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Probabilistic CFGs with Latent States (Matsuzaki et al., 2005;
Prescher 2005)
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Latent states play the role of nonterminal subcategorization,
e.g., NP — {NP' NP2 ... NP?%

» analogous to syntactic heads as in lexicalization (Charniak
1997) ?

They are not part of the observed data in the treebank



Estimating PCFGs with Latent States (L-PCFGs)

EM Algorithm (Matsuzaki et al., 2005; Petrov et al., 2006)

|l Problems with local maxima; it fails to provide certain
type of theoretical guarantees as it doesn’t find global
maximum of the log-likelihood
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Estimating PCFGs with Latent States (L-PCFGs)

EM Algorithm (Matsuzaki et al., 2005; Petrov et al., 2006)

|l Problems with local maxima; it fails to provide certain
type of theoretical guarantees as it doesn’t find global
maximum of the log-likelihood

Spectral Algorithm (Cohen et al., 2012, 2014)
1} Statistically consistent algorithms that make use of spectral
decomposition
{+ Much faster training than the EM algorithm

|l Lagged behind in their empirical results



Overview

Builds on the work on the spectral algorithm for Latent-state
PCFGs (L-PCFGs) for parsing (Cohen et al., 2012, 2014, Cohen and
Collins, 2014, Narayan and Cohen 2015)

Conventional approach: Number of latent states for each
nonterminal in an L-PCFG can be decided in isolation
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Conventional approach: Number of latent states for each
nonterminal in an L-PCFG can be decided in isolation

Contributions:

A. Parsing results significantly improve if the number of
latent states for each nonterminal is globally optimized

» Petrov et al. (2006) demonstrated that coarse-to-fine
techniques that carefully select the number of latent states
improve accuracy.



Overview

Builds on the work on the spectral algorithm for Latent-state
PCFGs (L-PCFGs) for parsing (Cohen et al., 2012, 2014, Cohen and
Collins, 2014, Narayan and Cohen 2015)

Conventional approach: Number of latent states for each
nonterminal in an L-PCFG can be decided in isolation

Contributions:

B. Optimized spectral method beats coarse-to-fine
expectation-maximization technigues on 6 (Basque,
Hebrew, Hungarian, Korean, Polish and Swedish) out of
8 SPMRL datasets



Intuition behind the Spectral Algorithm

Inside and outside trees

At node VP:
Outside tree 0 = s
S NP VP
/\ /\N
NP VP D
/\ /\ the dog
D N \Y P ]
Inside tree t = VP
I N
the dog saw him \" T
saw him

Conditionally independent given the label and the hidden state
p(o, tVP, h) = p(o|VP, h) x p(t|VP, h)



Recent Advances in Spectral Estimation

Singular value decomposition (SVD) of cross-covariance
matrix for each nonterminal



Recent Advances in Spectral Estimation

SVD Step

Method of moments (Cohen et al., 2012, 2014)

» Averaging with SVD parameters = Dense estimates



Recent Advances in Spectral Estimation

SVD Step

Method of moments (Cohen et al., 2012, 2014)

» Averaging with SVD parameters = Dense estimates

Clustering variants (Narayan and Cohen 2015)
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Sparse estimates



Standard Spectral Estimation and Number of Latent
States

1+ A natural way to choose the number of latent states based
on the number of non-zero singular values

1 Number of latent states for each nonterminal in an L-PCFG
can be decided in isolation

|l Conventional approach fails to take into account
interactions between different nonterminals



Optimizing Latent States for Various Nonterminals

Input:

» An input treebank divided into training and development
set

» A basic spectral estimation algorithm S mapping each
nonterminal to a fixed number of latent states

> foer 1 {S — 24, NNP — 24, VP — 24, DT — 24, ...}

Output:

> fopt : {S — 40, NNP — 81, VP — 35, DT — 4, ...}



Optimizing Latent States for Various Nonterminals

Algorithm in a nutshell
» lterate through the nonterminals, changing the number of
latent states,
» estimate the grammar on the training set and

» optimize the accuracy on the dev set

A beam search algorithm for the traversal of multidimensional
vectors of latent states: Optimizing their global interaction



Optimizing Latent States for Various Nonterminals
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Optimizing Latent States for Various Nonterminals
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Clustering variant of spectral estimation leads to compact
models and is relatively fast



Experiments

The SPMRL Dataset

8 morphologically rich languages: Basque, French, German,
Hebrew, Hungarian, Korean, Polish and Swedish

Treebanks of varying sizes from 5,000 sentences (Hebrew and
Swedish) to 40,472 sentences (German)



Results on the Swedish dataset

Results on the dev set

85

80}

F-Measures

[=)]
9]
T

60}

55

50

~
o
T

75.50
73.40
71.40
1
T
berkeley cluster moments
Petrov et al.’06 Narayan and Cohen’15 Cohen et al’'13

Bjorkelund et al'13



Results on the Swedish dataset

Results on the dev set

85

80}

751

F-Measures

60}

55

50

~
o
T

[=)]
9]
T

75.50 75.20
73.40
71.40
1
T
berkeley cluster moments
Petrov et al.’06 Narayan and Cohen’15 Cohen et al’'13

Bjorkelund et al'13



Results on the Swedish dataset

Results on the dev set
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Results on the Swedish dataset

Final results on the test set
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Final Results on the SPMRL Dataset

F-Measures

100. T T
Hl Berkeley 91.8
Spectral Optimized 89.0 89.2
87.0 86.
90+ 85.2
81.4
80.4 80.0 80.630.9
79.1 78.378.2 78.6
Basque French German Hebrew Hungarian Korean Polish Swedish

» Berkeley results are taken from Bjérkelund et al, 2013.




