
Introduction to Machine Learning

Linear Classifiers

Lisbon Machine Learning School, 2015

Shay Cohen

School of Informatics, University of Edinburgh
E-mail: scohen@inf.ed.ac.uk

Slides heavily based on Ryan McDonald’s slides from 2014

Introduction to Machine Learning 1(129)

Introduction

Linear Classifiers

I Go onto ACL Anthology

I Search for: “Naive Bayes”, “Maximum Entropy”, “Logistic
Regression”, “SVM”, “Perceptron”

I Do the same on Google Scholar
I “Maximum Entropy” & “NLP” 11,000 hits, 240 before 2000
I “SVM” & “NLP” 15,000 hits, 556 before 2000
I “Perceptron” & “NLP”, 4,000 hits, 147 before 2000

I All are examples of linear classifiers
I All have become tools in any NLP/CL researchers tool-box in

past 15 years
I One the most important tools

Introduction to Machine Learning 2(129)

Introduction

Experiment

I Document 1 – label: 0; words: ? � ◦
I Document 2 – label: 0; words: ? ♥ 4
I Document 3 – label: 1; words: ? 4 ♠
I Document 4 – label: 1; words: � 4 ◦

I New document – words: ? � ◦; label ?

I New document – words: ? � ♥; label ?

I New document – words: ? � ♠; label ?

I New document – words: ? 4 ◦; label ?

Why and how can we do this?

Introduction to Machine Learning 3(129)

Introduction

Experiment

I Document 1 – label: 0; words: ? � ◦
I Document 2 – label: 0; words: ? ♥ 4
I Document 3 – label: 1; words: ? 4 ♠
I Document 4 – label: 1; words: � 4 ◦

I New document – words: ? 4 ◦; label ?

Label 0 Label 1

P(0|?) = count(? and 0)
count(?)

= 2
3

= 0.67 vs. P(1|?) = count(? and 1)
count(?)

= 1
3

= 0.33

P(0|4) = count(4 and 0)
count(4)

= 1
3

= 0.33 vs. P(1|4) = count(4 and 1)
count(4)

= 2
3

= 0.67

P(0|◦) = count(◦ and 0)
count(◦)

= 1
2

= 0.5 vs. P(1|◦) = count(◦ and 1)
count(◦)

= 1
2

= 0.5

Introduction to Machine Learning 4(129)

Introduction

Machine Learning

I Machine learning is well-motivated counting
I Typically, machine learning models

1. Define a model/distribution of interest
2. Make some assumptions if needed
3. Count!!

I Model: P(label|doc) = P(label|word1, . . .wordn)
I Prediction for new doc = argmaxlabel P(label|doc)

I Assumption: P(label|word1, . . . ,wordn) = 1
n

∑
i P(label|wordi)

I Count (as in example)

Introduction to Machine Learning 5(129)

Introduction

Lecture Outline

I Preliminaries
I Data: input/output, assumptions
I Feature representations
I Linear classifiers and decision boundaries

I Classifiers
I Naive Bayes
I Generative versus discriminative
I Logistic-regression
I Perceptron
I Large-Margin Classifiers (SVMs)

I Regularization

I Online learning

I Non-linear classifiers

Introduction to Machine Learning 6(129)

Preliminaries

Inputs and Outputs

I Input: x ∈ X
I e.g., document or sentence with some words x = w1 . . .wn, or

a series of previous actions

I Output: y ∈ Y
I e.g., parse tree, document class, part-of-speech tags,

word-sense

I Input/Output pair: (x,y) ∈ X × Y
I e.g., a document x and its label y
I Sometimes x is explicit in y, e.g., a parse tree y will contain

the sentence x

Introduction to Machine Learning 7(129)

Preliminaries

General Goal

When given a new input x predict the correct output y

But we need to formulate this computationally!

Introduction to Machine Learning 8(129)

Preliminaries

Feature Representations

I We assume a mapping from input x to a high dimensional
feature vector

I φ(x) : X → Rm

I For many cases, more convenient to have mapping from
input-output pairs (x,y)

I φ(x,y) : X × Y → Rm

I Under certain assumptions, these are equivalent

I Most papers in NLP use φ(x,y)

I (Was?) not so common in NLP: φ ∈ Rm (but see word
embeddings)

I More common: φi ∈ {1, . . . ,Fi}, Fi ∈ N+ (categorical)

I Very common: φ ∈ {0, 1}m (binary)

I For any vector v ∈ Rm, let vj be the j th value

Introduction to Machine Learning 9(129)

Preliminaries

Examples

I x is a document and y is a label

φj(x,y) =


1 if x contains the word “interest”

and y =“financial”
0 otherwise

We expect this feature to have a positive weight, “interest” is
a positive indicator for the label “financial”

Introduction to Machine Learning 10(129)

Preliminaries

Examples

I x is a document and y is a label

φj(x,y) =


1 if x contains the word “president”

and y =“sports”
0 otherwise

We expect this feature to have a negative weight?

Introduction to Machine Learning 11(129)

Preliminaries

Examples

φj(x,y) = % of words in x containing punctuation and y =“scientific”

Punctuation symbols - positive indicator or negative indicator for
scientific articles?

Introduction to Machine Learning 12(129)

Preliminaries

Examples

I x is a word and y is a part-of-speech tag

φj(x,y) =

{
1 if x = “bank” and y = Verb
0 otherwise

What weight would it get?

Introduction to Machine Learning 13(129)

Preliminaries

Example 2

I x is a name, y is a label classifying the name

φ0(x,y) =

 1 if x contains “George”
and y = “Person”

0 otherwise

φ1(x,y) =

 1 if x contains “Washington”
and y = “Person”

0 otherwise

φ2(x,y) =

 1 if x contains “Bridge”
and y = “Person”

0 otherwise

φ3(x,y) =

 1 if x contains “General”
and y = “Person”

0 otherwise

φ4(x,y) =

 1 if x contains “George”
and y = “Object”

0 otherwise

φ5(x,y) =

 1 if x contains “Washington”
and y = “Object”

0 otherwise

φ6(x,y) =

 1 if x contains “Bridge”
and y = “Object”

0 otherwise

φ7(x,y) =

 1 if x contains “General”
and y = “Object”

0 otherwise

I x=General George Washington, y=Person → φ(x,y) = [1 1 0 1 0 0 0 0]

I x=George Washington Bridge, y=Object → φ(x,y) = [0 0 0 0 1 1 1 0]

I x=George Washington George, y=Object → φ(x,y) = [0 0 0 0 1 1 0 0]

Introduction to Machine Learning 14(129)

Preliminaries

Block Feature Vectors

I x=General George Washington, y=Person → φ(x,y) = [1 1 0 1 0 0 0 0]

I x=General George Washington, y=Object → φ(x,y) = [0 0 0 0 1 1 0 1]

I x=George Washington Bridge, y=Object → φ(x,y) = [0 0 0 0 1 1 1 0]

I x=George Washington George, y=Object → φ(x,y) = [0 0 0 0 1 1 0 0]

I Each equal size block of the feature vector corresponds to one
label

I Non-zero values allowed only in one block

Introduction to Machine Learning 15(129)

Preliminaries

Feature Representations - φ(x)

I Instead of φ(x,y) : X × Y → Rm over input/outputs (x,y)

I Let φ(x) : X → Rm′ (e.g.,m′ = m/|Y|)
I i.e., feature representation only over inputs x

I Equivalent when φ(x , y) includes y as a non-decomposable
object

I Disadvantages to φ(x) formulation: no complex features over
properties of labels

I Advantages: can make math cleaner, especially with binary
classification

Introduction to Machine Learning 16(129)

Preliminaries

Feature Representations - φ(x) vs. φ(x,y)

I φ(x,y)
I x=General George Washington, y=Person → φ(x,y) = [1 1 0 1 0 0 0 0]
I x=General George Washington, y=Object → φ(x,y) = [0 0 0 0 1 1 0 1]

