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1 Proof of Theorem 2

Theorem. Let f: T — R be rational. If Hy = PS is
a rank factorization, then there exists a minimal WTA
A computing f such that P4 =P and Sy, = S.

Proof. Let n = rank(f). Let B be an arbitrary mini-
mal WTA computing f. Suppose B induces the rank
factorization H; = P’S’. Since the columns of both P
and P’ are basis for the column-span of Hy, there must
exists a change of basis Q € R"*" between P and P’.
That is, Q is an invertible matrix such that P'Q = P.
Furthermore, since P'S’ = Hy = PS = P'QS and

P’ has full column rank, we must have S’ = QS,
or equivalently, Q~'S’ = S. Thus, we let A = BQ,
which immediately verifies fo = fp = f. It re-

mains to be shown that A induces the rank factor-
ization Hy = PS. Note that when proving the equiva-
lence f4 = fp we already showed wa(t) = Q lwg(t),
which means we have Sy = Q7 'S’ = S. To show
P4 = P'Q we need to show that for any ¢ € € we
have aa(c)” = ap(c)"Q. This will immediately fol-
low if we show that E4(c) = Q" 'E5(c)Q. If we pro-
ceed by induction on drop(c), we see the case ¢ = x is
immediate, and for ¢ = (¢, t) we get

Ea((d,1) =(T(Q ",Q,Q)(LEAa(c),wal(t))
=(T(Q ",Q,Q)(L,Q 'E5(¢)Q, Q 'wx(t))
=T(Q ",Ep()Q,wa(1)
=Q'T(LEp(Y),ws()Q -

Applying the same argument mutatis mutandis for ¢ =
(t,c") completes the proof. O

2 Proof of Theorem 3

Theorem. If f : T — R is rational and strongly
convergent, then Hy admits a singular value decompo-
sition.

Proof. The result will follow if we show that Hy is the
matrix of a compact operator between Hilbert spaces
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[2]. We start by defining the Hilbert spaces of square-
summable series indexed by trees and contexts. Given
two functions ¢,¢’ : Tz — R we define their inner
product to be (9,9')s = > ,cx, 9(t)g'(t) (whenever
the sum converges). Let |g|lz = \/m be the
induced norm. We denote by Z% be the real vector
space of functions {g : ¥ — R|||g|ls < oo}, which is
a separable Hilbert space because the set ¥ is count-
able. Similarly, given functions g,¢’ : € — R we
define an inner product (g,9")s = > .ce, 9(1)9 (1), a
norm ||glle = \/W, and a separable Hilbert space
02 ={g: €= R||g|le < oo}. With this notation it is
possible to see that Hy is the matrix under the stan-
dard basis on ¢% and ¢% of the operator H : (2 — (%
given by (Hfg)(c) = > ,cx, f(c[t])g(t). Since f is ra-
tional, Hy is a finite-rank matrix and therefore Hy is
a finite-rank operator. Thus, to show the compactness
of Hy it only remains to show that Hy is bounded.

Given f € (% and ¢ € €x we define a new function
fe € 0% given by f.(t) = f(c[t]) for t € Tx. Now let
g € (%2 with ||g]lz = 1 and recall Hy is bounded if
|Hrglle < oo for every g € (2 with [|g]lz = 1. To
show that Hy is bounded observe that we have:

2
1Hglle = D (Hpg)e) = Y (Z f(C[f])g(t)>
ceCys cels \leTy
=Y (fog)z <llgld > lIfl%
cels cels
=D > f®P=> D f(et)?
cely teTy cely teTy
= > ltf®)? < sup HOIEIRIIF0]
teTy €iz teTy
< oo,

where we used the Cauchy—Schwarz inequality, and the
fact that supc,. | f(t)] is bounded when f is strongly
convergent. O



Low-Rank Approximation of Weighted Tree Automata (Supplementary Material)

3 Proof of Theorem 5

Theorem. Let F : R" — R"™ be the mapping defined
by F(v) = T*(Lv,v)+>,cx wS. Then the following
hold:

(i) s is a fixed-point of F; i.e. F(s) =

(i) 0 is in the basin of attraction of s; i.e.
1imk_,oo Fk (0) = 8.

