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Figure 1.1:  The three levels of consciousness. The conscious mind includes all thoughts, feelings and 

actions of which we are aware. The preconscious mind includes all mental activities that are not presently 

active, but stored and accessible when required. The unconscious mind includes mental activity of which 

we are unaware. According to Freud, some of the feelings, thoughts, urges and emotions that are actively 

buried into unconscious mind influence some of our unexplained behavior. 
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Figure 1.2:  Beck’s Cognitive model. The cognitive model developed by A. Beck explains individuals’ 

emotional, physiological, and behavioral responses to circumstances and situations as mediated by their 

automatic thoughts (see e.g., Beck 1991). Automatic thoughts are influenced by underlying beliefs 

developed over time and through experience. Individuals’ perceptions are often distorted and 

dysfunctional when they are distressed, leading to automatic negative thoughts. Through Cognitive 

Therapy, individuals can learn to identify, evaluate and correct their automatic negative thinking. When 

they do so, distress usually decreases and psychological function increases.   
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Figure 1.3: The RDOC matrix.  RDoC is a research framework proposed by NIMH for new approaches 

to investigating mental disorders. It integrates many levels of information (from genomics and circuits to 

behavior and self-reports) in order to explore basic dimensions of functioning that span the full range of 

human behavior from normal to abnormal. RDoC is not meant to serve as a diagnostic guide, nor is it 

intended to replace current diagnostic systems. The goal is to understand the nature of mental health and 

illness in terms of varying degrees of dysfunctions in general psychological/biological systems.  
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Figure 1.4: Marr’s three levels of analyses. Originally introduced to advance the understanding of 

vision, Marr’s approach postulated three distinct ways (computational, algorithmic, implementational) to 

consider information processing in the context of neuroscience. This distinction has since been used in 

research across other cognitive domains (e.g., memory, attention, learning), though many have not strictly 

adopted the classically rigid framework of Marr’s hierarchy. Instead the hierarchy is most commonly used 

as an organizing principle to highlight distinct conceptual questions at different levels of analysis.  Image 

credit: Debbie Yee and Todd Braver.  
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Figure 1.5: Data-driven computational psychiatry. A hypothetical example illustrates how a data-

driven approach might lead to new descriptions and classifications, beyond traditional symptom-based 

categories of mental disorder. Consider a population of patients suffering from different types of mood 

disorders and for whom a variety of data has been collected (genetic, brain, physiological data etc.). New 

clusters might be found in the data that might connect more directly with mechanisms underlying their 

symptoms. Such clusters might form groups that are more homogeneous than the original classification, 

and possibly more relevant in terms of possible treatment. Reproduced from Insel and Cuthbert (2015) 

with permission. 
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 Sad Ene Con Ins Int App Bla Wei Agi Ret Sui Hyp Ref 
(%) 

Profile Description 

A             1.78 No symptoms 
B x x x x x x x x x x   1.24 All but Sui and Hyp 
C x x x x x x  x     1.19 Mixed profile 
D x x x x x x x x     1.19 Mixed profile 
E x x x x x        1.13 Mixed profile 
F x x x x x  x      1.13 Mixed profile 
G    x         1.08 Only Ins 
H x x x x x x x x x    1.00 All but Ret, Sui and 

Hyp 
I x x x x         0.92 Mixed profile 
J x x x x x x  x x x   0.89 All but Hyp, Bla and 

Sui 
 
 

Table 1.1: Fried & Nesse (2014) examined DSM-5 depression symptom patterns in the “Sequenced 

Treatment Alternatives to Relieve Depression Study” (STAR*D). They found 1,030 unique symptom 

profiles in 3,703 patients all given the diagnosis of Major Depressive Disorder. The 10 most frequent 

symptom profiles are illustrated in this table. Cells with ‘x’ mark symptom presence. Abbreviations: Sad, 

sadness; Ene, energy loss; Con, concentration problems; Ins, insomnia; Int, interest loss; App, appetite 

problems; Bla, self-blame; Wei, weight problems; Agi, psychomotor agitation; Ret, psychomotor 

retardation; Sui, suicidal ideation; Hyp, hypersomnia; Freq, frequency of profiles. Reproduced from Fried 

and Nesse (2014). 
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Figure 2.1: Example of neural network models. A. The perceptron is a feed-forward neural network. 

Here the output unit v receives inputs from all input units v, weighted by weight w. B. A Hopfield network 

is a network of binary units connected by recurrent connections. C. Integrate and fire neuron.  This model 

account for the changes in voltage observed when a neuron received an input current Ie. When the voltage 

crosses a threshold, the voltage suddenly jumps to 0 and is reset. This models a spike, or action potential.  
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Figure 2.2: The Drift Diffusion Model (DDM).  The decision variable is a noisy cumulative process 

(blue) composed of the evidence (e) with starting point in the middle of A and-A (no starting bias). The 

evidence is sampled from a Gaussian distribution whose mean µ depends on the strength of the 

evidence. The bounds represent the stopping rule and their separation accounts for accuracy-speed trade-

off. Reprinted from Gold and Shadlen (2007) with permission. 
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Figure 2.3: Markov Decision Problems. A) The setting: an agent interacts with an environment by 

choosing actions that in turn influence its current state. B) At each time step, the agent is in some state s 

and may choose any action available in that state a. This leads to him moving into a new state and giving 

the decision maker a corresponding reward r.  
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Figure 2.4: Two-steps decision-making task. Task: (a) On each trial, choosing between two stimuli leads 

with fixed probabilities (transition) to one of two pairs of stimuli in stage 2. Each of the four second-stage 

stimuli is associated with a probabilistic outcome (monetary reward). Those probabilities change slowly 

and independently across the trials. (b) Model-based and model-free strategies make different predictions 

about the influence of the outcome obtained after the second stage onto subsequent first-stage choices. 

They thus predict different choice patterns: in the model-free system, obtaining a reward increases the 

chance of choosing the same stimulus on the next trial independently of whether the type of transition was 

rare or common (upper row). In a model-based system, on the contrary, the choices of the stimuli on the 

next trial integrate the transition type (lower row).  Reproduced from Worbe et al (2015) with permission. 
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Figure 2.5: Example of a possible arbitration between Model-Based and Model-free Learning 

Strategies. Accumulating neural evidence support the existence of two distinct systems for guiding action 

selection, a deliberative “model-based” and a reflexive “model-free” system. However, little is known 

about how the brain determines which of these systems controls behavior at one moment in time. Lee et 

al (2014) propose an arbitration mechanism that allocates the degree of control over behavior by model-

based and model-free systems as a function of the reliability of their respective predictions. Reliability is 

computed based on the state prediction error (SPE) in the model-based learning system and based on the 

reward prediction error (RPE) in the model-free learning system. The computed reliability functions as a 

transition rate for the two-state transition model, in which each state represents the probability of choosing 

the model-based learning strategy (PMB) and the model-free (1−PMB), respectively. The state-action value 

regulating the actual choice behavior is given by the weighted average of values from the 

two reinforcement learning systems. Reproduced from Lee et al (2014) with permission. 
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Figure 2.6: A. Example of the task used by Lawson, Mathys, and Rees (2017). Schematic of the task, 

showing the volatile environmental structure (top), for example, the probability of seeing a house 

(given the preceding high or low tone) across trials. The green area shows a 'stable' period of 72 trials 

in which the probabilities remained fixed, and the violet area shows a 'volatile' period of 72 trials in 

which the outcome probabilities switched three times. A single trial is also seen (bottom) showing 

example stimuli. B. Hierarchical Gaussian Model (HGM) model. Schematic depiction of the three-

level HGF that was used to model this task. The perceptual model comprises three hierarchical states 

(x1, x2, and x3). The lowest level variable x1 describes the uncertainty about outcomes, i.e. the presence of 

a house or face, level 2 (x2) addresses uncertainty about the cue-outcome contingencies, and level 3 (x3) 

addresses uncertainty about environmental change, i.e. the volatility of the cue-outcome contingencies. 

