An Incremental Parser for Abstract Meaning Representation

¹ Marco Damonte ¹ Shay B. Cohen

² Giorgio Satta

¹ University of Edinburgh ² University of Padua

EACL 2017

AMR

He described her as a genius

Dependency trees

• Transition-based dependency parsing (Nivre, 2004)

Concept identification

Reentrancy

I beg you to excuse me

Reentrancy

I beg you to excuse me

Reentrancy

I beg you to excuse me

Transition-based AMR Parser

The boy wants to believe the girl

STACK GRAPH

boy

The boy wants to believe the girl

The boy wants to believe the girl

STACK GRAPH
want-01
boy

The boy wants to believe the girl

The boy wants to believe the girl

GRAPH

The boy wants to believe the girl

The boy wants to believe the girl

STACK

believe-01 want-01

The boy wants to believe the girl

STACK

want-01

The boy wants to believe the girl

STACK

Oracle

• Given the current configuration (σ, β, A) and the gold-standard graph $G = (V_g, A_g)$:

$$T(G, \sigma, \beta, A) = \begin{cases} \mathsf{LARC}(\ell) \\ \mathsf{RARC}(\ell) \\ \mathsf{RED}\text{-}\mathsf{REENT}(\ell) \\ \mathsf{REDUCE} \\ \mathsf{SHIFT} \end{cases}$$

• (English, AMR) \Rightarrow Transitions to obtain AMR* from English

Evaluation

- Smatch. Cai and Knight (2013)
- Unlabeled. Smatch score after removing edge labels
- No WSD. Smatch score while ignoring Propbank senses
- Reentrancy. Smatch computed on reentrant edges
- Semantic Role Labelling. Smatch computed on :ARG roles

- Smatch. Cai and Knight (2013)
- Unlabeled. Smatch score after removing edge labels
- No WSD. Smatch score while ignoring Propbank senses
- Reentrancy. Smatch computed on reentrant edges
- Semantic Role Labelling. Smatch computed on :ARG roles

- Smatch. Cai and Knight (2013)
- Unlabeled. Smatch score after removing edge labels
- No WSD. Smatch score while ignoring Propbank senses
- Reentrancy. Smatch computed on reentrant edges
- Semantic Role Labelling. Smatch computed on :ARG roles

- Smatch. Cai and Knight (2013)
- Unlabeled. Smatch score after removing edge labels
- No WSD. Smatch score while ignoring Propbank senses
- Reentrancy. Smatch computed on reentrant edges
- Semantic Role Labelling. Smatch computed on :ARG roles

- Smatch. Cai and Knight (2013)
- Unlabeled. Smatch score after removing edge labels
- No WSD. Smatch score while ignoring Propbank senses
- Reentrancy. Smatch computed on reentrant edges
- Semantic Role Labelling. Smatch computed on :ARG roles

- Concepts. F-score on the concept identification task
- Negations. F-score on :polarity roles
- Named Entities. F-score on :name roles
- Wikification. F-score on :wiki roles

- Concepts. F-score on the concept identification task
- Negations. F-score on :polarity roles
- Named Entities. F-score on :name roles
- Wikification. F-score on :wiki roles

- Concepts. F-score on the concept identification task
- Negations. F-score on :polarity roles
- Named Entities. F-score on :name roles
- Wikification. F-score on :wiki roles

- Concepts. F-score on the concept identification task
- Negations. F-score on :polarity roles
- Named Entities. F-score on :name roles
- Wikification. F-score on :wiki roles

Experiments

Metric	JAMR ('14)	CAMR	JAMR ('16)	Ours
Smatch	58	63	67	64
Unlabeled	61	69	69	69
No WSD	58	64	68	65
NP-only	47	54	58	55
Reentrancy	38	41	42	41
Concepts	79	80	83	83
Named Ent.	75	75	79	83
Wikification	0	0	7 5	64
Negations	16	18	45	48
SRL	55	60	60	56

JAMR: Flanigan et al. (2014)

CAMR: Wang et al. (2015)

Software

- Online demo: http://cohort.inf.ed.ac.uk/amreager.html
- Source code for parser: https://github.com/mdtux89/amr-eager
- Source code for evaluation: https://github.com/mdtux89/amr-evaluation

Demo

the cohort ABOUT PEOPLE DEMOS DATASETS & CODE

Graph visualization for this demo is done using AMRICA.

AMREager's source code can be found on github.

DEMO

Sentence:

The boy doesn't want to go.

Parse

::snt The boy does n't want to go . # ::alignments 1-2|0.1 3-4|0.0 4-5|0 6-7|0.2 (v2 / want-01:polarity -:ARG0 (v1 / boy) :ARG1 (v3 / go-02))

http://cohort.inf.ed.ac.uk/amreager.html?sent=The+boy+doesn't+want+to+go.

Copy to clipboard

Conclusions

- AMREager is a linear-time, left-to-right transition system
- AMR parsing akin to dependency parsing
- Fine-grained evaluation suite to assess AMR parsers