(iii) The iteration defined by s = 0 and sp+1 = F(sk)
converges linearly to s; i.e. there exists 0 < p < 1
such that ||sy, — s|l2 < O(p*).

Proof. (i) We have T(1,s,s) =
Dtves TP w®(t),w?(t)) = Yives W®((t t)) =

> iexsr w¥(t) where T2 is the set of trees of depth at
least one. Hence F(s8) = >, aor WO (1) + >, cx ws =
s.

(i) Let T=F denote the set of all trees with depth at
most k. We prove by induction on k that F*(0) =
> iex<k w®(t), which implies that limy_,o F*(0) =s.
This is straightforward for kK = 0. Assuming it is true
for all naturals up to & — 1, we have

F*(0) = T2(L, F*(0), F*(

> TEAw®

+Zw

cEX

+Zw

tt/eT<k-1 ogeY
= Y WO+ > wd
t,t'eT<k-1 oceY
= ) W) .
tex<k

(iii) Let E be the Jacobian of F' around s, we show
that the spectral radius p(E) of E is less than one,
which implies the result by Ostrowski’s theorem (see
[4, Theorem 8.1.7]).

Since A is minimal, there exists trees t1, - ,t, € T
and contexts c1, - - - , ¢, € €such that both {w(t;) }icpm)
and {a(c;)}iepn) are sets of linear independent vectors
in R™ [1]. Therefore, the sets {w(t;) @w(t;)}; je[n) and
{a(c;) ® alcy)}ijem) are sets of linear independent
vectors in R"”. Let v € R™ be an eigenvector of E
with eigenvalue A # 0, and let v =3, .1 Bi,j(w(t:)®
w(t;)) be its expression in terms of the ba51s given by
{w(t;) ® w(t;j)}. For any vector u € {a(c;) ® a(e;)}
we have

lim u' E*v < lim |[u" Efv|

k—o0 k—o0

> 1Bl lim "B w(t) @ w(t;) =0

i,j€[n]

where we used Lemma 1 in the last step. Since this is
true for any vector u in the basis {a(c;) ® a(c;)}, we
have limy,_, oo E*v = limy_,. |A|¥v = 0, hence |\| < 1.
This reasoning holds for any eigenvalue of E, hence
p(E) < 1. O

Lemma 1. Let A = (o, T,{ws}) be a minimal
WTA of dimension n computing the strongly conver-
gent function f, and let E € R X" be the Jaco-
bian around s = ), s w(t) ® w(t) of the mapping
F:v = T°Lv,v)+ Y cxwf. Then for any
c1,c2 € € and any tq,ta € T we have limy_, o |(a(c1)®
ale2)) TEF(w(t) @ w(ta))| = 0.

Proof. Let 2% : ¢ — R™*"* he the context mapping
associated with the WTA A®; ie. B® = E40. We
start by proving by induction on drop(c) that 2% (c) =
E(c) ® E(c) for all ¢ € €. Let ¢ denote the set of
contexts ¢ € € with drop(¢) = d. The statement is
trivial for ¢ € €Y. Assume the statement is true for
all naturals up to d — 1 and let ¢ = (¢,¢/) € ¢4 for
some t € T and ¢ € €471, Then using our inductive
hypothesis we have that

E(d) @ E(<))
E(d) @ T(In, w(t), E(<))

T (L, w(t) @ w(t),
T (I, w(t),
=E(c) ®E(c) .

E%(c) =

The case ¢ = (¢, t) follows from an identical argument.

Next we use the multi-linearity of F' to expand F'(s+h)
2 . .

for a vector h € R™ . Keeping the terms that are linear

in h we obtain that E = 79(I,s,I) + T®(I,1,s). It

follows that E = Y .1 E®(c), and it can be shown

by induction on k that EF =3 . B®(c).

