Notes on:

Jianfeng Gao and Mark Johnson. 2008. A comparison of Bayesian estimators for unsupervised
Hidden Markov Model POS taggers. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP '08). Association for Computational Linguistics,
Stroudsburg, PA, USA, 344-352.

- read the paper here
- sample presentation slides here

Notes by:

Armineh Nourbakhsh
armineh.nourbakhsh@gmail.com

1. POS Tagging
a. Problem:

i. input: a string of words: “the lead paint is unsafe”

ii. output: same string of words, annotated by pos and “bos,” “eos”
tags: <s> the/Det lead/N paint/N is/N unsafe/Adj </s>

iii. Q: POS tagging usually involved some morphological analysis
(e.g. truncating plurals) and capitalization analysis (e.g. separating
proper nouns from general ones). The authors have mentioned
that they ignored both analyses in their experiments. How would
this affect their evaluation?

b. POS tagging is slightly different from the classic coin-toss problem
because in the latter, (at least in theory) there is no dependency between
each toss and the previous or next one. In POS tagging, a word’s position
in the context can have a big impact on its pos tag (e.g. “tasty orange
juice” vs. “bright orange dress”). In other words, the stream of
observations (words) are sequentially dependent on each other.

i. supervised: training corpus is pos-tagged
ii. unsupervised: training corpus is not tagged
iii. semi-supervised: training corpus is not tagged, but there’s a
dictionary of possible tags for each word
2. What are HMMs

a. A HMM is a Markov model with hidden (unobserved) states.

b. A Markov model is a finite state transducer that has the Markov property

c. The Markov property indicates the probability distribution of future states
of the process depends only upon the present state, not on the sequence
of events that preceded it.

http://www.google.com/url?q=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fpeople%2Fjfgao%2Fpaper%2Fgao-johnson-emnlp08.pdf&sa=D&sntz=1&usg=AFQjCNHiRAT013YKCjr1LNU0FiQtixM-YA
http://www.google.com/url?q=http%3A%2F%2Fcourses.engr.illinois.edu%2Fcs598jhm%2Fsp2010%2FSlides%2FCS598_Manish.pdf&sa=D&sntz=1&usg=AFQjCNGIHNe1UHZld0ah4cfWLYrv0cWRzg

3. How to use HMMs for POS-Tagging

the HMM model annotation POS interpretation
a set of states S=s,,8,,...,S,, POS tags, BOS, EOS
a set of observations 0=0,,0,,...,0,from V words from vocabulary V,
<s> and </s> delimiters
a set of state-to-state A=ay,, ...,a,,Where a; is the | a;=P(t]t.,)
tl’anSition prObab|I|t|eS probabmty Of transition qi N
g
observation (emission) B={b,(o,)} the probability of b,(0)=P(wt)
probabilities observation o, being

generated from state i

an initial probability the probability of starting in Tgos=1
distribution over states state i: m,
u=(A,B,)
the a .
. d H‘Lcs
054" | 036 o 0078 7 ke
N o
! : 0.7 . k. _
4| ART |- v \=~ o006
D.?__- P . flower
- ol 0.7 |
0.3 . -
<start> | 0.4 /
03\ Y ¥ o4 o
0.025 “ N " P /' 0.068
H —— —— | - | | .
flies - TN b 04 > like
0001 _--="" .7 Sl
. oosy-" ;| nS02 4
flow '

er |
o.ove r Yooz
birds like

e emission probabilities are rather sparse, meaning most words belong to a very limited
set of POS tags.
4. Definitive HMM POS problems:

Problem HMM definition | POS Annotation Algorithms
interpretation

Probability Find the Given a P(O|u) Forward

estimation probability of an | sentence what’s | y=(A,B,1) algorithm
(Likelihood) observation the probability
given a model of each tag in
the model
Best path Find the most Find the most aImEP(S|O,) Viterbi algorithm
estimation likely path likely POS where S is a
(Decoding) through a model | sequence sequence of
given an given a states (tags)
observed sentence
sequence
Parameter Find the most | Find the most | Find best .Supervised:
estimation likely model likely (word to | transition and | MLE
(Learning) (params) given | POS params) emission .Unsupervised:
an observed give an matrices for A | EM, VB
sequence observed and B (approx.)
sequence of MCMC/Gibbs
words (true
convergence)

5. Probability estimation:

a.

