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Preface  

 

I used to work in visual computational neuroscience and gradually moved towards computational 

psychiatry. This move was partly motivated by my own struggles but ultimately by witnessing the 

suffering in some of our students, and even the suicide of two of them.   

I felt we did not understand them, and what really mattered for all of us. In terms of our research 

in computational neuroscience, I felt that we were not putting the efforts where they mattered most, and 

that our research could be immensely more useful in the long term if we did. I became interested in 

understanding how mental illness is described and how to bridge advances in neurobiology, 

computational cognitive science and psychiatric disorders. I was attracted as well by the idea that mental 

health and illness lie on a continuum, that it concerns all of us, to various degrees, as we are all 

potentially at risk that our suffering can become overwhelming. 

I wanted to provide an accessible book for students starting in this new emerging field, coming 

from a wide variety of backgrounds. I am well aware though that there are no solid truths in this field 

yet. The field of computational psychiatry is being met with great enthusiasm and hopes for clinical 

usefulness but is still in its infancy. This book is very imperfect in that it only addresses a subset of 

questions, and often leads to more questions than answers. Still, I think it shows that computational 

psychiatry can provide important new insights and help bridge neuroscience and clinical applications.  

I am immensely grateful to the brilliant contributors of this book, all international leaders in the 

field, who trusted me in this process, despite this being my first book and them being all more 

established than I am.   

I have been deeply inspired by my postdoctoral stay at Gatsby Computational Unit and the 

research led by Peter Dayan with Nathaniel Daw, Yael Niv and Quentin Huys at that time. I’m also very 

grateful to Eero Simoncelli for teaching me about scientific humility and our role about making our 

research accessible. More recently I am very grateful for discussions with my collaborators, particularly 

Stephen Lawrie and Douglas Steele, Renaud Jardri, Sophie Deneve, Jonathan Roiser, Phil Corlett, Paul 

Fletcher, Andrew McIntosh, Andy Clark and many others.   



	
  

	
   5	
  

I would like to thank my very talented students who chose a project in this field, at a time when 

it was new to all of us: Vincent Valton, James Raymond, Aleks Stolicyn, Aistis Stankevicius, Frank 

Karvelis, Samuel Rupprechter, Andrea D’Olimpio.  

Many thanks to all the people who have supported me from close or far, my mother for the 

inspiration towards academia and psychiatry, my sister Emma, all my colleagues and friends particularly 

Aaron Seitz, Matthias Hennig, Isabelle Duverne, Laetitia Pichevin, special thanks to Robert Hamilton 

who assisted with many steps of the way and to Grant Creegan who wisely came round when everything 

was already done. 

 

I am hoping the book can be useful as a textbook in this new field and inspire a generation of 

students who can make a difference.  
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Chapter 1: Introduction: Toward a Computational Approach to 

Psychiatry 
 

Janine M. Simmons, Bruce Cuthbert, Joshua A. Gordon, & Michele Ferrante. 

National Institute of Mental Health (NIMH) 

 

1.1 A Brief History of Psychiatry: Clinical Challenges & Treatment Development 

1.1.1 Clinical Burden 

 

Mental health disorders affect up to one in five adults in the USA and contribute substantially to 

worldwide morbidity and mortality. The lives of individuals with mental disorders are cut short by ten 

years on average (Walker, McGee and Druss 2015). Mental illness accounts for 7-13% of all-cause 

Disability Adjusted Life Years (DALYs). Because of the young age at which they strike, their chronicity 

and resistance to treatment, mental disorders account for an even greater proportion of all-cause Years 

Lived with Disability (21-32% YLDs; Whiteford, et al. 2015, Vigo, Thornicroft and Atun 2016). To take 

just one example, Major Depressive Disorder has become the second leading cause of non-

communicable disease disability worldwide (Mrazek, Hornberger, Altar and Degitiar 2014). To lessen 

these burdens, we need new ways to understand and treat mental illnesses. Achieving this goal 

represents a substantial challenge. Therefore, it is imperative to utilize all tools at our disposal to make 

progress in psychiatric research.  

 
1.1.2 Diagnostic Complexity 
 

Although the behaviors associated with mental illness have been described for millennia (i.e., a 

description of depression and dementia can be found in the “Ebers Papyrus,” written in Egypt circa 1550 

BC), psychiatry as a medical specialty emerged less than 150 years ago (Wilson 1993; Fisher 2012). As 

in all medical fields, clinicians and clinical researchers in psychiatry have attempted to establish discrete 

diagnostic categories to guide treatment and inform prognosis. However, the multi-faceted nature of 

mental disorders has made this task extremely complex. At the turn of the 20th Century, Emil 

Kraepelin’s (1856-1926) work captured the extent of this challenge in ways that are still echoing today. 
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Importantly, he noted the difficulty of creating a complete nosology in the face of diverse, non-specific 

clinical presentations, and in the absence of a clear understanding of natural causes (Kendler and 

Jablensky 2011). Kraepelin’s approach emphasized detailed, longitudinal clinical assessments with a 

focus on syndromes of commonly co-occurring symptoms. Through this process, he made one of the 

first diagnostic classifications in psychiatry. Specifically, he differentiated manic-depressive illness 

(bipolar disorder, in today’s terminology) from ‘dementia praecox’ (Fisher, 2012). Subsequently, 

Bleuler (1857-1939) re-characterized and re-named dementia praecox as schizophrenia (Maatz, Hoff and 

Angst 2015). Although the diagnostic criteria and sub-types of these disorders have evolved over time, 

Kraepelin and Bleuler’s fundamental clinical characterizations of different types of psychosis remain in 

use today. 