I φ(x)
I x=General George Washington → φ(x) = [1 1 0 1]

I Different ways of representing same thing

I In this case, can deterministically map from φ(x) to φ(x,y)
given y

Introduction to Machine Learning 17(129)

Linear Classifiers

Linear Classifiers

I Linear classifier: score (or probability) of a particular
classification is based on a linear combination of features and
their weights

I Let ω ∈ Rm be a high dimensional weight vector
I Assume that ω is known

I Multiclass Classification: Y = {0, 1, . . . ,N}

y = argmax
y

ω · φ(x,y)

= argmax
y

m∑
j=0

ωj × φj(x,y)

I Binary Classification just a special case of multiclass

Introduction to Machine Learning 18(129)

Linear Classifiers

Linear Classifiers – φ(x)

I Define |Y| parameter vectors ωy ∈ Rm′

I I.e., one parameter vector per output class y

I Classification
y = argmax

y
ωy · φ(x)

I φ(x,y)
I x=General George Washington, y=Person → φ(x,y) = [1 1 0 1 0 0 0 0]
I x=General George Washington, y=Object → φ(x,y) = [0 0 0 0 1 1 0 1]
I Single ω ∈ R8

I φ(x)
I x=General George Washington → φ(x) = [1 1 0 1]
I Two parameter vectors ω0 ∈ R4, ω1 ∈ R4

Introduction to Machine Learning 19(129)

Linear Classifiers

Linear Classifiers - Bias Terms

I Often linear classifiers presented as

y = argmax
y

m∑
j=0

ωj × φj(x,y) + by

I Where b is a bias or offset term

I Sometimes this is folded into φ

x=General George Washington, y=Person → φ(x,y) = [1 1 0 1 1 0 0 0 0 0]

x=General George Washington, y=Object → φ(x,y) = [0 0 0 0 0 1 1 0 1 1]

φ4(x,y) =

{
1 y =“Person”
0 otherwise φ9(x,y) =

{
1 y =“Object”
0 otherwise

I ω4 and ω9 are now the bias terms for the labels

Introduction to Machine Learning 20(129)

Linear Classifiers

Binary Linear Classifier

Let’s say ω = (1,−1) and by = 1, ∀y
Then ω is a line (generally a hyperplane) that divides all points:

1 2-2 -1

1

2

-2

-1

Points along line
have scores of 0

Introduction to Machine Learning 21(129)

Linear Classifiers

Multiclass Linear Classifier

Defines regions of space. Visualization difficult.

I i.e., + are all points (x,y) where + = argmaxy ω · φ(x,y)

Introduction to Machine Learning 22(129)

Linear Classifiers

Separability

I A set of points is separable, if there exists a ω such that
classification is perfect

Separable Not Separable

I This can also be defined mathematically (and we will do that
shortly)

Introduction to Machine Learning 23(129)

Linear Classifiers

Machine Learning – finding ω

We now have a way to make dcisions... If we have a ω. But where
do we get this ω?

I Supervised Learning

I Input: training examples T = {(xt ,yt)}|T |t=1

I Input: feature representation φ
I Output: ω that maximizes some important function on the

training set
I ω = argmaxL(T ;ω)

I Equivalently minimize: ω = argmin−L(T ;ω)

Introduction to Machine Learning 24(129)

Linear Classifiers

Objective Functions

I L(·) is called the objective function
I Usually we can decompose L by training pairs (x,y)

I L(T ;ω) ∝
∑

(x,y)∈T loss((x,y);ω)
I loss is a function that measures some value correlated with

errors of parameters ω on instance (x,y)

I Defining L(·) and loss is core of linear classifiers in machine
learning

I Example: y ∈ {1,−1}, f (x |w) is the prediction we make for x
using w

I Loss is:

Introduction to Machine Learning 25(129)

Linear Classifiers

Supervised Learning – Assumptions

I Assumption: (xt ,yt) are sampled i.i.d.
I i.i.d. = independent and identically distributed
I independent = each sample independent of the other
I identically = each sample from same probability distribution

I Sometimes assumption: The training data is separable
I Needed to prove convergence for Perceptron
I Not needed in practice

Introduction to Machine Learning 26(129)

Naive Bayes

Naive Bayes

Introduction to Machine Learning 27(129)

Naive Bayes

Probabilistic Models

I Let’s put aside linear classifiers for a moment

I Here is another approach to decision making

I Probabilistically model P(y|x)

I If we can define this distribution, then classification becomes
I argmaxy P(y|x)

Introduction to Machine Learning 28(129)

Naive Bayes

Bayes Rule

I One way to model P(y|x) is through Bayes Rule:

P(y|x) =
P(y)P(x|y)

P(x)

argmax
y

P(y|x) ∝ argmax
y

P(y)P(x|y)

I Since x is fixed

I P(y)P(x|y) = P(x,y): a joint probability

I Modeling the joint input-output distribution is at the core of
generative models

I Because we model a distribution that can randomly generate
outputs and inputs, not just outputs

I More on this later

Introduction to Machine Learning 29(129)

Naive Bayes

Naive Bayes (NB)

I We need to decide on the structure of P(x,y)

I P(x|y) = P(φ(x)|y) = P(φ1(x), . . . ,φm(x)|y)

Naive Bayes Assumption
(conditional independence)

P(φ1(x), . . . ,φm(x)|y) =
∏

i P(φi(x)|y)

P(x,y) = P(y)P(φ1(x), . . . ,φm(x)|y) = P(y)
m∏
i=1

P(φi (x)|y)

Introduction to Machine Learning 30(129)

Naive Bayes

Naive Bayes – Learning

I Input: T = {(xt ,yt)}|T |t=1

I Let φi (x) ∈ {1, . . . ,Fi} – categorical; common in NLP

I Parameters P = {P(y),P(φi (x)|y)}
I Both P(y) and P(φi (x)|y) are multinomials

Introduction to Machine Learning 31(129)

Naive Bayes

Maximum Likelihood Estimation

I What’s left? Defining an objective L(T)

I P plays the role of w

I What objective to use?

I Objective: Maximum Likelihood Estimation (MLE)

L(T) =

|T |∏
t=1

P(xt ,yt) =

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)

P = argmax
P

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)

Introduction to Machine Learning 32(129)

Naive Bayes

Naive Bayes – Learning

MLE has closed form solution!! (more later) – count and normalize

P = argmax
P

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)

P(y) =

∑|T |
t=1[[yt = y]]

|T |

P(φi (x)|y) =

∑|T |
t=1[[φi (xt) = φi (x) and yt = y]]∑|T |

t=1[[yt = y]]

[[X]] is the identity function for property X
Thus, these are just normalized counts over events in T

Intuitively makes sense!

Introduction to Machine Learning 33(129)

Naive Bayes

Naive Bayes Example

I φi (x) ∈ 0, 1, ∀i
I doc 1: y1 = 0, φ0(x1) = 1, φ1(x1) = 1

I doc 2: y2 = 0, φ0(x2) = 0, φ1(x2) = 1

I doc 3: y3 = 1, φ0(x3) = 1, φ1(x3) = 0

I Two label parameters P(y = 0), P(y = 1)
I Eight feature parameters

I 2 (labels) * 2 (features) * 2 (feature values)
I E.g., y = 0 and φ0(x) = 1: P(φ0(x) = 1|y = 0)

I We really have one label parameter and 2 * 2 * (2 - 1)
feature parameters

I P(y = 0) = 2/3, P(y = 1) = 1/3

I P(φ0(x) = 1|y = 0) = 1/2, P(φ1(x) = 0|y = 1) = 1/1

Introduction to Machine Learning 34(129)

Naive Bayes

Naive Bayes Document Classification

I doc 1: y1 = sports, “hockey is fast”

I doc 2: y2 = politics, “politicians talk fast”

I doc 3: y3 = politics, “washington is sleazy”

I φ0(x) = 1 iff doc has word ‘hockey’, 0 o.w.