Probability of each state is the product of the initial probability and all the transition

and emission probabilities leading up to that state.
This problem can easily get computationally intractable, especially for the
worst-case scenario (complete graph). Thus we turn to dynamic programming:
Forward algorithm:
Buffer the probability of each state for use by the next state
Probability of state at k+1 will be equal to the transition probabilities of

states at k, times the initial probability of 1r,, times the emission probability

b(o,)
Formulation:
1. aj(1)='ITJ-

2. a(k+1)=3 11 on) 9i(K)

a,b(0,)

i i

3. P(O[M)=2 =1 1o n Ok +1)

fliesty — likel¥ — alV — flowerlV¥

/ flies! like/N alN flowerIN
MNULLI<star>
T fliesiP like!P alP flowerlP

fliestART—> likelART —— alART—> flower/ART

6. Best path estimation:
a. the forward algorithm buffers probabilities at each state. What if we only store the
highest probability at each state?
b. Viterbi algorithm:
i §(1)=m,
ii. d(k+1)=max; d(k) a; b(o,)

.

Gon X

7. Parameter estimation:

a. We used forward probabilities to find p of observations, and used the same
forward probabilities to find a best tag sequence. it turns out that backward
probabilities () are also useful.

b. The forward-backward algorithm:

i. probability of whole sentence: P(O)=3% a,(k) B.(k)
ii. probability of being in state i at time k: P(O,S,=i)=a,(k) B,(k), where Sis a
sequence of states (or tags)

c. MLE for supervised learning:

i P(w|t)=C(w,t)/C(t)
i, P(tlt.)=C(t.,.t)/C(t.,)
d. Unsupervised learning:
i. No fine-tuning of parameters per word
ii. Suppose the transition probability matrix A is parameterized by a set of
multinomials 8 and the emission probability matrix B is parameterized by
another set of multinomials ¢. 6, specified the distribution over states t’

following t, and ¢, specifies the distribution over words w given state t.

iii. Since the dirichlet distribution is conjugate to multinomials, and also
captures sparsity pretty well (most words have only one pos), we can say:
1. 6, a~Dir(a) > P(B|a) « [T o m) ej"l"1

2. ¢ | o’ ~Dir(a’) = P(@la") « M= o m) ¢
iv. As a — 0, the model biases towards states that transition to fewer states
v. As a’— 0, the model biases towards states that emit fewer words. This
latter feature is consistent with intuition and thus useful.
vi. Expectation Maximization:
1. Is an iterative procedure, estimating the parameters 6 and ¢ at the
[+1st iteration based on their values at the Ith iteration.
2. It's important to note that the | variable represents an iteration, and
is different from the k variable, which represented a state at time k.
3. Process:
a. Initialize the parameters uniformly (e.g.
P(nn|dt)=P(vb|dt)=0.5)
b. E step: Use current estimates to adjust expectations (e.g.
E[C(nn|dt)]=1.5, E[C(vb]|dt)]=0.5)
c. M step: Use expectations to re-estimate the parameters so
that the new estimates maximize the log-likelihood of the E
Step (e.g. P(nn|dt)=0.75, P(vb|dt)=0.25)
4. Formulation:
a. E step:
i E[Ngd = 2 =1 0n1) Neii) Wwhere n,. - number of times

t” follows t, and n;: number of occurrences of state t

i E[N"yd = 2 et to ntyuwkew) Nili) Where n” - number of
times w occurs with t

ii. E[n] =2 -1 0n1y Ni(K) where n: number of
occurrences of state t

b. M step:

i. 8, =E[n,]/E[n]

i. @ =En,]/En]

iii. you can calculate the log likelihood and
expectations in (a) and (b) using the
forward-backward algorithm [O(nm?)]

vii. Variational Bayes:

1. Find (t,8,9) that minimizes -log P(w) (need negative value to be
able to use Jensen’s inequality properly since log is a concave
function in x>0)

2. Q:Is P(w) our marginalization constant? Is this how we’re trying to

approximate it?

