P(y)P(x|y)

I Since x is fixed

I P(y)P(x|y) = P(x,y): a joint probability

I Modeling the joint input-output distribution is at the core of
generative models

I Because we model a distribution that can randomly generate
outputs and inputs, not just outputs

I More on this later
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Naive Bayes

Naive Bayes (NB)

I We need to decide on the structure of P(x,y)

I P(x|y) = P(φ(x)|y) = P(φ1(x), . . . ,φm(x)|y)

Naive Bayes Assumption
(conditional independence)

P(φ1(x), . . . ,φm(x)|y) =
∏

i P(φi(x)|y)

P(x,y) = P(y)P(φ1(x), . . . ,φm(x)|y) = P(y)
m∏
i=1

P(φi (x)|y)
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Naive Bayes

Naive Bayes – Learning

I Input: T = {(xt ,yt)}|T |t=1

I Let φi (x) ∈ {1, . . . ,Fi} – categorical; common in NLP

I Parameters P = {P(y),P(φi (x)|y)}
I Both P(y) and P(φi (x)|y) are multinomials
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Naive Bayes

Maximum Likelihood Estimation

I What’s left? Defining an objective L(T )

I P plays the role of w

I What objective to use?

I Objective: Maximum Likelihood Estimation (MLE)

L(T ) =

|T |∏
t=1

P(xt ,yt) =

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)

P = argmax
P

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)
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Naive Bayes

Naive Bayes – Learning

MLE has closed form solution!! (more later) – count and normalize

P = argmax
P

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)

P(y) =

∑|T |
t=1[[yt = y]]

|T |

P(φi (x)|y) =

∑|T |
t=1[[φi (xt) = φi (x) and yt = y]]∑|T |

t=1[[yt = y]]

[[X ]] is the identity function for property X
Thus, these are just normalized counts over events in T

Intuitively makes sense!
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Naive Bayes

Naive Bayes Example

I φi (x) ∈ 0, 1, ∀i
I doc 1: y1 = 0, φ0(x1) = 1, φ1(x1) = 1

I doc 2: y2 = 0, φ0(x2) = 0, φ1(x2) = 1

I doc 3: y3 = 1, φ0(x3) = 1, φ1(x3) = 0

I Two label parameters P(y = 0), P(y = 1)
I Eight feature parameters

I 2 (labels) * 2 (features) * 2 (feature values)
I E.g., y = 0 and φ0(x) = 1: P(φ0(x) = 1|y = 0)

I We really have one label parameter and 2 * 2 * ( 2 - 1)
feature parameters

I P(y = 0) = 2/3, P(y = 1) = 1/3

I P(φ0(x) = 1|y = 0) = 1/2, P(φ1(x) = 0|y = 1) = 1/1
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Naive Bayes

Naive Bayes Document Classification

I doc 1: y1 = sports, “hockey is fast”

I doc 2: y2 = politics, “politicians talk fast”

I doc 3: y3 = politics, “washington is sleazy”

I φ0(x) = 1 iff doc has word ‘hockey’, 0 o.w.

I φ1(x) = 1 iff doc has word ‘is’, 0 o.w.

I φ2(x) = 1 iff doc has word ‘fast’, 0 o.w.

I φ3(x) = 1 iff doc has word ‘politicians’, 0 o.w.

I φ4(x) = 1 iff doc has word ‘talk’, 0 o.w.

I φ5(x) = 1 iff doc has word ‘washington’, 0 o.w.

I φ6(x) = 1 iff doc has word ‘sleazy’, 0 o.w.

Your turn? What is P(sports)? What is P(φ0(0) = 1|politics)?
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Naive Bayes

Deriving MLE

P = argmax
P

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)
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Naive Bayes

Deriving MLE (for handout)

P = argmax
P

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)

= argmax
P

|T |∑
t=1

(
logP(yt) +

m∑
i=1

logP(φi (xt)|yt)

)

= argmax
P(y)

|T |∑
t=1

logP(yt) + argmax
P(φi (x)|y)

|T |∑
t=1

m∑
i=1

logP(φi (xt)|yt)

such that
∑
y P(y) = 1,

∑Fi
j=1 P(φi (x) = j |y) = 1, P(·) ≥ 0
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Naive Bayes

Deriving MLE

P = argmax
P(y)

|T |∑
t=1

logP(yt) + argmax
P(φi (x)|y)

|T |∑
t=1

m∑
i=1

logP(φi (xt)|yt)

Both optimizations are of the form

argmaxP
∑

v count(v) logP(v), s.t.,
∑

v P(v) = 1, P(v) ≥ 0

For example:

argmax
P(y)

|T |∑
t=1

logP(yt) = argmax
P(y)

∑
y

count(y, T ) logP(y)

such that
∑
y P(y) = 1, P(y) ≥ 0
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Naive Bayes

Deriving MLE

argmaxP
∑

v count(v) logP(v)
s.t.,

∑
v P(v) = 1, P(v) ≥ 0

Introduce Lagrangian multiplier λ, optimization becomes

argmaxP,λ
∑

v count(v) logP(v)− λ (
∑

v P(v)− 1)

Derivative:

Set to zero:

Final solution:
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Naive Bayes

Deriving MLE (for handout)

argmaxP
∑

v count(v) logP(v)
s.t.,

∑
v P(v) = 1, P(v) ≥ 0

Introduce Lagrangian multiplier λ, optimization becomes

argmaxP,λ
∑

v count(v) logP(v)− λ (
∑

v P(v)− 1)