Writing d. = min(drop(c;),drop(cz)) and d; =
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min(depth(t), depth(¢z)), we can see that

|(e(c1) ® afe2)) "EF (w(ty) @ w(ta))|

=D (eler) ® alez)) TEP () (w(t) © witz))

ceck
=D (ale) TE(Qw(t1)) - (a(ez) TE(c)w(t2))
ceck

= 1> flalet]]) f(ealelt2]))

ceCk
< D2 1fealetal | | D2 If(ealelta]))]
ceegk cecCk
S SETTONN
tex2det+di+k

which tends to 0 with k& — oo since f is strongly
convergent. To prove the last inequality, check that
any tree of the form ¢’ = ¢[c[t]] satisfies depth(t’) >
drop(c) + drop(c’) 4+ depth(t), and that for fixed ¢ € €
and ¢, € ¥ we have |{¢/ € € : ¢[d[t]] = ¢'}| < ||
(indeed, a factorization ¢’ = ¢[c/[t]] is fixed once the
root of ¢ is chosen in ¢/, which can be done in at most
[t'| different ways). O

4 Proof of Theorem 6

Theorem. There exists 0 < p < 1 such that after k

iterations in Algom;thm 2, the approximations A(A;'Q‘ and
Gy satisfy |Ge — Gellr < O(p*) and |Gs — Gs|lr <
O(p").

Proof. The result for the Gram matrix Gz directly
follows from Theorem 5. We now show how the error
in the approximation of G = reshape(s,n x n) affects
the approximation of q = (a®)T(I-E)™! = vec(Gy).
Let 8 € R™ be such that ||s — 8| < ¢, let B =
T(1,8,1) + T2(1,1,8) and let q = (a®)T (I - E)~'.
We first bound the distance between E and E. We
have

|E-Ellr = T°Ls—81) +T*LLs-3)|r
<2|T%||rls - sll
=0(e) ,
where we used the bounds ||T(L L v)||r < || T|r|Vl
and [|[T(Lv,Dlr <[ T|rlv]-

Let 6 = ||E — E| and let o be the smallest nonzero
eigenvalue of the matrix I-E. Tt follows from [3, Equa-
tion (7.2)] that if § < o then |[(I-E)~!'—(I-E)"!|| <

§/(o(c—9)). Since § = O(e) from our previous bound,
the condition § < /2 will be eventually satisfied as
€ — 0, in which case we can conclude that

|Ge — Gellr = la—d
[(I-E)~'—(I

IN

—E)"lle®|

IA
-/
B
2

5 Proof of Theorem 4

Let A = (o, T,{ws}sex) be a SVTA with n states
realizing a function f and let §;1 > 55 > --- > 5, be
the singular values of the Hankel matrix Hy.

Theorem 4 relies on the following lemma, which ex-
plores the consequences that the fixed-point equations
used to compute G¢ and G¢ have for an SVTA.

Lemma 2. For all i € [n], the following hold:
15 =3 exnwo (1) + 227 0y T, 5, K)sjs

2. 5; = a(f)’+ 27 (T (4,5, k)2 +T (5, k,0)%)sjs% -

Proof. Let Gg and Ge¢ be the Gram matrices asso-
ciated with the rank factorization of Hy. Since A
is a SVTA we have Gg = Gy = D where D =
diag(s1,--- ,8,) is a diagonal matrix with the Hankel
singular values on the diagonal. The first equality then
follows from the following fixed point characterization
of Gg:

Gg = Z w(t)w(t)"

te¥

= E Wow,

oEX

+ > TLw(t),wt)T(Lw(t),w(t) "

t1,t2€T

= Z wowz + T(l)(Gg ® Gf)Tz—l) s
ocEY

(where T i) denotes the matricization of the tensor 7~
along the ith mode). The second equality follows from
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the following fixed point characterization of Ge:

Ge = Z alc)a(e)”

cel

= aaT

+ > Tlee),w(®), DT (ale),w(t), D)’
ceC tex

+ Y Tlede), Lw(t)T(ee), Lw(t) "
ce€,te¥T

e

+ T(g)(Gc ® GQ)TE—Z)

+ T(3)(G¢ (24 GQ)TEE) .

O

Theorem. For anyt € T, c € € and i,j,k € [n] the
following hold:

o |w(t)il < /50,
o |a(c)il < /5 , and

o |77, k)| < min{ Vs vy

N

Proof. The third point is a direct consequence of the
previous Lemma. For the first point, let UDV' be
the SVD of Hy. Since A is a SVTA we have

w(t)? = (DY2VT)2, = 5, V(t,i)?

and since the rows of V are orthonormal we have

V(t,i)? < 1.

The inequality for contexts is proved similarly by rea-
soning on the rows of UD'/2. O
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