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The characterization of gray matter morphology of individual brains
is an important issue in neuroscience. Graph theory has been used
to describe cortical morphology, with networks based on co-
variation of gray matter volume or thickness between cortical areas
across people. Here, we extend this research by proposing a new
method that describes the gray matter morphology of an individual
cortex as a network. In these large-scale morphological networks,
nodes represent small cortical regions, and edges connect regions
that have a statistically similar structure. The method was applied
to a healthy sample (n5 14, scanned at 2 different time points). For
all networks, we described the spatial degree distribution, average
minimum path length, average clustering coefficient, small world
property, and betweenness centrality (BC). Finally, we studied the
reproducibility of all these properties. The networks showed more
clustering than random networks and a similar minimum path
length, indicating that they were ‘‘small world.’’ The spatial degree
and BC distributions corresponded closely to those from group-
derived networks. All network property values were reproducible
over the 2 time points examined. Our results demonstrate that
intracortical similarities can be used to provide a robust statistical
description of individual gray matter morphology.
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Introduction

This paper presents a new method that is used to construct

networks from individual cortices based on intracortical

similarities in gray matter morphology. In these networks, the

nodes represent small regions of gray matter with their 3D

structure intact, and edges are placed between regions that

show statistical similarity. Representing the morphology of the

brain as a network has the advantage that the surface structure

can be described statistically with tools from graph theory.

Recent studies have shown that it is possible to construct

morphological networks using correlations between cortical

areas in cortical thickness or volume across people (He, Chen,

et al. 2007; Bassett et al. 2008; Chen et al. 2008; He et al. 2008)

and that such networks can be used to distinguish between

(clinical) groups (e.g., Wright et al. 1999; McAlonan et al. 2005;

Mechelli et al. 2005; Mitelman et al. 2005; Thompson et al.

2005; Lerch et al. 2006; He, Wang, et al. 2007; Bassett et al.

2008; Colibazzi et al. 2008; He et al. 2008; Liu et al. 2008;

Bernhardt et al. 2009; Modinos et al. 2009).

Although graph theory has provided a statistical framework

to study cortical morphology, it remains unclear as to what are

the most appropriate measures to define nodes and edges in

morphological networks (Bullmore and Sporns 2009). Most

studies choose as the network nodes anatomical areas that are

connected when they covary in thickness or volume across

individuals (He, Chen, et al. 2007; Bassett et al. 2008; Chen et al.

2008; He et al. 2008). Such an approach requires mapping of

individual brains into a standard space and requires prior

models to extract anatomical regions. These requirements

might obscure subtle structural differences that are of

particular interest in clinical populations. Therefore, it is

important to study gray matter networks derived from in-

dividual cortices. In order to do this, we propose to represent

the cortical morphology of individual subjects as networks,

using information about the similarity of gray matter structure

within the cortex.

Covariation of cortical morphology might be related to

anatomical connectivity, induced by mutually trophic influ-

ences (Pezawas et al. 2004) or caused by experience driven

plasticity (e.g., Andrews et al. 1997; Draganski et al. 2004;

Mechelli et al. 2004). Lerch et al. (2006) were the first to

show that cortical thickness correlations qualitatively match

a diffusion tensor imaging (DTI) traced track, implying that

anatomical connectivity could be measured indirectly using

information from the cortical surface. In animal tracer

studies, it has been found that cortical thickness, folding,

and neuronal density can predict anatomical connectivity

(Barbas 1986; Barbas and Rempel-Clower 1997; Dombrowski

et al. 2001). These studies suggest that similarity in thickness

and folding might be an indication of connectivity between

cortical areas.

To our knowledge, only a few studies have tried to quantify

morphological covariation in individual brains (Andrews et al.

1997; Kennedy et al. 1998). For example, Andrews et al. (1997)

found that within individual brains, the gray matter of the

lateral geniculate nucleus, the optical tract, and the primary

visual cortex covary in volume.

Here, we further extend these studies by demonstrating

our method in a sample of 14 healthy subjects who had been

scanned at 2 different time points, as reported previously

(Moorhead et al. 2009; Gountouna et al. 2010). We studied

the graph theoretic properties of the networks obtained and

compared the results with previous studies that constructed

networks from group morphological, functional, and white

matter magnetic resonance imaging (MRI) data. Finally, the

robustness of the method was assessed by measuring the

stability of the network statistics between 2 scanning

sessions.

Materials and Methods

The following sections describe 1) the new method in detail, 2) the

sample to which the method was applied, 3) the data acquisition

details, 4) the preprocessing procedures applied to the scans, 5) the

statistics applied to the networks, and 6) the reproducibility

procedure.
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Extraction of Networks from Individual Gray Matter
Segmentations
Figure 1 shows a schematic overview of the method that is completely

automated and data driven and thus requires no a priori hypotheses

about the regions of interest. First, the method divided the gray matter

segmentation of an individual brain starting from the first nonempty

voxel into 3 3 3 3 3 voxel cubes, in a manner similar to methods that

match scans from different modalities (Borgefors et al. 1997; Ourselin

et al. 2000). Using cubes kept the 3D structure of the cortex intact,

thereby using spatial information from the MRI scan in addition to the

gray matter values in the voxels. By keeping the spatial information

intact, the cubes contain a quantity that reflects the local thickness and

folding structure of the cortex. In contrast, cortical volume measures

only the number of voxels at a location and thus does not include

information concerning the spatial relationship between voxels.

Similarly, cortical thickness measures do not contain information about

the 3D folding structure of the cortex.