Derivative w.r.t P(v) is
count(v)

P(v) − λ

Setting this to zero P(v) =
count(v)

λ

Combine with
∑

v P(v) = 1. P(v) ≥ 0, then P(v) =
count(v)∑
v′ count(v ′)
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Naive Bayes

Put it together

P = argmax
P

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)

= argmax
P(y)

|T |∑
t=1

logP(yt) + argmax
P(φi (x)|y)

|T |∑
t=1

m∑
i=1

logP(φi (xt)|yt)

P(y) =

∑|T |
t=1[[yt = y]]

|T |

P(φi (x)|y) =

∑|T |
t=1[[φi (xt) = φi (x) and yt = y]]∑|T |

t=1[[yt = y]]
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Naive Bayes

NB is a linear classifier

I Let ωy = logP(y), ∀y ∈ Y
I Let ωφi (x),y = logP(φi (x)|y), ∀y ∈ Y,φi (x) ∈ {1, . . . ,Fi}
I Let ω be set of all ω∗ and ω∗,∗

argmax
y

P(y|φ(x)) ∝ argmax
y

P(φ(x),y) = argmax
y

P(y)
m∏
i=1

P(φi (x)|y) =

where ψ∗ ∈ {0, 1}, ψi,j (x) = [[φi (x) = j]], ψy′ (y) = [[y = y′]]
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Naive Bayes

NB is a linear classifier (for handout)

I Let ωy = logP(y), ∀y ∈ Y
I Let ωφi (x),y = logP(φi (x)|y), ∀y ∈ Y,φi (x) ∈ {1, . . . ,Fi}
I Let ω be set of all ω∗ and ω∗,∗

argmax
y

P(y|φ(x)) ∝ argmax
y

P(φ(x),y) = argmax
y

P(y)
m∏
i=1

P(φi (x)|y)

= argmax
y

log P(y) +
m∑
i=1

log P(φi (x)|y)

= argmax
y

ωy +
m∑
i=1

ωφi (x),y

= argmax
y

∑
y′
ωyψy′ (y) +

m∑
i=1

Fi∑
j=1

ωφi (x),yψi,j (x)

where ψ∗ ∈ {0, 1}, ψi,j (x) = [[φi (x) = j]], ψy′ (y) = [[y = y′]]

Introduction to Machine Learning 43(129)



Naive Bayes

Smoothing

I doc 1: y1 = sports, “hockey is fast”

I doc 2: y2 = politics, “politicians talk fast”

I doc 3: y3 = politics, “washington is sleazy”

I New doc: “washington hockey is fast”

I Both ‘sports’ and ‘politics’ have probabilities of 0

I Smoothing aims to assign a small amount of probability to
unseen events

I E.g., Additive/Laplacian smoothing

P(v) =
count(v)∑
v ′ count(v ′)

=⇒ P(v) =
count(v) + α∑

v ′ (count(v ′) + α)
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Naive Bayes

Discriminative versus Generative

I Generative models attempt to model inputs and outputs
I e.g., NB = MLE of joint distribution P(x,y)
I Statistical model must explain generation of input

I Occam’s Razor: why model input?
I Discriminative models

I Use L that directly optimizes P(y|x) (or something related)
I Logistic Regression – MLE of P(y|x)
I Perceptron and SVMs – minimize classification error

I Generative and discriminative models use P(y|x) for
prediction

I Differ only on what distribution they use to set ω
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Logistic Regression

Logistic Regression
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Logistic Regression

Logistic Regression

Define a conditional probability:

P(y|x) =
eω·φ(x,y)

Zx
, where Zx =

∑
y′∈Y

eω·φ(x,y′)

Note: still a linear classifier

argmax
y

P(y|x) = argmax
y

eω·φ(x,y)

Zx

= argmax
y

eω·φ(x,y)

= argmax
y

ω · φ(x,y)
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Logistic Regression

Logistic Regression

P(y|x) =
eω·φ(x,y)

Zx

I Q: How do we learn weights ω
I A: Set weights to maximize log-likelihood of training data:

ω = argmax
ω

L(T ;ω)

= argmax
ω

|T |∏
t=1

P(yt |xt) = argmax
ω

|T |∑
t=1

logP(yt |xt)

I In a nutshell we set the weights ω so that we assign as much
probability to the correct label y for each x in the training set
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Logistic Regression

Logistic Regression

P(y|x) =
eω·φ(x,y)

Zx
, where Zx =

∑
y′∈Y

eω·φ(x,y′)

ω = argmax
ω

|T |∑
t=1

logP(yt |xt) (*)

I The objective function (*) is concave (take the 2nd derivative)

I Therefore there is a global maximum
I No closed form solution, but lots of numerical techniques

I Gradient methods (gradient ascent, conjugate gradient,
iterative scaling)

I Newton methods (limited-memory quasi-newton)
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Logistic Regression

Gradient Ascent
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Logistic Regression

Gradient Ascent

I Let L(T ;ω) =
∑|T |

t=1 log
(
eω·φ(xt ,yt)/Zx

)
I Want to find argmaxω L(T ;ω)

I Set ω0 = Om

I Iterate until convergence

ωi = ωi−1 + αOL(T ;ωi−1)

I α > 0 and set so that L(T ;ωi ) > L(T ;ωi−1)
I OL(T ;ω) is gradient of L w.r.t. ω