I φ1(x) = 1 iff doc has word ‘is’, 0 o.w.

I φ2(x) = 1 iff doc has word ‘fast’, 0 o.w.

I φ3(x) = 1 iff doc has word ‘politicians’, 0 o.w.

I φ4(x) = 1 iff doc has word ‘talk’, 0 o.w.

I φ5(x) = 1 iff doc has word ‘washington’, 0 o.w.

I φ6(x) = 1 iff doc has word ‘sleazy’, 0 o.w.

Your turn? What is P(sports)? What is P(φ0(0) = 1|politics)?

Introduction to Machine Learning 35(129)

Naive Bayes

Deriving MLE

P = argmax
P

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)

Introduction to Machine Learning 36(129)

Naive Bayes

Deriving MLE (for handout)

P = argmax
P

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)

= argmax
P

|T |∑
t=1

(
logP(yt) +

m∑
i=1

logP(φi (xt)|yt)

)

= argmax
P(y)

|T |∑
t=1

logP(yt) + argmax
P(φi (x)|y)

|T |∑
t=1

m∑
i=1

logP(φi (xt)|yt)

such that
∑
y P(y) = 1,

∑Fi
j=1 P(φi (x) = j |y) = 1, P(·) ≥ 0

Introduction to Machine Learning 37(129)

Naive Bayes

Deriving MLE

P = argmax
P(y)

|T |∑
t=1

logP(yt) + argmax
P(φi (x)|y)

|T |∑
t=1

m∑
i=1

logP(φi (xt)|yt)

Both optimizations are of the form

argmaxP
∑

v count(v) logP(v), s.t.,
∑

v P(v) = 1, P(v) ≥ 0

For example:

argmax
P(y)

|T |∑
t=1

logP(yt) = argmax
P(y)

∑
y

count(y, T) logP(y)

such that
∑
y P(y) = 1, P(y) ≥ 0

Introduction to Machine Learning 38(129)

Naive Bayes

Deriving MLE

argmaxP
∑

v count(v) logP(v)
s.t.,

∑
v P(v) = 1, P(v) ≥ 0

Introduce Lagrangian multiplier λ, optimization becomes

argmaxP,λ
∑

v count(v) logP(v)− λ (
∑

v P(v)− 1)

Derivative:

Set to zero:

Final solution:

Introduction to Machine Learning 39(129)

Naive Bayes

Deriving MLE (for handout)

argmaxP
∑

v count(v) logP(v)
s.t.,

∑
v P(v) = 1, P(v) ≥ 0

Introduce Lagrangian multiplier λ, optimization becomes

argmaxP,λ
∑

v count(v) logP(v)− λ (
∑

v P(v)− 1)

Derivative w.r.t P(v) is
count(v)

P(v) − λ

Setting this to zero P(v) =
count(v)

λ

Combine with
∑

v P(v) = 1. P(v) ≥ 0, then P(v) =
count(v)∑
v′ count(v ′)

Introduction to Machine Learning 40(129)

Naive Bayes

Put it together

P = argmax
P

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)

= argmax
P(y)

|T |∑
t=1

logP(yt) + argmax
P(φi (x)|y)

|T |∑
t=1

m∑
i=1

logP(φi (xt)|yt)

P(y) =

∑|T |
t=1[[yt = y]]

|T |

P(φi (x)|y) =

∑|T |
t=1[[φi (xt) = φi (x) and yt = y]]∑|T |

t=1[[yt = y]]

Introduction to Machine Learning 41(129)

Naive Bayes

NB is a linear classifier

I Let ωy = logP(y), ∀y ∈ Y
I Let ωφi (x),y = logP(φi (x)|y), ∀y ∈ Y,φi (x) ∈ {1, . . . ,Fi}
I Let ω be set of all ω∗ and ω∗,∗

argmax
y

P(y|φ(x)) ∝ argmax
y

P(φ(x),y) = argmax
y

P(y)
m∏
i=1

P(φi (x)|y) =

where ψ∗ ∈ {0, 1}, ψi,j (x) = [[φi (x) = j]], ψy′ (y) = [[y = y′]]

Introduction to Machine Learning 42(129)

Naive Bayes

NB is a linear classifier (for handout)

I Let ωy = logP(y), ∀y ∈ Y
I Let ωφi (x),y = logP(φi (x)|y), ∀y ∈ Y,φi (x) ∈ {1, . . . ,Fi}
I Let ω be set of all ω∗ and ω∗,∗

argmax
y

P(y|φ(x)) ∝ argmax
y

P(φ(x),y) = argmax
y

P(y)
m∏
i=1

P(φi (x)|y)

= argmax
y

log P(y) +
m∑
i=1

log P(φi (x)|y)

= argmax
y

ωy +
m∑
i=1

ωφi (x),y

= argmax
y

∑
y′
ωyψy′ (y) +

m∑
i=1

Fi∑
j=1

ωφi (x),yψi,j (x)

where ψ∗ ∈ {0, 1}, ψi,j (x) = [[φi (x) = j]], ψy′ (y) = [[y = y′]]

Introduction to Machine Learning 43(129)

Naive Bayes

Smoothing

I doc 1: y1 = sports, “hockey is fast”

I doc 2: y2 = politics, “politicians talk fast”

I doc 3: y3 = politics, “washington is sleazy”

I New doc: “washington hockey is fast”

I Both ‘sports’ and ‘politics’ have probabilities of 0

I Smoothing aims to assign a small amount of probability to
unseen events

I E.g., Additive/Laplacian smoothing

P(v) =
count(v)∑
v ′ count(v ′)

=⇒ P(v) =
count(v) + α∑

v ′ (count(v ′) + α)

Introduction to Machine Learning 44(129)

Naive Bayes

Discriminative versus Generative

I Generative models attempt to model inputs and outputs
I e.g., NB = MLE of joint distribution P(x,y)
I Statistical model must explain generation of input

I Occam’s Razor: why model input?
I Discriminative models

I Use L that directly optimizes P(y|x) (or something related)
I Logistic Regression – MLE of P(y|x)
I Perceptron and SVMs – minimize classification error

I Generative and discriminative models use P(y|x) for
prediction

I Differ only on what distribution they use to set ω

Introduction to Machine Learning 45(129)

Logistic Regression

Logistic Regression

Introduction to Machine Learning 46(129)

Logistic Regression

Logistic Regression

Define a conditional probability:

P(y|x) =
eω·φ(x,y)

Zx
, where Zx =

∑
y′∈Y

eω·φ(x,y′)

Note: still a linear classifier

argmax
y

P(y|x) = argmax
y

eω·φ(x,y)

Zx

= argmax
y

eω·φ(x,y)

= argmax
y

ω · φ(x,y)

Introduction to Machine Learning 47(129)

Logistic Regression

Logistic Regression

P(y|x) =
eω·φ(x,y)

Zx

I Q: How do we learn weights ω
I A: Set weights to maximize log-likelihood of training data:

ω = argmax
ω

L(T ;ω)

= argmax
ω

|T |∏
t=1

P(yt |xt) = argmax
ω

|T |∑
t=1

logP(yt |xt)

I In a nutshell we set the weights ω so that we assign as much
probability to the correct label y for each x in the training set

Introduction to Machine Learning 48(129)

Logistic Regression

Logistic Regression

P(y|x) =
eω·φ(x,y)

Zx
, where Zx =

∑
y′∈Y

eω·φ(x,y′)

ω = argmax
ω

|T |∑
t=1

logP(yt |xt) (*)

I The objective function (*) is concave (take the 2nd derivative)

I Therefore there is a global maximum
I No closed form solution, but lots of numerical techniques

I Gradient methods (gradient ascent, conjugate gradient,
iterative scaling)

I Newton methods (limited-memory quasi-newton)

Introduction to Machine Learning 49(129)

Logistic Regression

Gradient Ascent

Introduction to Machine Learning 50(129)

Logistic Regression

Gradient Ascent

I Let L(T ;ω) =
∑|T |

t=1 log
(
eω·φ(xt ,yt)/Zx

)
I Want to find argmaxω L(T ;ω)