Conclusion

Spectral parsing results significantly improve if the number of
latent states for each nonterminal is globally optimized

Optimized spectral algorithm beats coarse-to-fine EM algorithm
for 6 (Basque, Hebrew, Hungarian, Korean, Polish and
Swedish) out of 8 SPMRL datasets

The Rainbow parser and multilingual models:
http://cohort.inf.ed.ac.uk/lpcfg/

Acknowledgments: Thanks to David McClosky, Eugene
Charniak, DK Choe, Geoff Gordon, Djamé Seddah, Thomas
Muller, Anders Bjorkelund and anonymous reviewers


http://cohort.inf.ed.ac.uk/lpcfg/

Inside Features used

Consider the VP node in the following tree:

The inside features consist of:

The pairs (vp, V) and (VP, NP)
Therule vP — VvV NP

The tree fragment (VP (V saw) NP)
The tree fragment (vP v (NP D N))

vV V. v v Y

The pair of head part-of-speech tag with vp :



Outside Features used

Consider the D node in the following tree:

The outside features consist of:
» The pairs (D, NP) and (D, NP, VP)

» The pair of head part-of-speech tag with D :

» The tree fragments ~ , v and s
VANEVZN

(D, N)



Variants of Spectral Estimation

» SVD variants: singular value decomposition of empirical
count matrices (cross-covariance matrices) to estimate
grammar parameters (Cohen et. al. 2012, 2014)

» Convex EM variant: “anchor method” that identifies
features that uniquely identify latent states (Cohen and
Collins, 2014)

» Clustering variant: a simplified version of the SVD variant
that clusters low-dimensional representations to latent
states (Narayan and Cohen, 2015)

Intuitive-to-understand and very (computationally)
efficient



Optimizing Latent States for Various Nonterminals

» Initialization: (ng, fyef, Foer) — Q

» ng : First nonterminal
> foer - {S — 24, NNP — 24, VP — 24, DT — 24, ...}
» Fger is the F score on the development set

» lteration: (n;, f;, F;) < Q

For each number of latent state / € {1, ..., m},

f - f/(n;) = I and for others n, f/(n) = fi(n),

Estimate a new F/ score on the development set, and
Push (nj1,f, F))

i

vV vy VvVYyy

» Termination: (N1, fopt, Frin) < Q

> fopt - {S— 40, NNP — 81, VP — 35,DT — 4, ...}

We need a training algorithm which is relatively fast and
leads to compact models

20/
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Final Results on the SPMRL Dataset

Spectral
lang. Berkeley Cluster  SVD
Basque 74.7 814 805
French 80.4 75.6 79.1
German 78.3 76.0 78.2
Hebrew 87.0 87.2 89.0
Hungarian 85.2 88.4 89.2
Korean 78.6 78.4  80.0
Polish 86.8 91.2 9138
Swedish 80.6 79.4 80.9

21



Spectral Algorithm Vs Treebank Size

We break the common belief that more data is needed with
spectral algorithm

Training data
Sent.  tokens
Basque 7,577 96,565
French 14,759 443,113
German 40,472 719,532
Hebrew 5,000 128,065
Hungarian 8,146 170,221
Korean 23,010 301,800
Polish 6,578 66,814
Swedish 5,000 76,332

lang.

22/1



Effect of Optimization on the Model Size

> ntIsnt
lang. Beforgt After fnt
Basque 402 646 200
French 1984 1994 222
German 2288 2213 762
Hebrew 603 986 375
Hungarian 643 676 112
Korean 1295 1200 352
Polish 384 491 198
Swedish 276 629 148

23
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Multilingual Models for the Rainbow Parser

The Rainbow Parser {or RParser) is a phrase-structure syntactic parser developed at the University of Edinburgh by the informal research group Cohort. At its core, the use of a latent-
wvariahle PCFG model. Its fraining procedure is based on spectral methods of leaming. The parser is not publicly available yet. However, if you are interested in using it for your
research. contact Shay Cohen (zcoben AT inf ed.ac.uk) or Shashi Narayan (snaraya? AT inf.ed.ac.uk).

Click for the following paper.

Below we include the table of results on the test sets from the SPMRL shared task to parse morphologically rich languages. Far a legend, see the paper (Tables 2 and 3).

Language CL van. CL opt. SP van. SP opt. Berkeley
. e 796 814 789 80.5 747
I I French 743 756 787 79.1 304
I German (NEGRA) 764 8.0 784 79.4 0.1
B Gooman TiceR) T4 76.0 780 782 783
E Hebrew 86.3 87.2 B7.8 89.0 a7.0
= Hungarian 86.5 88.4 89.1 89.2 852
:.: Korean 765 78.4 80.3 80.0 786
— 0.5 912 918 918 868

- . TEA To4 784 800 806
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