Participant-specific free parameters (ovals) are estimated from individual reactions times (log RT) data. 
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Red parameters relate to the perceptual model, whereas black parameters relate to the response model. 

Diamonds, quantities that change over time (trials); hexagons quantities that change over time and that 

additionally depend on their previous state in time in a Markovian fashion. Reproduced from Lawson, 

Mathys, and Rees (2017) with permission.  
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Figure 3.1: Distinct dynamical regimes in a circuit of two reciprocally connected inhibitory neurons. (A) 

Neurons a and b receive excitatory inputs x and y, respectively. (B-D) Under different conditions of 

neuronal and synaptic properties, the circuit can exhibit qualitatively distinct dynamical regimes, 

including quasi-stable flip-flop (B), rhythmic alternation as a “half-center” oscillator (C), and spike-by-

spike synchrony. Adapted from Kristan and Katz (2006).  
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Figure 3.2. Example of directional delay period activity of a principle sulcus neuron during the 

oculomotor delayed-response task. In this seminal experiment described by Funahashi et al (1989), 

monkeys were trained to fixate a central spot during a brief presentation of a peripheral cue and throughout 

a subsequent delay period (3 sec) and then, upon the extinction of the fixation target, to make a saccadic 

eye movement to where the cue had been presented. Visual cues were randomly presented at one of the 

eight locations indicated in the center diagram. The neuron shown in this example had strongly directional 

delay period activity responding only when the cue had been presented at the bottom location. It was 

suppressed during the delay when the cue was presented in the upper visual field. Reproduced from 

Funahashi et al (1989) with permission.  
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Figure 3.3: Neural mechanism of a decision about direction of motion. (a) The subject views a patch 

of dynamic random dots and is requested to indicate, whenever they are ready, which net direction they 

perceived for the motion (left or right). They need to indicate their decision by making an eye movement 

to a peripheral target. The gray patch shows the location of the response field (RF) of a LIP neuron.  One 

of the choice targets (Tin) is in the response field (RF) of the LIP neuron; the other target (Tout), as well as 

the motion stimulus itself, lie outside the neuron’s RF. (b) Effect of stimulus difficulty on accuracy and 

decision time. (c) Response of LIP neurons during decision formation. Average firing rate from 54 LIP 

neurons is shown for three levels of difficulty. Responses are grouped by motion strength and direction of 

choice, as indicated. Left: The responses are aligned to the onset of the random-dot motion. Shaded insert 

shows average responses from direction selective neurons in area MT to motion in the preferred and anti-

preferred directions. After a transient, MT responds at a nearly constant rate. Right: The responses are 

aligned to the eye movement. The LIP firing rates ramp up or down, approximating the integral of a 
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difference in firing rate between MT neurons with opposite direction preferences. (d) Responses grouped 

by reaction time. Only Tin choices are shown. All trials reach a stereotyped firing rate ∼70 ms before 

saccade initiation (arrow). Adapted with permission from Gold and Shadlen (2007). 
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Figure 3.4: Biophysically based cortical circuit models of working memory and decision-making 

computations. (A) Schematic of the network architecture for a model of spatial working memory. The 

model consists of recurrently connected excitatory pyramidal cells (E) and inhibitory interneurons (I). 

Pyramidal cells are labeled by the angular location they encode (0–360∘). Excitatory-to-excitatory 

connections are structured, such that neurons with similar preferred angles are more strongly connected. 

Connections between pyramidal cells and interneurons are unstructured and mediate feedback inhibition. 

(B) Spatiotemporal raster plot showing a bump attractor state in an example trial. A stimulus is presented 

at 180 deg during the brief cue epoch (denoted C) and during the subsequent delay, the stimulus location 

is encoded by persistent activity throughout the working memory delay until the response epoch (denoted 

R). On right is shown the firing rate profile of the working memory bump attractor state. (C) Schematic 

of the network architecture for a model of perceptual decision-making. The circuit contains two 

populations of pyramidal neurons which are each selective to one of the two stimuli (A and B). Within 

each pyramidal-neuron population there is strong recurrent excitation, and the two populations compete 

via feedback inhibition mediated by interneurons (I). Right: The selective populations receive sensory-

related inputs determined by the stimulus coherence. (D) Example neuronal activity in a single trial for a 

zero-coherence stimulus. Top: Spatiotemporal raster plot for the two selective population. Middle: 

Population firing rates rA and rB. Bottom: Stochastic sensory-related inputs. During decision-making, the 

circuit exhibits an initial slow ramping, related to temporal integration of evidence, which leads to 
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categorical choice (for A in this trial). Panels (B) and (D) adapted from Compte et al (2000) and 

Wang (2002), respectively.  
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Figure 3.5: Effects of altered excitation-inhibition (E/I) balance in cortical circuit models of working 

memory and decision-making. (A) E/I ratio was perturbed bi-directionally via hypofunction of NMDA 

receptors at two recurrent synaptic sites: on inhibitory interneurons, which elevates E/I ratio via 

disinhibition; or on excitatory pyramidal neurons, which lowers E/I ratio. (B) For the working memory 

circuit, the firing rate profile of the “bump” attractor activity pattern during working memory maintenance. 