I A gradient is all partial derivatives over variables wi

I i.e., OL(T ;ω) = ( ∂
∂ω0
L(T ;ω), ∂

∂ω1
L(T ;ω), . . . , ∂

∂ωm
L(T ;ω))

I Gradient ascent will always find ω to maximize L
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Logistic Regression

Gradient Descent

I Let L(T ;ω) = −
∑|T |

t=1 log
(
eω·φ(xt ,yt)/Zx

)
I Want to find argminωL(T ;ω)

I Set ω0 = Om

I Iterate until convergence

ωi = ωi−1 − αOL(T ;ωi−1)

I α > 0 and set so that L(T ;ωi ) < L(T ;ωi−1)
I OL(T ;ω) is gradient of L w.r.t. ω

I A gradient is all partial derivatives over variables wi

I i.e., OL(T ;ω) = ( ∂
∂ω0
L(T ;ω), ∂

∂ω1
L(T ;ω), . . . , ∂

∂ωm
L(T ;ω))

I Gradient descent will always find ω to minimize L
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Logistic Regression

The partial derivatives

I Need to find all partial derivatives ∂
∂ωi
L(T ;ω)

L(T ;ω) =
∑
t

logP(yt |xt)

=
∑
t

log
eω·φ(xt ,yt)∑
y′∈Y e

ω·φ(xt ,y′)

=
∑
t

log
e
∑

j ωj×φj (xt ,yt)

Zxt
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Logistic Regression

Partial derivatives - some reminders

1. ∂
∂x log F = 1

F
∂
∂x F

I We always assume log is the natural logarithm loge

2. ∂
∂x e

F = eF ∂
∂x F

3. ∂
∂x

∑
t Ft =

∑
t
∂
∂x Ft

4. ∂
∂x

F
G =

G ∂
∂x

F−F ∂
∂x

G

G2
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Logistic Regression

The partial derivatives
∂
∂ωi
L(T ;ω) =
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Logistic Regression

The partial derivatives 1 (for handout)

∂

∂ωi
L(T ;ω) =

∂

∂ωi

∑
t

log
e
∑

j ωj×φj (xt ,yt)

Zxt

=
∑
t

∂

∂ωi
log

e
∑

j ωj×φj (xt ,yt)

Zxt

=
∑
t

(
Zxt

e
∑

j ωj×φj (xt ,yt)
)(

∂

∂ωi

e
∑

j ωj×φj (xt ,yt)

Zxt

)
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Logistic Regression

The partial derivatives

Now, ∂
∂ωi

e
∑

j ωj×φj (xt ,yt )

Zxt
=
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Logistic Regression

The partial derivatives 2 (for handout)
Now,

∂

∂ωi

e
∑

j ωj×φj (xt ,yt )

Zxt

=
Zxt

∂
∂ωi

e
∑

j ωj×φj (xt ,yt ) − e
∑

j ωj×φj (xt ,yt ) ∂
∂ωi

Zxt

Z 2
xt

=
Zxt e

∑
j ωj×φj (xt ,yt )φi (xt ,yt)− e

∑
j ωj×φj (xt ,yt ) ∂

∂ωi
Zxt

Z 2
xt

=
e
∑

j ωj×φj (xt ,yt )

Z 2
xt

(Zxtφi (xt ,yt)−
∂

∂ωi
Zxt )

=
e
∑

j ωj×φj (xt ,yt )

Z 2
xt

(Zxtφi (xt ,yt)

−
∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′)φi (xt ,y

′))

because

∂

∂ωi
Zxt =

∂

∂ωi

∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′) =

∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′)φi (xt ,y

′)
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Logistic Regression

The partial derivatives
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Logistic Regression

The partial derivatives 3 (for handout)
From before,

∂

∂ωi

e
∑

j ωj×φj (xt ,yt )

Zxt

=
e
∑

j ωj×φj (xt ,yt )

Z 2
xt

(Zxtφi (xt ,yt)

−
∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′)φi (xt ,y

′))

Sub this in,

∂

∂ωi
L(T ;ω) =

∑
t

(
Zxt

e
∑

j ωj×φj (xt ,yt )
)(

∂

∂ωi

e
∑

j ωj×φj (xt ,yt )

Zxt

)

=
∑
t

1

Zxt

(Zxtφi (xt ,yt)−
∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′)φi (xt ,y

′)))

=
∑
t

φi (xt ,yt)−
∑
t

∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′)

Zxt

φi (xt ,y
′)

=
∑
t

φi (xt ,yt)−
∑
t

∑
y′∈Y

P(y′|xt)φi (xt ,y
′)
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Logistic Regression

FINALLY!!!

I After all that,

∂

∂ωi
L(T ;ω) =

∑
t

φi (xt ,yt)−
∑
t

∑
y′∈Y

P(y′|xt)φi (xt ,y
′)

I And the gradient is:

OL(T ;ω) = (
∂

∂ω0
L(T ;ω),

∂

∂ω1
L(T ;ω), . . . ,

∂

∂ωm
L(T ;ω))

I So we can now use gradient ascent to find ω!!
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Logistic Regression

Logistic Regression Summary

I Define conditional probability

P(y|x) =
eω·φ(x,y)

Zx

I Set weights to maximize log-likelihood of training data:

ω = argmax
ω

∑
t

logP(yt |xt)

I Can find the gradient and run gradient ascent (or any
gradient-based optimization algorithm)

∂

∂ωi
L(T ;ω) =

∑
t

φi (xt ,yt)−
∑
t

∑
y′∈Y

P(y′|xt)φi (xt ,y
′)
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Logistic Regression