I Set ω0 = Om

I Iterate until convergence

ωi = ωi−1 + αOL(T ;ωi−1)

I α > 0 and set so that L(T ;ωi) > L(T ;ωi−1)
I OL(T ;ω) is gradient of L w.r.t. ω

I A gradient is all partial derivatives over variables wi

I i.e., OL(T ;ω) = (∂
∂ω0
L(T ;ω), ∂

∂ω1
L(T ;ω), . . . , ∂

∂ωm
L(T ;ω))

I Gradient ascent will always find ω to maximize L

Introduction to Machine Learning 51(129)

Logistic Regression

Gradient Descent

I Let L(T ;ω) = −
∑|T |

t=1 log
(
eω·φ(xt ,yt)/Zx

)
I Want to find argminωL(T ;ω)

I Set ω0 = Om

I Iterate until convergence

ωi = ωi−1 − αOL(T ;ωi−1)

I α > 0 and set so that L(T ;ωi) < L(T ;ωi−1)
I OL(T ;ω) is gradient of L w.r.t. ω

I A gradient is all partial derivatives over variables wi

I i.e., OL(T ;ω) = (∂
∂ω0
L(T ;ω), ∂

∂ω1
L(T ;ω), . . . , ∂

∂ωm
L(T ;ω))

I Gradient descent will always find ω to minimize L

Introduction to Machine Learning 52(129)

Logistic Regression

The partial derivatives

I Need to find all partial derivatives ∂
∂ωi
L(T ;ω)

L(T ;ω) =
∑
t

logP(yt |xt)

=
∑
t

log
eω·φ(xt ,yt)∑
y′∈Y e

ω·φ(xt ,y′)

=
∑
t

log
e
∑

j ωj×φj (xt ,yt)

Zxt

Introduction to Machine Learning 53(129)

Logistic Regression

Partial derivatives - some reminders

1. ∂
∂x log F = 1

F
∂
∂x F

I We always assume log is the natural logarithm loge

2. ∂
∂x e

F = eF ∂
∂x F

3. ∂
∂x

∑
t Ft =

∑
t
∂
∂x Ft

4. ∂
∂x

F
G =

G ∂
∂x

F−F ∂
∂x

G

G2

Introduction to Machine Learning 54(129)

Logistic Regression

The partial derivatives
∂
∂ωi
L(T ;ω) =

Introduction to Machine Learning 55(129)

Logistic Regression

The partial derivatives 1 (for handout)

∂

∂ωi
L(T ;ω) =

∂

∂ωi

∑
t

log
e
∑

j ωj×φj (xt ,yt)

Zxt

=
∑
t

∂

∂ωi
log

e
∑

j ωj×φj (xt ,yt)

Zxt

=
∑
t

(
Zxt

e
∑

j ωj×φj (xt ,yt)
)(

∂

∂ωi

e
∑

j ωj×φj (xt ,yt)

Zxt

)

Introduction to Machine Learning 56(129)

Logistic Regression

The partial derivatives

Now, ∂
∂ωi

e
∑

j ωj×φj (xt ,yt)

Zxt
=

Introduction to Machine Learning 57(129)

Logistic Regression

The partial derivatives 2 (for handout)
Now,

∂

∂ωi

e
∑

j ωj×φj (xt ,yt)

Zxt

=
Zxt

∂
∂ωi

e
∑

j ωj×φj (xt ,yt) − e
∑

j ωj×φj (xt ,yt) ∂
∂ωi

Zxt

Z 2
xt

=
Zxt e

∑
j ωj×φj (xt ,yt)φi (xt ,yt)− e

∑
j ωj×φj (xt ,yt) ∂

∂ωi
Zxt

Z 2
xt

=
e
∑

j ωj×φj (xt ,yt)

Z 2
xt

(Zxtφi (xt ,yt)−
∂

∂ωi
Zxt)

=
e
∑

j ωj×φj (xt ,yt)

Z 2
xt

(Zxtφi (xt ,yt)

−
∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′)φi (xt ,y

′))

because

∂

∂ωi
Zxt =

∂

∂ωi

∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′) =

∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′)φi (xt ,y

′)

Introduction to Machine Learning 58(129)

Logistic Regression

The partial derivatives

Introduction to Machine Learning 59(129)

Logistic Regression

The partial derivatives 3 (for handout)
From before,

∂

∂ωi

e
∑

j ωj×φj (xt ,yt)

Zxt

=
e
∑

j ωj×φj (xt ,yt)

Z 2
xt

(Zxtφi (xt ,yt)

−
∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′)φi (xt ,y

′))

Sub this in,

∂

∂ωi
L(T ;ω) =

∑
t

(
Zxt

e
∑

j ωj×φj (xt ,yt)
)(

∂

∂ωi

e
∑

j ωj×φj (xt ,yt)

Zxt

)

=
∑
t

1

Zxt

(Zxtφi (xt ,yt)−
∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′)φi (xt ,y

′)))

=
∑
t

φi (xt ,yt)−
∑
t

∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′)

Zxt

φi (xt ,y
′)

=
∑
t

φi (xt ,yt)−
∑
t

∑
y′∈Y

P(y′|xt)φi (xt ,y
′)

Introduction to Machine Learning 60(129)

Logistic Regression

FINALLY!!!

I After all that,

∂

∂ωi
L(T ;ω) =

∑
t

φi (xt ,yt)−
∑
t

∑
y′∈Y

P(y′|xt)φi (xt ,y
′)

I And the gradient is:

OL(T ;ω) = (
∂

∂ω0
L(T ;ω),

∂

∂ω1
L(T ;ω), . . . ,

∂

∂ωm
L(T ;ω))

I So we can now use gradient ascent to find ω!!

Introduction to Machine Learning 61(129)

Logistic Regression

Logistic Regression Summary

I Define conditional probability

P(y|x) =
eω·φ(x,y)

Zx

I Set weights to maximize log-likelihood of training data:

ω = argmax
ω

∑
t

logP(yt |xt)

I Can find the gradient and run gradient ascent (or any
gradient-based optimization algorithm)

∂

∂ωi
L(T ;ω) =

∑
t

φi (xt ,yt)−
∑
t

∑
y′∈Y

P(y′|xt)φi (xt ,y
′)

Introduction to Machine Learning 62(129)

Logistic Regression

Logistic Regression = Maximum Entropy

I Well-known equivalence
I Max Ent: maximize entropy subject to constraints on

features: P = arg maxP H(P) under constraints
I Empirical feature counts must equal expected counts

I Quick intuition
I Partial derivative in logistic regression

∂

∂ωi
L(T ;ω) =

∑
t

φi (xt ,yt)−
∑
t

∑
y′∈Y

P(y′|xt)φi (xt ,y
′)

I First term is empirical feature counts and second term is
expected counts

I Derivative set to zero maximizes function
I Therefore when both counts are equivalent, we optimize the

logistic regression objective!