The size of the cubes was constrained by 2 factors: 1) The minimum

spatial resolution that still captures cortical folding has been shown to

be 3 mm (Kiselev et al. 2003) and 2) Practical computational limitations

exist with large matrices. Therefore, we used a cube size of 3 3 3 3 3

voxels, corresponding to 6 3 6 3 6 mm3.

Each cube is represented by a different node v in the network. A

network contained on average 6977 nodes (standard deviation [SD] =
783.92, over both subjects and runs). To construct a network, 2 nodes

vj and vm were connected when their similarity metric exceeded

a certain threshold. We chose the correlation coefficient to quantify the

structural similarity between 2 cubes because it is simple to understand

and implement while at the same time fast to compute (Lewis 1995;

Nikou et al. 1999; Weese et al. 1999; van Court et al. 2005; Penney et al.

2008). Additionally, the correlation coefficient does not require

centering of the data because it is normalized by the SD of the cubes.

The numerator of the correlation coefficient rjm between cubes vj and

vm calculates the sum over the product of the differences between the

cubes’ values at each voxel location i = 1, 2, . . . n for n voxels (after

subtraction of the cubes’ average values, respectively, �vj and �vm). The

denominator of the correlation coefficient is the product of the cubes’

SDs:

rjm=
+n

i=1

�
vji – �vj

�
ðvmi – �vmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

+n

i=1

�
vji – �vj

�2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+n

i=1ðvmi – �vmÞ2
q : ð1Þ

Cubes with zero variance were excluded (average < 0.01%). Given

that the cortex is a curved object, 2 similar cubes could be located at an

angle from each other, which could decrease their similarity value. As

the cubes were constructed from discrete MRI data, we have rotated

each seed cube vj by an angle h with multiples of 45� and reflections

over all axes to find the maximum correlation value with target cube

vm :

rmax
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h
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Figure 1. General pipeline of the extraction of individual networks. After preprocessing, the gray matter was divided into 3 3 3 3 3 voxel cubes, visualized by a white voxel in the
centre of each cube (1). The red arrows point to 2 example cubes vj and vm (note that the cubes were magnified for illustration purposes). The similarity between all N cubes within
a scan was computed with the correlation coefficient, storing the result in a matrix with 1 to N rows and columns (2). In (3), the similarity matrix was binarized, with a threshold that
ensured a 5% chance of spurious connections for all individuals (corresponding to a significance level of P 5 0.05 corrected for multiple comparisons by an FDR technique using an
empirical null distribution). Twenty random matrices that kept intact the spatial degree distribution were generated for each binarized similarity matrix (4). Finally, we constructed the
networks and computed the degree, BC, the path length, clustering coefficient, and small world property of the extracted and random networks (6).
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In theory, other angles could be chosen as well. However, then

interpolation between voxels would be necessary, which adds noise to

the data and entails computational difficulties. In a simulation study,

using a simplified model for the structural MRI data, we found that

using angles with multiples of 45� recovered 99% of the similarities (see

Supplementary Material, Supplementary Figure 1), suggesting that these

angles are sufficient to correct for rotation.

Binarization of the Similarity Matrix
The similarity matrices were binarized to construct undirected and

unweighted graphs. The graphs were undirected because it is not

feasible to infer causality from correlations. Although continuous

weights would contain the most information (Barrat et al. 2004), the

present study assessed only the basic network topology, and therefore,

the networks were binarized.

To binarize the networks, a threshold was determined for each

individual based on the significance of the correlations. Because

correlations were computed between on average 6977 nodes and

maximized for rotation and reflection, it was necessary to correct for

multiple comparisons when determining the threshold. The false

discovery rate (FDR) technique with the use of an empirical null model

was employed to correct for multiple comparisons (Benjamini and

Hochberg 1995; Benjamini and Yekutieli 2001; Noble 2009; see

Supplementary Material for full description). Briefly, an FDR is the

proportion of false positives within a set of significant scores. This

proportion corresponds to the area greater than a threshold value in

the null model score distribution. An advantage of this approach is that

all individuals will have the same 5% chance of spurious correlations.

After the threshold was determined, it was used to binarize the

networks where the presence of an edge was indicated by 1 (a

correlation greater than the threshold) and absence of an edge

indicated by 0 (a correlation lower than the threshold). In this study,

we use the word ‘‘connections’’ to refer to these edges, as they connect

the nodes in our networks. These connections should not be confused

with anatomical connections and indicate whether any 2 cubes have

statistically similar gray matter morphology. We define the sparsity of

the networks as the connectivity density within a matrix. This was

simply quantified as the percentage number of existing edges

compared with the maximum number of edges possible (N (N – 1),

where N is the number of nodes).

Participants
The data used here were previously collected for the CaliBrain study

(Moorhead et al. 2009; Gountouna et al. 2010). Fourteen healthy

volunteers (9 males, mean age at first scan 34.80, SD = 8.23)

participated in CaliBrain. All participants were native English speakers,

right handed (self-reported), had no history of substance abuse, nor

a history of diagnosed neurological disorder, major psychiatric disorder,

or treatment with psychotropic medication. All participants provided

written informed consent, and the study was approved by the

appropriate research ethics committee.

Data Acquisition
The scans were acquired at the University of Edinburgh (The Division

of Psychiatry and the Scottish Funding Council Brain Imaging Research

Centre within the Centre for Clinical Brain Sciences). The scanner was

manufactured by General Electric (GE Healthcare, Milwaukee, WI) and

had a field strength of 1.5 T. The subjects were scanned twice within

a 6-month period. At each visit, a high resolution T1-weighted scan was

acquired using a 3D inversion recovery-prepared fast gradient echo

volume sequence with a coronal orientation and the following

parameters: repetition time of 8.2 ms, echo time of 3.3 ms, inversion

time of 600 ms, flip angle of 15�, matrix size of 256 3 256, field of view

of 220 mm2, and 128 slices with 1.7 mm thickness without a gap,

resulting in voxels with size 0.86 3 1.7 3 0.86 mm3.