Logistic Regression = Maximum Entropy

I Well-known equivalence
I Max Ent: maximize entropy subject to constraints on

features: P = arg maxP H(P) under constraints
I Empirical feature counts must equal expected counts

I Quick intuition
I Partial derivative in logistic regression

∂

∂ωi
L(T ;ω) =

∑
t

φi (xt ,yt)−
∑
t

∑
y′∈Y

P(y′|xt)φi (xt ,y
′)

I First term is empirical feature counts and second term is
expected counts

I Derivative set to zero maximizes function
I Therefore when both counts are equivalent, we optimize the

logistic regression objective!
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Perceptron
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Perceptron

Perceptron

I Choose a ω that minimizes error

L(T ;ω) =

|T |∑
t=1

1− [[yt = argmax
y

ω · φ(xt ,y)]]

ω = argmin
ω

|T |∑
t=1

1− [[yt = argmax
y

ω · φ(xt ,y)]]

[[p]] =

{
1 p is true
0 otherwise

I This is a 0-1 loss function
I When minimizing error people tend to use hinge-loss
I We’ll get back to this
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Perceptron

Aside: Min error versus max log-likelihood

I Highly related but not identical

I Example: consider a training set T with 1001 points

1000× (xi ,y = 0) = [−1, 1, 0, 0] for i = 1 . . . 1000

1× (x1001,y = 1) = [0, 0, 3, 1]

I Now consider ω = [−1, 0, 1, 0]

I Error in this case is 0 – so ω minimizes error

[−1, 0, 1, 0] · [−1, 1, 0, 0] = 1 > [−1, 0, 1, 0] · [0, 0,−1, 1] = −1

[−1, 0, 1, 0] · [0, 0, 3, 1] = 3 > [−1, 0, 1, 0] · [3, 1, 0, 0] = −3

I However, log-likelihood = -126.9 (omit calculation)

Introduction to Machine Learning 66(129)



Perceptron

Aside: Min error versus max log-likelihood

I Highly related but not identical

I Example: consider a training set T with 1001 points

1000× (xi ,y = 0) = [−1, 1, 0, 0] for i = 1 . . . 1000

1× (x1001,y = 1) = [0, 0, 3, 1]

I Now consider ω = [−1, 7, 1, 0]

I Error in this case is 1 – so ω does not minimize error

[−1, 7, 1, 0] · [−1, 1, 0, 0] = 8 > [−1, 7, 1, 0] · [−1, 1, 0, 0] = −1

[−1, 7, 1, 0] · [0, 0, 3, 1] = 3 < [−1, 7, 1, 0] · [3, 1, 0, 0] = 4

I However, log-likelihood = -1.4

I Better log-likelihood and worse error
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Perceptron

Aside: Min error versus max log-likelihood

I Max likelihood 6= min error
I Max likelihood pushes as much probability on correct labeling

of training instance
I Even at the cost of mislabeling a few examples

I Min error forces all training instances to be correctly classified
I Often not possible
I Ways of regularizing model to allow sacrificing some errors for

better predictions on more examples
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Perceptron

Perceptron Learning Algorithm

Training data: T = {(xt ,yt)}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y′ = argmaxy′ ω
(i) · φ(xt ,y

′)
5. if y′ 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y

′)
7. i = i + 1
8. return ωi
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Perceptron: Separability and Margin

I Given an training instance (xt ,yt), define:
I Ȳt = Y − {yt}
I i.e., Ȳt is the set of incorrect labels for xt

I A training set T is separable with margin γ > 0 if there exists
a vector u with ‖u‖ = 1 such that:

u · φ(xt ,yt)− u · φ(xt ,y
′) ≥ γ

for all y′ ∈ Ȳt and ||u|| =
√∑

j u2
j

I Assumption: the training set is separable with margin γ
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Perceptron

Perceptron: Main Theorem

I Theorem: For any training set separable with a margin of γ,
the following holds for the perceptron algorithm:

mistakes made during training ≤ R2

γ2

where R ≥ ||φ(xt ,yt)− φ(xt ,y
′)|| for all (xt ,yt) ∈ T and

y′ ∈ Ȳt
I Thus, after a finite number of training iterations, the error on

the training set will converge to zero

I Let’s prove it! (proof taken from Collins ’02)

Introduction to Machine Learning 71(129)
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Perceptron Learning Algorithm

Training data: T = {(xt ,yt )}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y′ = argmaxy′ ω
(i) · φ(xt ,y

′)
5. if y′ 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt )− φ(xt ,y

′)
7. i = i + 1

8. return ωi

I ω(k−1) are the weights before kth

mistake

I Suppose kth mistake made at the
tth example, (xt ,yt)

I y′ = argmaxy′ ω
(k−1) · φ(xt ,y′)

I y′ 6= yt

I ω(k) =
ω(k−1) + φ(xt ,yt)− φ(xt ,y′)

I

I

I

I
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Perceptron Learning Algorithm (for handout)

Training data: T = {(xt ,yt )}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y′ = argmaxy′ ω
(i) · φ(xt ,y

′)
5. if y′ 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt )− φ(xt ,y

′)
7. i = i + 1

8. return ωi

I ω(k−1) are the weights before kth

mistake

I Suppose kth mistake made at the
tth example, (xt ,yt)

I y′ = argmaxy′ ω
(k−1) · φ(xt ,y′)

I y′ 6= yt

I ω(k) =
ω(k−1) + φ(xt ,yt)− φ(xt ,y′)

