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Attention causes diverse changes to visual neuron responses, including
alterations in receptive field structure, and firing rates. A common the-
oretical approach to investigate why sensory neurons behave as they
do is based on the efficient coding hypothesis: that sensory processing
is optimized toward the statistics of the received input. We extend this
approach to account for the influence of task demands, hypothesizing
that the brain learns a probabilistic model of both the sensory input and
reward received for performing different actions. Attention-dependent
changes to neural responses reflect optimization of this internal model
to deal with changes in the sensory environment (stimulus statistics)
and behavioral demands (reward statistics). We use this framework to
construct a simple model of visual processing that is able to replicate
a number of attention-dependent changes to the responses of neurons
in the midlevel visual cortices. The model is consistent with and pro-
vides a normative explanation for recent divisive normalization models
of attention (Reynolds & Heeger, 2009).

1 Introduction

Attention plays an important role in sensory perception, improving one’s
perceptual performance at detecting attended stimuli, at the expense of
a reduction in performance for other stimuli (Pestilli & Carrasco, 2005).
A large body of work has been devoted to identifying the neurophysi-
ological changes underlying attention-dependent changes in perception
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(Reynolds & Chelazzi, 2004). A central finding has been that in the striate
and extrastriate visual cortex, the firing rate of neurons tuned toward
attended spatial locations or features is increased (Reynolds, Pasternak, &
Desimone, 2000). Taken alone, this result appears to paint a simple picture:
that attention acts to optimize sensory processing toward attended stimuli
by increasing the sensitivity of sensory neurons that are tuned toward
these stimuli. However, on closer inspection of the experimental data, it
becomes clear that this picture is overly simple. In addition to increasing
neural firing rates, visual attention can also suppress responses (Reynolds,
Chelazzi, & Desimone, 1999), alter receptive field properties (Womelsdorf,
Anton-Erxleben, Pieper, & Treue, 2006), and influence center-surround
suppression from a stimulus placed outside the classical receptive field
(Sundberg, Mitchell, & Reynolds, 2009). Furthermore, the effects of atten-
tion are highly sensitive to the experimental setup, with changes in the
sensory stimulus and behavioral task giving rise to qualitatively different
attention-depend changes in neural responses.

Recently several divisive normalization models have been proposed that
are able to account for many of the experimentally observed effects of
attention in the low to midlevel visual cortices (Reynolds & Heeger, 2009;
Lee & Maunsell, 2009; Ghose, 2009). While the details of these models vary,
the firing rate of a neuron is generally computed by dividing its feedforward
excitatory input by the summed activity of a pool of neurons with similar,
but differing, stimulus selectivities. These models explain why attention
can facilitate or suppress the response of a given neuron, depending on
how it alters the neuron’s excitatory input, versus suppression from other
neurons. They also provide a potential explanation as to why small changes
in the behavioral task can produce qualitatively different types of attentional
modulation. For example, if the task requires the animal to attend to a small
region of visual space, then the principal effect of attention will be to alter
the feedforward input to a neuron that is tuned to this location, giving
rise to simple multiplicative changes in its firing rate. Alternatively, if the
task requires the animal to direct its attention toward a broader region
of space, then attention will alter the activity of neurons tuned to nearby
spatial locations also, increasing both the inhibitory and excitatory input to
a neuron that is tuned to the center of the attended spatial region. As a result,
the neuron will undergo a more complex form of attentional modulation
that cannot be explained by a simple multiplicative change in its firing rate.

A limitation of divisive normalization models of attention is that the
modulatory effect of attention on the feedforward input to each of the
neurons in the network has to be specified explicitly by the modeler rather
than being predicted directly from the behavioral task and presented visual
stimuli. To avoid this limitation, we need a theory that can explain why,
rather than just how, attention alters sensory neural responses as it does.

Several researchers have proposed that attention-dependent changes to
sensory neural responses can be understood within a normative Bayesian
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framework as a consequence of performing optimal inferences about the
state of the world (Dayan & Zemel, 1999; Rao, 2005; Chikkerur, Serre, Tan,
& Poggio, 2010; Yu & Dayan, 2005; Yu, Dayan, & Cohen, 2009; Dayan &
Solomon, 2010; Whiteley & Sahani, 2012). These models hypothesize that
changes to the attentional state of the animal correspond to changes in their
prior beliefs about the world, which in turn alter how incoming sensory
signals are used to infer which stimuli are present. Recently Chikerrur et al.
(2010) showed that given certain assumptions about how probabilistic in-
ference is performed in the brain, increasing one’s prior belief that certain
(attended) stimuli will be presented produces qualitatively similar changes
to neural firing rates as divisive normalization models of attention. How-
ever, Chikerrur et al. specified explicitly the attention-dependent changes to
the prior without providing a normative explanation for why these changes
come about. Indeed a general problem of Bayesian models of attention is
that it is often not clear why the animal should alter its prior beliefs, de-
pending on the behavioral task that it is performing. Specifically, in the case
where attention is manipulated by changes to the behavioral task (i.e., by
manipulating which stimuli are important in determining the action that
the animal should perform; Pestilli & Carrasco, 2005; Luck, Chelazzi, Hill-
yard, & Desimone, 1997), rather than by the presented stimulus statistics
(i.e., by manipulating which stimuli are most likely to be presented (Pos-
ner, Snyder, & Davidson, 1980; Downing, 1988) there is no clear normative
reason that the animal should alter its prior beliefs about which stimuli are
most likely to be presented.

Here, we extend previous Bayesian models of attention to account for
task-dependent modulation of sensory neural responses. We hypothesize
that the nervous system learns an internal model describing how both the
sensory input and the reward received for performing different actions are
generated by a common set of explanatory causes (Sahani, 2004). Within
this framework, the behavioral task will alter visual neuron responses only
when there is some mismatch between the organism’s internal model of
the sensory input and the external environment. We argue that due to
the complexity of real-world environments, this is often the case. Faced
with such a model mismatch, we propose that attention modulates visual
processing in order to improve the organism’s predictions of the received
reward, at the possible expense of their learning a worse model of the
stimulus statistics.

We implement a simple model of visual processing to illustrate how
our framework can be used to predict attention-dependent changes to vi-
sual neuron responses. For our simulations, we assume a particular type of
model mismatch in which the image features that are relevant to the task
are smaller than the image features used by the agent to perform the task. In
common with previous Bayesian models of attention, we assume that atten-
tion alters the internal model in a computationally simple way: varying the
prior probability that image features are present while leaving other aspects
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of the model unchanged. Given certain assumptions about the form of the
internal model and how probability distributions are encoded by the sen-
sory neural population, our model predicts attention-dependent changes to
visual neuron responses that are consistent with a number of experimental
observations in midlevel regions of the visual cortex, including modulation
of contrast response functions, sensory tuning curves, and center-surround
interactions. Our model is consistent with and provides a normative expla-
nation for previous divisive normalization models of attention (Reynolds
& Heeger, 2009; Lee & Maunsell, 2009; Ghose, 2009).