Introduction to Machine Learning 63(129)

Perceptron

Perceptron

Introduction to Machine Learning 64(129)

Perceptron

Perceptron

I Choose a ω that minimizes error

L(T ;ω) =

|T |∑
t=1

1− [[yt = argmax
y

ω · φ(xt ,y)]]

ω = argmin
ω

|T |∑
t=1

1− [[yt = argmax
y

ω · φ(xt ,y)]]

[[p]] =

{
1 p is true
0 otherwise

I This is a 0-1 loss function
I When minimizing error people tend to use hinge-loss
I We’ll get back to this

Introduction to Machine Learning 65(129)

Perceptron

Aside: Min error versus max log-likelihood

I Highly related but not identical

I Example: consider a training set T with 1001 points

1000× (xi ,y = 0) = [−1, 1, 0, 0] for i = 1 . . . 1000

1× (x1001,y = 1) = [0, 0, 3, 1]

I Now consider ω = [−1, 0, 1, 0]

I Error in this case is 0 – so ω minimizes error

[−1, 0, 1, 0] · [−1, 1, 0, 0] = 1 > [−1, 0, 1, 0] · [0, 0,−1, 1] = −1

[−1, 0, 1, 0] · [0, 0, 3, 1] = 3 > [−1, 0, 1, 0] · [3, 1, 0, 0] = −3

I However, log-likelihood = -126.9 (omit calculation)

Introduction to Machine Learning 66(129)

Perceptron

Aside: Min error versus max log-likelihood

I Highly related but not identical

I Example: consider a training set T with 1001 points

1000× (xi ,y = 0) = [−1, 1, 0, 0] for i = 1 . . . 1000

1× (x1001,y = 1) = [0, 0, 3, 1]

I Now consider ω = [−1, 7, 1, 0]

I Error in this case is 1 – so ω does not minimize error

[−1, 7, 1, 0] · [−1, 1, 0, 0] = 8 > [−1, 7, 1, 0] · [−1, 1, 0, 0] = −1

[−1, 7, 1, 0] · [0, 0, 3, 1] = 3 < [−1, 7, 1, 0] · [3, 1, 0, 0] = 4

I However, log-likelihood = -1.4

I Better log-likelihood and worse error

Introduction to Machine Learning 67(129)

Perceptron

Aside: Min error versus max log-likelihood

I Max likelihood 6= min error
I Max likelihood pushes as much probability on correct labeling

of training instance
I Even at the cost of mislabeling a few examples

I Min error forces all training instances to be correctly classified
I Often not possible
I Ways of regularizing model to allow sacrificing some errors for

better predictions on more examples

Introduction to Machine Learning 68(129)

Perceptron

Perceptron Learning Algorithm

Training data: T = {(xt ,yt)}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y′ = argmaxy′ ω
(i) · φ(xt ,y

′)
5. if y′ 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y

′)
7. i = i + 1
8. return ωi

Introduction to Machine Learning 69(129)

Perceptron

Perceptron: Separability and Margin

I Given an training instance (xt ,yt), define:
I Ȳt = Y − {yt}
I i.e., Ȳt is the set of incorrect labels for xt

I A training set T is separable with margin γ > 0 if there exists
a vector u with ‖u‖ = 1 such that:

u · φ(xt ,yt)− u · φ(xt ,y
′) ≥ γ

for all y′ ∈ Ȳt and ||u|| =
√∑

j u2
j

I Assumption: the training set is separable with margin γ

Introduction to Machine Learning 70(129)

Perceptron

Perceptron: Main Theorem

I Theorem: For any training set separable with a margin of γ,
the following holds for the perceptron algorithm:

mistakes made during training ≤ R2

γ2

where R ≥ ||φ(xt ,yt)− φ(xt ,y
′)|| for all (xt ,yt) ∈ T and

y′ ∈ Ȳt
I Thus, after a finite number of training iterations, the error on

the training set will converge to zero

I Let’s prove it! (proof taken from Collins ’02)

Introduction to Machine Learning 71(129)

Perceptron

Perceptron Learning Algorithm

Training data: T = {(xt ,yt)}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y′ = argmaxy′ ω
(i) · φ(xt ,y

′)
5. if y′ 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y

′)
7. i = i + 1

8. return ωi

I ω(k−1) are the weights before kth

mistake

I Suppose kth mistake made at the
tth example, (xt ,yt)

I y′ = argmaxy′ ω
(k−1) · φ(xt ,y′)

I y′ 6= yt

I ω(k) =
ω(k−1) + φ(xt ,yt)− φ(xt ,y′)

I

I

I

I

Introduction to Machine Learning 72(129)

Perceptron

Perceptron Learning Algorithm (for handout)

Training data: T = {(xt ,yt)}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y′ = argmaxy′ ω
(i) · φ(xt ,y

′)
5. if y′ 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y

′)
7. i = i + 1

8. return ωi

I ω(k−1) are the weights before kth

mistake

I Suppose kth mistake made at the
tth example, (xt ,yt)

I y′ = argmaxy′ ω
(k−1) · φ(xt ,y′)

I y′ 6= yt

I ω(k) =
ω(k−1) + φ(xt ,yt)− φ(xt ,y′)

I Now: u · ω(k) = u · ω(k−1) + u · (φ(xt ,yt)− φ(xt ,y′)) ≥ u · ω(k−1) + γ
I Now: ω(0) = 0 and u · ω(0) = 0, by induction on k, u · ω(k) ≥ kγ
I Now: since u · ω(k) ≤ ||u|| × ||ω(k)|| and ||u|| = 1 then ||ω(k)|| ≥ kγ
I Now:

||ω(k)||2 = ||ω(k−1)||2 + ||φ(xt ,yt)− φ(xt ,y
′)||2 + 2ω(k−1) · (φ(xt ,yt)− φ(xt ,y

′))

||ω(k)||2 ≤ ||ω(k−1)||2 + R2

(since R ≥ ||φ(xt ,yt)− φ(xt ,y
′)||

and ω(k−1) · φ(xt ,yt)− ω(k−1) · φ(xt ,y
′) ≤ 0)

Introduction to Machine Learning 73(129)

Perceptron

Perceptron Learning Algorithm

I We have just shown that ||ω(k)|| ≥ kγ and
||ω(k)||2 ≤ ||ω(k−1)||2 + R2

I By induction on k and since ω(0) = 0 and ||ω(0)||2 = 0

I Therefore,

I and solving for k

I Therefore the number of errors is bounded!

Introduction to Machine Learning 74(129)

Perceptron

Perceptron Learning Algorithm (for handout)

I We have just shown that ||ω(k)|| ≥ kγ and
||ω(k)||2 ≤ ||ω(k−1)||2 + R2

I By induction on k and since ω(0) = 0 and ||ω(0)||2 = 0

||ω(k)||2 ≤ kR2

I Therefore,
k2γ2 ≤ ||ω(k)||2 ≤ kR2

I and solving for k

k ≤ R2

γ2

I Therefore the number of errors is bounded!

Introduction to Machine Learning 75(129)

Perceptron

Perceptron Summary

I Learns a linear classifier that minimizes error

I Guaranteed to find a ω in a finite amount of time
I Perceptron is an example of an Online Learning Algorithm

I ω is updated based on a single training instance in isolation

ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y
′)

Introduction to Machine Learning 76(129)

Perceptron

Averaged Perceptron

Training data: T = {(xt ,yt)}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y′ = argmaxy′ ω
(i) · φ(xt ,y

′)
5. if y′ 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y

′)
7. else

6. ω(i+1) = ω(i)

7. i = i + 1

8. return
(∑

i ω
(i)
)
/ (N × T)

Introduction to Machine Learning 77(129)

Perceptron

Margin

Training Testing

Denote the
value of the
margin by γ

Introduction to Machine Learning 78(129)

Perceptron

Maximizing Margin

I For a training set T
I Margin of a weight vector ω is smallest γ such that

ω · φ(xt ,yt)− ω · φ(xt ,y
′) ≥ γ

I for every training instance (xt ,yt) ∈ T , y′ ∈ Ȳt

Introduction to Machine Learning 79(129)

Perceptron

Maximizing Margin

I Intuitively maximizing margin makes sense

I More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

ε ∝ R2

γ2 × |T |

I Perceptron: we have shown that:
I If a training set is separable by some margin, the perceptron

will find a ω that separates the data
I However, the perceptron does not pick ω to maximize the

margin!