I Now: u · ω(k) = u · ω(k−1) + u · (φ(xt ,yt)− φ(xt ,y′)) ≥ u · ω(k−1) + γ
I Now: ω(0) = 0 and u · ω(0) = 0, by induction on k, u · ω(k) ≥ kγ
I Now: since u · ω(k) ≤ ||u|| × ||ω(k)|| and ||u|| = 1 then ||ω(k)|| ≥ kγ
I Now:

||ω(k)||2 = ||ω(k−1)||2 + ||φ(xt ,yt)− φ(xt ,y
′)||2 + 2ω(k−1) · (φ(xt ,yt)− φ(xt ,y

′))

||ω(k)||2 ≤ ||ω(k−1)||2 + R2

(since R ≥ ||φ(xt ,yt)− φ(xt ,y
′)||

and ω(k−1) · φ(xt ,yt)− ω(k−1) · φ(xt ,y
′) ≤ 0)
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Perceptron Learning Algorithm

I We have just shown that ||ω(k)|| ≥ kγ and
||ω(k)||2 ≤ ||ω(k−1)||2 + R2

I By induction on k and since ω(0) = 0 and ||ω(0)||2 = 0

I Therefore,

I and solving for k

I Therefore the number of errors is bounded!
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Perceptron

Perceptron Learning Algorithm (for handout)

I We have just shown that ||ω(k)|| ≥ kγ and
||ω(k)||2 ≤ ||ω(k−1)||2 + R2

I By induction on k and since ω(0) = 0 and ||ω(0)||2 = 0

||ω(k)||2 ≤ kR2

I Therefore,
k2γ2 ≤ ||ω(k)||2 ≤ kR2

I and solving for k

k ≤ R2

γ2

I Therefore the number of errors is bounded!
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Perceptron Summary

I Learns a linear classifier that minimizes error

I Guaranteed to find a ω in a finite amount of time
I Perceptron is an example of an Online Learning Algorithm

I ω is updated based on a single training instance in isolation

ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y
′)
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Averaged Perceptron

Training data: T = {(xt ,yt)}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y′ = argmaxy′ ω
(i) · φ(xt ,y

′)
5. if y′ 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y

′)
7. else

6. ω(i+1) = ω(i)

7. i = i + 1

8. return
(∑

i ω
(i)
)
/ (N × T )
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Margin

Training Testing

Denote the
value of the
margin by γ
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Maximizing Margin

I For a training set T
I Margin of a weight vector ω is smallest γ such that

ω · φ(xt ,yt)− ω · φ(xt ,y
′) ≥ γ

I for every training instance (xt ,yt) ∈ T , y′ ∈ Ȳt
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Maximizing Margin

I Intuitively maximizing margin makes sense

I More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

ε ∝ R2

γ2 × |T |

I Perceptron: we have shown that:
I If a training set is separable by some margin, the perceptron

will find a ω that separates the data
I However, the perceptron does not pick ω to maximize the

margin!
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Support Vector Machines (SVMs)
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Support Vector Machines

Maximizing Margin

Let γ > 0
max
||ω||=1

γ

such that:
ω · φ(xt ,yt)− ω · φ(xt ,y

′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

I Note: algorithm still minimizes error if data is separable

I ||ω|| is bound since scaling trivially produces larger margin

β(ω · φ(xt ,yt)− ω · φ(xt ,y
′)) ≥ βγ, for some β ≥ 1

Introduction to Machine Learning 82(129)



Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
Change of variable: u =
w

γ
?

||ω|| = 1 iff ||u|| = 1/γ

Min Norm (step 1):

max
||u||=1/γ

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
w

γ
?

||ω|| = 1 iff ||u|| = γ

Min Norm (step 2):

max
||u||=1/γ

γ

such that:

γu·φ(xt ,yt)−γu·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
w

γ
?

||ω|| = 1 iff ||u|| = γ

Min Norm (step 3):

max
||u||=1/γ

γ

such that:

u·φ(xt ,yt)−u·φ(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
But γ is really not con-
strained!
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
w

γ
?

||ω|| = 1 iff ||u|| = γ

Min Norm (step 4):

max
u

1

||u||
= min

u
||u||

such that:

u·φ(xt ,yt)−u·φ(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
But γ is really not con-
strained!
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Min Norm:

min
u

1

2
||u||2

such that:

u·φ(xt ,yt)−u·φ(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

I Intuition: Instead of fixing ||ω|| we fix the margin γ = 1
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Support Vector Machines

ω = argmin
ω

1

2
||ω||2

such that:
ω · φ(xt ,yt)− ω · φ(xt ,y

′) ≥ 1

∀(xt ,yt) ∈ T and y′ ∈ Ȳt

I Quadratic programming problem – a well-known convex
optimization problem

I Can be solved with many techniques [Nocedal and Wright 1999]
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Support Vector Machines

What if data is not separable? (Original problem: will not satisfy
the constraints!)

ω = argmin
ω,ξ

1

2
||ω||2 + C

|T |∑
t=1

ξt

such that:

ω · φ(xt ,yt)− ω · φ(xt ,y
′) ≥ 1− ξt and ξt ≥ 0

∀(xt ,yt) ∈ T and y′ ∈ Ȳt

ξt : trade-off between margin per example and ‖ω‖
Larger C = more examples correctly classified
If data is separable, optimal solution has ξi = 0, ∀i
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Support Vector Machines

Support Vector Machines

ω = argmin
ω,ξ

λ

2
||ω||2 +

|T |∑
t=1

ξt λ =
1

C

such that:

ω · φ(xt ,yt)− ω · φ(xt ,y
′) ≥ 1− ξt

Can we have a more compact representation of this objective
function?