2 Overview of Modeling Approach

2.1 General Framework. A large body of research is based on the idea
that the visual system learns a probabilistic model of natural image statistics,
in which a set of hidden causes is assumed to generate received sensory
signals (Hyvärinen, 2010). We extend this framework to consider visual
processing within the context of a simple task, where a biological agent has
to perform actions (motor commands or perceptual judgments) in order to
receive a reward. To perform the task, the agent must be able to predict the
reward associated with each possible action. We hypothesize that it does
this by learning a probabilistic model that describes how both the sensory
input and reward received for performing an action are generated by a
common set of hidden causes (Sahani, 2004). This internal model is used
to infer the hidden causes that generated its received sensory input and,
consequently, to predict the reward associated with each action.

In most statistical models of visual processing, the agent’s internal model
is learned in an unsupervised manner based on the statistics of received sen-
sory signals (Hyvärinen, 2010). We propose that in addition, the internal
model is continuously adapted based on received sensory signals and re-
ward in order to optimize performance for the task at hand. As well as
influencing behavioral performance, changes in the internal model will
also influence perceptual inference, altering the agent’s internal represen-
tation of sensory stimuli. As a result, the activity of visual neurons will
vary dynamically in response to changes in both reward contingencies and
presented stimulus statistics. Here, we propose that this task-dependent
optimization of the agent’s internal model can account for experimentally
observed changes in visual neuron responses normally attributed to selec-
tive attention.

2.2 When Do Task Demands Alter Visual Processing? The responses
of visual neurons to a given stimulus can be manipulated by changes in
the stimulus statistics (determining which stimuli are expected; often com-
municated by visual cues) (Posner et al., 1980) or the reward delivered for
performing each action (determining which stimuli are deemed relevant
to the task) (Pestilli & Carrasco, 2005). In our theoretical framework, the
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agent’s internal model of the stimulus statistics is coupled to its internal
model of reward. Thus, perceptual inference can be altered by changes
to both the stimulus and reward statistics. In contrast, previous Bayesian
models of visual processing, in which the agent’s internal model is learned
and adapted based on the stimulus statistics alone, can account only for
changes in perception due to changes in the stimulus statistics.

For the agent’s internal model of the sensory input statistics to be altered
by the reward structure of a task, there must be some mismatch between its
internal model and the external environment (i.e., if the internal model is al-
ready a perfect description of the world, it cannot be further optimized). We
postulate that due to the complexity of real-world environments, this will
often be the case. For our simulations, we assume that the image features
relevant to the task are more spatially localized than the image features used
by the agent to choose which action to perform. Such a model mismatch
might occur because the agent tries to learn a simple model of the behav-
ioral task, in which the actions that it should perform depend on a small
number of spatially distributed image features. While useful in allowing
the agent to quickly learn new tasks, this model structure could result in
suboptimal performance in experiments that use very simple or spatially
localized stimuli (e.g., orientated gratings or coherent motion).

3 Methods

We constructed a simple model to illustrate how changes in the reward
structure of a task alter visual processing. We use this model to show in
principle how experimentally observed attention-dependent changes to vi-
sual neuron responses can be interpreted functionally, as a consequence
of optimal adaptation toward a given task. In the following sections, we
describe the presented stimuli and task, the agent’s internal model, and
the neural code. Supplementary section 1 (available online) describes the
model assumptions in detail and how they influence our results.

3.1 Visual Detection Task. In many experimental investigations of
goal-directed visual attention, a monkey is instructed (often using a vi-
sual cue) that a particular spatial location is task relevant and thus should
be attended. In order to receive a reward in the task, the animal is required
to make responses that are contingent on stimuli presented at this location,
while ignoring distractor stimuli presented at other locations (Luck et al.,
1997; Reynolds et al., 2000; Williford & Maunsell, 2006). To capture the
main aspects of these experiments, we simulated a visual detection task, in
which an agent is presented with one or more stimuli at various locations
and has to report whether a stimulus is present at a single target location (see
Figure 1). The agent receives a unitary reward for a correct response in the
task and no reward otherwise.
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Figure 1: Schematic of the detection task. Presented stimuli (y) are represented
by binary variables, each indicating whether a stimulus is present at a particular
location. Stimuli combine to produce the noisy sensory input (x; solid curve).
One or more locations are selected as target locations in the detection task
(the target is unknown to the agent at the start of the task). The agent gives
a response (a) indicating whether a stimulus is present at a target location,
based on its sensory input and learned model of reward. Correct responses are
followed by a reward (r). The inset is the corresponding graphical model of the
task.

In each attentional condition, stimuli are equally likely to be presented at
all locations. The only thing that distinguishes stimuli presented at different
locations is whether a reward is delivered for making a detection response.
The agent must use this feedback on its performed actions to learn the target
location (by adapting the reward model) and to direct attention toward the
target (by adapting its sensory model).

The sensory input statistics are described by a binary latent variable
model (Puertas, Bornschein, & Lücke, 2010). Presented stimuli are repre-
sented by binary hidden variables (yi ∈ {0, 1}), with each variable represent-
ing a different spatial location (e.g., yi = 1 would indicate that a stimulus is
present at the ith spatial location). There is equal probability for stimuli to
be presented at all locations, and stimuli are presented at different locations
independent of each other:

p(y) =
ny∏

i=1

p(yi), p(yi = 1) = α, (3.1)

where ny = 20 denotes the number of spatial locations and α denotes the
probability that a stimulus is presented at any particular location. In our
simulations, α was much smaller than 1, meaning that the visual input
statistics were sparse. This sparsity prior was chosen to reflect the statis-
tics of natural images, which are well accounted for by sparse models
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(Olshausen & Field, 1996; Berkes, Turner, & Sahani, 2008; see supplemen-
tary section 1).

Stimuli combine nonlinearly to generate the sensory input signal re-
ceived by the agent (x), according to

xi = max
j

{Ai jy j} + γi, (3.2)

where γi is a gaussian noise variable (with zero mean and variance σ 2 = 0.6)
and A is an nx × ny matrix of basis functions (we set nx = 20; see supple-
mentary section 1 for a discussion of the nonlinear combination rule).

The basis functions were set up so that a stimulus presented at a single
location activates several neighboring inputs. Sensory inputs (components
of x) were labeled with nx equally spaced values between −π and π (pro-
ducing a vector of spatial locations; x̃). Each of the y-units (components of
y) was labeled with ny equally spaced values between −π and π (producing
a vector of preferred spatial locations; ‘ỹ’). Elements of A were given by

Ai j = exp

⎛
⎝−(

x̃i − ỹ j + 2πk
)2

2λ2
A

⎞
⎠ , (3.3)

where k is an integer, set so that −π < (x̃i − ỹ j + 2πk) < π (so that the
stimulus space is circular and there are no edge effects), and λA determines
the width of the basis functions (we set λA = 0.35 for the initial simulations).
Columns of A are plotted in Figure 2. Each plot can be interpreted as the
mean sensory activation produced by a stimulus presented at one particular
spatial location.