 

In 1970, Robins and Guze sought to update the work of Kraepelin and Bleuler by establishing a 

method for achieving a more rigorous classification and improved diagnostic validity in psychiatry 

(Robins and Guze 1970). They recommended that psychiatric diagnoses be based upon five components. 

The first three of these re-emphasized the features of a thorough clinical assessment: 1. symptoms, 

demographics, and precipitating factors; 2. longitudinal course; 3. family history; while two additional 

elements would aid in the creation of homogenous diagnostic sub-groups: 4. laboratory studies and 

psychological tests; 5. exclusion criteria. This work proved hugely influential, even though the fourth 

component was not actually available. As the authors note themselves: “Unfortunately, consistent and 

reliable laboratory findings have not yet been demonstrated in the more common psychiatric disorders” 

(Robins and Guze 1970). In the 21st century, psychiatry still lacks objective and robust laboratory 

testing.   

 

Following on these early efforts, the publication of the 3rd edition of the Diagnostic and 

Statistical Manual of Mental Disorders (DSM-III) in 1980 marked the modern age of psychiatric 

nosology (American Psychiatric Association 1980; Spitzer, Williams and Skodol 1980; Wilson 1993; 

Hyman 2010; Fisher 2012). Facing the challenges of a field without objective diagnostic testing, Spitzer 

and the American Psychiatric Association (APA) recognized that diagnostic validity might be out of 

reach. Given the extent of the knowledge gap, they sought to address the critical needs by: 1. Defining 

boundaries of mental disorders; 2. Stimulating progress in research and treatment development; and, 3. 

Increasing diagnostic reliability across research and treatment settings. DSM-III intentionally and 
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explicitly adopted an a-theoretical, descriptive approach that continues to serve as the bedrock of 

psychiatric diagnosis today (including DSM-5, (American Psychiatric Association, 2013)). In the DSM, 

each disorder is characterized by a list of possible symptoms and a minimum number of these symptoms 

are required to provide a diagnosis. For example, to meet criteria for Major Depressive Disorder, at least 

five of nine possible symptoms must be present concurrently. The DSM has become the de facto guide 

of both clinical psychiatry and psychiatric research. Newer versions of the DSM have largely achieved 

APA’s goals of providing clinicians with a common clinical language, improving diagnostic reliability, 

and allowing rough classification of patients for treatment (Hyman 2010).  

 

The DSM has established a common framework within which clinical psychiatrists can operate. 

However, the current diagnostic system poses challenges for multiple reasons. The DSM groups patients 

into diagnostic categories based on subsets of symptoms selected from a longer checklist. Patient groups 

become heterogeneous because individuals grouped into one category can have different (and sometimes 

non-overlapping) constellations of symptoms (Table 1.1). Moreover, because many symptoms are 

shared by more than one syndrome, comorbidity becomes the rule rather than the exception. As a result, 

patients frequently receive multiple diagnoses. It remains unclear whether this apparent comorbidity 

arises from underlying biology or simply reflects a classification system that is ill suited to capture the 

full complexity of human brain and behavior (Lilenfeld, Waldman, and Israel 1994, Maj 2005, Kaplan, 

et al. 2001, Sanislow et al. 2010). In addition, progress in genomics and neurobiology has revealed that 

different DSM diagnostic categories often share risk genes and so far, cannot be differentiated by 

neuroimaging (Farah and Gillihan 2012; Cross-Disorder Group of the Psychiatric Genomics Consortium 

2013; Mayberg 2014; Simmons and Quinn 2014). Ideally, our diagnostic nosology should be informed 

by a deeper understanding of pathophysiology. In the USA, the National Institute of Mental Health 

(NIMH) has sought to address these problems through the RDoC initiative launched in 2010 (see 

Section 1.4). 

 

 < Table 1.1 near here: MDD symptom heterogeneity > 
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1.1.3 Treatment Development 

 

In other areas of medicine, clinical advances have followed the availability of objective 

diagnostic tests, increased understanding of pathophysiological mechanisms, and the development of 

appropriate animal and computational models to rigorously test potential treatments. A prime example 

of this process can be seen in the improved treatments for cardiac arrhythmias resulting from 

identification and modeling of relevant cardiac ion channels (Bartos, Grandi, and Ripplinger 2015; 

Gomez, Cardona, and Trenor 2015). In psychiatry, treatment development has not yet followed such a 

path. Modern treatment options remain closely linked to psychotherapeutic and pharmacological 

approaches developed or discovered over fifty years ago. 