ω · φ(xt ,yt)− max
y′ 6=yt

ω · φ(xt ,y
′) ≥ 1− ξt

ξt ≥ 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt)︸ ︷︷ ︸

negated margin for example
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Support Vector Machines

Support Vector Machines

ξt ≥ 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt)︸ ︷︷ ︸

negated margin for example

I If ‖ω‖ classifies (xt ,yt) with margin 1, penalty ξt = 0
I (Objective wants to keep ξt small and ξt = 0 satisfies the constraint)
I Otherwise: ξt = 1 + maxy′ 6=yt ω · φ(xt ,y

′)− ω · φ(xt ,yt)
I (Again, because that’s the minimal ξt that satisfies the constraint,

and we want ξt smallest as possible)
I That means that in the end ξt will be:

ξt = max{0, 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt)}

(If an example is classified correctly, ξt = 0 and the second
term in the max is negative.)
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Support Vector Machines

Support Vector Machines

ω = argmin
ω,ξ

λ

2
||ω||2 +

|T |∑
t=1

ξt

such that:

ξt ≥ 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt)

Hinge loss equivalent

ω = argmin
ω

L(T ;ω) = argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) +
λ

2
||ω||2

= argmin
ω

 |T |∑
t=1

max (0, 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt))

+
λ

2
||ω||2
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Summary

What we have covered
I Linear Classifiers

I Naive Bayes
I Logistic Regression
I Perceptron
I Support Vector Machines

What is next
I Regularization

I Online learning

I Non-linear classifiers
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Regularization
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Regularization

Fit of a Model

I Two sources of error:

I Bias error, measures how well the hypothesis class fits the
space we are trying to model

I Variance error, measures sensitivity to training set selection
I Want to balance these two things
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Regularization

Overfitting

I Early in lecture we made assumption data was i.i.d.
I Rarely is this true

I E.g., syntactic analyzers typically trained on 40,000 sentences
from early 1990s WSJ news text

I Even more common: T is very small

I This leads to overfitting

I E.g.: ‘fake’ is never a verb in WSJ treebank (only adjective)
I High weight on “φ(x,y) = 1 if x=fake and y=adjective”
I Of course: leads to high log-likelihood / low error

I Other features might be more indicative

I Adjacent word identities: ‘He wants to X his death’→ X=verb
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Regularization

Regularization

I In practice, we regularize models to prevent overfitting

argmax
ω

L(T ;ω)− λR(ω)

I Where R(ω) is the regularization function

I λ controls how much to regularize

I Common functions

I L2: R(ω) ∝ ‖ω‖2 = ‖ω‖ =
√∑

i ω
2
i – smaller weights desired

I L0: R(ω) ∝ ‖ω‖0 =
∑

i [[ωi > 0]] – zero weights desired
I Non-convex
I Approximate with L1: R(ω) ∝ ‖ω‖1 =

∑
i |ωi |
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Regularization

Logistic Regression with L2 Regularization

I Perhaps most common classifier in NLP

L(T ;ω)− λR(ω) =

|T |∑
t=1

log
(
eω·φ(xt ,yt)/Zx

)
− λ

2
‖ω‖2

I What are the new partial derivatives?
∂

∂wi
L(T ;ω)− ∂

∂wi
λR(ω)

I We know ∂
∂wi
L(T ;ω)

I Just need ∂
∂wi

λ
2 ‖ω‖

2 = ∂
∂wi

λ
2

(√∑
i ω

2
i

)2

= ∂
∂wi

λ
2

∑
i ω

2
i = λωi
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Regularization

Support Vector Machines

Hinge-loss formulation: L2 regularization already happening!

ω = argmin
ω

L(T ;ω) + λR(ω)

= argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) + λR(ω)

= argmin
ω

|T |∑
t=1

max (0, 1 + max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt)) + λR(ω)

= argmin
ω

|T |∑
t=1

max (0, 1 + max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt)) +
λ

2
‖ω‖2

↑ SVM optimization ↑
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Regularization

SVMs vs. Logistic Regression

ω = argmin
ω

L(T ;ω) + λR(ω)

= argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) + λR(ω)

SVMs/hinge-loss: max (0, 1 + maxy 6=yt (ω · φ(xt ,y)− ω · φ(xt ,yt)))

ω = argmin
ω

|T |∑
t=1

max (0, 1 + max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt)) +
λ

2
‖ω‖2

Logistic Regression/log-loss: − log
(
eω·φ(xt ,yt )/Zx

)

ω = argmin
ω

|T |∑
t=1

− log
(
eω·φ(xt ,yt )/Zx

)
+
λ

2
‖ω‖2
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Regularization

Generalized Linear Classifiers

ω = argmin
ω

L(T ;ω) + λR(ω) = argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) + λR(ω)
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Regularization

Which Classifier to Use?