One or more spatial locations, indexed by I, were chosen as target loca-
tions in the task. The detection target (t ∈ {0, 1}) was classified as present
if a stimulus was present at at least one of the target locations (t = 1 if
∃i ∈ I : yi = 1). The agent was required to give a response indicating whether
it believed the target stimulus was present (a = 0 or 1 for a rejection or de-
tection response, respectively). It received a unitary reward for a correct
response and no reward otherwise:

r =
{

0 if a �= t

1 if a = t
(3.4)

3.2 Agent’s Internal Model of Sensory Input. We assume that the agent
uses a hierarchical internal model to infer the hidden causes of the received
sensory input (see Figure 3a). Thus, in contrast to the simulated experiment,
where spatially localized stimulus features are presented independent of
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Figure 2: Basis functions used to generate the received sensory input (for the
initial simulations, where stimuli included a spatial but not a featural dimen-
sion). Each plot shows a single column of the basis function, A. Individual plots
represent the mean sensory input generated by a single active y-unit. Note that
the basis used to generate the sensory input is the same as the agent’s internal
model.
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Figure 3: Agent’s internal model of the sensory input and reward. (a) The agent
learns a hierarchical model, where high-level hidden variables (z-units), corre-
sponding to complex spatially distributed image features (e.g., objects or faces),
are assumed to determine the state of lower-level hidden variables (y-units),
corresponding to simple spatially localized image features (e.g., orientation or
motion direction), which generate the received sensory input (x). High-level
hidden z-variables are also assumed to generate the reward received (r) for
performing different actions (a) in the task. During task performance, the agent
updates parameters that predict how the reward depends on the high-level hid-
den variables in its model (ψ = {w, w0}), as well as parameters that determine
the probability that individual y-units are active (θ = b0). (b) Putative mapping
of probabilistic model onto neural architecture. Arrows denote the direction
of feedforward processing (both direct and indirect). Incoming sensory signals
are first processed in low and intermediate visual areas, such as V4 and MT,
before being sent to higher-level sensory areas, such as the inferotemporal and
prefrontal cortex (IT and PFC). These high-level sensory areas project to regions
in the basal ganglia, such as the substantia nigra colliculus (SNc) and ven-
tral tegmental area (VTA), which compute the expected reward for performing
different actions.
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each other, the agent assumes a higher level of statistical structure, such that
certain image features are more likely to be presented together than others.

In the agent’s internal model, high-level hidden variables (z) are assumed
to generate lower-level hidden variables (y), which give rise to the sensory
input (x). The joint probability distribution for this model is of the form

p(x, y, z|θ ) = p(x|y, θ )p(y|z, θ )p(z|θ ), (3.5)

where θ denotes the parameters of the agent’s internal model of the sensory
inputs.

All hidden variables are binary (yi ∈ {0, 1}, zi ∈ {0, 1}), while the ob-
served data (x) are continuous. For mathematical simplicity, we apply the
constraint that a maximum of one z-unit can be active at a time, with equal
probability:

p(zi = 1, z/i = 0|θ ) ∝ ρ/nz, p(z = 0|θ ) = 1 − ρ, (3.6)

where nz = 5 denotes the number of z-units in the model and ρ denotes the
probability that one of the z-units is on (we set ρ = 0.5 for the initial simula-
tions). While the constraint that only one z-unit may be active at a time may
appear quite extreme, it is reasonable that the high-level representation is
very sparse, as in general, there will be a small prior probability for any
given high-level feature to be present in an image.

Given z, the y-units are assumed to be conditionally independent
(p(y|z, θ ) = ∏ny

i=1 p(yi|z, θ )), with a probability of being active given by

p(yi = 1|z, θ ) = sig
(
bT

i z − b0i

)
, (3.7)

where sig (x) = (
1 + exp (−x)

)−1, bi is an nz × 1 basis vector and b0i is a
scalar bias term (see section 3.5 for initial values of b0i, prior to attentional
optimization).

The basis vectors bi were set up so that when a given z-unit is active,
there is an increased probability that neighboring y-units will be active.
Components of z were labeled with nz equally spaced values between −π

and π (z̃). Elements of bi were given by

bi j = bmax exp

⎛
⎝−(

ỹi − z̃ j + 2πk
)2

2λ2
B

⎞
⎠ , (3.8)

where λB denotes the width of the basis function (we set λB = 2.5) and
bmax determines how strongly z-units determine whether the y-units are on
(we set bmax = 3 for the initial simulations). Figure 4 plots the conditional
probability that each of the y-units is on for a given active z-unit.
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Figure 4: Basis functions used for agents’ internal model of their sensory inputs
in the initial simulations, where stimuli included a spatial but not a featural
dimension. Each plot shows the probability that the agent assumes different
y-units are active, given a single active z-unit: p(yi = 1|z j) = sig(bi j − bi0) (before
task optimization, with bias terms bi0 set to their initial values).

The agent’s internal model that predicts how the sensory input (x) is gen-
erated by the hidden causes (y) was set identical to the true data generation
process described previously (see equations 3.2 and 3.3).

3.3 Agent’s Internal Model of Reward. We assume that the agent learns
an internal model that predicts how the received reward depends on its
performed action and the state of high-level hidden variables in its internal
model (see Figure 3). The model of the detection task includes a binary
target variable (t ∈ {0, 1}), that depends on the state of the z-units in the
agent’s internal model. Given z, the assumed probability of the target being
present is given by

p (t = 1|z, ψ) = sig
(
wTz − w0

)
, (3.9)

where w (an nz × 1 vector) and w0 state how the target variable depends on
each of the z-units, and ψ denotes collectively the parameters of the agent’s
model of reward (w0 and w). A reward of r = 1 is predicted for a correct
response (a = t), and no reward (r = 0) for an incorrect response (a �= t; see
equation 3.4). The agent does not initially know the true location of the
detection target: w and w0 have to be learned online through task feedback
(see section 3.5).

After receiving a sensory input, the expected reward for reporting that
the target is present, Q (a = 1; x, θ, ψ), is equal to the posterior prob-
ability that the detection target is present, 〈p (t = 1|z, ψ)〉p(z|x,θ ). Con-
versely, the expected reward for reporting that the target is not present,
Q (a = 0; x, θ, ψ), is equal to the posterior probability that the target is not
present, 〈p (t = 0|z, ψ)〉p(z|x,θ ).
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We assume that the agent makes the response associated with the highest
predicted reward. Thus, if the posterior probability that the target is present
is greater than 0.5, the agent should make a detection response (a = 1);
otherwise, the agent should make a rejection response (a = 0).

3.4 Visual Neuron Firing Rates. Figure 3b illustrates a putative map-
ping of the probabilistic model used in our simulations onto the neural
architecture. The assumed role of the visual system is to infer the posterior
probability distribution over the hidden causes. The posterior distribution,
encoded in the population activity of visual neurons, is then transmitted to
areas of the brain that are responsible for predicting the received reward
for performing different actions, allowing the agent to make an appropriate
response in the task.

For our simulations, we assume that the mean firing rate of a single
visual neuron encodes the posterior probability that a particular hidden
cause is active, given the observed sensory input (as in Chikkerur et al.,
2010). Thus, the firing rate of the ith visual neuron is computed directly
from Bayes’ rule:

p(yi = 1|x, θ ) = p(x, yi = 1|θ )

p(x|θ )

=
∑

y
/i

p(x|yi = 1, y/i, θ )p(yi = 1, y/i|θ )∑
y p(x|y, θ )p(y|θ )

, (3.10)

where y/i represents a vector of all the components of y, except for the ith
component, and the summation is taken over all possible hidden states.