3. Use the Q function to factorize -log P(w). Use Jensen’s inequality:
a. -log P(w)=-log[P(w,t,0,p)dtdo de <- | Q(t,0,¢) log
P(w,0,0)/Q(t,06,9) dt d6 do
b. Q for groups to work on: Why are we trying to minimize
-log P(w)? That’s not something we’re interested in. What
we’re really interested in is P(t,0,¢|w) (answer in next step).

4. Try to minimize the KL distance between Q(t,0,¢) and P(t,0,¢|w)

a. -log P(w) = -] Q(t,8,9) log [P(w,t,0,p)/Q(t,8,p) X
Q(t,0,p)/P(t,8,p|w)] dt d6 dp = -/ Q(t,8,¢) log
[P(w,t,0,p)/Q(t,0,p)] dt d6 do - | Q(t,8,¢) log
[Q(t,0,9)/P(t,6,9|w)] dt dO© d¢

b. The first phrase is called the “Variational Free Energy” and
the second phrase is what makes the inequality in step 2. It
is the KL distance between Q(t,06,¢) and P(t,8,¢|w) which
we’d like to minimize. In other words we want the integral to
be close to zero, thus we want: P(t,0,¢|w) = Q(t,0,¢)

5. We’ll use a mean field assumption, which allows us to factorize Q
so that t does not covary with the parameters 6,¢. This
factorization will make it easier for us to calculate the derivative
and local minimum of the KL distance:

a. P(t.6,0lw) = Q(t,0,0)=Q,(t) Q,(6,9)

6. Now we try to find Q, and Q, by reducing the KL divergence

between the desired posterior distribution and the factorized
approximation.

a. The factorization simplifies the differentiation and
minimization of the KL distance: | Q(t,0,¢) log
[Q(t,6,0)/P(t,8,pw)] dt d& do = [Q,(t) Q,(8,¢) log [Q,(t)
Q,(6,9)/P(t,6,p|w)] dt d6 do

7. Good news: if the likelihood and conjugate priors (a and a’) belong
to exponential families, so do the optimal Q, and Q, (Q: why?),
thus there is a locally optimal method of calculating the parameters
which is very similar to EM and has a complexity of O(nm?)
likewise:

a. 8,""=y(E[n,] + a)/ @(E[n]+ma) where m is the
number of word types

b. @,""=uw(En",J+a’) / YE[n]+m'a’) where m" is the
number of states

c. W(x)=I"(x)/r(x)

viii. MCMC and Gibbs samplers

1. MCMC methods have their roots in the Metropolis algorithm, an

attempt by physicists to compute complex integrals by expressing

6

them as expectations for some distribution and then estimate this
expectation by drawing samples from that distribution.

Start in an arbitrary state, use the Markov Chain to do a random
walk for a while, and stop and output the current state t. If you use

the Metropolis-Hastings algorithm, you move from one state to the
next with the probability min (1, [p*(t) q(t;t") / p(t) q(t";t)]).

MCMC produces a stream of samples from the posterior
distribution P(t|w,a,a"),and eventually converges to the posterior
distribution.

a. P(tlw,a,0") « [P(w,t|0,¢) P(8la,) P(¢la’,) d6 d¢

b. Because 8 and ¢ are conjugate to dirichlet distributions, we
can integrate them out to find the conditional distribution for
t.