I Trial and error

I Training time available

I Choice of features is often more important
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Online Learning

Online Learning
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Online Learning

Online vs. Batch Learning

Batch(T );

I for 1 . . . N

I ω ← update(T ;ω)

I return ω

E.g., SVMs, logistic regres-
sion, NB

Online(T );

I for 1 . . . N

I for (xt ,yt) ∈ T
I ω ← update((xt ,yt);ω)

I end for

I end for

I return ω

E.g., Perceptron
ω = ω + φ(xt ,yt)− φ(xt ,y)
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Online Learning

Online vs. Batch Learning

I Online algorithms
I Tend to converge more quickly
I Often easier to implement
I Require more hyperparameter tuning (exception Perceptron)
I More unstable convergence

I Batch algorithms
I Tend to converge more slowly
I Implementation more complex (quad prog, LBFGs)
I Typically more robust to hyperparameters
I More stable convergence
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Online Learning

Gradient Descent Reminder

I Let L(T ;ω) =
∑|T |

t=1 loss((xt ,yt);ω)
I Set ω0 = Om

I Iterate until convergence

ωi = ωi−1−αOL(T ;ωi−1) = ωi−1−
|T |∑
t=1

αOloss((xt ,yt);ωi−1)

I α > 0 and set so that L(T ;ωi ) < L(T ;ωi−1)

I Stochastic Gradient Descent (SGD)
I Approximate OL(T ;ω) with single Oloss((xt ,yt);ω)
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Online Learning

Stochastic Gradient Descent

I Let L(T ;ω) =
∑|T |

t=1 loss((xt ,yt);ω)

I Set ω0 = Om

I iterate until convergence
I sample (xt ,yt) ∈ T // “stochastic”

I ωi = ωi−1 − αOloss((xt ,yt);ω)

I return ω

In practice Need to solve Oloss((xt ,yt);ω)

I Set ω0 = Om

I for 1 . . .N
I for (xt ,yt) ∈ T

I ωi = ωi−1 − αOloss((xt ,yt);ω)

I return ω
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Online Learning

Online Logistic Regression

I Stochastic Gradient Descent (SGD)

I loss((xt ,yt);ω) = log-loss

I Oloss((xt ,yt);ω) = O
(
− log

(
eω·φ(xt ,yt)/Zxt

))
I From logistic regression section:

O
(
− log

(
eω·φ(xt ,yt)/Zxt

))
= −

(
φ(xt ,yt)−

∑
y

P(y|x)φ(xt ,y)

)

I Plus regularization term (if part of model)
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Online Learning

Online SVMs

I Stochastic Gradient Descent (SGD)
I loss((xt ,yt);ω) = hinge-loss

Oloss((xt ,yt);ω) = O

(
max (0, 1 + max

y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt))

)
I Subgradient is:

O

(
max (0, 1 + max

y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt))

)

=

{
0, if ω · φ(xt ,yt)−maxy ω · φ(xt ,y) ≥ 1

φ(xt ,y)− φ(xt ,yt), otherwise, where y = maxy ω · φ(xt ,y)

I Plus regularization term (required for SVMs)
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Online Learning

Perceptron and Hinge-Loss

SVM subgradient update looks like perceptron update

ωi = ωi−1 − α
{

0, if ω · φ(xt ,yt)−maxy ω · φ(xt ,y) ≥ 1

φ(xt ,y)− φ(xt ,yt), otherwise, where y = maxy ω · φ(xt ,y)

Perceptron

ωi = ωi−1 − α
{

0, if ω · φ(xt ,yt)−maxy ω · φ(xt ,y) ≥ 0

φ(xt ,y)− φ(xt ,yt), otherwise, where y = maxy ω · φ(xt ,y)

where α = 1, note φ(xt ,y)− φ(xt ,yt) not φ(xt ,yt)− φ(xt ,y) since ‘−’ (descent)

Perceptron = SGD with no-margin hinge-loss

max (0, 1+ max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt))
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Online Learning

Margin Infused Relaxed Algorithm (MIRA)

Batch (SVMs):

min
1

2
||ω||2

such that:

ω ·φ(xt ,yt)−ω ·φ(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T and y′ ∈ Ȳt

Online (MIRA):

Training data: T = {(xt ,yt)}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. ω(i+1) = argmin
ω*
∥∥ω*− ω(i)

∥∥
such that:
ω · φ(xt ,yt)− ω · φ(xt ,y′) ≥ 1
∀y′ ∈ Ȳt

5. i = i + 1
6. return ωi

I MIRA has much smaller optimizations with only |Ȳt |
constraints
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Summary

Quick Summary
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Summary

Linear Classifiers

I Naive Bayes, Perceptron, Logistic Regression and SVMs

I Generative vs. Discriminative
I Objective functions and loss functions

I Log-loss, min error and hinge loss
I Generalized linear classifiers

I Regularization

I Online vs. Batch learning
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Non-Linear Classifiers

Non-linear Classifiers
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Non-Linear Classifiers

Non-Linear Classifiers

I Some data sets require more than a linear classifier to be
correctly modeled

I Decision boundary is no longer a hyperplane in the feature
space

I A lot of models out there
I K-Nearest Neighbours
I Decision Trees
I Neural Networks
I Kernels
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Non-Linear Classifiers

Kernels

I A kernel is a similarity function between two points that is
symmetric and positive semi-definite, which we denote by:

K (xt ,xr ) ∈ R

I Let M be a n × n matrix such that ...

Mt,r = K (xt ,xr )

I ... for any n points. Called the Gram matrix.