For our simulations, there were sufficiently few latent variables that we
were able to perform the summation over the latent states directly. How-
ever, if there is a large number of hidden variables, this summation will
become intractable, and an approximate algorithm must be used. Shelton,
Bornschein, Sheikh, Berkes, and Lücke (2011) describe a biologically plau-
sible algorithm that could be used to perform approximate inference on
a binary latent variable model similar to the one used in our simulations
(Puertas et al., 2010).

The stimulus selectivity of a given neuron is largely determined by the
basis function of the hidden variable it encodes. In other words, if the hid-
den variable encoded by a given neuron typically generates a specific profile
of sensory activity, then receiving this same sensory activation profile will
imply that the hidden cause is active and the neuron will respond with a
high firing rate. The basis functions used in our simulations were spatially
localized, so that model neurons responded most strongly to stimuli pre-
sented at a small number of neighboring locations (their receptive field,
RF). The basis functions of the low-level y-units were narrower than the
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basis function of the high-level z-units (compare Figures 2 and 4), so that
neurons encoding y-units had smaller RFs than neurons encoding z-units.
Note, however, that in general, a neuron’s RF is not identical to the basis
function of the encoded variable. Although basis functions are an invari-
ant property of the generative model, the measured RF will depend on the
types of stimuli presented.

3.5 Task Optimization. We hypothesized that attentional processes
continually adapt the agent’s internal model to improve their predictions
of the received reward (at the potential cost of learning a worse internal
model of the received sensory inputs). Parameters of the agent’s internal
model (θ and ψ) are adapted online to maximize the log probability of the
received reward. After each trial, model parameters are updated according
to

θnew ← θ + ηi∂θ li (θ, ψ) , ψnew ← ψ + ηi∂ψ li (θ, ψ) , (3.11)

where l (θ, ψ) ≡ log p (r|a, x, θ, ψ), and η is the learning rate. In supplemen-
tary section 2, we show that the derivative of the online objective function
can be written as

∂ψ li(θ, ψ)= 〈∂ψ log p
(
ri|ai, z, ψ

)〉p(z|xi,ri,ai,θ,ψ), (3.12)

∂θ li(θ, ψ) =〈∂θ log p
(
y, z, xi|θ

)〉p(y,z|xi,ri,ai,θ,ψ)

−〈∂θ log p
(
y, z, xi|θ

)〉p(y,z|xi,θ )
. (3.13)

For parameters to converge on stable values, we used a learning rate that
decreased as a function of the trial number, according to η = η0/(1 + i/n0)

(where i is the trial number and η0 and n0 are parameters that determine the
initial learning rate and how fast it decays, set to 0.05 and 104, respectively).
Learning was terminated after 105 trials, when the model parameters were
observed to converge on stable values.

We postulated that over the short timescales associated with visual at-
tention, only the prior probability that individual hidden y-units are active
varies (determined by the bias terms, b0i, in equation 3.7), while other as-
pects of the internal model are unchanged. The gradient of the objective
function used to update b0i is given by

〈
∂b0i

log p(x, y, z)
〉 = 〈

sig
(
bT

i z − b0i

) − yi

〉
. (3.14)

Note that evaluating this expression requires computing only first-order
statistics, such as the mean activation of the y-units. In comparison, updat-
ing the basis functions (bi and A) would require computing second-order
statistics, which are harder to estimate from a limited supply of noisy data.
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We initialized the bias term terms, b0i, to take equal values, such
that the prior probability that each y-unit was active was exactly equal
to the true probability that a stimulus was presented at each location
(α = p

(
yi = 1|θinit

)
). Consequently, before optimization, the only difference

between the agent’s internal model and the true model describing how the
sensory inputs were generated was related to the second-order statistics
describing the probability that stimuli were presented at different locations
at the same time. For the true model, all y-units were independent, while
for the agent’s internal model, there was a higher probability that adjacent
y-units were simultaneously active.

While the agent is assumed to know the general structure of the task
(i.e., that they receive a unitary reward for detecting a visual target), they
do not know in advance where the target is (both w0 and w are set to zero
initially). These parameters (ψ ≡ {w0,w}) are learned online on the basis of
the reward received for performing different actions. The objective function
gradient used to update w and w0 is given by

〈
∂wi

log p
(
r|a, z

)〉= 〈
zi

(
r − sig

(
wTz − w0

))〉
, (3.15)〈

∂w0
log p

(
r|a, z

)〉 = −〈
r − sig

(
wTz − w0

)〉
. (3.16)

At the beginning of each task, we initialized w0 = 0 and w = 0, implying
that the agent had no knowledge of the location of the detection target.

Note that our aim was to investigate the effects of attentional optimiza-
tion rather than the temporal dynamics of the optimization process itself.
Thus, while we assume that attentional modulation of visual neuron re-
sponses is learned online from task feedback, in reality, the attentional state
could also be altered more quickly, based on information received from
visual cues or previous experience in the task (see section 5).

4 Results

4.1 Attentional Modulation of Detection Performance. We first asked
how attention altered performance in the detection task. We considered
two conditions: a no-attention condition, in which the agent optimized its
reward model but not its sensory model, and an attend-target condition,
where the agent optimized both its reward model and its sensory model.

On each trial, the agent estimated the probability that a stimulus was
present at a target location, p (t = 1|x), to decide whether to make a detec-
tion response. We used the agent’s estimates of p (t = 1|x) to plot receiver
operating characteristic curves (ROC) for each attentional condition (see
Figure 5a). The area under the ROC curve (the AUC) provides a measure of
detection performance that is independent of the threshold used for classi-
fication: an AUC value of 1 indicates perfect performance, while an AUC
value of 0.5 indicates chance performance (Fawcett, 2006). As expected,
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Figure 5: Attention-dependent changes to detection performance. (a) Receiver
operating characteristic curves, indicating how well the agent is able to classify
whether the detection target is present. The area under each curve (AUC values)
gives a summary statistic of how well the agent is able to classify whether the
detection target is present. The agent does marginally better in the attend-target
condition than in the no-attention condition. (b) The estimated probability that
a stimulus is present at the target location (p (t = 1|x)), plotted as a function of
presented stimulus location. In the attend-target condition, the agent is better
able to discriminate whether a stimulus is presented at the target location.

detection performance was better in the attend-target condition (AUC =
0.85) than in the no-attention condition (AUC = 0.81). The magnitude of
this performance increase was observed to be highly dependent on the
precise setup of the task (e.g., increasing the sensory noise leads to larger
attention-dependent improvements in performance). However, while the
magnitude of attention-dependent changes to performance varied depend-
ing on the task, the qualitative effect of attention was always the same: to
improve performance in the detection task.