Elevated E/I ratio via disinhibition results in a broadened working memory representation. (C) 

Disinhibition impairs the network’s ability to filter out intervening distractors. Top: Spatiotemporal plot 

of network activity in response to a distractor presented during the delay at a distance of 90∘ from the 

target. Bottom: Deviation of the read-out report as a function of the angular distance between the distractor 

and the target. The “distractibility window” is widened by disinhibition. (D) In the decision-making 
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circuit, performance as quantified by the psychometric function, i.e., the proportion of correct choices as 

a function of stimulus coherence. Both perturbations, elevated and lowered E/I ratio, can comparably 

degrade performance relative to the control circuit. (E) A perceptual decision-making task paradigm that 

characterizes the time course of evidence accumulation can test dissociable behavioral predictions from 

elevated vs. lowered E/I ratio. Top: The pulse paradigm uses a brief pulse of additional perceptual 

evidence at different onset times. This pulse induces a shift the psychometric function, which quantifies 

the sensitivity of the choice on evidence presented at that time point. Bottom: Shift in the psychometric 

function as a function of pulse onset time, for the three E/I regimes. Relative to control, in the elevated-

E/I circuit the pulse has a stronger impact at early onset times, but less impact at later onset times. The 

lowered-E/I circuit shows a flattened profile of the shift, with greater impact at late onset times.  
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Figure 3.6: Dependence of circuit function on synaptic parameters: a critical role of excitation-

inhibition (E/I) balance in both working memory and decision making. The plots illustrate a parameter 

space of reductions of two recurrent NMDAR conductance strengths from excitatory pyramidal neurons: 

onto inhibitory interneurons (GEI) or onto excitatory pyramidal neurons (GEE). This analysis characterizes 

the sensitivity of model function to joint perturbations of these two parameters. (A) For the working 

memory circuit, we measured the width of the working memory bump attractor state. Bump width affects 

mnemonic precision and distractibility during working memory maintenance. (B) For the decision-making 

circuit, we measured the discrimination sensitivity, which is defined as the inverse of the discrimination 

threshold (i.e., coherence which yields 81.6% correct). A higher sensitivity corresponds to better 

performance. For both working memory and decision-making circuits, within this range of perturbation, 

if GEI and GEE are reduced together in a certain proportion, circuit performance is essentially unaltered, 

because E/I balance is maintained. E/I balance defines a “sloppy” axis in parameter space along which the 

function is insensitive. In contrast, the function is highly sensitive to small orthogonal perturbations, along 

a “stiff” axis (Gutenkunst et al. 2007). Reduction of GEI in greater proportion elevates E/I ratio and can 

degrade performance: for working memory, due to broadened mnemonic representations; for decision 

making, due to highly unstable integration leading to impulsive selection. In contrast, reduction of GEE in 
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greater proportion lowers E/I ratio and can degrades performance: for working memory, due to loss of the 

bump attractor state; for decision making, due to indecisive selection. These findings indicate that E/I ratio 

is a crucial effective parameter for cognitive function in these circuits, with an “inverted-U” dependence 

of function on E/I ratio. Panels (A) and (B) adapted from Murray et al. (2014) and Lam et al. (2017), 

respectively, with permission.  
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Figure 4.1: A) Gating Mechanism from Frank and O’Reilly’s Prefrontal Basal Ganglia and 

Working Memory (PBWM) model (Frank, Loughry, and O’Reilly 2001). At the algorithmic level, 

this connectionist computational model features a gating function, which switches between active 

maintenance and flexible updating of working memory to incorporate task-relevant information, two core 

functions of cognitive control. B) Neural Network Model Implementation of the PBWM. Here, sensory 

inputs are mapped onto motor outputs via posterior (“hidden”) layers. The prefrontal cortex (PFC) 

contextualizes this information and encodes relevant prior information and goals. The basal ganglia (BG) 

updates the PFC via dynamic gating, which is driven by dopaminergic (DA) modulation from a separate 

“PVLV” (primary value and learned value learning algorithm) system (O’Reilly et al. 2007). Specifically, 

DA is excitatory onto the Go neurons via D1 receptors and inhibitory onto NoGo neurons via D2 receptors. 

Thus, increased DA firing will inhibit SNr (substantia nigra pars reticulata) and disinhibit PFC to facilitate 

flexible updating of working memory representations in PFC. Decreased DA firing, on the other hand, 

counteracts this effect and facilitates active maintenance of current working memory representations in 

PFC. 
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Figure 4.2: Schematic of the Prediction-Response Outcome (PRO) model by Alexander and Brown 

(2011, 2014). First, the PRO model learns predictions of multiple possible future outcomes of various 

chosen actions (indicated by Vi,t), using an error likelihood signal. Thus, activity in the PRO model reflects 

a temporally discounted prediction of such outcomes, which are proportionate to their likelihood of 

occurrence. Second, the PRO detects discrepancies between predicted and observed outcomes, and uses 

their prediction error signal (δ) to update and improve subsequent predictions. S refers to the 

representation of the stimulus (e.g., conflicting arrows from the Erikson flanker task) or task-related 

feedback (e.g., a screen indicating an error was made). Thus, the PRO model continually learns and 

updates associations between task-related cues and feedback in cognitive tasks.  
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Figure 4.3: Model of Hierarchical Cognitive Control by Koechlin and colleagues (2003, 2007). This 

information-theoretic model posits that cognitive control operates according to three nested levels of 

control processes (branching, episodic, contextual), which are implemented as a cascade from anterior to 

posterior prefrontal regions. H(a) represents sensory control, the information required to select an action 

(a) to appropriate incoming stimuli, and is the sum of two control terms: bottom-up information conveyed 

by the stimulus (s) regarding the appropriate action [I(s,a)] and top-down information processed in the 

posterior lateral PFC [Q(a|s)]. The Q(a|s) term represents contextual control, the incoming signals 

congruent with the subject’s response, and is the sum of two control terms: bottom up information from 

the contextual (c) signals and stimulus [I(c,a|s), I(s,a)] and top-down information processed in anterior 

lateral PFC [Q(a|s,c)].  The Q(a|s,c) term represents episodic control, neural signals that guide actions 

based on information retrieved from past events stored in episodic memory (i.e., tonically maintained over 

a longer temporal interval), which is the sum of bottom-up information from past event u [I(u,a|s,c)] and 

top-down information processed in the polar lateral PFC [Q(a|s,c,u)]. The branching control term 

[Q(a|s,c,u)] relates to information conveyed by events prior to event u, and are maintained until the current 

episode or trial is complete. Thus, this computational model parses different levels of control based on 
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how much information must be internally represented and actively maintained in order to select and 

perform a correct action.  
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Figure 4.4: A) Context-Task Set (C-TS) Model by Collins and Frank (2013). This model solves the 

problem of how to learn hidden task-set rules (i.e., when in a given state and presented with sensory input, 

which action should be taken in order to maximize reward). The C-TS model posits that states are 

determined hierarchically; that is, an agent will consider some input dimension to act as a higher order 

context (C), which indicates a task-set (TS) and other dimensions to act as lower level stimuli (S), in 

determining which motor actions (A) to produce. Here, the color context determines a latent task-set that 

facilitates learning of shape stimulus-action associations in the learning phase (e.g., C1 is associated with 

TS1). In the test phase, C3 maps onto the same shape stimulus-action association as C1, so the C3 context 

is transferred to TS1, whereas C4 should be assigned to a new task set. Critically, the model predicts that 

it should be faster to transfer a task-set than learning a new task-set. B) Schematic of two-loop 

corticostriatal gating neural network model. These two loops are nested hierarchically, such that one 

loop learns to gate an abstract task-set (and will group together the contexts that are associated with the 

same task-sets), whereas the other loop learns to gate a motor action response conditioned on the task-set 

and perceptual stimulus. Here, color context (C) serves as the input for learning to select the correct task-

set (TS) in the prefrontal cortex loop. This information is multiplexed with the shape stimulus in parietal 

cortex to modulate the motor loop and select the correct motor actions. Critically, these two loops 

accomplish two objectives: 1) constrain motor actions until a task-set is selected, and 2) allow conflict at 

the level of task-set selection to delay responding in the motor loop, preventing premature action selection 
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until a valid task-set is selected. Taken together, both algorithmic and neural network models similarly 

and accurately predict behavioral task performance. The synergism of different modeling levels provides 

an account of how humans engage cognitive control and learning to produce structured abstract 

representations that enable generalization in the long-term, even if it may be costly in the short-term.  
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Figure 6.1: The ‘probability estimates’ version of the beads task and the winning model 