Introduction to Machine Learning 80(129)

Support Vector Machines

Support Vector Machines (SVMs)

Introduction to Machine Learning 81(129)

Support Vector Machines

Maximizing Margin

Let γ > 0
max
||ω||=1

γ

such that:
ω · φ(xt ,yt)− ω · φ(xt ,y

′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

I Note: algorithm still minimizes error if data is separable

I ||ω|| is bound since scaling trivially produces larger margin

β(ω · φ(xt ,yt)− ω · φ(xt ,y
′)) ≥ βγ, for some β ≥ 1

Introduction to Machine Learning 82(129)

Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
Change of variable: u =
w

γ
?

||ω|| = 1 iff ||u|| = 1/γ

Min Norm (step 1):

max
||u||=1/γ

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Introduction to Machine Learning 83(129)

Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
w

γ
?

||ω|| = 1 iff ||u|| = γ

Min Norm (step 2):

max
||u||=1/γ

γ

such that:

γu·φ(xt ,yt)−γu·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Introduction to Machine Learning 84(129)

Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
w

γ
?

||ω|| = 1 iff ||u|| = γ

Min Norm (step 3):

max
||u||=1/γ

γ

such that:

u·φ(xt ,yt)−u·φ(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
But γ is really not con-
strained!

Introduction to Machine Learning 85(129)

Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
w

γ
?

||ω|| = 1 iff ||u|| = γ

Min Norm (step 4):

max
u

1

||u||
= min

u
||u||

such that:

u·φ(xt ,yt)−u·φ(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
But γ is really not con-
strained!

Introduction to Machine Learning 86(129)

Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Min Norm:

min
u

1

2
||u||2

such that:

u·φ(xt ,yt)−u·φ(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

I Intuition: Instead of fixing ||ω|| we fix the margin γ = 1

Introduction to Machine Learning 87(129)

Support Vector Machines

Support Vector Machines

ω = argmin
ω

1

2
||ω||2

such that:
ω · φ(xt ,yt)− ω · φ(xt ,y

′) ≥ 1

∀(xt ,yt) ∈ T and y′ ∈ Ȳt

I Quadratic programming problem – a well-known convex
optimization problem

I Can be solved with many techniques [Nocedal and Wright 1999]

Introduction to Machine Learning 88(129)

Support Vector Machines

Support Vector Machines

What if data is not separable? (Original problem: will not satisfy
the constraints!)

ω = argmin
ω,ξ

1

2
||ω||2 + C

|T |∑
t=1

ξt

such that:

ω · φ(xt ,yt)− ω · φ(xt ,y
′) ≥ 1− ξt and ξt ≥ 0

∀(xt ,yt) ∈ T and y′ ∈ Ȳt

ξt : trade-off between margin per example and ‖ω‖
Larger C = more examples correctly classified
If data is separable, optimal solution has ξi = 0, ∀i

Introduction to Machine Learning 89(129)

Support Vector Machines

Support Vector Machines

ω = argmin
ω,ξ

λ

2
||ω||2 +

|T |∑
t=1

ξt λ =
1

C

such that:

ω · φ(xt ,yt)− ω · φ(xt ,y
′) ≥ 1− ξt

Can we have a more compact representation of this objective
function?

ω · φ(xt ,yt)− max
y′ 6=yt

ω · φ(xt ,y
′) ≥ 1− ξt

ξt ≥ 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt)︸ ︷︷ ︸

negated margin for example

Introduction to Machine Learning 90(129)

Support Vector Machines

Support Vector Machines

ξt ≥ 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt)︸ ︷︷ ︸

negated margin for example

I If ‖ω‖ classifies (xt ,yt) with margin 1, penalty ξt = 0
I (Objective wants to keep ξt small and ξt = 0 satisfies the constraint)
I Otherwise: ξt = 1 + maxy′ 6=yt ω · φ(xt ,y

′)− ω · φ(xt ,yt)
I (Again, because that’s the minimal ξt that satisfies the constraint,

and we want ξt smallest as possible)
I That means that in the end ξt will be:

ξt = max{0, 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt)}

(If an example is classified correctly, ξt = 0 and the second
term in the max is negative.)

Introduction to Machine Learning 91(129)

Support Vector Machines

Support Vector Machines

ω = argmin
ω,ξ

λ

2
||ω||2 +

|T |∑
t=1

ξt

such that:

ξt ≥ 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt)

Hinge loss equivalent

ω = argmin
ω

L(T ;ω) = argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) +
λ

2
||ω||2

= argmin
ω

 |T |∑
t=1

max (0, 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt))

+
λ

2
||ω||2

Introduction to Machine Learning 92(129)

Support Vector Machines

Summary

What we have covered
I Linear Classifiers

I Naive Bayes
I Logistic Regression
I Perceptron
I Support Vector Machines

What is next
I Regularization

I Online learning

I Non-linear classifiers

Introduction to Machine Learning 93(129)

Regularization

Regularization

Introduction to Machine Learning 94(129)

Regularization

Fit of a Model

I Two sources of error:

I Bias error, measures how well the hypothesis class fits the
space we are trying to model

I Variance error, measures sensitivity to training set selection
I Want to balance these two things

Introduction to Machine Learning 95(129)

Regularization

Overfitting

I Early in lecture we made assumption data was i.i.d.
I Rarely is this true

I E.g., syntactic analyzers typically trained on 40,000 sentences
from early 1990s WSJ news text

I Even more common: T is very small

I This leads to overfitting

I E.g.: ‘fake’ is never a verb in WSJ treebank (only adjective)
I High weight on “φ(x,y) = 1 if x=fake and y=adjective”
I Of course: leads to high log-likelihood / low error

I Other features might be more indicative

I Adjacent word identities: ‘He wants to X his death’→ X=verb

Introduction to Machine Learning 96(129)

Regularization

Regularization

I In practice, we regularize models to prevent overfitting

argmax
ω

L(T ;ω)− λR(ω)

I Where R(ω) is the regularization function

I λ controls how much to regularize

I Common functions

I L2: R(ω) ∝ ‖ω‖2 = ‖ω‖ =
√∑

i ω
2
i – smaller weights desired

I L0: R(ω) ∝ ‖ω‖0 =
∑

i [[ωi > 0]] – zero weights desired
I Non-convex
I Approximate with L1: R(ω) ∝ ‖ω‖1 =

∑
i |ωi |

Introduction to Machine Learning 97(129)

Regularization

Logistic Regression with L2 Regularization

I Perhaps most common classifier in NLP

L(T ;ω)− λR(ω) =

|T |∑
t=1

log
(
eω·φ(xt ,yt)/Zx

)
− λ

2
‖ω‖2

I What are the new partial derivatives?
∂

∂wi
L(T ;ω)− ∂

∂wi
λR(ω)

I We know ∂
∂wi
L(T ;ω)

I Just need ∂
∂wi

λ
2 ‖ω‖

2 = ∂
∂wi

λ
2

(√∑
i ω

2
i

)2

= ∂
∂wi

λ
2

∑
i ω

2
i = λωi

Introduction to Machine Learning 98(129)

Regularization

Support Vector Machines

Hinge-loss formulation: L2 regularization already happening!

ω = argmin
ω

L(T ;ω) + λR(ω)

= argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) + λR(ω)

= argmin
ω

|T |∑
t=1

max (0, 1 + max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt)) + λR(ω)

= argmin
ω

|T |∑
t=1

max (0, 1 + max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt)) +
λ

2
‖ω‖2

↑ SVM optimization ↑

Introduction to Machine Learning 99(129)

Regularization

SVMs vs. Logistic Regression

ω = argmin
ω

L(T ;ω) + λR(ω)

= argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) + λR(ω)

SVMs/hinge-loss: max (0, 1 + maxy 6=yt (ω · φ(xt ,y)− ω · φ(xt ,yt)))

ω = argmin
ω

|T |∑
t=1

max (0, 1 + max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt)) +
λ

2
‖ω‖2

Logistic Regression/log-loss: − log
(
eω·φ(xt ,yt)/Zx

)

ω = argmin
ω

|T |∑
t=1

− log
(
eω·φ(xt ,yt)/Zx

)
+
λ

2
‖ω‖2

Introduction to Machine Learning 100(129)

Regularization

Generalized Linear Classifiers

ω = argmin
ω

L(T ;ω) + λR(ω) = argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) + λR(ω)

Introduction to Machine Learning 101(129)

Regularization

Which Classifier to Use?