To understand how attention alters detection performance, we plotted
the estimated probability that a stimulus was present at a target location
(p (t = 1|x)) versus the true stimulus location (see Figure 5b). In the attend-
target condition, the agent’s estimates of p (t = 1|x) were increased for
stimuli close to the target location and reduced for stimuli far from the
target location. Thus, in the attend-target condition, the agent was better
able to detect stimuli at the target location, while ignoring stimuli at other
locations.1

4.2 Attentional Modulation of Neural Population Response. We next
asked how attention alters the internal sensory representation, encoded by

1Note that variations in the agent’s estimates of p (t = 1|x) matter more than its baseline
value, as changes in baseline can be easily compensated for by varying the detection
threshold.
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Figure 6: Influence of spatial attention on the spatial tuning curves of midlevel
and high-level visual neurons. (a) Spatial tuning curve of a midlevel neuron
tuned to the target location (indicated by a vertical dashed line). The neuron’s
response is plotted as a function of the presented stimulus location, with or
without attention directed toward the target location. (b) Spatial tuning curve
of a midlevel neuron tuned elsewhere. (c) Spatial tuning curve of a high-level
neuron tuned to the target location. (d) Spatial tuning curve of a midlevel neuron
tuned elsewhere.

the visual neuron responses. The model was set up so that midlevel neu-
rons (encoding y-units in the agent’s internal model) were highly sensitive
to the presented stimulus location, with each neuron responding only to
stimuli presented near the neuron’s preferred location (see Figures 6a and
6b, dashed line). In contrast, high-level neurons (encoding z-units in the
agent’s internal model) were relatively insensitive to the presented stimu-
lus location (see Figures 6c and 6d, dashed line).

In our model, the agent relied on the responses of high-level neurons
to choose which action to perform. However, as high-level neurons were
insensitive to the stimulus location, the agent was not able to discriminate
between stimuli presented at task-relevant and task-irrelevant locations,
impairing its performance in the task. Following attentional optimization
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toward the task (see section 3.5), the agent learned to associate increased
prior probability for stimuli at the target location. This learned prior did
not reflect the true stimulus statistics (stimuli were equally likely at each
location) but instead compensated for the mismatch between the agent’s
internal model and the true structure of the task.

The attentional prior increased the gain of midlevel neurons whose pre-
ferred location was near the target location (see Figure 6a) while decreasing
the gain of neurons whose preferred location was far from the target loca-
tion (see Figure 6b). This change in the gain of midlevel neurons resulted
in changes to the stimulus selectivity of high-level neurons, which became
differentially more sensitive to stimuli presented at the target location (see
Figures 6c and 6d). The net result was that in the attend-target condition,
high-level neural responses were a better predictor of whether a stimulus
was present at the target location, allowing the agent to improve its task
performance.

4.3 Attentional Modulation of the Contrast Response Function. There
have been a number of controversies about how goal-directed attention al-
ters sensory neural responses. A prominent example is attention-dependent
changes to the firing rates of V4 neurons with varying stimulus contrast.
Previous experiments have reported very different findings. Williford and
Maunsell (2006) observed a “response gain” effect, with increases in neural
firing rates for all stimulus contrasts, while Reynolds et al. (2000) observed
a “contrast gain” effect, consistent with an increase in the effective stimulus
contrast. Reynolds and Heeger (2009) proposed a phenomenological model
to account for these differences, proposing that they are due to variations
in the relative size of the focus of attention and the stimulus between ex-
periments: a narrow focus of attention would give rise to a response gain
effect, while a broad focus of attention would give rise to a contrast gain
effect. We use our normative model to ask why attention might alter neural
responses in this way.

To manipulate the size of the attentional focus, we varied the number
of target locations in the detection task. We simulated two experimental
conditions: one with a single target location (narrow attentional focus) and
another with multiple neighboring target locations (broad attentional focus,
with seven neighboring locations chosen as targets). Note that only the
reward contingencies changed for the different attentional conditions; the
stimulus statistics were always the same (see section 3.1).

In the narrow attentional focus condition, the agent learned to associate
an increased prior probability that hidden causes representing stimuli at this
location were active (see Figure 7a). In the broad attentional focus condition,
there was a broader change in its learned prior, with increases in the prior
probability for hidden causes representing all of the target locations (see
Figure 7b).
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Figure 7: Attentional modulation of neural contrast response function.
(a, b) Prior probability assumed by the agent that each of the hidden causes
is active, without attention (dashed line) or with either a narrow (a) or a broad
(b) focus of attention (solid line). The attended spatial region is represented by
the shaded area. (bottom panels) Model neuron response, as a function of the
amplitude of a sensory input at the preferred location, without attention (dashed
line) or with either a narrow (c) or a broad (d) focus of attention (solid line).

Neurons in visual area V4 were hypothesized to encode information
about hidden variables at an intermediate level of the agent’s internal model
(i.e., components of y). To obtain neural contrast response functions (CRFs),
we plotted the mean firing rate of a model neuron while varying the ampli-
tude of a sensory input centered at its preferred location (x = cai, where ai
is the ith column of A, and c represents the stimulus contrast). The result-
ing CRF was qualitatively similar to experiment, increasing monotonically
at intermediate sensory input amplitudes, before saturating at high am-
plitudes. The effect of spatial attention was consistent with Reynolds and
Heeger’s (2009) divisive normalization model: directing a narrow focus of
attention toward the presented stimulus location increased the response of
a neuron tuned to this location for all sensory input amplitudes; a broad
focus of attention increased the response of this neuron only at intermediate
sensory input amplitudes (see Figures 7c and 7d, respectively).

4.4 Comparison with Normalization Model of Attention. To see why
attention alters neural CRFs as it does in our model, consider the expression
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for neural firing rates, computed directly from Bayes’ law (see equation
3.10). Because the image statistics are sparse, meaning that there is a very
small probability that multiple image features are present in any given
image, we can approximate the response of the ith neuron by

p(yi = 1|x) ≈ p(x|yi)p(yi)

p(x|y0)p(y0) + ∑ny

j=1 p(x|y j)p(y j)
, (4.1)

where yi denotes a hidden state with only one active y-unit (i.e., yi ≡
(0, . . . 0, 1, 0, . . . , 0) with only yi = 1), and y0 denotes a hidden state with
all y-units inactive (i.e., y0 = 0). This expression shows that divisive nor-
malization of neural firing rates is predicted in our model as a consequence
of performing Bayesian inference on a sparse binary latent variable model.
Here, divisive normalization comes about due to a well-known Bayesian
phenomenon called explaining away, in which different hidden causes com-
pete with each other to explain the observed sensory input.

We can rewrite the expression for the neural firing rates as

fi (x) ∼ AiEi (x)

1 + ∑ny

j=1 A jE j (x)
, (4.2)

where Ei (x) ∝ exp
(

aT
i x
σ 2

)
and Ai = p(yi)

p(y0)
. Attention alters the prior probabil-

ity that the individual y-units are on, increasing the value of Ai for neurons
that are tuned to attended stimuli. Ei (x) is determined by the sensory input
alone and does not depend on the attentional state of the agent.

At low contrasts, neural firing rates can be approximated by fi (x) ∼
AiEi (x), so that both a narrow and a broad focus of attention alter neural
responses multiplicatively, increasing the firing of neurons that are tuned
to attended spatial locations. At high contrasts, neural firing rates can be
approximated by fi (x) ∼ AiEi(x)∑ny

j=1 A jE j (x)
. In this case, a broad focus of attention

produces similar increases to both the numerator and the denominator,
so that the response of a neuron that is tuned to an attended stimulus
is unchanged by attention (see Figure 7d). A narrow focus of attention
increases the numerator by a larger factor than the denominator, so that the
response of a neuron that is tuned to an attended stimulus is increased (as
in Figure 7c).