Upper panel: This schematic illustrates the concept behind the beads task. A subject is shown two jars, 

each filled with opposite proportions of red and blue beads (e.g. 80:20 and 20:80 ratios), and the jars are 

then concealed from view. A sequence of beads is drawn, and the subject is asked to rate the probability 

that the beads are coming from one jar or another. 
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Middle panel: A schematic representation of the generative model in Model 5 and Model 6, the winning 

model. The black arrows denote the probabilistic network on trial k; the grey arrows denote the network 

at other points in time. The perceptual model lies above the dotted arrows, and the response model below 

them. The shaded circles are known quantities, and the parameters and states in unshaded circles are 

estimated. The dotted line represents the result of an inferential process (the response model builds on a 

perceptual model inference); the solid lines are generative processes. μ2 denotes the estimated tendency 

towards the blue or red jar and ω is a static source of variance at this level (greater variance means belief 

updates are larger). The bead seen by the subject, u(k), is generated by the estimated jar on trial k, 𝜇"
($). 

The response model maps from �̂�"
($'") – the predicted jar on the next trial, a sigmoid function s of 𝜇(

($) – 

to 𝑦($), the subject’s indicated estimate of the probability the jar is blue. Variation in this mapping is 

modelled as the precision β of a beta distribution. 

Lower panel: This figure illustrates the effects of κ1 (used in Models 5 and 6) on inference. It shows 

simulated perceptual model predictions; the second level μ2 and simulated responses y have been omitted 

for clarity. The simulations use four different values of belief instability κ1, which alters the sigmoid 

transformation: �̂�"
($'") = 𝑠(𝜅" ∙ 𝜇(

($)). When κ1 > exp(0) updating is greater to unexpected evidence and 

lower to consistent evidence; when κ1 < exp(0) the reverse is true. The red and brown lines (κ1 > exp(0)) 

illustrate the effects of increasingly unstable attractor networks, i.e. switching between states (jars) 

becomes more likely (see also Figure 2, upper panel). The black line (κ1 = exp(-1)) illustrates slower 

updating around �̂�" = 0.5, as was found in controls.  
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Figure 6.2: Attractors and belief updating, and dataset 2 group-averaged beliefs  

Upper panel: This schematic illustrates the energy of a network with two attractors or fixed points – e.g. 

beliefs about blue and red jars – over a range of firing rates. The continuous line depicts a normal network 

whose ‘basins’ of attraction are relatively deep. The dotted line depicts the effect of NMDAR (or cortical 

dopamine 1 receptor) hypofunction on the attractor dynamics. The dots depict initial belief states, and the 

full and dashed arrows depict the effects of confirmatory and disconfirmatory evidence, respectively. A 

shallower basin of attraction means its corresponding belief state is harder to stabilize but easier to change. 

See also similar schematics elsewhere (Durstewitz and Seamans 2008; Rolls et al. 2008). 

Lower panel: This panel shows the mean (± standard error) confidence ratings in the blue jar averaged 

across each group in dataset 2. These consist of four 10 bead sequences concatenated together (they were 

presented to the subjects separately during testing). The group with schizophrenia makes larger updates 

to unexpected beads but smaller updates to more consistent evidence at the end of sequences A and D. 
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Figure 6.3: Expected model likelihoods for each group in each dataset. 

This figure depicts the model likelihoods for the six models in each group in each dataset. The model 

likelihood is the probability of that model being the best for any randomly selected subject (Stephan et al. 

2009). Model 6 wins in all groups in both datasets. 
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Figure 6.4: Probability density plots for the four Model 6 parameters in each dataset.  

The upper and middle rows show the parameter estimates for dataset 1, at baseline (n=81) and follow-up 

(n=53) respectively, and the bottom row dataset 2 (n=167). There were only significant group differences 

in attractor instability κ1 and β in each dataset (see text). 
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Figure 6.5: Model fits for two example subjects 

These plots illustrate the beads seen by subjects (u, in blue and red), the ratings of the probability the jar 

is blue made by the subjects (y, in black) and the model fit line (σ(μ2), in purple), for four 10-trial beads 

tasks concatenated together. The bead colors in two sequences have been swapped around for model 

estimation purposes. The upper plot is a control subject, the lower plot a subject with schizophrenia. The 

two subjects illustrate the effects of attractor instability κ1 – their values of κ1 (approximately exp(-1) and 

exp(1) respectively) are the modal values of κ1 in each group (see Figure 4, bottom row). The subject with 

schizophrenia makes much larger adjustments to changes in evidence (crossing the p(jar=blue)=0.5 line 

repeatedly), explained by a higher κ1. Note also that this patient’s responses are also more stochastic, 

explained by a lower β. These parameter differences may both be the result of attractor network instability 

in prefrontal cortex.  
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Model Free parameters (prior mean, var). NB all models also 

contained ω (-2, 16) and β (exp(4.85), 1) 

Description 

1  Learning rate & response 

stochasticity only 

2 σ2(0) (exp(-5.1), 0.5) Initial variance estimated  

3 φ (0.1, 2) Disconfirmatory bias 

4 σ2(0) (exp(-5.1), 0.5), φ (0.1, 2) “ “ & initial var estimated 

5 κ1 (0,1) ‘Attractor instability’ 

6 σ2(0) (exp(-5.1), 0.5), κ1 (0,1) “ “ & initial var estimated 

 

Table 6.1:  The six models tested on two beads task datasets. Each model contained a learning rate ω 

and response precision (similar to inverse temperature) β, along with the additional parameters listed. The 

brackets contain the prior mean and variance for each parameter used during model fitting.  
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Figure 7.1: A sketch of the Stroop color-naming task, as used by Siegle, Steinhauer, and Thase (2004). 

Participants had to respond by indicating the color of the ink of the word (here red), while ignoring the 

written word (here blue). 
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Figure 7.2: A sketch of two types of trials of the emotional flanker task, as used by Pe, Vandekerckhove, 

and Kuppens (2013). Participants had to classify the word in the center according to its valence. (A) An 

incongruent trial, in which the target word love and the flanking word abuse have differing valence. (B) 

A congruent trial, in which the valence of the flanking word is the same as the valence of the target. (Note 

that Dutch, four letters long, monosyllabic words were used by Pe, Vandekerckhove, and Kuppens 

(2013)). 