Although there are a multitude of psychotherapy sub-types, three fundamental psychological 

models predominate. First, Sigmund Freud’s (1856-1939) psychoanalytic theory emphasized the 

importance of the unconscious mind (see topographical model in Figure 1.1). Freud and his followers 

proposed that intra-psychic conflict led to mental illness. Therefore, psychodynamic psychotherapy 

seeks to bring unconscious material to conscious awareness, uncover unexpressed emotions, and resolve 

past experiences (Freud 1966; Blagys and Hilsenroth, 2000; Rawson 2005; Gabbard 2007).  

Second, behavior therapy grew from the early 20th century psychological tradition of 

behaviorism (Watson 1913; Skinner 1938). In contrast to the psychodynamic focus on internal states, 

behaviorism prioritizes observable actions and proposes that all behavior is fundamentally a learned 

response to environmental stimuli. Which behaviors are expressed depends on prior experience with 

environmental contingencies, and mental illnesses consist of maladaptive learned responses (Mowrer 

1947; Foa and Kozak 1986; Foa 2011). Behavior therapy seeks to eliminate psychiatric symptoms by 

disconnecting maladaptive behaviors from their environmental triggers or by forming new, more 

adaptive responses. For example, behavior therapists commonly use exposure therapy to treat anxiety 

disorders such as phobias, OCD, and PTSD (Foa and Kozak 1986; Foa 2011).  

 

< Figure 1.1 near here: topographical model> 
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Third, in the 1950’s and 1960’s, Albert Ellis and Aaron Beck proposed new models for 

psychotherapy that integrated information processing and cognitive psychology (Ellis 1957; Beck 1991). 

In these models, automatic thoughts and core beliefs underlie emotions and behaviors (Figure 1.2). 

Depressive mood and anxiety disorders result from irrational beliefs, distorted perceptions, and 

automatic negative thoughts. Therefore, the goal of this type of therapy is to identify and correct these 

cognitive distortions. Cognitive and behavioral therapy techniques are often combined as CBT (Blagys 

and Hilsenroth 2000; Blagys and Hilsenroth 2002).  

Whatever the method, psychotherapy has been shown to significantly reduce psychiatric 

symptoms and improve mental well-being over the long-term, with multiple meta-analyses 

demonstrating large effect sizes1. For psychodynamic psychotherapy, median effect sizes range from 

0.69 to 1.8, depending on the targeted symptoms and length of treatment (Shedler 2010). A meta-

analytic review of prolonged exposure therapy for PTSD demonstrated mean effect sizes of 1.08 for 

PTSD-specific symptoms and 0.77 for general symptoms of distress (Powers, Halpern, Ferenschack, 

Gillihan, and Foa 2010). Because CBT has been standardized, its benefits for depression and anxiety 

have been rigorously studied. Effect sizes are moderate-to-large, ranging from 0.58 to 1.0 (Shedler 

2010). It should be noted, however, that very few psychotherapy outcome studies adequately assess the 

quality and fidelity of psychotherapy, even in research settings (Perepletchikova, Treat, and Kazdin 

2007; Cox, Martinez, and Southam-Gerow 2019). In 2015, the Institute of Medicine found that 

psychosocial interventions proven effective in research settings have not been routinely integrated into 

clinical practice (IOM (Institute of Medicine), 2015).  

 

< Figure 1.2 near here: Beck’s Theory> 

 

Whereas psychotherapeutic techniques have deep roots in historical theories of mental and/or 

behavioral processes, most breakthrough developments in psychiatric medications have occurred purely 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Effect size (d) is a statistical concept that measures the strength of the relationship between two variables on a numeric 
scale.  Effect size is most commonly computed as the standardized difference between two means. The values of the effect 
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by chance (Preskorn 2010a). Serendipitous discoveries between the 1920s-1960s led to early 

pharmacological treatments for mental disorders, including chlorpromazine and other typical 

antipsychotics, lithium for bipolar disorder, and tricyclic antidepressants. During the second half of the 

20th century, rational pharmaceutical development followed the accumulation of knowledge related to 

neurotransmitters. The greatest production of compounds targeting specific neurotransmitter systems 

occurred between the 1960s-1990s (Preskorn 2010b). Fluoxetine, the first selective serotonin reuptake 

inhibitor, received FDA approval for treatment of depression in 1987. Risperidone, an early “atypical” 

or second-generation antipsychotic (SGA), came on the market in 1993. Most recently, after a gap of 

more than 25 years, drugs that act at glutamate receptors have shown potential for acute treatment of 

depression and suicidality (Zanos et al. 2016; Lener et al. 2016).   