Preprocessing and Segmentation
Twenty-eight T1-weighted scans were preprocessed using SPM5

(Wellcome Department of Cognitive Neurology and collaborators,

Institute of Neurology, London, UK: http://www.fil.ion.ucl.ac.uk/spm/

software/spm5) with Matlab version 7.3.0.298 R2006b (Mathworks,

Natick, MA) on a Dell Precision 690 workstation with RedHat

Enterprise Linux WS v.4. First, the origin of all scans was manually set

to the anterior commissure. Then, the scans were segmented with the

VBM5 toolbox (University of Jena, Department of Cognitive Neurology,

C. Gaser: http://dbm.neuro.uni-jena.de/vbm) using a Hidden Markov

Random Field (HMRF), without SPM priors and the option ‘‘lightly

cleaned’’ (as defined by VBM5) into gray matter, white matter, and

cerebral spinal fluid in native space. The HMRF used spatial constraints

based on neighboring voxels in a 3 3 3 3 3 voxel cube, increasing the

accuracy of segmentation. After segmentation, the data were resliced to

2 3 2 3 2 mm3 voxels. All further data analyses were implemented in

Matlab version 7.3.0.298 R2006b (unless specified otherwise).

Network Metrics
This section describes in detail the following metrics that were

computed from the networks: the degree, the minimum path length,

the clustering coefficient, the small world property, and the between-

ness centrality (BC).

Degree k

The number of connections each node v has.

Minimum and Average Path Length

The minimum path length Li,j between 2 nodes vi and vj is the

minimum number of edges that needs to be traveled to go from a node

vi to node vj. The minimum shortest path length of a node vi is the

average of its shortest path lengths to all other nodes (Dijkstra 1959;

Watts and Strogatz 1998):

Li=
+N

j=1;j 6¼i
Li ;j

N
: ð3Þ

The minimum path length L of a network is the average of Li over all

N nodes (Dijkstra 1959; Watts and Strogatz 1998):

L=
+N

i=1Li

N
: ð4Þ

Clustering C

The clustering coefficient ci of a node vi is defined as the number of

edges kj between its direct neighbors (denoted by subgraph gi) divided

by the total number of all possible edges kgi in gi (Luce and Perry 1949;

Watts and Strogatz 1998):

ci=
+

j ;k2gi kj

kgi

�
kgi – 1

��
2
: ð5Þ

The clustering coefficient Cnetwork of the network is the average

clustering coefficient ci over all N nodes:

Cnetwork=
+N

i=1ci

N
: ð6Þ

Small World (r)
A network is defined to have the small world property when it shows

more clustering than a random network, its average minimum path length

remaining similar to that of a random graph (Watts and Strogatz 1998;

Humphries et al. 2006). For each network h, random networks were

generated by rearranging the edges while keeping the degree distribution

intact (Maslov and Sneppen 2002) to compute an average �C random and
�Lrandom ( �C random=1

�
h+h

i=1Crandomi
and �Lrandom=1

�
h+h

i=1Lrandomi
). Given

the large size of the networks, a value of h = 20 enabled computation in

a reasonable time (in total 28 3 20 = 560 random networks). The division

of Cnetwork by �C random is denoted by c (Watts and Strogatz 1998;

Humphries et al. 2006):
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c=
Cnetwork

�C random

: ð7Þ

For a network to contain the small world property, it is required that

y is larger than 1. The division of Lnetwork by �Lrandom is denoted by k
(Watts and Strogatz 1998; Humphries et al. 2006):

k=
Lnetwork

�Lrandom
: ð8Þ

For a network to contain the small world property, it is required that

k is approximately equal to 1. The small world property (r) is defined
as the division of c and k (Humphries et al. 2006):

r=
c
k
: ð9Þ

When the small world property (r) of a network is higher than 1, it

indicates that the topology lies between that of a completely regular

(i.e., a lattice) and a completely random network. If one connects all the

nodes with an arbitrary number of their neighbors, the result will be

a fully connected network that is one big cluster. In contrast,

connecting nodes randomly result in a network with minimal

clustering and a much lower average minimum path length. Networks

with the small world property can be placed between these 2 extremes

and are fully connected with minimal wiring length due to a few long-

range connections between clusters (e.g., Watts and Strogatz 1998;

Humphries et al. 2006). Such architecture is efficient because clusters

can be highly specialized units of nodes that are densely connected,

and information can be exchanged between clusters via their long-

range connections (Milgram 1967; Watts and Strogatz 1998; Albert and

Barabási 2002; Newman 2003; Sporns et al. 2004, 2005). Several studies

have shown that networks extracted from imaging data contain the

small world property (e.g., Achard et al. 2006; Bassett and Bullmore

2006; He et al. 2008; van den Heuvel et al. 2008; Gong et al. 2009). The

anatomical architecture of the macaque and cat cortex based on tracer

studies is also small world (Sporns and Zwi 2004).

Betweenness Centrality

BC Quantifies the fraction of shortest paths sj,m between nodes vj and

vm that run through a node vi in the total network G (Freeman 1977):

BC
�
i
�
= +
j 6¼m 6¼i2G

sj ;mðiÞ
sj ;m

: ð10Þ

The BC of a graph is the average over all nodes.