 



	 40	

 

 

Figure 7.3: A sketch of the signal detection task (Huys et al. 2013). On each trial participants observe one 

of two possible cartoon faces which only differ slightly in the lengths of their mouths. They have to 

indicate which face they observed. The reward structure is asymmetrical with one of the stimuli being 

rewarded more frequently than the alternative. 
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Figure 7.4: Modeling the signal detection task. Response bias on simulated data (adapted from Huys et 

al. (2013)). Three blocks of 100 trials were simulated and the development of the response bias is shown 

across these blocks in each bar chart. On the left, a typical pattern of group differences is shown, with 

controls developing a strong response bias over the three blocks, and patients showing a reduced bias. The 

middle chart shows how a reduced reward sensitivity (𝜌) could lead to these observed differences. The 

right chart shows how a reduced learning rate could also lead to similar differences. 
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Figure 7.5: Results of the signal detection task (adapted from Huys et al. (2013)). (A) Results of the model 

comparison. Compared to the three alternative models, the model 'Belief' was shown to be the most 

parsimonious explanation for the data. (B) Linear (correlation) coefficients between anhedonic depression 

and reward sensitivity (left; significant at 𝑝 < .05) and learning rate (right; not significant) parameters. 

(See Huys et al. (2013) for details on this hierarchical regression analysis.) 
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Model name Prediction error 𝑊 update 

Stimulus-
action 

𝛿6 = 𝜌𝑟6 − 𝑄6(𝑎6, 𝑠6) 𝑊6(𝑎6, 𝑠6) = 𝛾𝐼(𝑎6, 𝑠6) + 𝑄6(𝑎6, 𝑠6) 

Belief 𝛿6 = 𝜌𝑟6 − 𝑄6(𝑎6, 𝑠6) 𝑊6(𝑎6, 𝑠6) = 𝛾𝐼(𝑎6, 𝑠6) + 𝜁𝑄6(𝑎6, 𝑠6)
+ (1 − 𝜁)𝑄6(𝑎6, 𝑠6) 

Punishment −(1 − 𝑟6) − 𝑄6(𝑎6, 𝑠6)
𝛿6 = 𝜌𝑟6 + 𝜌

 
𝑊6(𝑎6, 𝑠6) = 𝛾𝐼(𝑎6, 𝑠6) + 𝜁𝑄6(𝑎6, 𝑠6)

+ (1 − 𝜁)𝑄6(𝑎6, 𝑠6) 

Action 𝛿6 = 𝜌𝑟6 − 𝑄6(𝑎6, 𝑠6) 𝑊6(𝑎6, 𝑠6) = 𝛾𝐼(𝑎6, 𝑠6) + 0.5𝑄6(𝑎6, 𝑠6)
+ 0.5𝑄6(𝑎6, 𝑠6) 

Table 7.1: Summary of models. The choice probability is always  𝑝(𝑎6 ∥ 𝑠6) = 𝜎C𝑊6(𝑎6, 𝑠6) −

𝑊6(𝑎6, 𝑠6)D and the 𝑄 update is always  𝑄6'"(𝑎6, 𝑠6) = 𝑄6(𝑎6, 𝑠6) + 𝜀 × 𝛿6.  
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Figure 8.1: Ambiguity in Fear Learning (Pulcu and Browning 2019). Your cat scratches you 10% of 

the times you stroke it when it is in a good mood (green areas) and 80% of the time you stroke it when it 

is in a bad mood (red areas). You can’t observe the cat’s mood; all you can observe is whether it has 

scratched you when you previously stroked it. In order to learn what the cat’s mood is and therefore how 

likely it is to scratch you the next time you stroke it, you need to account for two sources of uncertainty 

1) even if you know exactly what the cat’s mood is, you can’t be certain what its behavior will be (e.g. 

even when it is in a good mood it will scratch you 10% of the times you stroked it) and 2) the cat’s mood 

changes over time. 
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Figure 8.2: The optimal learning rate to use depends on the volatility of the association being learned 

(Pulcu and Browning 2019). Two Rescorla-Wagner models try and learn how likely two cats are to 

scratch them. The first cat (left panel) is volatile with periods of better mood (scratch probability 10%) 

and worse mood (scratch probability 80%). The second cat (right panel) is stable, with one mood (scratch 

probability 40%). One model uses a low learning rate (dashed line), the other a high learner rate (dotted 

line), the solid black line is the underlying truth the models are trying to learn. For the volatile cat (left 

panel), the model with the high learning rate captures the cat’s behavior more accurately than the low 

learning rate model. This is because the high learning rate model puts more weight on new events than 

previous events, and the volatility of the cat’s behavior reduces how informative previous events are. For 

the stable cat (right panel), the low learning rate model more accurately captures its behaviour because 

previous events are more informative. 
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Figure 8.3: Task used in Browning et al. study. a) Example trial from the task. Participants were 

presented with 2 shapes, each with a number in the center. They chose one shape, if the chosen shape was 

associated with the electric shock for that trial; they then received the shock after a short delay. The 

magnitude of the delivered shock was reported by the number in the center of each shape (shock intensity 

had been calibrated for each participant before the task). Participants therefore had to learn which shape 

was most likely to be associated with the shock and combine this information with the displayed intensities 

of the shock for each shape when deciding which shape to choose. b) Structure of the task. Y-axis reports 

the probability that the shock was associated with ‘shape a’ (the probability that the shock was associated 

with the other shape is 1 minus these values). The task consisted of 180 trials divided into 2 blocks. In one 

block, the shock was stably associated with one shape on 75% of trials. In the other block, the association 

reversed every 20 trials from 20 to 80% and back again. Block order (stable, volatile) was counterbalanced 

across participants.  
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Figure 8.4: Estimated learning rates from the study. a) Individual learning rates from the stable and 

volatile blocks for all participants. As expected, learning rates were significantly higher in the volatile 

than the stable blocks. b) Relationship between trait anxiety (x axis) and the degree to which an individual 

adjusted their learning rate between the volatile and stable blocks (y axis). A significant negative 

correlation was seen, the more anxious a participant the less they adjusted their learning rate between 

blocks. The dashed line shows the behavior of a normative Bayesian learner (Behrens et al. 2007) which 

performs the task optimally, the dotted line illustrates that the behavior of the learner is similar to those 

participants with low levels of anxiety. The behavior of participants with low anxiety is more like this 

learner than participants with high anxiety. Anxiety was not associated with differences in any of the other 

model parameters. 
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Figure 8.5: Relationship between pupil dilation and trait anxiety. The degree to which pupil dilation 

during the outcome of a trial was influenced by trial volatility was estimated using regression analyses 

performed separately for each participant, the larger the beta weights from these analyses the more that 

participant’s pupil dilated during volatile relative to stable trials. Panels a) and b) illustrate the same results. 