I Trial and error

I Training time available

I Choice of features is often more important

Introduction to Machine Learning 102(129)

Online Learning

Online Learning

Introduction to Machine Learning 103(129)

Online Learning

Online vs. Batch Learning

Batch(T);

I for 1 . . . N

I ω ← update(T ;ω)

I return ω

E.g., SVMs, logistic regres-
sion, NB

Online(T);

I for 1 . . . N

I for (xt ,yt) ∈ T
I ω ← update((xt ,yt);ω)

I end for

I end for

I return ω

E.g., Perceptron
ω = ω + φ(xt ,yt)− φ(xt ,y)

Introduction to Machine Learning 104(129)

Online Learning

Online vs. Batch Learning

I Online algorithms
I Tend to converge more quickly
I Often easier to implement
I Require more hyperparameter tuning (exception Perceptron)
I More unstable convergence

I Batch algorithms
I Tend to converge more slowly
I Implementation more complex (quad prog, LBFGs)
I Typically more robust to hyperparameters
I More stable convergence

Introduction to Machine Learning 105(129)

Online Learning

Gradient Descent Reminder

I Let L(T ;ω) =
∑|T |

t=1 loss((xt ,yt);ω)
I Set ω0 = Om

I Iterate until convergence

ωi = ωi−1−αOL(T ;ωi−1) = ωi−1−
|T |∑
t=1

αOloss((xt ,yt);ωi−1)

I α > 0 and set so that L(T ;ωi) < L(T ;ωi−1)

I Stochastic Gradient Descent (SGD)
I Approximate OL(T ;ω) with single Oloss((xt ,yt);ω)

Introduction to Machine Learning 106(129)

Online Learning

Stochastic Gradient Descent

I Let L(T ;ω) =
∑|T |

t=1 loss((xt ,yt);ω)

I Set ω0 = Om

I iterate until convergence
I sample (xt ,yt) ∈ T // “stochastic”

I ωi = ωi−1 − αOloss((xt ,yt);ω)

I return ω

In practice Need to solve Oloss((xt ,yt);ω)

I Set ω0 = Om

I for 1 . . .N
I for (xt ,yt) ∈ T

I ωi = ωi−1 − αOloss((xt ,yt);ω)

I return ω

Introduction to Machine Learning 107(129)

Online Learning

Online Logistic Regression

I Stochastic Gradient Descent (SGD)

I loss((xt ,yt);ω) = log-loss

I Oloss((xt ,yt);ω) = O
(
− log

(
eω·φ(xt ,yt)/Zxt

))
I From logistic regression section:

O
(
− log

(
eω·φ(xt ,yt)/Zxt

))
= −

(
φ(xt ,yt)−

∑
y

P(y|x)φ(xt ,y)

)

I Plus regularization term (if part of model)

Introduction to Machine Learning 108(129)

Online Learning

Online SVMs

I Stochastic Gradient Descent (SGD)
I loss((xt ,yt);ω) = hinge-loss

Oloss((xt ,yt);ω) = O

(
max (0, 1 + max

y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt))

)
I Subgradient is:

O

(
max (0, 1 + max

y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt))

)

=

{
0, if ω · φ(xt ,yt)−maxy ω · φ(xt ,y) ≥ 1

φ(xt ,y)− φ(xt ,yt), otherwise, where y = maxy ω · φ(xt ,y)

I Plus regularization term (required for SVMs)

Introduction to Machine Learning 109(129)

Online Learning

Perceptron and Hinge-Loss

SVM subgradient update looks like perceptron update

ωi = ωi−1 − α
{

0, if ω · φ(xt ,yt)−maxy ω · φ(xt ,y) ≥ 1

φ(xt ,y)− φ(xt ,yt), otherwise, where y = maxy ω · φ(xt ,y)

Perceptron

ωi = ωi−1 − α
{

0, if ω · φ(xt ,yt)−maxy ω · φ(xt ,y) ≥ 0

φ(xt ,y)− φ(xt ,yt), otherwise, where y = maxy ω · φ(xt ,y)

where α = 1, note φ(xt ,y)− φ(xt ,yt) not φ(xt ,yt)− φ(xt ,y) since ‘−’ (descent)

Perceptron = SGD with no-margin hinge-loss

max (0, 1+ max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt))

Introduction to Machine Learning 110(129)

Online Learning

Margin Infused Relaxed Algorithm (MIRA)

Batch (SVMs):

min
1

2
||ω||2

such that:

ω ·φ(xt ,yt)−ω ·φ(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T and y′ ∈ Ȳt

Online (MIRA):

Training data: T = {(xt ,yt)}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. ω(i+1) = argmin
ω*
∥∥ω*− ω(i)

∥∥
such that:
ω · φ(xt ,yt)− ω · φ(xt ,y′) ≥ 1
∀y′ ∈ Ȳt

5. i = i + 1
6. return ωi

I MIRA has much smaller optimizations with only |Ȳt |
constraints

Introduction to Machine Learning 111(129)

Summary

Quick Summary

Introduction to Machine Learning 112(129)

Summary

Linear Classifiers

I Naive Bayes, Perceptron, Logistic Regression and SVMs

I Generative vs. Discriminative
I Objective functions and loss functions

I Log-loss, min error and hinge loss
I Generalized linear classifiers

I Regularization

I Online vs. Batch learning

Introduction to Machine Learning 113(129)

Non-Linear Classifiers

Non-linear Classifiers

Introduction to Machine Learning 114(129)

Non-Linear Classifiers

Non-Linear Classifiers

I Some data sets require more than a linear classifier to be
correctly modeled

I Decision boundary is no longer a hyperplane in the feature
space

I A lot of models out there
I K-Nearest Neighbours
I Decision Trees
I Neural Networks
I Kernels

Introduction to Machine Learning 115(129)

Non-Linear Classifiers

Kernels

I A kernel is a similarity function between two points that is
symmetric and positive semi-definite, which we denote by:

K (xt ,xr) ∈ R

I Let M be a n × n matrix such that ...

Mt,r = K (xt ,xr)

I ... for any n points. Called the Gram matrix.

I Symmetric:
K (xt ,xr) = K (xr ,xt)

I Positive definite: for all non-zero v and any set of xs that
define a Gram matrix:

vMvT ≥ 0

Introduction to Machine Learning 116(129)

Non-Linear Classifiers

Kernels

I Mercer’s Theorem: for any kernel K , there exists an φ, in
some Rd , such that:

K (xt ,xr) = φ(xt) · φ(xr)

I Since our features are over pairs (x,y), we will write kernels
over pairs

K ((xt ,yt), (xr ,yr)) = φ(xt ,yt) · φ(xr ,yr)

Introduction to Machine Learning 117(129)

Non-Linear Classifiers

Kernel Trick: General Overview

I Define a kernel, and do not explicitly use dot product between
vectors, only kernel calculations

I In some high-dimensional space, this corresponds to dot
product

I In that space, the decision boundary is linear, but in the
original space, we now have a non-linear decision boundary

I Let’s do it for the Perceptron!