Both the expression for neural firing rates and the modulatory effects
of attention in our model are similar to Reynolds and Heeger’s (2009) nor-
malization model of attention. However, while divisive normalization was
an ad hoc assumption in Reynolds and Heeger’s model, in our work it
comes about as a direct consequence of performing Bayesian inference on
a particular form of internal model. Likewise, while Reynolds and Heeger
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specified an attention field, which multiplicatively scaled the gain of the
feedforward excitatory input to the network, in our work, attentional mod-
ulation of neural responses comes about as a result of optimization toward
the task and is thus entirely determined by the behavioral task and the
agent’s internal model.

4.5 Attentional Modulation of Sensory Tuning Curves. We investi-
gated how goal-directed attention alters neural tuning curves in our model.
To do this, we extended our model to include both a featural and a spa-
tial dimension. We altered the basis functions that determined the image
features represented by the hidden units, so that each model neuron (cor-
responding to a component of y) was selective to both a stimulus feature
(e.g., orientation, or motion direction) and a spatial location.

Every sensory input (component of x) was allocated a feature label (con-
sisting of two lists of nx/2 equally spaced values between −π and π ; x̃1),
and a spatial label (nx/2 lists of two spatial locations, (0, π ); x̃2). The y-units
were labeled in the same way: each with a corresponding spatial location
and feature (ỹ1 and ỹ2, respectively). Elements of A were given by

Ai j = exp

⎛
⎝−(

x̃i1 − ỹ j1 + 2πk
)2

2λ2
f tr

+
−(

x̃i2 − ỹ j2 + 2πk
)2

2λ2
spt

⎞
⎠ , (4.3)

where λ f tr and λspt are parameters determining the width of the basis func-
tion along feature and spatial dimensions, respectively. The basis functions
for the z-units were calculated in the same way as for the previous simu-
lations (see section 3.2), with all z-units allocated a feature but not a spa-
tial label (i.e., ỹi was replaced by the feature label, ỹi1). We set, λ f tr = 1.2
and λspt = 2 (see the next section for a discussion of how we set λspt). We
also increased the model sparsity, setting ρ = 0.3 and bmax = 2 (so that
p
(
yi = 1|θinit

) ≈ 0.02). This increase in sparsity was required to produce ro-
bust surround suppression for the simulations described in the next section
(but was not critical for simulating the feature tuning curves).

We simulated two experimental conditions. In the first condition (spa-
tial attention), one of two spatial locations was selected as a target in the
detection task. In the second condition (feature-based attention), only cer-
tain features were chosen as targets. Spatial attention caused the agent to
associate a high prior probability that hidden variables representing the
attended location were active, but a uniform prior probability that hidden
variables representing different features were active (see Figure 8a). Con-
versely, feature-based attention caused the agent to associate a high prior
probability that hidden variables representing attended features were ac-
tive, but a uniform prior probability that hidden variables representing both
spatial locations were active (see Figure 8b).
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Figure 8: Influence of spatial and feature-based attention on the population
response. (a, b) Prior probability assumed by the agent that each of the hidden
causes is active, without attention (solid line) or with spatial (a) or feature-
based (b) attention. (c) Neural population response in the absence of attention
(dashed line) or with attention directed toward the presented stimulus feature
(solid line) or spatial location (dotted line).

Attending to the presented stimulus location increased the responses
of neurons tuned to this location, with no sharpening in the population
response (see Figure 8c, dotted line). Similar effects have been observed ex-
perimentally in visual area V4 when attention is directed toward a particular
spatial location (McAdams & Maunsell, 1999). In contrast, we found that
attending to the presented stimulus feature produced a sharpening in the
population response; the responses of model neurons that were selective for
the attended feature were most strongly increased by attention (see Figure
8c, solid line). Martinez-Trujillo and Treue (2004) reported a similar effect
in visual area MT when animals were directed toward a particular motion
direction. Our results are also consistent with Reynolds and Heeger’s (2009)
normalization model of attention.

Also consistent with the experimental findings of Martinez-Trujillo and
Treue (2004), our model predicted a small suppression in the responses
of model neurons tuned to unattended features. In our model, this sup-
pression came about because the agent accorded greater probability to the
possibility that the sensory input was produced by hidden causes repre-
senting attended features, at the expense of a reduction in the probability
that it was produced by hidden causes representing other, unattended,
features.

Experimentally it has been shown that attention-dependent suppression
of neural responses is particularly strong when there are multiple stim-
uli within the cell’s RF (Moran & Desimone, 1985; Reynolds et al., 1999).
Although we do not explicitly model this effect, it is easy to see how it
could come about for our model. When there is one stimulus within a cell’s
RF, directing attention away from or toward the presented stimulus will
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induce a multiplicative change to the neuron’s response by altering the
numerator in equation 4.2. When two stimuli are present within the cell’s
RF, attending toward one of the stimuli will also alter suppression that
comes from the other stimulus via the denominator in equation 4.2, re-
sulting in larger changes in the neuron’s response. This effect was demon-
strated by Reynolds and Heeger (2009) in their normalization model of
attention.

4.6 Attentional Modulation of Center-Surround Interactions. The re-
sponses of neurons in the visual cortex are modulated by stimuli located
outside their classical RF that do not evoke a response when presented
alone. Typically, presenting a stimulus outside a neuron’s RF suppresses its
response, compared to when there is only a single stimulus presented within
its RF, a phenomenon called surround suppression (Seriès, Lorenceau, &
Frégnac, 2003). Sundberg et al. (2009) found that in visual area V4, attend-
ing to a stimulus located within the RF reduces the suppressive influence
of a stimulus presented at the surround, while attending to the surround
increases this suppression.

We used the setup described in the previous section to measure the
degree of surround suppression in our model in the absence of attention
or with attention directed to either the RF center or the surround (see
Figure 9a). By definition, a stimulus in the RF surround should not elicit a
response when presented alone, although it may suppress the response of
a neuron to a stimulus simultaneously presented in the RF. To reproduce
this behavior in our model, we needed to specify the spatial width of the
basis functions, determined by λspt in equation 4.3. If they are too broad,
surround stimuli elicit a response when presented alone; too small, and
there is no surround suppression (we found that λsptl = 2, produced the
required behavior; see Figure 9a).

Directing attention toward the RF increased the model neuron response
toward a single stimulus presented within the RF, while decreasing the
suppression from a second stimulus presented at the surround (see Figures
9b and 9c). Directing attention to the surround did not significantly alter the
model neuron response when a single stimulus was presented within the
RF, but did increase the suppression caused by a second stimulus presented
at the surround (see Figure 9b and 9c, left panel). In both conditions, the
response of the model neuron to a stimulus presented at the surround alone
was negligible. Qualitatively similar results were obtained by Sundberg
et al. (2009) (see Figure 9c, right panel).