 

Despite these advances, fundamental pharmacological treatment developments in psychiatry 

have stagnated (Hyman 2012, Insel 2015). First-line medication fails in approximately half of all 

patients, and the median effect size of treatment with any psychopharmacological agent is only 0.4 

(Luecht et al. 2012). Moreover, for the last 25-30 years, almost all new psychiatric medications have 

been “me too” drugs-- closely related to the original chemical compound and acting through the same 

mechanism of action (Fibiger 2012; Harrison et al. 2016). Although newer medications can provide 

important reductions in associated side effects and greater tolerability, they are not more effective. For 

example, modern antipsychotics are no more effective than first-generation drugs, according to recent 

meta-analyses (Geddes, Freemantle, Harrison, and Bebbington 2000; Crossley, Constante, McGuire, and 

Power 2010). Anti-depressant efficacy remains difficult to differentiate from placebo effects (Khin et al. 

2011) and lithium remains the most effective option for bipolar disorder, despite its limited tolerability 

and unclear mechanisms of action (Harrison et al. 2016).   

 

After more than 100 years of psychological theories, psychopharmacological research, and 

clinical experience, the challenges of understanding and treating mental illness remain firmly in place. 

As a medical field, psychiatry faces two inter-related sticking points. The first is diagnostic complexity. 

Although DSM provides a foundation for clinical care in the face of limited treatment options, 

heterogeneous categories, individual differences, and comorbidity have stymied development of a 

principled pathophysiological understanding of psychiatric disorders. The second is stagnation in 

treatment development. Although both psychotherapeutic and pharmacological treatments have shown 
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efficacy, morbidity and mortality for people with serious mental illness remains unacceptably high (Insel 

2012; Walker, McGee, and Druss 2015; Whiteford et al 2015; Vigo, Thornicroft, and Atun 2016). 

Solving these extremely difficult problems requires a set of novel conceptual approaches, including the 

integration of neuroscience findings and computational modeling. 

 

1.4 Toward the Future of Psychiatric Research 

 

In 2010, NIMH proposed a new conceptual model to guide clinical psychiatric research (Insel et 

al. 2010; Morris and Cuthbert 2012; Simmons and Quinn 2014). The Research Domain Criteria (RDoC) 

takes a fundamentally different approach than DSM and addresses a different set of proximate questions. 

The RDoC framework seeks to further our understanding of psychopathology through pathophysiology 

by building upon ongoing advances in the behavioral and neurobiological sciences. The RDoC model 

proposes that human behavior can be parsed into fundamental domains of function (currently Negative 

Valence, Positive Valence, Cognitive Systems, Social Processes, Arousal and Regulatory Processes, and 

Sensorimotor Systems; Figure 1.3). These domains can be further subdivided into core psychological-

level constructs (e.g., working memory; see (MacCorquodale  and Meehl 1948)). RDoC hypothesizes 

that construct-level behaviors can be linked to the function of specific neural circuits and other 

biological processes, but also emphasizes the importance of developmental trajectories and 

environmental influences upon behavior. Constructs are conceptualized as dimensional, including the 

full continuum from illness to health, without specific clinical break points. The RDoC matrix provides 

a framework for investigations across multiple units of biological and behavioral analysis.  

 

< Figure 1.3 near here: RDoC schematic> 

 

RDoC was created as an attempt to move beyond the stagnation in psychiatric diagnosis and 

treatment development. The intent was to provide a framework based upon mechanisms of dysregulation 

in normative functioning, thus better aligning psychopathology research with rapidly evolving 

knowledge about neural systems and behavior. The specific elements of the framework are expected to 

change as new knowledge accumulates. The over-riding question is whether this framework can help 
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characterize psychiatric dysfunction more robustly; the long-term goal is to identify underlying 

mechanisms and specific functions that might serve as targets for treatment.  

As a heuristic, RDoC can readily serve as a basis for the emerging field of Computational 

Psychiatry. RDoC provides a conceptual framework within which specific theories can be applied and 

quantitative models tested. Rather than considering psychiatric diagnoses as clusters of symptoms, 

RDoC functional domains and constructs can be conceptualized as resulting from sets of underlying 

computations taking place across interacting neural circuits. In theory, these neural processes can, in 

turn, be described by algorithmic representations that describe information processing in the system 

(Marr 1982; Hofstadter 1985; Hofstader 2008; Churchland and Sejnowski 1994; Damasio 2010; Redish 

2013). Questions regarding the underlying neural circuits that perform those computations can then be 

asked. Stated differently, RDoC constructs can be considered latent constructs linking 

neurophysiological processes to behavioral observations (Huys, Moutsoussi, and Williams 2011; Maia 

& Frank 2011; Wang and Krystal 2014; Redish and Gordon 2016). Environmental factors and 

neurodevelopmental status can also be formally included in these algorithms. Ongoing RDoC 

experiments have begun to produce results that computational modelers can use as the basis for 

formalizing models that will better inform clinical practice. As such, applying computational approaches 

to RDoC-like frameworks may even transcend psychiatry and be used for advancing all kinds of 

translational neuroscience research (Sanislow et al 2019) e.g., computational neurology, computational 

vision, computational neuroscience of drug addiction. The goals of computational psychiatry and how 

computational models might best be applied to questions in behavioral neuroscience and psychiatry will 

be discussed in the following section.  

