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Probabilistic context-free grammars (PCFGs)

Probability Rule Parse tree
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Tree probability = 1.0x1.0x0.7x0.4x1.0x0.2x1.0x0.7x0.6 = 0.02352
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PCFGs and tightness

e p € [0,1]Rlis a vector of rule probabilities indexed by rules R
e A PCFG associates each tree t with a measure mp(t):

mp(t) = H p/'Z‘A:;( , Where:
A—a€R

na— o(t) is the number of times rule A— « is used in the derivation of
t

The partition function Z of a PCFG is:

Z mp(t)

teT

PCFGs require the rule probabilities expanding a non-terminal to be
normalised, but this does not guarantee that Z, =1

When Z, < 1, we say the PCFG is “non-tight."



Catalan grammar: an example of a non-tight PCFG

e PCFG has two rules: S—SS and S — x

o It generates strings of x of arbitrary length
e |t generates all possible finite binary trees
» or equivalently, all possible well-formed brackettings
> called the Catalan grammar because the number of parses of x” is
Catalan number C,_;

e The PCFG is non-tight when ps_,sg > 0.5
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Why can the Catalan grammar be non-tight?

e Every binary tree over n terminals has n — 1 non-terminals
= probability of a tree decreases exponentially with length

e The number of different binary trees with n terminals is C,_1
= number of trees grammar grows exponentially with length

e When ps_,ss > 0.5, the PCFG puts non-zero mass on non-terminating
derivations

» this grammar defines a branching processes

» At each step, ps_,ss is probability of reproducing, ps_, x is probability
of dying

» ps_ss < 0.5 = population dies out (subcritical)

> ps_ss > 0.5 = population grows unboundedly (supercritical)

e Mini-theorem: every linear PCFG is tight (except on cases of measure
zero under continuous priors)
» CFG is linear & RHS of every rule contains at most one non-terminal
» HMMs are linear PCFGs = always tight



Bayesian inference of PCFGs

e Bayesian inference uses Bayes rule to compute a posterior over rule
probability vectors p

P(p| D) o P(D|p) P(p)
SN——— N—_—— =~

Posterior Likelihood Prior

where D = (D, ..., D,) is the training data (trees or strings)

e Bayesians prefer the full posterior distribution P(p | D) to a point
estimate p

o [f the prior assigns non-zero mass to non-tight grammars, in general
the posterior will too

e As the number of independent observations n in the training data
grows, the posterior concentrates around the MLE

» MLE is always a tight PCFG (Chi and Geman 1998)
» As n— oo the posterior concentrates on tight PCFGs
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3 approaches to non-tightness in the Bayesian setting

e |f the grammar is linear, then all continuous priors lead to tight PCFGs
e Three different approaches to Bayesian inference with non-tight
grammars:

1. “Sink element”: assign mass of “infinite trees” to a sink element,
implicitly assumed by Johnson et al (2007)

2. “Only tight”: redefine prior so it only places mass onto tight grammars

3. “Renormalisation”: divide by partition function to ensure normalisation

Assume for now that trees and strings are observed in D (supervised
learning)



“Only tight" approach

Let I(p) be 1 if p is tight and O otherwise.

Given a “non-tight prior” P(p), define a new prior P’ as:

P'(p) o P(p)I(p)

If P(p) is conjugate family of priors with respect to PCFG likelihood, then
P'(p) is also conjugate

We can draw samples from P’(p | D) using rejection sampling:

e Draw PCFG parameters p from P(p | D) until p is tight

» P(p| D) is a product of Dirichlets
= can use textbook algorithms for sampling from Dirichlets



Renormalisation approach

Renormalise the measure 1i,(t) over finite trees (Chi, 1999)

If P(p | @) is a product of Dirichlets, posterior is:

Hp

1
7,5’ P(p | « + n(D)).

P(p| D) a) o
where n(D) is the count vector over all rules for the data D

e Use a Metropolis-Hastings sampler to sample from P(p | D)
» proposal distribution is product of Dirichlets

Samplers for each approach can be used within a component-wise Gibbs
sampler for the unsupervised case where only strings are observed.



Toy example
Consider the grammar S — S S 5|S S|a

Let w=aaa

t1 = S th = S t3 = S
I PR PN
S S S S S S S
| | o~ ~ |
a a a 2 S S S S 3
| |
a a a a

e Uniform prior (o = 1)

e Sink-element approach: P(t; | w) = & ~ 0.636364.
e Only-tight approach: P(t; | w) = 1179 ~ 0.649149.
e Renormalisation approach: P(t; | w) ~ 0.619893.

= All three approaches induce different posteriors from uniform prior
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Experiments on WSJ10

e Task: unsupervised estimation of Smith et al (2006)'s PCFG version of
the DMV (Klein et al 2004) from WSJ10

e 100 runs of each sampler for 1,000 MCMC sweeps

e Computed average Fj score on every 10th sweep for last 100 sweeps

e Kolmogorov-Smirnov tests did not show a statistically significant
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30-
Inference
=2 only-tight
7} -
ac) 0 msink—state
a]

Z renormalise

ISAN

1 1 1
0.35 0.40 0.45 0.50 0.55
Average f-score .




Conclusion

e Linear CFGs are tight regardless of the prior
e For non-linear CFGs, three approaches are suggested for handling
non-tightness

e The three approaches are not mathematically equivalent, but
experiments on WSJ Penn treebank showed that they behave similarly

empirically
Open problem: are the approaches reducible in the following sense?

Given a prior P for one of the approaches, is there a prior P’ for
another approach such that for all data D, the posteriors under
both approaches are the same.