Note that in all attentional conditions, surround suppression was signif-
icantly stronger in our model than in the population-averaged data (by a
factor of 2). However, the important qualitative aspect of the data that we
sought to capture was the effect of attention on surround suppression rather
than the absolute magnitude of surround suppression. Indeed, while the
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Figure 9: Attentional modulation of center-surround suppression. (a) Sche-
matic of test stimuli. Neural responses were measured with either a single
stimulus presented at their RF (top) or with stimuli presented at both their RF
center and surround (bottom). (b) Response of a model neuron to a stimulus
presented in the RF center (white), surround (black), or both the RF center and
surround (gray), without attention, or with attention directed toward the RF
center (attend center) or surround (attend surround). (c) Fractional change in
model neuron response when a second stimuli is presented in the surround for
each of the three attentional conditions. The left panel shows the predictions
of our model, while the right panel shows the population-averaged data from
area V4, in an experiment conducted by Sundberg et al. (2009).

qualitative effects of attention were robust to changes in model parameters,
the absolute magnitude of surround suppression depended on our choice
of model parameters (and experimentally, Sundberg et al., 2009, observed
a large variability in the degree of surround suppression across different
neurons).
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5 Discussion

We extended previous Bayesian models of visual processing (Hyvärinen,
2010) to account for the effects of behavioral demands on visual neuron
responses, hypothesizing that the brain learns a probabilistic model that
predicts how both the sensory input and reward received for perform-
ing different actions are determined by a common set of hidden causes
(Sahani, 2004). We developed a simple model of visual processing to show
in principle how our proposed framework can be used to make concrete
predictions about how task-dependent attention modulates visual neuron
responses. Our framework has two main advantages. First, it has predic-
tive power: in theory, changes to neural responses can be predicted as a
direct consequence of the presented stimuli and behavioral task. Second,
predicted changes to neural responses have a direct functional meaning:
they correspond to changes in the believed causes of the sensory input.

In order to make concrete predictions about the effects of attention on
visual neuron responses, we needed to make certain assumptions about the
agent’s internal model of its environment. First, we assumed that the agent
learns a model in which binary hidden causes are responsible for generat-
ing its received input. This internal model was very similar to a previous
work by Puertas et al. (2010). Second, we assumed that the agent’s internal
model was sparse, meaning that there was a small prior probability for any
particular hidden cause to be active (Olshausen & Field, 1996, 1997). This
sparsity prior leads to competition between different possible causes of the
sensory input, and in our neural model results in surround-suppression of
neural responses. Third, we assumed that the agent performs inference on
a hierarchy of image features (Karklin & Lewicki, 2003), and that its be-
havioral responses depended on only high-level hidden variables in their
internal model. In our neural model, this corresponds to relying on the
responses of high-level neurons with large receptive fields to choose which
action to perform. Finally, we assumed that attention alters the bias terms
in the agent’s internal model but not the basis functions. This corresponds
to altering the gain of individual neurons but not the network connectivity
(Dayan & Zemel, 1999; Yu, Dayan, & Cohen, 2009). Most of our assumptions
are not new but correspond to assumptions made implicitly in many phe-
nomenological and mechanistic models of attention (Reynolds & Heeger,
2009; Ghose, 2009; Lee & Maunsell, 2009). However, in contrast to these
models, we justify our assumptions from functional principles to provide
insight into why attention alters visual neuron responses as it does.

The predictions and mathematical formulation of our model bear strong
similarities to the normalization model of attention, proposed by Reynolds
and Heeger (2009). Recently, both Schwartz and Coen-Cagli (2013) and
Chikkerur et al. (2010) showed that Reynolds and Heeger’s normaliza-
tion model can be derived using a Bayesian framework. In their mod-
els, attention is hypothesized to modulate the agent’s perceptual prior
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(Chikkerur et al., 2010) or the feedforward inputs to neurons at attended lo-
cations (Schwartz & Coen-Cagli, 2013). However, in both models, attention-
dependent changes are specified explicitly, without stating why these
changes might come about. As a result, these models suffer from the same
limitation as Reynolds and Heeger’s normalization model: they do not ex-
plain how attention should be shaped by behavioral demands and sensory
experience. In contrast, in our model, task-dependent changes to the agent’s
internal model are learned automatically by the agent in order to improve
their predictions of the received reward.

Several studies have tried to explain visual attention in normative terms,
under the hypothesis that it corresponds to changes in the perceptual prior
(Dayan & Zemel, 1999; Rao, 2005; Chikkerur et al., 2010; Yu & Dayan, 2005;
Yu et al., 2009). However, in the absence of any changes to the presented
stimulus statistics, it not clear why the perceptual prior should be altered by
task demands. Indeed, in nearly all Bayesian models of attention, changes
to the agent’s prior are either specified explicitly (Dayan & Zemel, 1999;
Rao, 2005; Chikkerur et al., 2010; Whiteley & Sahani, 2012), or learned di-
rectly from the stimulus statistics (Yu & Dayan, 2005; Yu et al., 2009). Here,
we show that in certain circumstances, it is desirable to alter the perceptual
prior, even in the absence of any changes to the stimulus statistics. In our
proposed framework, the agent continuously adapts the internal model to
improve predictions of the reward associated with each action. When there
is a mismatch between the agent’s internal model and the true structure
of the task, improvements in their predictions of reward may come at the
expense of learning a worse model of the sensory input statistics. Conse-
quently, their learned prior will differ from the true stimulus statistics (as
in Figures 7a and 7b).

In our simulations, we implemented a specific type of model mismatch
in which the stimulus features relevant to the task (the detection targets)
are smaller than the features used to decide which action to perform. This is
analogous to previous modeling work, in which the agent uses the response
of neurons with large RFs to detect stimuli presented in a small task-relevant
region of space (Yu et al., 2009; Dayan & Solomon, 2010; Dayan & Daw, 2008;
Liu, Yu, & Holmes, 2009). In this work, perceptual performance is limited
because neurons integrate sensory signals from both task-relevant and task-
irrelevant spatial locations. Attention improves performance by selectively
boosting neural inputs that are selective to stimuli at task-relevant locations.
Previous authors suggested that perceptual performance is constrained in
this way because of the limited number (and thus, necessarily large size) of
neural RFs available to cover the visual scene (Dayan & Daw, 2008; Dayan
& Zemel, 1999). However, this cannot explain why the agent does not use
information encoded by low-level visual neurons with small RFs to perform
the task. Here, we propose an alternative explanation: that perceptual per-
formance is constrained by the need to learn a simple behavioral strategy
that can be quickly altered in response to changing behavioral demands.
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One way to achieve this goal could be to learn a simple mapping between
the responses of a small number of high-level neurons (with large RFs) and
the reward associated with each action.

Recently, Whiteley and Sahani (2012) proposed that in complex environ-
ments, the agent simplifies perceptual inference by using an approximate
internal model that neglects statistical dependencies between stimuli. This
results in a mismatch between the agent’s internal model and its external
environment, which reduces its perceptual performance. Whiteley et al. hy-
pothesized that attention compensates for this reduction in performance,
forming part of an approximate inference algorithm that selectively im-
proves perceptual accuracy for certain attended features or stimuli.