Finally, hubs were defined as nodes with a degree and/or BC value

higher than one SD above the corresponding average value in the

network.

Reproducibility
The intraclass correlation coefficient (ICC) was used to estimate the

reproducibility of all graph theoretic measures. McGraw and Wong

(1996) defined the ICC as the ratio of the variance between subjects

(r2
between) to the total variance in test scores (r2

between
+r2

within):

ICC=r2
between

��
r2
between

+r2
within

�
: ð11Þ

The within-subject variance (r2
within) gives an indication of measure-

ment error between repeated measurements. The ICC is close to 1 if

the measurements of 2 repeated scans are consistent for each subject

in the sample. Computation of the ICC was performed in R version 2.10

(http://cran.r-project.org, using the ‘‘irr’’ package).

Results

Threshold

The threshold used in the binarization process corresponded

to a P value of 0.05 corrected for multiple comparisons with an

FDR (Benjamini and Hochberg 1995; Benjamini and Yekutieli

2001; Noble 2009). Using this threshold ensured that there was

the same chance of including maximally 5% spurious con-

nections in any network. None of the networks had isolated

nodes, in other words, all the networks were fully connected.

The binarized anatomical connection matrices had an average

sparsity of 23% (SD = 1%, over runs and over subjects).

Graph Properties of the Individual Networks

For the first time, this method permitted the investigation of

morphological networks extracted from individual brains.

Initially, to assess whether the extracted networks were small

world, their average clustering coefficient and average mini-

mum path length were compared with those from the random

networks. Figure 2a shows that the individual clustering

coefficients of the extracted networks were higher than those

from the randomized networks (one-sided paired t-tests, range

of t values: min = 55.78; max = 147.92; all P < 2.2 3 10
–16).

Figure 2b shows that the individual average minimum path

lengths were significantly higher than those from the random

networks (two-sided paired t-test, t values range: min = 56.11;

max = 88.57; all P < 2.2 3 10
–16). In addition, because the ratio

of the average path lengths of the extracted and random

networks was close to 1 (range k: min = 1.04; max = 1.06), all

networks had the small world property. To demonstrate that

the individual measures can be combined into a single group

measure, the clustering coefficient and minimum path length

averaged over all individuals are shown in Figure 2c,d. Similar to

Figure 2. A network contains the small world property when its clustering
coefficient is higher than random networks while its path length is similar. We plotted
the average clustering coefficient (a) and minimum path length (b) for the individually
extracted networks (gray) and their randomized versions (black). The stars indicate
a significant difference of P\ 0.05 tested with a paired t-test between a network
and the average nodal values of its corresponding random network. Next, we plotted
the average clustering coefficient and minimum path length averaged over all
networks (c) and their randomized versions (d). All networks had the small world
property. The stars indicate a significant difference with P\ 0.05 tested with paired
t-tests between the average network values and their random networks.
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the individual cases, the clustering coefficient averaged over

subjects was higher than the random clustering coefficients

(one-sided paired t test: t13 = 15.73, P = 3.83 3 10
–10). The

minimum path length averaged over subjects was also higher

than the random path length (two-sided paired t-test: t13 =
30.73, P = 1.60 3 10

–13). However, the ratio was close to 1

(mean k = 1.05, SD = 0.01), thus demonstrating that the

networks were small world.

Because the current analysis was performed in native space, all

networks differed in size. Previous studies have shown that

network properties are dependent on the number of nodes, the

degree, and the sparsity of a network (e.g., He, Chen, et al. 2007;

Bassett et al. 2008, 2010; He et al. 2008; Fornito et al. 2010; van

Wijk et al. 2010; Zalesky et al. 2010). To investigate such

relationships, we computed pairwise correlations between all

network measures (see Supplementary Table 1). Briefly, larger

networks had a larger average degree (r = 0.96, P = 4.12 3 10
–8),

a smaller minimum path length (r = –0.59, P = 0.03), and a higher

betweenness coefficient (r � 1, P = 2.37 3 10
–14). Furthermore,

sparsity had a strong positive relationship with the clustering

coefficient (r = 0.91, P = 5.75 3 10
–6) and the small world

property (r = 0.61, P = 0.02), similar to results previously reported

in other studies (e.g., He et al. 2008). There was, however, no

relation between sparsity and the number of nodes or degree.

To investigate whether the present method produced

networks with properties comparable to previous studies, we

summarized in Table 1 all the morphological studies that

reported network properties in healthy individuals that we are

aware of (He, Chen, et al. 2007, 2008; Bassett et al. 2008;

Sanabria-Diaz et al. 2010; Yao et al. 2010; Zhu et al. 2010) for

a sparsity similar to that found in our study (23%). As all

morphological studies have a smaller network size than the

present study, only the clustering and small world coefficients

can be compared directly with our study since these measures

were significantly related to the sparsity and not to the size of

the networks. In addition, we included studies that extracted

networks of a comparable size to the present study from

functional (Eguı́luz et al. 2005; van den Heuvel et al. 2008;

Zhang et al. 2009, 2010; Fornito et al. 2010; Hayasaka and

Laurienti 2010) and white matter MRI (Hagmann et al. 2007;

Zalesky et al. 2010). Their network properties were summa-

rized for a sparsity of approximately 23% when this level was

available and otherwise for the maximum sparsity.

Only two studies in Table 1 reported networks that were

comparable to the present study in both size and sparsity (van

den Heuvel et al. 2008; Fornito et al. 2010). These 2 functional

MRI studies were highly similar to the present study over all

network properties. This suggests that correlations in resting-

state functional MRI are organized similarly to our intracortical

morphological correlations.