Panel a) demonstrates that the mean effect of volatility on a participant’s pupil dilation across the entire 6 

second outcome period was negatively correlated with trait anxiety. Panel b) uses a median split on 

participant anxiety to illustrate the mean (shaded area is SEM) time course of the volatility effect in 

participants with high and low trait anxiety. These results demonstrate that the pupils of participants with 

high anxiety show less differentiation between volatile and stable trials than those of low anxiety 

participants. *=significant difference between the groups after Bonferroni correction for number of time 

bins. 
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Disorder Brief Description 

Obsessive-Compulsive Disorder * 
Patients experience unpleasant, intrusive thoughts (“obsessions”) 

and/or the need to perform associated actions (“compulsions”) 

PTSD * 
Patients experience anxious symptoms following a threatening 

experience (e.g. being in a car crash, being attacked) 

Specific Phobia 
Patients experience anxiety when faced with specific objects, 

places, animals etc. (e.g. spider phobia) 

Social Anxiety Disorder 
Patients experience anxiety particularly when in social situations 

or when having to perform (e.g. give a talk) 

Panic Disorder 

Patients experience recurrent “panic attacks” which include both 

catastrophic thoughts (e.g. feeling like they are going to die) and 

physical symptoms such as chest pain or shortness of breath. 

Often associated with agoraphobia 

Agoraphobia 

Patients experience anxiety particularly when in situations in 

which it would be difficult to escape from (e.g. on airplanes) or 

where help may not be available (e.g. outside the home) 

Generalized Anxiety Disorder 
Patients worry about a range of activities and/or events. This is 

commonly associated with depression 

 

Table 8.1: Anxiety Disorder Diagnoses and brief descriptions. Separate diagnoses classified as anxiety 

disorders in the DSM-IV manual are included. * these disorders were moved to different categories in 

DSM-V. PTSD= post-traumatic stress disorder 
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Figure 9.1: Demand curves. The shape of a typical demand curve. As the price of the commodity 

increases, the number of samples consumed decreases.  There is typically an inelastic zone, where large 

ratio changes have little effect, and an elastic zone where large ratio changes have a larger effect.  Note 

that both axes are logarithmic. Compare, for example, to real demand curves as seen in Bruner and Johnson 

(2013) where subjects were asked how much cocaine they would buy at a hypothetical given price.  
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Figure 9.2: Delay discounting. (a) Delay discounting entails a loss of value as a function of delay to an 

event. Two discounting functions are typically used, hyperbolic [𝑉 = 𝑟 (1 + 𝑘𝑑)⁄ ] and exponential [𝑒L$M], 

where 𝑑 is the delay to the event and 𝑘 is a parameterization factor. (b) Logically, this can be understood 

in terms of value of an expected event as one approaches the event in time. (c) Hyperbolic discounting 

functions can create a preference reversal where one prefers one option (the larger later, solid line) to 

another (the smaller sooner, dashed line) that reverses as one approaches the options in time.  (d) 

Exponential discounting, however, does not reverse, even when both options are far away (see inset) 

showing an expansion of the far-left edge of the graph. (e) A real discounting curve from an individual, 

reprinted from Kurth-Nelson and Redish (2010).   
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Figure 9.3: Homeostatic /Allostatic processes. (a) Drug delivery produces a positive reaction state, 

which then adapts and collapses to a negative state when the drug is removed. Over time, the user is 

hypothesized to adapt to the positive state, producing a shift in the allostatic set-point towards the negative 

state. Redrawn after Koob (2013). (b) Tsibulsky and Norman (1999) and Keramati et al (2017) modeled 

self-administration as an attempt to maintain the total level of drug at a given set-point. As the drug was 

processed internally and reduced beyond the set-point, the animal was hypothesized to seek the drug 

through lever pressing. This model explains the different rates of lever pressing as a function of the drug 

dose.  Redrawn after Tsibulsky and Norman (1999) and Keramati et al (2017). 
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Figure 9.4: The delta signal – dopamine and delta. Diagram of delta (vertical axis) by time (horizontal 

axis) over three conditions: naïve (untrained), early (with limited training), and trained. (a) With normal 

rewards, the delta signal shifts from appearing at the unexpected reward to the unexpected cue-that-

predicts-reward. (b) In the Redish (2004) model, there are two components in the delta signal, a reward-

related component that shifts and a pharmacological component that remains at the reward time.  Compare 

the classic data from Schultz (1998). When the expected reward is not delivered, dopamine cells pause 

their firing.  Aragona et al. (2009) tested the double bump hypothesis and found that the cue-related signal 

occurred in accumbens core, while the pharmacological component occurred in shell. 
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Figure 9.5: Changing state spaces. (a) Imagine a single choice between a smaller reward (R=4) delivered 

sooner (after 1s), compared to a larger reward (R=20) delivered later (after 20s). A typical agent might 

prefer the smaller-sooner over the larger-later reward. (b) If the agent realizes that this is going to be a 

repeated choice, then it is possible to drive the relative preference to 50/50 with a long look-ahead, but it 

is impossible to change the actual preference. An agent that prefers the smaller-sooner option in (a) will 

still prefer it in (b). (c) Bundling creates new options such that there are consequences to one’s decision.   

An agent can switch preferences by bundling. (d) Precommitment adds a new option to skip the choice.  

An agent making a decision at the earlier option can prefer the larger-later and learn to skip the choice in 

the right conditions. After models in Kurth-Nelson and Redish (2012). 
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Figure 10.1: Computational roles of the direct (or Go) and indirect (or NoGo) motor pathways in 

action learning and selection. The situation or state, 𝑠 , is a potentially rich, multidimensional 

representation encompassing representations of the external world (perception), interoception, 

motivational and emotional states, etc., potentially represented in a wide range of cortical (and some 

subcortical) regions—which likely explains why many regions project to the striatum (Choi, Yeo, and 

Buckner 2012; Postuma and Dagher 2006). The figure represents three possible actions (𝑎", 𝑎(, and 𝑎N); 

their representation is kept separate in each anatomical region as required to have action specificity. The 

striatum contains two populations of neurons: D1-expressing (Go) and D2-expressing (NoGo) medium 

spiny neurons (MSNs), which are represented in green and red, respectively. Each of these populations 

contains a representation of the three actions. Go (𝐺) and NoGo (𝑁) values that represent the learned 

associations between state 𝑠 and each of the actions are represented in corticostriatal synapses onto Go 

and NoGo MSNs, respectively. The gains of Go and NoGo MSNs (𝛽R and 𝛽S, respectively) are modulated 

by striatal dopamine levels. The activation, and therefore the output, of Go and NoGo MSNs is thus given 

by 𝛽R𝐺(𝑠, 𝑎T)  and 𝛽S𝑁(𝑠, 𝑎T) , respectively. Mathematically, inhibitory projections (GABAergic 

projections, represented by circles) flip the sign of the information (provided that there is intrinsic activity 
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in the target structures, as is the case here). The anatomy of the basal ganglia seems therefore precisely 

suited to represent the difference between Go and NoGo activations, 𝛽R𝐺(𝑠, 𝑎T) − 𝛽S𝑁(𝑠, 𝑎T), in the 

thalamus. The latter, in turn, helps to select actions in cortex in proportion to this difference. Internal 

variables, structures, and projections related to the direct and indirect pathways are coded in green and 

red, respectively. Glutamatergic (excitatory) projections are represented by arrowheads. GPe: external 

segment of the globus pallidus; GPi: internal segment of the globus pallidus; SNr: substantia nigra pars 

reticulata. Figure and caption adapted, with permission, from Maia and Conceição (2017).  
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Figure 10.2: The dopaminergic-hyperinnervation hypothesis of Tourette syndrome (TS). (A) Normal 

dopaminergic innervation. Multiple characteristics of dopamine terminals can be investigated using 

molecular imaging in vivo: the dopamine transporter (DAT), the vesicular monoamine transporter 2 