1.2 Computational Approaches in Neuroscience & Psychiatry 

1.2.1. Computational Neuroscience 

 

Computational neuroscience formalizes the biological structures and mechanisms of the nervous 

system in terms of information processing. Computational neuroscience is a highly interdisciplinary 

field at the intersections of fields such as neuroscience, cognitive science, psychology, engineering, 

computer science, mathematics, and biophysics. The last 25 years have seen significant growth in this 

field. From 1991 to 2016, the field grew more than 200 times, from 2 peer-reviewed scientific articles 

published per year to more than 400 publications per year. During the mid-1980s, two key factors led to 
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this booming growth (Abbott 2008). The first factor was linked to the implementation and wide adoption 

of the back-propagation algorithm in artificial neural networks (Rumelhart and McClelland 1986, see 

Chapter 2.1). Adopting back-propagation led to a great expansion in the number of tasks that neural 

network models could handle, and consequently, in the number of scientists interested in questions 

answerable with these techniques. The second factor involved the translation of key concepts and 

mathematical approaches from physics into neuroscience (see Chapter 2). For instance, in the 1980s, 

physicists like John Hopfield and Daniel Amit elegantly showed how a memory model could be further 

analyzed using statistical techniques originally developed to address theoretical issues related to 

disordered magnets (Amit, Gutfreund, and Sompolinsky 1985; Hopfield 1982).  

Mathematical models, such as those adopted from physics, have clear advantages over more abstract 

schematics and word descriptors. They force the modeler to be as precise, self-consistent, and as 

complete as possible in deriving the implications of the model.  Such models can be used for different 

purposes:  

• To describe the available data in a concise and synthetic way, possibly unifying different sets of 

data in the same formalism (i.e., answer the question “what?” as in, what are the fundamental 

properties of the phenomenon studied?) 

• To link the observed data to possible underlying mechanisms (i.e., answer the question “how?” 

as in, how do the necessary and sufficient conditions for a phenomenon emerge?) 

• To understand “why?” observed behaviors emerge as a consequence of a principle that can be 

justified theoretically (e.g., through understanding the process of individual optimization under 

some biological, environmental, or developmental constraints).   

In describing the question that a model can answer, it is also common to refer to Marr’s levels of 

analysis (Marr 1982; Figure 1.4). Marr proposed that information processing systems can be understood 

at three distinct, complementary levels of analysis: computational, algorithmic, and implementation. The 

computational level specifies the problem to be solved in terms of some generic input-output mapping 

(e.g. ‘list sorting’). The algorithm specifies how the problem can be solved, what representations it uses, 

and what processes it employs to build and manipulate the representations (e.g. ‘Quick-sort’, ‘Bubble-

sort’). Implementation is the level of physical parts and their organization (e.g. specific programming 

language). It describes the physical mechanisms that carry out the algorithm. These levels function 
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mostly independently and can often be described using different mathematical models. The challenge is 

often to bridge these levels of description and to understand how they might constrain each other.  

 

<Figure 1.4 near here: Levels of Marr> 

 

     Computational approaches have dramatically changed how basic neurobiological phenomena are 

described. Examples of successful and influential theoretical models include: Lapicque’s integrate-and-

fire model (Lapicque 1907; Lapicque 1926), which provides a simple model of neuronal changes in 

voltage and activity (see Section 2.1.5); Hodgkin-Huxley’s model of action potential generation and 

propagation (Hodgkin & Huxley, 1952), which provides a detailed description of the dynamics of 

sodium and potassium channels in the initiation of the action potential; Rall’s cable theory (Rall 1977), 

which provides a description of how the neuronal voltage relates to various morphological properties of 

neuronal processes (e.g., axons and dendrites); and Hebb’s plasticity rules (Hebb 1949), which provide 

an algorithm to update the strength of neuronal connections within neural networks (e.g.., the 

synaptic plasticity, as a consequence of learning). 

     Fundamental theoretical advances in neuroscience have also changed how we view information 

encoding and computation in the brain. This can be seen, for example, through the application of 

information theory in Barlow’s hypothesis of predictive coding (see also Section 2.4.6). A prominent 

figure of theoretical neuroscience Horace Barlow (1985) suggested that the hierarchic organization of 

sensory systems reflects two imperatives: (1) to take in a maximum of new information to detect 

statistical regularities in the environment; and (2) to exploit these learned regularities to construct 

predictions about the environment. Those predictions are then used to guide adaptive behavior. In other 

words, he proposed that the brain evolved to efficiently code sensory information by using information-

processing strategies optimized to the statistics of the perceptual environment (Olshausen & Field, 

1997). This framework suggests that the brain functions as a predictive engine rather than a purely 

reactive sensory organ, using an internal model of the statistics of the world to continuously and 

automatically infer what environment it is placed in, and what best action to take.  