When comparing the present study with other morphometric

studies, its clustering coefficient (0.53) was slightly higher than

previously reported values (min = 0.25; max = 0.49). The value of

the small world property of the present networks (1.28) fell

within a small range of previously reported values (min = 1.17;

max = 1.47), suggesting that intracortical similarities might be

organized similarly to correlations in thickness or volume

between cortical areas assessed over subjects.

The present small world property was strikingly lower than

the remaining functional studies (Eguı́luz et al. 2005; Zhang

et al. 2009, 2010; Hayasaka and Laurienti 2010) and 2 white

matter studies (Hagmann et al. 2007; Zalesky et al. 2010).

Finally, Table 1 shows that the property values of morpholog-

ical networks varied within a narrow range, while those from

functional and white matter MRI varied over a wider range

(e.g., the small world values ranged between 1.28 and 168.54).

Table 1
Graph measures from our study and for comparison from other morphological, functional, and white matter MRI network studies

Study N C L c k r s (%)

Morphological
Present study (n 5 14) 6982 0.53 1.86 1.35 1.05 1.28 23
He, Chen, et al. (2007) (n 5 124), cortical thickness 52 nr nr �1.5 �1.15 �1.3 �23
He et al. (2008) (n 5 97), cortical thickness 54 �0.3 �1.6 �1.35 �1 �1.35 23
Bassett et al. (2008) (n 5 259), gray matter volume 104 �0.25 nr nr nr �1.18 23
Sanabria-Diaz et al. (2010) (n 5 186), comparison of cortical thickness and
cortical surface descriptors.

82 AAL—Area �0.3 �1.81 nr nr �1.28 22
56 Jacob—Area �0.28 �1.84 nr nr �1.23 22
82 AAL—Thickness �0.29 �1.81 nr nr �1.23 22
56 Jacob—Thickness �0.27 �1.84 nr nr �1.18 22

Yao et al. (2010) (n 5 98), gray matter volume 90 �0.49 �1.89 �1.62 �1.1 �1.47 23
Zhu et al. (2010) (n 5 428), gray matter volume 90 (AAL) �0.26 nr �1.20 �1.03 �1.17 23
MRI studies that analyzed networks with N[1000
Functional
Eguı́luz et al. (2005) (n 5 7), Averaged values over 2 tasks; finger-tapping
task and listening to music

4891 0.15 6.0 168.54 1 168.54 0.08

van den Heuvel et al. (2008) (n 5 28), resting-state functional MRI 0.01--
0.09 Hz

10 000 �0.52 �1.75 �1.9 �1.03 �1.85 20

Zhang et al. (2009) (n 5 1), finger movement task 1397 0.54 2.59 11.25 1.3 8.65 4.80
Fornito et al. (2010) (n 5 30), resting-state functional MRI 0.04--0.08 Hz 4320 �0.62 �1.9 �1.35 � 1.06 �1.28 20
Hayasaka and Laurienti (2010) (n 5 10), resting-state functional MRI
0.009--0.08 Hz

16 000 0.24 3 �7 �1.22 6 0.79

Zhang et al. (2010) (n 5 4), finger movement task 2255 0.46 5.39 26.74 2.14 12.50 1.44
White matter
Hagmann et al. (2007) (n 5 1), DSI 4052 0.3 3 20 1 20 0.61
Zalesky et al. (2010) (n 5 3), comparison of DTI and HARDI 4000 DTI �0.28 �8.85 111.7 1.8 62.05 �0.25

4000 HARDI �0.24 �6.15 77.5 1.4 55.36 �0.28

Note: N, the number of nodes in the networks; C, the average cluster coefficient; L, the average minimum path length; c, the ratio of the networks cluster coefficient and that of its randomized version; k,
the ratio of the average minimum path length of the network and that of its randomized version; r, the small world coefficient (c/k); and finally, s, the sparsity of the network in percentage connections.
nr is ‘‘not reported’’. AAL is the Automatic Anatomical Labeling atlas (Tzourio-Mazoyer et al. 2002). We tried to get measurements for the network values that corresponded to a similar sparsity as the

present study (23%), if this was not possible, we chose the maximum sparsity available. We did not include the studies by van den Heuvel et al. (2009), Yuan et al. (2010), Telesford et al. (2010), and

Fransson et al. (2011) that also investigated network sizes of[1000 because they did not report network sparsity or network property values.
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In particular, the value of c in those studies was 1--100 times

higher than in our study (min = 1.35; max = 168.54), resulting

in higher values for r. This variation might be explained by

differences in procedures used to construct random networks

but also by the low sparsity of these networks (min = 0.08%;

max = 0.79%) in comparison with the present study (23%).

Since the functional and white matter networks are compara-

ble in size, this leaves an interesting question as to whether

keeping sparsity constant would give rise to more similar

networks across different scanning modalities.

Spatial Distribution of the Degrees within the Networks

We tested how the spatial distribution of the number of

connections (i.e., degree) of the nodes in a network compared

with the distribution reported in a previous study that derived

cortical thickness correlations between anatomical areas in

groups (Lerch et al. 2006). In that study, the associative

cortices were found to have the highest correlations in

thickness with other regions of the brain. Figure 3a shows

for each of the 14 subjects a slice from the medial right

hemisphere with the standardized degree for all cubes

resulting in a spatial distribution of the degree values. Each

square is a side of a cube, with warmer colors indicating

a higher degree. The figure shows that all individuals had

a unique spatial distribution of the degree values. To

demonstrate that it is possible to combine these networks

into a single group network, the average of the individual

patterns was plotted after warping these to a standard space

and averaging standardized degree values over subjects (Fig.