(VMAT2), the activity of dopa decarboxylase (by measuring F-dopa uptake), and the extent of 

amphetamine-induced dopamine (DA) release. (B) The hypothesis that TS involves dopaminergic 

hyperinnervation—that is, an increased number of DA terminals— explains why all of these markers 

(DAT and VMAT2 binding, F-dopa uptake, and amphetamine-induced DA release) seem to be increased 

in TS (section 10.3.1; Maia and Conceição 2018).  
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Figure 10.3. Effects of striatal dopamine levels and antipsychotic treatment on Tourette syndrome 

(TS). Panels A–C represent the Go and NoGo pathways (green and red, respectively) for three actions: an 

intended action (𝑖𝑛𝑡), a tic (𝑡𝑖𝑐), and some other weakly supported action (𝑜𝑡ℎ). The pathways are 

represented schematically, through their ultimate effects on motor cortex, by omitting the globus pallidus 

and thalamus. Go and NoGo MSNs are therefore shown directly stimulating (or, more precisely, 

disinhibiting) and inhibiting the motor cortex, respectively, because activation in motor cortex ultimately 

reflects a subtraction of the outputs of the Go and NoGo pathways (section 10.3.2; Figure 10.1). (In the 

figure, arrowheads represent excitation or disinhibition; circles represent inhibition.) The size of each 

square and the width of the arrow that departs from it represent the level of neuronal activity. Panels A–

C differ in terms of patient medication status. (A) In unmedicated patients with TS, tics may have strong 

learned Go values, stored in corticostriatal synapses onto Go MSNs (see the thick green arrow from cortex 

Commented [VC1]: Corrected	section	and	Figure	
citation	
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to “Go tic” in the striatum); these Go values may be learned through ill-timed, exaggerated phasic 

dopamine responses or through negative reinforcement due to the temporary relief from the preceding 

premonitory urge (as mechanistically explained in section 10.3.3). Tics may also have relatively strong 

NoGo values, stored in corticostriatal synapses onto NoGo MSNs (see the relatively thick red arrow from 

cortex to “NoGo tic” in the striatum); these NoGo values may be learned through negative life experiences 

with tics (e.g., being embarrassed because of tics, feeling sore because of a tic, etc.). In unmedicated 

patients, however, the expression of these NoGo values is likely suppressed by the high striatal 

dopamine—predicted to occur under dopaminergic hyperinnervation (section 10.3.1; Hienert et al. 2018; 

Maia and Conceição 2018). Therefore, in an unmedicated patient with TS, the Go activity for tics 

overcomes the NoGo activity, making tic expression likely. (B) As soon as a patient begins antipsychotic 

treatment, or as soon as the antipsychotic reaches a sufficiently high dose, the antipsychotic blocks D2 

receptors in the NoGo pathway, disinhibiting that pathway, which then becomes stronger and better able 

to counteract the activity in the Go pathway. The tic thereby becomes less likely to be expressed. This 

very early effect of the antipsychotic may act mostly through this effect on excitability; the corticostriatal 

synapses representing Go and NoGo values may not yet be changed. (C) In addition to the effect on 

excitability, chronic antipsychotic treatment also increases NoGo values (by increasing the weight of 

corticostriatal synapses onto NoGo MSNs), decreases Go values (by decreasing the weight of 

corticostriatal synapses onto Go MSNs), or both (section 10.3.2; Maia and Conceição 2017). Thus, with 

the same level of D2 occupancy as acute antipsychotic treatment, the tic becomes even less likely to be 

expressed (compare panels B and C). (For illustrative purposes, panel C shows the case of both increased 

NoGo values and decreased Go values, but the same effect would be obtained with changes in just one or 

the other.) (D) Due to the fact that only chronic antipsychotic treatment is likely to strongly affect NoGo 

and/or Go values (i.e., to change synaptic weights rather than just excitability), acute and chronic 

antipsychotic treatment likely provide different levels of symptomatic control, as quantified by the 

probability of executing a given tic in each case. The x axis in the figure represents 𝛽S as a proxy to the 

effect of the antipsychotic on excitability; larger values of 𝛽S correspond to larger antipsychotic doses. 

The black and blue lines represent (qualitatively) the probabilities of tic execution following acute and 

chronic treatment, respectively. For a given dose of antipsychotic (i.e., for a given value of 𝛽S), the 

probability of executing a tic is lower following chronic administration than following acute 

administration. This explains why antipsychotics may have a gradual cumulative effect and why, during 

chronic treatment, the dose may sometimes be reduced gradually without loss of efficacy (Maia and 
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Conceição 2017). Still, if the dose is reduced too drastically or medication is completely stopped, tics that 

were completely absent may return. In the plot, this corresponds to moving left along the blue line, from 

a point in which the probability is nearly 0 to a point in which it becomes more substantial. Still, tics may 

be less severe than before treatment started (at least temporarily, until relearning occurs). In fact, tics may 

also be less severe right after stopping chronic treatment than they would be after a single acute dose of 

an antipsychotic wears off (compare the intercept of the blue vs. the black line). Figure and caption 

adapted, with permission, from Maia and Conceição (2017).  
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Figure 10.4: Regions and computations involved in premonitory urges, tic execution, and tic 

learning, in Tourette syndrome (TS). The figure depicts the main regions involved in premonitory urges 

(gold), tic execution (gray), and tic learning (blue), and the most important connections between them, 

according to the framework that we have previously proposed (section 10.3.3; Conceição et al. 2017). 

This framework addresses both the computational roles of dopamine in motor-loop-mediated tic learning 

and execution (section 10.3.2; Maia and Conceição 2017) and the neural substrates and mechanistic roles 

of premonitory urges in tic learning and execution (Conceição et al. 2017). Tic execution: Cortical motor 

areas represent candidate actions (𝑎T), including tics, being considered for gating. Other cortical (and some 

subcortical) areas represent the current state or situation (𝑠6, where the subscript 𝑡 denotes time). The 

putamen contains Go (direct-pathway, green) and NoGo (indirect-pathway, red) medium spiny neurons 

(MSNs; Figure 10.1). Striatal hyperdopaminergia, due to dopaminergic hyperinnervation in TS (section 

10.3.1; Hienert et al. 2018; Maia and Conceição 2018), increases the activation of the Go relative to the 

NoGo pathway (by increasing the value of 𝛽R  relative to 𝛽S ; Figure 10.3). Such increase is 