More recently, it has been proposed that computational models of cognitive function could be used 

to explain psychopathology. For example, impairments in the processes involved in predictive coding 

could explain a variety of observations, ranging from impoverished theory of mind in autism to 
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abnormalities of smooth pursuit eye movements in schizophrenia (see Section 2.4.6 & Chapter 6).  The 

development of such ideas marked the birth of the field of “Computational Psychiatry.” 

 

1.2.2 Computational Psychiatry 

 

Simply defined, computational psychiatry consists of applying computational modeling and 

theoretical approaches to psychiatric questions. Although very young, computational psychiatry is 

already an extremely diverse field, leveraging concepts from psychiatry, psychology, computer science, 

neuroscience, electrical/chemical engineering, mathematics, and biophysics. Computational psychiatry 

seeks to understand how and why the nervous system may process information in dysregulated ways, 

thereby giving rise to the full spectrum of psychopathological states and behaviors. It seeks to elucidate 

how psychiatric dysfunctions may mechanistically emerge, be classified, predicted, and clinically 

addressed. Computational psychiatry models can also be used to connect distinct levels of analysis 

through biologically grounded theories and rigorous analytical methods.   

 

Integrating computational modeling into psychiatry can aid research in several fundamental ways. 

First, in a formalized computational model, all assumptions underlying a clinical characterization, 

moderating factors, and experimental hypotheses must be made explicit. Both manipulated 

(independent) and measured (dependent) variables can be included as factors in mathematical formulas. 

The extent to which experimental results match model predictions can qualitatively and quantitatively 

inform our mechanistic understanding and guide future experiments. In this way, developing and testing 

computational models provides a clear, iterative approach to increased understanding of 

psychopathological complexity. Additionally, computational models can explicitly incorporate time, 

enriching our ability to understand how functional neuro-cognitive architectures develop and to identify 

critical temporal windows associated with abnormal developmental trajectories.  

Similar to their broader role in computational neuroscience, computational models can help 

psychiatric researchers answer three fundamental questions regarding the differences in neural 

information processing that may characterize psychopathology: 
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• What are the main biological components involved in psychopathology and what are the 

mathematical relationships between these components? Computational approaches require 

clear and precise definitions of the basic building blocks of cognitive functions and their 

impairment.  

• How do dysfunctions in the individual biological units or in their interactions lead to the 

behavioral changes seen in mental illness? Answers to this question may allow targeted and 

dynamic manipulations of the system to treat the emotional, cognitive, and behavioral 

problems associated with psychiatric disorders.   

• Why have these changes occurred? Understanding etiology in a dynamical system is most 

challenging, because early, initial changes may have had downstream effects on several 

nodes. Full investigation therefore requires integrating time into computational models and 

testing their predictive value using longitudinal designs across various neurodevelopmental 

trajectories.  

This approach, which seeks to bridge the gap between neuroscience and psychopathology, is 

consistent with the RDoC research framework because it conceptualizes psychopathology with reference 

to specific neural circuits (what), seeks to understand the relationships between psychological constructs 

and neurobiological function (how), and explicitly considers the impact of both biological and 

environmental etiological factors on neurodevelopmental trajectories (why). Progress about these 

questions should open up a range of potential preventative approaches to mental illness. 

1.2.3 Data-driven approaches 

 

While a wide spectrum of computational approaches exists, computational models in psychiatry 

can be divided into two broad groups: data-driven models and theory-driven approaches (Huys, Maia, & 

Frank, 2016). This book focuses on theory-driven models. However, the two approaches are 

complementary, equally promising and can be combined.  

The data-driven approach to computational psychiatry can be described as the application of 

machine learning techniques to vast amount of data related to psychiatric patients, without explicit 

reference to current psychological or neurobiological theory. The goal is to find new statistical relations 

between high-dimensional datasets (e.g., genetics, neuroimaging findings, behavioral performances, 

self-report questionnaires, response to treatment, etc.) that could be meaningful for classification, 
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treatment selection or prediction of treatment outcome. Here, the assumption is that our understanding of 

mental illness will improve primarily through improvements in data quality, quantity, and analytics. This 

“blind” or “brute force” approach may allow researchers to generate new theories based purely on multi-

faceted clinical data rather than on potentially outmoded historical perspectives (Huys, Maia, and Frank 

2016). 

Figure 1.5 illustrates how a data-driven approach might lead to new descriptions and 

classifications, going beyond traditional symptom-based categories of mental disorder. Consider a 

population of patients with a range of mood disorders (e.g., major depressive disorder, dysthymia, and 

bipolar disorder). Machine learning techniques applied to a range of genetic, physiological, brain 

activity, behavioral data and social, cultural and environmental factors related to those patients, might 

lead to the discovery of new unbiasedly derived bio-behavioral clusters. Such clusters might form 

groups that are more homogeneous than the original DSM classification and might connect more 

directly with the underlying causes of the illness.  