3b). Finally, we also used the SPM tool SurfRend to plot the

group result on an inflated surface (Fig. 3c, thresholded for

computational reasons to include just the hubs, i.e., nodes with

Figure 3. (a) A plot of the degree of all cubes for one slice (right medial hemisphere) from each individual subject. The degrees were standardized by their maximal value.
Warmer colors indicate that a cube has more structural similarities with other cubes in the brain than cubes with cooler colors. (b) Shows the group average of the degree
patterns after warping to standard Montreal Neurological Institute space, which supports that most subjects have hubs along the right medial surface of the brain. (c) Shows the
spatial distribution of hubs (nodes with a degree higher than one SD above the mean) averaged over all 14 subjects and plotted on a surface. To quantify the spatial degree
distribution, we plotted the average percentage of hubs for both hemispheres based on the degree (d) and on the BC (e) for 26 anatomical areas (Supplementary Table 2 lists full
names). Each symbol and color combination in all bar plots represents an individual percentage of hubs in that area.
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a degree higher than one SD above the mean). We further

quantified the individual spatial degree patterns by assessing

the spatial distribution of hubs over 26 distinct anatomical

areas per hemisphere extracted with an anatomical mask

(constructed with the WFU Pick-Atlas, http://www.fmri.w-

fubmc.edu, Advanced Neuroscience Imaging Research Core.

See Supplementary Table 2 for a list of the anatomical areas,

their abbreviations, and sizes). The anatomical mask incorpo-

rated approximately the same regions as used in previous

studies that extracted morphological networks using cortical

thickness (He, Chen, et al. 2007; Chen et al. 2008; He et al.

2008). The mask was warped to the individual native spaces,

using the inverted parameter matrices from normalization of

the scans to standard space. Next, for each subject, the degree

hubs (nodes with a degree higher than one SD above the mean,

within a subject) were identified, and the percentage of hubs

was calculated for each anatomical area. The bar plot in Figure

3d confirms that on average 77% of the hubs were located in

the prefrontal (superior, medial, middle, and inferior frontal

gyri, precentral gyrus), the cingulate posterior regions (post-

central gyrus and precuneus), and the insula and temporal

areas (superior, transverse, and middle temporal gyri). For

comparison with other studies, we also plotted the spatial

distribution of the hubs for BC in Figure 3e (hubs defined as

having a BC value that is higher than one SD above the mean

BC), which resulted in a similar spatial distribution with 77% of

the hubs in the same areas as Figure 3d. In Table 2, these areas

are summarized with their corresponding average degree and

BC. Table 2 also indicates other studies that found the same

areas with structural MRI using cortical volume (Bassett

et al. 2008) or cortical thickness (He, Chen, et al. 2007; Chen

et al. 2008), white matter (Iturria-Medina et al. 2008; Gong et al.

2009), and functional MRI (Achard et al. 2006; Buckner et al.

2009). Our hub areas have all been reported by at least one of

the studies above. However, we found a strong relationship

between the percentage of hubs and the region size in both

hemispheres (left hemisphere: r = 0.95, P = 1.72 3 10
–13; and

right hemisphere: r = 0.95, P = 1.65 3 10
–13), which might

explain why these areas were also reported as hubs in other

studies (also see: Bassett et al. 2010).

Reproducibility of the Measures

Finally, we assessed the robustness of the method by measuring

the network metrics for scans that were acquired at 2 different

time points in Figure 4. The number of nodes was highly stable

(ICC = 0.98, P = 3.48 3 10
–11, Fig. 4a), as was the mean degree

(ICC = 0.92, P = 2.11 3 10
–7, Fig. 4b) and the BC (ICC = 0.98, P =

4.97 3 10
–9, Fig. 4f). The mean path length (ICC = 0.77, P = 2.47

3 10
–4, Fig. 4c), mean clustering coefficient (ICC = 0.59, P = 8.33

3 10
–3, Fig. 4d), and the small world property (ICC = 0.60, P =

0.007, Fig. 4e) were also reproducible, supporting the

robustness of the method for the number of nodes, the mean

degree, and the BC and demonstrating moderate reliability for

the mean path length, mean clustering coefficient, and the

small world property. The reproducibility of the degree,

average minimum path length, and the betweenness coefficient

might reflect their relationship with the number of nodes.

Discussion

We have presented a new method to statistically describe gray

matter from individual T1-weighted MRI scans. The method was

used to construct networks for individual cortices, where the

nodes represented small 3D areas that were connected by

computing intracortical similarities in gray matter morphology.

With the use of simple statistics from graph theory, we found

that all networks had the small world property because they

had a higher clustering coefficient than random networks and

a similar minimum path length. All individual networks also

showed intersubject variability that was most evident in the

spatial distributions of the degree values. The values of the

clustering and small world coefficients were similar to other

morphological networks measured at a comparable sparsity

level (He, Chen, et al. 2007, 2008; Bassett et al. 2008; Sanabria-

Diaz et al. 2010; Yao et al. 2010). All network property values

were highly similar to 2 resting-state functional MRI networks

of comparable size and sparsity (van den Heuvel et al. 2008;

Fornito et al. 2010). However, in comparison to the other

functional (Eguı́luz et al. 2005; Zhang et al. 2009, 2010;

Hayasaka and Laurienti 2010) and white matter MRI studies

(Hagmann et al. 2007; Zalesky et al. 2010), all the property

values (apart from the clustering coefficient) were lower in the

present networks. Finally, the graph theoretic properties were

reproducible, supporting the robustness of the method.