In both our model and the model of Whiteley and Sahani (2012), at-
tention is required because of a mismatch between the agent’s internal
model and its environment. In Whiteley’s model, this mismatch occurs be-
cause the agent neglects dependencies between hidden variables; in our
model, it occurs because the agent learns a simplified model of the task,
in which the received reward is assumed to depend on a limited num-
ber of high-level variables. Experimentally one could distinguish between
these different scenarios by investigating when attention is most strongly
recruited: when there are complex statistical dependencies between stim-
uli (as predicted by Whiteley and Sahani’s model) or when task-relevant
stimulus features are localized in a particular spatial or featural dimen-
sion (as predicted by our model). However, rather than there only ever
being one type of model mismatch, it is more likely that attention is re-
quired in a range of different situations to compensate for different mis-
matches between the agent’s internal model and its external environment.
Put in this broader context, we believe that Whitely and Sahani’s model
is not incompatible with our framework. For example, one could imag-
ine a hybrid of both models in which reward feedback is used to deter-
mine which stimulus features are task relevant, controlling an approxi-
mate inference algorithm that improves perceptual accuracy toward these
features.

In this letter, we focused on attentional modulation of midlevel neural re-
sponses. However, our model also predicts how attention should modulate
the responses of higher-level visual neurons. In our simulations, attention
dynamically alters the RF profiles of high-level neurons, shrinking them
around attended stimuli (see Figure 6c) or shifting their centers toward
attended locations (see Figure 6d). This prediction is supported by experi-
mental recordings in area MT, which observe dynamic reshaping of neural
RFs as a result of visual attention (Womelsdorf et al., 2006). Of course, in
the brain, there is no clear demarcation between high-level or midlevel
neurons. However, in the context of our model, what matters is the ratio
between a neuron’s RF size and the size of task-relevant stimulus features.
A neuron is considered to be “high level” if its RF is significantly larger
than the task-relevant stimulus features. (Note that while we discuss only
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spatial attention here, an analogous argument could be made in the feature
domain to describe feature-based attention.)

At the behavioral level, our model predicts that stimuli should be per-
ceived as being more similar to attended stimuli than they actually are. This
is because attention-dependent changes to the perceptual prior will induce
an estimation bias toward task-relevant stimulus features. While estima-
tion biases have been observed experimentally in response to changes in
the presented stimulus statistics (Chalk, Seitz, & Seriès, 2010), we predict
that they should also be induced by changes to the behavioral task alone.
Experimentally, different behavioral tasks have been found to give rise to
qualitatively different types of perceptual bias. For example, Jazayeri (2007)
found that after performing a discrimination task with visual motion stim-
uli, subjects report stimuli as moving farther away from the discrimination
boundary than they actually are. Therefore, while we simulated a simple
detection task, it would be interesting to use our modeling framework in the
future to investigate how different behavioral tasks and stimuli influence
perception.

At present, it is unknown how probability distributions are represented
in the brain (Fiser, Berkes, Orbán, & Lengyel, 2010; Shelton et al., 2011; Den-
eve, 2008; Ma, Beck, Latham, & Pouget, 2006). A current area of debate is
whether neural firing rates encode samples from a probability distribution
(Fiser et al., 2010; Shelton et al., 2011); or parameters, such as the mean and
variance of the distribution (Deneve, 2008; Ma et al., 2006). In our simula-
tions, we assumed that mean firing rates are proportional to the probability
that individual hidden causes contributed to generating the received sen-
sory input. While this coding scheme was chosen for simplicity, it produces
mean firing rates that are qualitatively consistent with a sampling code
(Shelton et al., 2011). Meanwhile, certain parametric codes, such as the cod-
ing scheme proposed by Deneve (2008), predict mean firing rates that are
qualitatively consistent with our model (i.e., they scale monotonically with
the posterior probability that encoded latent variables are active).

We investigated short-term effects of behavioral context, focusing specif-
ically on visual attention. We hypothesized that over these timescales, only
the sensitivity of individual neurons (the prior) varies, while the network
connectivity (the basis functions) remains constant. This restriction could
be removed to investigate changes that take place over longer timescales.
Currently, the relationship between different types of sensory learning—for
example, attentional (Eckstein, Abbey, Pham, & Shimozaki, 2004; Jiang &
Chun, 2001) versus perceptual learning (Fahle, 2005; Seitz, Kim, & Watan-
abe, 2009)—and how they depend on the training paradigm, is an active
area of research. Our framework can be used to make explicit predictions
about how visual perception is modulated by different stimuli and tasks
and thus could help contribute this debate.

In our model, the agent’s attentional state is altered slowly, based on
feedback on its actions on many trials. However, in reality, attention can
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be quickly redirected following explicit sensory cues or instructions. Our
model could be extended to account for these quick changes in attentional
state by including additional variables in the internal model to represent the
current behavioral context (e.g., the location of the detection target). Thus,
on any given trial, the agent would first have to infer the behavioral context
based on all available sources of information (e.g., received rewards, sen-
sory cues, instructions, or prior experience in the task). The inferred context
would then determine the attentional state that optimized the internal sen-
sory representation toward the task. Such a model could be used to predict
how people’s attentional state is altered in real time as a result of newly
received information. Our goal, however, was more modest: we sought to
explore the effects (rather than the temporal dynamics; Yu et al., 2009) of
optimizing the internal sensory representation towards a given task.

In this letter, we put forward a very general framework for predicting
how task demands alter visual processing. We then showed that given cer-
tain assumptions about the internal model and behavioral task, this frame-
work predicts attention-dependent changes to neural responses that are
consistent with existing phenomenological models of attention. However,
although the assumptions of our model are based on functional principles,
in order to truly derive the effects of attention, it would be desirable to
construct a more sophisticated model of natural images in which model
parameters are learned directly from natural image statistics (as opposed to
artificial data). In the past, this approach has been highly successful in un-
derstanding the passive properties of visual neurons. In the future, it could
be used to make quantitative and testable predictions about how different
behavioral tasks alter visual processing and perception.
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Puertas, G., Bornschein, J., & Lücke, J. (2010). The maximal causes of natural scenes
are edge filters. In J. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R. S. Zemel, & A.
Culotta (Eds. ), Advances in neural information processing, 23 (pp. 1939–1947). Red
Hook, NY: Curran.

Rao, R.P.N. (2005). Bayesian inference and attentional modulation in the visual cor-
tex. NeuroReport, 16(16), 1843–1848.

Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing.
Annual Review of Neuroscience, 27, 611–647.

Reynolds, J. H., Chelazzi, L., & Desimone, R. (1999). Competitive mechanisms sub-
serve attention in macaque areas V2 and V4. Journal of Neuroscience, 19(5), 1736–
1753.

Reynolds, J. H., & Heeger, D. J. (2009). The normalization model of attention. Neuron,
61(2), 168–185.

Reynolds, J. H., Pasternak, T., & Desimone, R. (2000). Attention increases sensitivity
of V4 neurons. Neuron, 26(3), 703–714.

Sahani, M. (2004). A biologically plausible algorithm for reinforcement-shaped rep-
resentational learning. In S. Thrün, L. Saul, & B. Scholköpf (Eds.), Advances in
neural information processing, 16 (pp. 1287–1294). Cambridge, MA: MIT Press.

Schwartz, O., & Coen-Cagli, R. (2013). Visual attention and flexible normalization
pools. Journal of Vision, 13(1), 1–24.

Seitz, A. R., Kim, D., & Watanabe, T. (2009). Rewards evoke learning of unconsciously
processed visual stimuli in adult humans. Neuron, 61(5), 700–707.
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