 

< Figure 1.5 near here: Data drive Computational Psychiatry > 

 

1.2.4 Theory-driven approaches 

 

Theory-driven models are the focus of this book and can be described as the application of 

“classical” computational neuroscience approaches to psychiatric questions. In general, these models 

mathematically describe the relationships between observable variables (e.g., behaviors) and 

theoretically relevant, but potentially unobservable, biological mechanisms. Theory-driven models 

commonly incorporate known experimental knowledge of brain anatomy and/or physiology or of 

higher-level functions for which basic theories have been developed (e.g., perception, learning or 

decision making). These models are particularly useful when the cognitive/behavioral function of a 

neurobiological network is known and/or when accurate and detailed experimental data are available to 

constrain the model. Theory-driven models can span across multiple levels of analysis and abstraction, 

from molecules to complex behaviors. They can show whether existent data are sufficient to explain the 

measured physiological behavior of the circuit; they can also highlight whether unaccounted biological 

mechanisms could better explain the data, and they can point to gaps in knowledge.  
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Three representative exemplars of theory-driven models are discussed below: biophysically 

realistic neural-network models, reinforcement learning models, and Bayesian models (Huys, Maia,  and 

Frank 2016).   

Biophysical models are commonly used to elucidate how biological abnormalities found in 

mental disorders affect neuro-behavioral dynamics. Biophysical models rely on the theoretical 

assumption that the essential computations of single neurons and synapses can be captured by sets of 

first order differential equations of the type proposed by Hodgkin and Huxley (1952). Synthetic 

computational models recapitulate biophysically realistic properties of neurons and can be used to test 

the proposed input-output properties of neurophysiological systems in a behavioral context (Wang and 

Krystal 2014; Ferrante et al 2016; Huys, Maia, and Frank 2016; Shay, Ferrante, Chapman, and 

Hasselmo, 2016). Biological models are most appropriate when our biological knowledge base is well 

established and could help identify biological mechanisms that best explain natural variance in patient 

populations. Biologically realistic models vary in complexity, and the optimal degree of biological detail 

depends upon the scientific question asked. Simpler models can be more generalizable, while complex 

models may lose their reductionist appeal as they increase their biological realism. Because biological 

realism tends to be computationally expensive, these models are most easily implemented when the 

network is relatively small and/or when the relevant biological parameters are relatively few. A 

reductionist approach incorporating the fundamental biological features of a complex system can be the 

simplest possible framework to elucidate the relationship among biological mechanism, neural 

computations, and functional output. Examples include models of dopamine signals linked to reward-

prediction error, working memory internally represented as sustained neural activity, and neural 

integrators in perceptual decision-making tasks, all of which are relevant to our understanding of some 

of the cognitive impairments observed in psychiatry (see Chapters 2-4). On the other hand, using 

biologically realistic models might be premature for explaining other psychiatric symptoms, such as 

psychosis, where a clear neurophysiological characterization at the cellular and systems level is still 

lacking (Wang and Krystal 2014, see also Chapter 6).  

Reinforcement learning (RL) as a research field lays at the intersection between mathematical 

psychology, artificial intelligence, and control theory. It addresses how systems of any sort, be they 

artificial or natural, can learn to gain rewards and avoid punishments in what might be very complicated 

environments involving states (such as locations in a maze) and transitions between states. They 
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describe how an agent ‘should’ behave under some explicit notion of what that agent is trying to 

optimize. In that sense, they offer a normative framework to understand behavior.   

Reinforcement learning was born from the combination of two long and rich research traditions, 

which had previously been pursued independently (Sutton and Barto 2018). The first thread concerns 

optimal control and solutions using value functions and dynamic programming. Optimal control relates 

to mathematical techniques that deal with the problem of finding a control law for a given system such 

that a certain optimality criterion is achieved. The second thread concerns learning by trial and error. 

This thread finds its origin in the psychology of animal learning, particularly in the scientific exploration 

of Pavlovian (classical) and instrumental (operant) conditioning. Classical conditioning is a form of 

learning whereby a neutral stimulus (called the conditioned stimulus, CS) becomes associated with an 

unrelated rewarding or punishing stimulus (called the unconditioned stimulus, US) in order to produce a 

behavioral response (called conditioned response, CR). In the famous example studied by Pavlov, the 

repeated pairing between a bell (the CS) and food (the US) would lead to dogs salivating (the CR) when 

the bell was presented alone. Instrumental conditioning relates to learning associations between actions 

and outcomes. B. F. Skinner showed that behaviors followed by positive reinforcement are more likely 

to be repeated, while behaviors followed by negative reinforcement are more likely to be extinguished. 

Pavlovian conditioning, instrumental conditioning, and subsequent research show that animals and 

humans naturally learn the associations between objects, actions, and reinforcement contingencies in 

their environment and use this learning to predict future outcomes. Learning occurs to optimise those 

predictions (or reduce prediction errors). Interestingly, studies of operant conditioning also form a basis 

for some modern psychotherapies, particularly behavioral psychotherapies, which offer methods 

designed to reinforce desired behaviors and eliminate undesired behaviors. As such, such models relate 

naturally with psychiatry. 