Gibbs sampler is similar to MCMC, but simpler. It updates each t,
by sampling from P(t|t,), and only moves along a single dimension
at a time.

a. P(tiw,t,a,a’) « [P(w,t8,¢) P(Bla) P(gla’,) d6 do

Q: But isn’t that what the MCMC does already? It moves per state
(or per t)
Four types of Gibbs sampler:
a. pointwise collapsed, O(nm):
i. P(tlw,t,0,0") «
[(n"yii+a’)/(ng+ma’)] [(n ., +a)/ (N +ma)]
[(Nger 1t ==t)+)/ (N +I(=) +ma)]

b. blocked collapsed, O(nm?): same algorithm but resample
labels for all words in a sentence at a time, using
forward-backward method

i. 0%,=(n., +a)/(n+ma) where n is state-to-state
transition count for other sentences in the corpus

i. @*,=(n",, +a’)/(n+m’a) where n" is state-to-word
emission count for other sentences in the corpus

iii. use the above and forward-backward alg to produce
t* for the words in current sentence

iv. use Metropolis-Hastings accept/reject step to
decide weather to update current state sequence
(in current sentence) to t* or not.

c. pointwise explicit, O(nm):

i. Resample 6 and ¢ given state-to-state transition
and state-to-word emission counts
ii. Resample each state t, given word w, and

neighboring states t , and t.,,
ii. ©,]n,,a~ Dir(n+a)
iv. @, |n’,a" ~Dir(n"+a’)
V. P(tilwi’t—i’e’(p) °‘ eti|ti—1 (pwi|ti eti+‘l|ti

d. blocked explicit, O(nm?):
i. same algorithm but resample labels for all words in
a sentence at a time, using forward-backward
method.
7. Evaluation:
a. Variation of Information (the lower the better)
i. The VI measure between two clusterings C (gold standard POS tags) and
C’(our output) is a sum of the amount of information lost in moving from C
to C’and the amount that must be gained.
ii. H(C|C")=H(C)-I(C;C)
iii. VI(C,C")=H(C|C")+H(C’|C)
iv. Problem: a tagger that assigns all words the same POS tag has good VI
measure (Q: why? A: sparsity)
v. Q: Isn't this a somewhat unfair metric to use, since the whole points of
Variational Bayes optimize based on this metric. In other words isn't
Variation of Information a metric biased towards the Variational Bayes
method?
b. Cross-Validation Accuracy (the higher the better)
i. Map each state to the tag it co-occurs with most frequently
i. Problem: you can achieve a perfect score by assigning each state its
unique tag (Q: why?)
iii. Solution: divide the corpus into two equal sets, use first set to map, use
second set to validate
c. Greedy 1-to-1 Accuracy (the higher the better)
i. At most one state can be assigned to any POS tag
ii. Haghighi and Klein (2006) propose constraining the mapping from hidden
states to POS tags so that at most one hidden state maps to any POS
tag. This mapping is found by greedily assigning hidden states to POS
tags until either the hidden states or POS tags are exhausted (note that if
the number of hidden states and POS tags differ, some will be
unassigned). We call the accuracy of the POS sequence obtained using
this map its 1-fo-1 accuracy.
9. Experiments:
a. 8 different combinations of hyperparameters a and a’(0.0001 to 1)
b. Data sets of sizes 24K, 120K and 1174K words
c. Different tag sets: Noah Smith’s 17 tag set, Penn Treebank tag set
d. Run each setting 10 times with at least 1000 iterations
10. Observations:

a. Steps per sample:

Pointwise samplers need O(m) steps per sample. EM, VB and blocked
Gibbs need O(m?) steps per sample.

b. Data size:

On small data sets, Bayesian estimators outperform EM and VB (less so
for VB)
1. Q: why?
2. A:when data is small, priors become important. Also VB only gives
an approximation which can be inaccurate with small data
On large data, EM’s cross validation score is high

c. Convergence:

VB converges faster. Larger hyperparameters cause faster convergence.

1. Q: why?

2. A: the hyperparameters specify the mobility of the sampler,
allowing it to consider novel tags, but smaller ones are rather more
accurate.

Gibbs:

1. blocked converges faster than pointwise

2. explicit converges faster than collapsed

3. pointwise initially converges faster than blocked ones thus it might
be good to begin with a pointwise sampler.

d. Accuracy:

Q: some data sets proved to be sensitive to hyperparameters, what are
some examples?

Another set of experiments by Johnson (2007) proved that reducing the
number of hidden states in the HMM significantly improves the 1-to-1
accuracy at the cost of missing less frequent POS tags.