	 63	

disproportionately larger for actions with large Go (𝐺 ) values, because 𝛽R  is a multiplicative gain 

parameter. Consequently, as tics become strongly learned behaviors (see below and sections 10.3.2–3.3), 

striatal hyperdopaminergia will make 𝛽R𝐺6(𝑠6, 𝑡𝑖𝑐) ≫ 𝛽S𝑁6(𝑠6, 𝑡𝑖𝑐) (compare the width of the green and 

red arrows leaving from the putamen; Figures 10.1 and 10.3). As a consequence, there is strong inhibition 

of the tic representation in the basal ganglia output nuclei, the globus pallidus internal segment (GPi) and 

substantia nigra pars reticulata (SNr), by the direct pathway [𝛽R𝐺6(𝑠6, 𝑡𝑖𝑐)], with weak disinhibition by 

the NoGo pathway [with a value of 𝛽S𝑁6(𝑠6, 𝑡𝑖𝑐) ]. Given that 𝛽R𝐺6(𝑠6, 𝑡𝑖𝑐) ≫ 𝛽S𝑁6(𝑠6, 𝑡𝑖𝑐) , tic 

execution is promoted (Figure 10.3; Maia & Conceição, 2017). Tic execution may also possibly be driven 

directly by cortico-cortical projections from somatosensory regions and the insula to motor cortices 

(Conceição et al. 2017). Tic learning: Tic execution commonly terminates a preceding premonitory urge, 

yielding a positive prediction error, 𝛿6, that promotes tic learning (Conceição et al. 2017). Like 𝛿6, 𝑟(𝑈) 

is a relevant variable to explain tic learning in the two reinforcement-learning (RL) accounts that we have 

used to explain premonitory-urge-driven tic learning: standard RL and average-reward RL (Conceição et 

al. 2017). In contrast, 𝑉6(𝑈) is necessary for the account using standard RL and optional for the account 

using average-reward RL, and �̅�6L" is only necessary for the account using average-reward RL (Conceição 

et al. 2017). In this figure, those variables are depicted near the regions and/or connections that we have 

hypothesized to subserve them (Conceição et al. 2017). The prediction errors represented in the insula, 

however, may be mostly aversive. Additional figure details: Some anatomical projections are omitted for 

simplicity. For clarity, both somatosensory cortical areas [primary (S1) and secondary (S2) somatosensory 

cortices] and motor cortical areas [cingulate motor area (CMA), supplementary motor area (SMA), 

premotor cortex (PMC), and primary motor cortex (M1)] are grouped. The distinct ways of calculating 𝛿6 

according to each of the proposed computational accounts are indicated in curly braces: 𝛿6 = 𝑟(𝑠6) +

𝛾𝑉6(𝑠6) − 𝑉6L"(𝑠6L") (standard RL) and 𝛿6 = 𝑟(𝑠6) − �̅�6L" + 𝑉6(𝑠6) − 𝑉6L"(𝑠6L") (average-reward RL; 

section 3.3). Additional abbreviations: Ins: insula; Put: putamen; SNc: substantia nigra pars compacta; 

Thal: thalamus; VS: ventral striatum; VTA: ventral tegmental area. Figure and caption adapted, with 

permission, from Conceição et al. (2017).   
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Figure 10.5: Concept map summarizing the main theoretical ideas in the chapter. The key brain 

regions that we discuss are shown in blue, the key cognitive processes are shown in gray, the key 

alterations in Tourette syndrome (TS) are shown in orange, and the key medication effects are shown in 

green. Upward and downward pointing arrows represent increases and decreases, respectively (due to TS 

or the medication if they are in orange or green boxes, respectively). Triangles show alterations. Each 

region shaded in a different color corresponds to a specific chapter section. (A) Section 10.3.1. As 

discussed in section 10.3.1 and depicted in the area shaded in gold, patients with TS likely suffer from 

dopaminergic hyperinnervation (Hienert et al. 2018; Maia and Conceição 2018), which causes increases 

in both phasic and tonic dopamine. Those dopaminergic increases help to explain why all medications 

with well-established efficacy for TS reduce phasic and/or tonic dopaminergic neurotransmission (Maia 

and Conceição 2018). (B) Section 10.3.2. As discussed in section 10.3.2 and depicted in the area shaded 

in medium-light gold, TS involves structural and functional disturbances in the motor loop (Maia and 
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Conceição 2017; Worbe, Lehericy, and Hartmann 2015; Worbe et al. 2015), which is implicated in both 

habit learning and execution (Delorme et al. 2016; Horga et al. 2015; Yin and Knowlton 2006). Habit 

learning and habit execution are strongly mediated by phasic and tonic dopamine, respectively (Collins 

and Frank 2014; Maia and Conceição 2017), with some novel evidence also implicating phasic dopamine 

in habit execution (hence, the blue dashed arrow; da Silva et al. 2018). Tics seem to be pathological motor 

habits (hence, their depiction in the orange rectangle inside the blue “habits” rectangle), which explains 

why, in TS, phasic- and tonic-dopamine levels may play pathological roles in tic learning and execution 

that parallel the roles normally played by normal phasic- and tonic-dopamine levels in habit learning and 

execution (note the similarities between the respective orange and blue arrows; Maia and Conceição 

2017). The latter associations help to explain mechanistically how medications may reduce tic severity in 

TS: by downregulating phasic and/or tonic dopaminergic neurotransmission, medication should reduce tic 

learning and/or execution (Maia and Conceição 2017). The role of phasic dopamine in signaling positive 

prediction errors explains why unmedicated patients with TS, with their likely increase in phasic 

dopamine, exhibit increased learning from rewards (Palminteri et al. 2009; 2011). The role of tonic 

dopamine in possibly blunting the signaling of negative prediction errors by phasic decreases in dopamine 

explains why TS involves reduced learning from punishments (Palminteri et al. 2009). In turn, the 

previously mentioned effects of TS medications on dopaminergic transmission—possibly along with 

other, more complex effects of the medication (Maia and Conceição 2017)—explain why patients with 

TS under antipsychotics (other than aripiprazole) are impaired at reward learning (Palminteri et al. 2009; 

2011; Worbe et al. 2011). (C) Section 10.3.3. As discussed in section 10.3.3 and depicted in the area with 

the lightest gold shading, TS involves structural and/or functional abnormalities in the somatosensory 

cortices and insula, in addition to the motor loop. TS, moreover, involves structural and functional 

abnormalities in the connectivity between all those regions (Conceição et al. 2017; Neuner, Schneider, 

and Shah 2013; Sigurdsson et al. 2018). The somatosensory cortices are implicated in exteroception (Cox, 

Seri, and Cavanna 2018) and the insula is implicated in both (natural) urges (Naqvi and Bechara 2010; 

Jackson, Parkinson, Kim, et al. 2011) and interoception (Quadt, Critchley, and Garfinkel 2018; Cox, Seri, 

and Cavanna 2018). Premonitory urges, in turn, seem to be driven by the interplay between pathological 

exteroceptive and/or interoceptive processing (Cox, Seri, and Cavanna 2018), which explains the 

implication of the somatosensory cortices and insula in premonitory urges (Figure 10.4; Conceição et al. 

2017). Premonitory urges likely play a key role in tic learning, as the termination of premonitory urges, 

via tic execution, may elicit positive prediction errors, signaled by phasic dopamine, that reinforce tics 
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(Conceição et al. 2017). Premonitory urges may also directly drive tic execution through the connections 

from somatosensory regions and the insula to motor cortices (Conceição et al. 2017). 

 

 