Spatial Distribution of Hubs

The spatial distribution of the hubs (nodes with a high degree)

in our networks showed a striking similarity with the spatial

distribution of hubs based on correlations in cortical thickness

(Lerch et al. 2006). It is important to note that in our study, the

spatial distribution of degree values was measured for each

individual separately, while the cortical thickness study

computed correlations between anatomical areas using obser-

vations from different people. Possibly, the similarity of gray

matter morphology within an individual brain could contribute

to cortical thickness correlations found in the group data.

In the present study, the hubs were mostly located along the

cortical midline. This spatial distribution has a remarkable

Table 2
Hub regions based on degree and BC and comparison with previous studies

Area Av. %
hubs

Av. BC
310�4

Av. deg
310�3

Other studies

CINGr 11.98 1.99 2.76 b2, c2
SFGr 11.76 1.8 2.75 a1, b1, b2, c1,c2, c3
SFGl 11.23 1.77 2.74 a1, b1, b2, c3
MFGl 10.41 2.19 2.74 a1, a2, b2
MFGr 9.89 1.84 2.73 a1, a2, b1, b2, c2
stTGl 9.18 2.05 2.74 a1, b2
CINGl 8.49 1.96 2.73 a2, c2
MidFGr 8.1 2.14 2.74 a1, a2, c2, c3
stTGr 7.7 1.93 2.74 a1, c1,b3
MidFGl 7.28 1.74 2.75 a1, a2, b2, c2, c3
IFGl 7.06 1.55 2.73 a1, a2, c1, c2, c3
IFGr 6.96 1.59 2.74 a1, c2, c3
MTGl 6.84 1.9 2.72 a1, a2, b2, c3
MTGr 6.5 1.94 2.75 a1, a2, b2, c1, c2, c3
PRcGl 4.78 1.48 2.74 a1, b2, c1, c2, c3
PRcGr 4.16 1.51 2.75 a1, b2, c1, c2, c3
INSl 4.06 1.75 2.73 b1
POcGl 3.9 2.42 2.73 a1, b2, c3
PCUr 3.81 1.52 2.75 a1, a2, b1, b2
PCUl 3.77 1.59 2.74 a1, a2, b1, b2

Note: Av. denotes average, BC, the betweenness centrality, and deg., the degree. We compared

our results with a1 Functional study: Achard et al. (2006), a2 Functional study: Buckner et al.

(2009), b1 DTI study: Gong et al. (2009), b2 DTI study: Iturria-Medina et al. (2008), c1

Morphological study: Chen et al. (2008), c2 Morphological study: Bassett et al. (2008), and c3

Morphological study: He, Chen, et al. (2007).
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overlap with the default mode network of brain function

(Raichle et al. 2001) that includes dorsal medial frontal regions

(BAs 8, 9, 10, and 32), superior and middle frontal gyri (BAs 8, 9,

and 10), the medial posterior cingulate (BAs 30 and 31), the

precuneus (BA 7), the paracentral lobule (BA 5), inferior

parietal regions (BAs 40, 39, and 7), the angular gyri (BAs 19

and 39), and inferior frontal areas (BAs 10 and 47). These

regions have shown decreased activation during attention

related tasks but show tonic activation during rest. Recently,

robust structural connections between some of these regions

were found in combined functional and DTI studies, further

supporting the idea that functional connectivity might reflect

structural connectivity (Skudlarski et al. 2008; Greicius et al.

2009; also see Honey et al. 2009). Our networks showed similar

properties to 2 resting-state functional MRI network studies of

comparable size and sparsity (van den Heuvel et al. 2008;

Fornito et al. 2010), also suggesting an overlap between the

organization of intracortical similarities and functional corre-

lations in the brain. It would be interesting to investigate how

similarities in gray matter morphology might be related to

functional coactivation within individuals.

Intracortical Similarities

We can only speculate about the mechanisms that underlie

morphological similarities in the cortex and their relationship to

connectivity. One possible explanation comes from the axon

tension theory proposed by van Essen (1997). He posited that

axons between connected cortical areas cause a mechanical

force, resulting in a tension that pulls connected areas together,

whereas areas that are not connected simply drift apart. Several

predictions resulting from the axon tension hypothesis have

been demonstrated in monkey and human brains. Hilgetag and

Barbas (2005, 2006) showed with a series of tracer studies in

monkey brains that axonal tension shifts cortical layers resulting

in either thinner (heavily pulled on) or thicker cortex, as

predicted by van Essen (1997). In the human brain using

structural MRI, Im et al. (2006) found that cortical thickness and

folding area could account for 50% of the variance in fractal

dimension (i.e., an indication of repetition of structure at

different spatial scales) of the cerebral cortex. They suggested

that a high fractal dimension, combined with a thinner and more

convoluted cortex, is in keeping with the axon tension theory.

Finally, Casanova et al. (2009) reported that in comparison to

controls, people with autism had a reduced gyral window, which

is measured by the depth of gyral white matter and gives an

indication of the space available for connections to and from the

cortex. This measure was correlated with abnormalities in

microcolumnar arrangement of neurons.

The above research indicates that connectivity of the brain

can have an effect on its morphology. Even if intracortical

similarities in gray matter morphology do not have a clear direct

relationship with anatomical connectivity, it does provide

a concise description of the structure of individual cortices.

Methodological Issues and Future Research

The nodes of the networks had a fixed resolution that was

based on the lowest possible scale that can measure both

folding and thickness (Kiselev et al. 2003), combined with

a voxel size that is generally used in functional MRI studies. In

future research, we want to find out how different spatial

resolutions will influence the results.