I Symmetric:
K (xt ,xr ) = K (xr ,xt)

I Positive definite: for all non-zero v and any set of xs that
define a Gram matrix:

vMvT ≥ 0
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Non-Linear Classifiers

Kernels

I Mercer’s Theorem: for any kernel K , there exists an φ, in
some Rd , such that:

K (xt ,xr ) = φ(xt) · φ(xr )

I Since our features are over pairs (x,y), we will write kernels
over pairs

K ((xt ,yt), (xr ,yr )) = φ(xt ,yt) · φ(xr ,yr )
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Non-Linear Classifiers

Kernel Trick: General Overview

I Define a kernel, and do not explicitly use dot product between
vectors, only kernel calculations

I In some high-dimensional space, this corresponds to dot
product

I In that space, the decision boundary is linear, but in the
original space, we now have a non-linear decision boundary

I Let’s do it for the Perceptron!
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Non-Linear Classifiers

Kernel Trick – Perceptron Algorithm
Training data: T = {(xt ,yt)}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y = argmaxy ω
(i) · φ(xt ,y)

5. if y 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y)
7. i = i + 1
8. return ωi

I Each feature function φ(xt ,yt) is added and φ(xt ,y) is
subtracted to ω say αy,t times

I αy,t is the # of times during learning label y is predicted for
example t

I Thus,
ω =

∑
t,y

αy,t [φ(xt ,yt)− φ(xt ,y)]
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Non-Linear Classifiers

Kernel Trick – Perceptron Algorithm

I We can re-write the argmax function as:
y∗ = argmaxy∗ ω

(i) · φ(x,y∗)

=

=

=

I We can then re-write the perceptron algorithm strictly with
kernels
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Non-Linear Classifiers

Kernel Trick – Perceptron Algorithm (for
handout)

I We can re-write the argmax function as:

y∗ = argmax
y∗

ω(i) · φ(x,y∗)

= argmax
y∗

∑
t,y

αy,t [φ(xt ,yt)− φ(xt ,y)] · φ(x,y∗)

= argmax
y∗

∑
t,y

αy,t [φ(xt ,yt) · φ(xt ,y
∗)− φ(xt ,y) · φ(x,y∗)]

= argmax
y∗

∑
t,y

αy,t [K ((xt ,yt), (xt ,y
∗))− K ((xt ,y), (x,y∗))]

I We can then re-write the perceptron algorithm strictly with
kernels
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Non-Linear Classifiers

Kernel Trick – Perceptron Algorithm

Training data: T = {(xt ,yt)}|T |t=1

1. ∀y, t set αy,t = 0
2. for n : 1..N
3. for t : 1..T
4. Let y∗ = argmaxy∗

∑
t,y αy,t [K((xt ,yt), (xt ,y∗))− K((xt ,y), (xt ,y∗))]

5. if y∗ 6= yt
6. αy∗,t = αy∗,t + 1

I Given a new instance x

y∗ = argmax
y∗

∑
t,y

αy,t [K ((xt ,yt), (x,y
∗))−K ((xt ,y), (x,y∗))]

I But it seems like we have just complicated things???
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Non-Linear Classifiers

Kernels = Tractable Non-Linearity

I A linear classifier in a higher dimensional feature space is a
non-linear classifier in the original space

I Computing a non-linear kernel is often better computationally
than calculating the corresponding dot product in the high
dimension feature space

I Thus, kernels allow us to efficiently learn non-linear classifiers

Introduction to Machine Learning 123(129)



Non-Linear Classifiers

Linear Classifiers in High Dimension

Introduction to Machine Learning 124(129)



Non-Linear Classifiers

Example: Polynomial Kernel

I φ(x) ∈ RM , d ≥ 2

I K (xt ,xs) = (φ(xt) · φ(xs) + 1)d

I O(M) to calculate for any d!!

I But in the original feature space (primal space)
I Consider d = 2, M = 2, and φ(xt) = [xt,1, xt,2]

(φ(xt) · φ(xs) + 1)2 = ([xt,1, xt,2] · [xs,1, xs,2] + 1)2

= (xt,1xs,1 + xt,2xs,2 + 1)2

= (xt,1xs,1)2 + (xt,2xs,2)2 + 2(xt,1xs,1) + 2(xt,2xs,2)

+2(xt,1xt,2xs,1xs,2) + (1)2

which equals:

[(xt,1)2, (xt,2)2,
√

2xt,1,
√

2xt,2,
√

2xt,1xt,2, 1]︸ ︷︷ ︸
feature vector in high-dimensional space

· [(xs,1)2, (xs,2)2,
√

2xs,1,
√

2xs,2,
√

2xs,1xs,2, 1]︸ ︷︷ ︸
feature vector in high-dimensional space
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Non-Linear Classifiers

Popular Kernels

I Polynomial kernel

K (xt ,xs) = (φ(xt) · φ(xs) + 1)d

I Gaussian radial basis kernel (infinite feature space
representation!)

K (xt ,xs) = exp(
−||φ(xt)− φ(xs)||2

2σ
)

I String kernels [Lodhi et al. 2002, Collins and Duffy 2002]

I Tree kernels [Collins and Duffy 2002]
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Non-Linear Classifiers

Kernels Summary

I Can turn a linear classifier into a non-linear classifier
I Kernels project feature space to higher dimensions

I Sometimes exponentially larger
I Sometimes an infinite space!

I Can “kernelize” algorithms to make them non-linear

I (e.g. support vector machines)
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Wrap Up and Questions

Wrap up and time for questions
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Wrap Up and Questions

Summary

Basic principles of machine learning:

I To do learning, we set up an objective function that tells the
fit of the model to the data

I We optimize with respect to the model (weights, probability
model, etc.)

I Can do it in a batch or online fashion

What model to use?

I One example of a model: linear classifiers

I Can kernelize these models to get non-linear classification
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