Introduction to Machine Learning 118(129)

Non-Linear Classifiers

Kernel Trick – Perceptron Algorithm
Training data: T = {(xt ,yt)}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y = argmaxy ω
(i) · φ(xt ,y)

5. if y 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y)
7. i = i + 1
8. return ωi

I Each feature function φ(xt ,yt) is added and φ(xt ,y) is
subtracted to ω say αy,t times

I αy,t is the # of times during learning label y is predicted for
example t

I Thus,
ω =

∑
t,y

αy,t [φ(xt ,yt)− φ(xt ,y)]

Introduction to Machine Learning 119(129)

Non-Linear Classifiers

Kernel Trick – Perceptron Algorithm

I We can re-write the argmax function as:
y∗ = argmaxy∗ ω

(i) · φ(x,y∗)

=

=

=

I We can then re-write the perceptron algorithm strictly with
kernels

Introduction to Machine Learning 120(129)

Non-Linear Classifiers

Kernel Trick – Perceptron Algorithm (for
handout)

I We can re-write the argmax function as:

y∗ = argmax
y∗

ω(i) · φ(x,y∗)

= argmax
y∗

∑
t,y

αy,t [φ(xt ,yt)− φ(xt ,y)] · φ(x,y∗)

= argmax
y∗

∑
t,y

αy,t [φ(xt ,yt) · φ(xt ,y
∗)− φ(xt ,y) · φ(x,y∗)]

= argmax
y∗

∑
t,y

αy,t [K ((xt ,yt), (xt ,y
∗))− K ((xt ,y), (x,y∗))]

I We can then re-write the perceptron algorithm strictly with
kernels

Introduction to Machine Learning 121(129)

Non-Linear Classifiers

Kernel Trick – Perceptron Algorithm

Training data: T = {(xt ,yt)}|T |t=1

1. ∀y, t set αy,t = 0
2. for n : 1..N
3. for t : 1..T
4. Let y∗ = argmaxy∗

∑
t,y αy,t [K((xt ,yt), (xt ,y∗))− K((xt ,y), (xt ,y∗))]

5. if y∗ 6= yt
6. αy∗,t = αy∗,t + 1

I Given a new instance x

y∗ = argmax
y∗

∑
t,y

αy,t [K ((xt ,yt), (x,y
∗))−K ((xt ,y), (x,y∗))]

I But it seems like we have just complicated things???

Introduction to Machine Learning 122(129)

Non-Linear Classifiers

Kernels = Tractable Non-Linearity

I A linear classifier in a higher dimensional feature space is a
non-linear classifier in the original space

I Computing a non-linear kernel is often better computationally
than calculating the corresponding dot product in the high
dimension feature space

I Thus, kernels allow us to efficiently learn non-linear classifiers

Introduction to Machine Learning 123(129)

Non-Linear Classifiers

Linear Classifiers in High Dimension

Introduction to Machine Learning 124(129)

Non-Linear Classifiers

Example: Polynomial Kernel

I φ(x) ∈ RM , d ≥ 2

I K (xt ,xs) = (φ(xt) · φ(xs) + 1)d

I O(M) to calculate for any d!!

I But in the original feature space (primal space)
I Consider d = 2, M = 2, and φ(xt) = [xt,1, xt,2]

(φ(xt) · φ(xs) + 1)2 = ([xt,1, xt,2] · [xs,1, xs,2] + 1)2

= (xt,1xs,1 + xt,2xs,2 + 1)2

= (xt,1xs,1)2 + (xt,2xs,2)2 + 2(xt,1xs,1) + 2(xt,2xs,2)

+2(xt,1xt,2xs,1xs,2) + (1)2

which equals:

[(xt,1)2, (xt,2)2,
√

2xt,1,
√

2xt,2,
√

2xt,1xt,2, 1]︸ ︷︷ ︸
feature vector in high-dimensional space

· [(xs,1)2, (xs,2)2,
√

2xs,1,
√

2xs,2,
√

2xs,1xs,2, 1]︸ ︷︷ ︸
feature vector in high-dimensional space

Introduction to Machine Learning 125(129)

Non-Linear Classifiers

Popular Kernels

I Polynomial kernel

K (xt ,xs) = (φ(xt) · φ(xs) + 1)d

I Gaussian radial basis kernel (infinite feature space
representation!)

K (xt ,xs) = exp(
−||φ(xt)− φ(xs)||2

2σ
)

I String kernels [Lodhi et al. 2002, Collins and Duffy 2002]

I Tree kernels [Collins and Duffy 2002]

Introduction to Machine Learning 126(129)

Non-Linear Classifiers

Kernels Summary

I Can turn a linear classifier into a non-linear classifier
I Kernels project feature space to higher dimensions

I Sometimes exponentially larger
I Sometimes an infinite space!

I Can “kernelize” algorithms to make them non-linear

I (e.g. support vector machines)

Introduction to Machine Learning 127(129)

Wrap Up and Questions

Wrap up and time for questions

Introduction to Machine Learning 128(129)

Wrap Up and Questions

Summary

Basic principles of machine learning:

I To do learning, we set up an objective function that tells the
fit of the model to the data

I We optimize with respect to the model (weights, probability
model, etc.)

I Can do it in a batch or online fashion

What model to use?

I One example of a model: linear classifiers

I Can kernelize these models to get non-linear classification

Introduction to Machine Learning 129(129)

References and Further Reading

References and Further Reading

I A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. 1996.
A maximum entropy approach to natural language processing. Computational
Linguistics, 22(1).

I C.T. Chu, S.K. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski, A.Y. Ng, and K. Olukotun.
2007.
Map-Reduce for machine learning on multicore. In Advances in Neural Information
Processing Systems.

I M. Collins and N. Duffy. 2002.
New ranking algorithms for parsing and tagging: Kernels over discrete structures,
and the voted perceptron. In Proc. ACL.

I M. Collins. 2002.
Discriminative training methods for hidden Markov models: Theory and
experiments with perceptron algorithms. In Proc. EMNLP.

I K. Crammer and Y. Singer. 2001.
On the algorithmic implementation of multiclass kernel based vector machines.
JMLR.

I K. Crammer and Y. Singer. 2003.
Ultraconservative online algorithms for multiclass problems. JMLR.

Introduction to Machine Learning 129(129)

References and Further Reading

I K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. 2003.
Online passive aggressive algorithms. In Proc. NIPS.

I K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, and Y. Singer. 2006.
Online passive aggressive algorithms. JMLR.

I Y. Freund and R.E. Schapire. 1999.
Large margin classification using the perceptron algorithm. Machine Learning,
37(3):277–296.

I T. Joachims. 2002.
Learning to Classify Text using Support Vector Machines. Kluwer.

I J. Lafferty, A. McCallum, and F. Pereira. 2001.
Conditional random fields: Probabilistic models for segmenting and labeling
sequence data. In Proc. ICML.

I H. Lodhi, C. Saunders, J. Shawe-Taylor, and N. Cristianini. 2002.
Classification with string kernels. Journal of Machine Learning Research.

I G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. 2009.
Efficient large-scale distributed training of conditional maximum entropy models. In
Advances in Neural Information Processing Systems.

I A. McCallum, D. Freitag, and F. Pereira. 2000.

Introduction to Machine Learning 129(129)

References and Further Reading

Maximum entropy Markov models for information extraction and segmentation. In
Proc. ICML.

I R. McDonald, K. Crammer, and F. Pereira. 2005.
Online large-margin training of dependency parsers. In Proc. ACL.

I K.R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. 2001.
An introduction to kernel-based learning algorithms. IEEE Neural Networks,
12(2):181–201.

I J Nocedal and SJ Wright. 1999.
Numerical optimization, volume 2. Springer New York.

I F. Sha and F. Pereira. 2003.
Shallow parsing with conditional random fields. In Proc. HLT/NAACL, pages
213–220.

I C. Sutton and A. McCallum. 2006.
An introduction to conditional random fields for relational learning. In L. Getoor
and B. Taskar, editors, Introduction to Statistical Relational Learning. MIT Press.

I B. Taskar, C. Guestrin, and D. Koller. 2003.
Max-margin Markov networks. In Proc. NIPS.

I B. Taskar. 2004.

Introduction to Machine Learning 129(129)

References and Further Reading

Learning Structured Prediction Models: A Large Margin Approach. Ph.D. thesis,
Stanford.

I I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. 2004.
Support vector learning for interdependent and structured output spaces. In Proc.
ICML.

I T. Zhang. 2004.
Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the twenty-first international conference on Machine
learning.

Introduction to Machine Learning 129(129)

	Introduction
	Preliminaries
	Linear Classifiers
	Naive Bayes
	Logistic Regression
	Perceptron
	Support Vector Machines
	Regularization
	Online Learning
	Summary
	Non-Linear Classifiers
	Wrap Up and Questions
	Appendix
	References and Further Reading