Another limitation is the rigid extraction of the cubes that

might not optimally correspond to the convolutions of the

brain. Further studies will aim at addressing this issue.

Figure 4. Reproducibility plotted for 2 scans of each subject, represented by a unique symbol and gray shade combination for all the measures: (a) the number of nodes, (b) the
mean degree, (c) mean path length, (d) mean clustering coefficient, (e) the small world property (sigma), and (f) the BC. The value of the ICC is indicated above each plot, with its
corresponding P value. All the measures were reproducible for a P\ 0.05, indicating that the method is robust.
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The number of nodes and the average degree influence the

network property values, as shown here and in recent studies

(He, Chen, et al. 2007; Bassett et al. 2008, 2010; He et al. 2008;

Fornito et al. 2010; van Wijk et al. 2010; Zalesky et al. 2010). As

a consequence, the fact that the number of nodes was highly

stable over time might have caused the stability of the degree,

average minimum path length, and the betweenness coeffi-

cient. In general, such intricate relationships greatly complicate

the comparison of networks, when everything but the network

property of interest should be held constant. However, this is

not always possible. With our approach, the number of nodes

could not be kept constant because the subjects were analyzed

in native space to keep their individual variability intact. But

even when warping individual brains to a standard space where

the same number of nodes are defined for all individual

subjects, some nodes might not be present in their native space

(or might consist of a slightly different combination of gyri and/

or sulci; e.g., Paus et al. (1996) showed in a sample of 247

subjects that a small percentage of them did not have

a paracingulate sulcus in either the left (8%) or the right

(15%) hemisphere). In addition to the number of nodes, the

number of edges in a network could be kept constant.

However, such a procedure will introduce spurious connec-

tions because edges might not exist in some individuals. We

tried to avoid different rates of spurious connections between

individuals, by ensuring that all individual networks had the

same 5% chance of spurious connections. A disadvantage of this

approach is that it can result in different spatial degree

distributions for all individuals. How to compare such different

networks raises important methodological issues that deserve

more attention (Sporns et al. 2005; Rubinov and Sporns 2010;

van Wijk et al. 2010) but lie outside the scope of the present

study. The present method contributes to solving these issues,

by offering an approach that can be applied to different

modalities to extract networks in a similar manner per

individual or group.

Addition of noise to the data was limited by keeping the MRI

scans in their native space, but voxels might still have been

assigned to the incorrect tissue class during segmentation (e.g.,

due to partial volume effects). However, as the method mostly

concerns the spatial relationship between voxels within small

cortical areas, these errors should not have a prominent effect

on the results. Addition of noise to the data was further limited

by using only angles that did not require interpolation to

correct for rotation when computing the correlation co-

efficient. A simulation study (with the use of a simplified model

to represent structural MRI, see Supplementary Figure 1)

estimated that approximately 1% of the similarities could have

been missed using just these angles.

The spatial distribution of the degree and BC hubs showed

a strong positive relationship with the size of an anatomical

region. This relationship might explain why those regions have

been indicated as hubs in other studies as well. This illustrates

how a priori anatomical templates can influence results and

that it is important to develop alternative anatomical parcella-

tion schemes that lead to similarly sized anatomical regions

(e.g., see Hagman et al. 2007; Meunier et al. 2009; Zalesky et al.

2010). Our method does not require a priori parcellation

schemes, and therefore, the results can be easily projected on

any other alternative.

Because the scans can be processed in their native space, the

method would be particularly suited to study connectivity

patterns in subtle neuropsychiatric disorders that do not show

gross disruptions in brain structure. In this case, small changes or

cortical abnormalities could be filtered out during warping

procedures. Most importantly, now the morphology of gray

matter can be described for each individual separately, while

groups could be compared by averaging the descriptive statistics

without the need to warp individual brains to a standard space

or to use a prior model to define anatomical areas.

The subjects were scanned twice within a 6-month period,

and the results indicated that network property values were

stable over that period. We have interpreted this result as an

indication of the robustness of the method since it was

assumed that the structure of subjects’ brains would be stable

over such a period. However, some studies have shown that

gray matter volume can change over time as a result of training

or experience (Andrews et al. 1997; Draganski et al. 2004;

Mechelli et al. 2004; Hyde et al. 2009; but also see Thomas et al.

2009). Even though the present study did not include any

learning or training tasks, we cannot exclude that such effects

might have influenced the results. It would be interesting to

investigate whether the proposed method could find such

subtle differences with a controlled experiment.

Our method shows some resemblance to methods that

compute the fractal dimension (see e.g., Chuang et al. 1991;

Bullmore et al. 1994; Free et al. 1996; Kiselev et al. 2003; Im

et al. 2006; Jiang et al. 2008). Those methods result in one value

per individual, the fractal dimension, which indicates whether

structures are repeated at different spatial scales. By assessing

intracortical similarities within a spatial scale, we have shown

that it is possible to represent the morphology of the cortex as

a network. An important next step would be to investigate how

intracortical similarities contribute to the fractal dimension by

using different spatial resolutions for the cubes.

To conclude, it would be interesting to study how changes

in functional connectivity and in the morphology of the brain

interact. Dysfunctional connectivity between brain regions

seems to be at the core of many mental diseases, such as

schizophrenia (e.g., Friston and Frith 1995; Friston 1998;

Stephan et al. 2009) and autism (e.g., Belmonte et al. 2004).

Although studies have established that both functional and

structural MRI seem to be different in disease than in health,

the interaction of structural and functional changes is not well

understood. Our method could contribute to further un-

derstanding of such interactions by combining individual

anatomical networks with individual functional imaging data.

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/
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