   Converging evidence from lesion studies, pharmacological manipulations, and electrophysiological 

recordings in behaving animals, as well as fMRI signals in humans, have provided links between RL 

models and neural structures. In particular, a significant body of literature suggests that the 

neuromodulator dopamine provides a key reinforcement signal: the temporal difference reward 

prediction error (see Sections 2.3 and 5.3).  Dopamine dependent temporal difference models provide a 

key link between neuromodulation (often hypothesized to be dysregulated in mental illness), 

pharmaceutical treatments, substances of abuse, and learning systems.    
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Finally, a prominent idea in modern computational neuroscience is that the brain maintains and 

updates internal probabilistic models of the world that serve to interpret the environment and guide our 

actions.  In doing so, it uses calculations akin to the well-known statistical methods of Bayesian 

inference (see Section 2.4). Bayesian inference methods are used to update the probability for a 

hypothesis, as more evidence or information becomes available. When applied to psychiatry, this 

approach conceptualizes mental illness as the brain trying to interpret the world through distorted 

internal probabilistic models, or incorrectly combining such internal models with sensory information, 

generating maladaptive beliefs.  

Bayesian models can be particularly useful in predicting expected behaviors (what would be the optimal 

thing to do in a given task), quantifying the severity of dysfunctional behavior as the ‘distance’ from 

optimality, and understanding how maladaptive beliefs can arise. Traditionally, Bayesian inference has 

been applied primarily to behavioral data, but more recently there has been an effort to integrate 

behavioral data with neural or fMRI data (Fischer and Peña 2011; Turner et al 2013).   

These main types of theory-driven models - biophysical models, RL, predictive coding and Bayesian 

models - will be described in more detail in Chapter 2. 

 

Of course, theory- and data-driven models are not mutually exclusive. Theory-driven models are 

often heavily grounded to and validated by experimental data. Similarly, fully unbiased methods of 

collecting and analyzing data do not exist and often incorporate hypotheses that can be formulated as 

theories. Both approaches are complementary. Ultimately, they will need to be combined to provide 

precise diagnostic classifications, predictions, and explanations of mechanistic neurobehavioral 

trajectories.  

 

A number of initiatives have been created that encourage the development of both types of 

approaches. As discussed above, NIMH’s RDoC initiative encourages psychiatric researchers to study 

focused aspects of dysfunction that may cut across current diagnostic categories and link mechanistic 

explanations across different levels of biological analysis. The BRAIN Initiative has fostered the 

development of innovative neuro-technologies able to record simultaneously from large numbers of cells 

and to stimulate brain activity with high spatio-temporal precision. Together, these initiatives are 

generating large, complex, multimodal datasets that will provide fertile ground for cutting-edge 

computational modeling.  
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Computational Psychiatry is undoubtedly rising. The first article to use the term computational 

psychiatry was published in 2007 (Montague 2007). In the following 10 years, the field has rapidly 

expanded, with 220 publications and several technical books (Parks, Levine, and Long 1999; Sun 2008; 

Redish and Gordon 2016; Anticevic and Murray 2017; Heinz 2017; Wollace 2017). Groups interested in 

such questions, as well as summer schools and workshops, have also recently blossomed. However, the 

field is still in its infancy and comprehensive models able to explain psychopathology at the individual 

level still need to be implemented. We hope that this book will inspire a new cohort of scientists and 

help towards a new understanding and treatment of mental illness.  

1.3 Structure of the book 

 

In the next section, we survey the main methods of theory-driven computational psychiatry. We will 

cover neural networks and connectionist methods, drift-diffusion models, reinforcement learning 

models, predictive coding, and Bayesian models as well as methods related to fitting computational 

models to behavioral data.  

In the spirit of RDOC (cf. Figure 1.3), the following section describes models relevant to the 

dimensions of behavioral functioning, focusing on models of healthy function with an emphasis on 

cognitive systems and positive and negative valence systems. Chapter 3 describes biologically detailed 

models of working memory and decision-making. Chapter 4 describes models of Cognitive Control. 

Chapter 5 focuses on reinforcement systems. The following chapters then illustrate the application of 

computational approaches to schizophrenia (Chapter 6), depression (Chapter 7), anxiety (Chapter 8), 

addiction (Chapter 9) and the example of a tic disorder (Tourette’s Syndrome, Chapter 10). In 

Chapter 11, we offer additional pointers on disorders not covered in Chapters 5-10 and offer some 

guidelines for future research.  

 

1.4 Chapter Summary 

 

• The burden of mental health diseases is enormous in terms of suffering, life expectancy, and 

economic cost.  
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• There has been stagnation in the discovery of new pharmacological drugs and treatments in the 

last decades. 

• The definition and diagnosis of psychiatric disorders has been problematic for centuries. It is 

likely that, for most disorders, it will be impossible to pin down a single cause, a single organic 

substrate, or a single time course.  The current categorical classification of mental disorders, 

known as the DSM, has proved to be clinically very valuable, but the heterogeneous phenotypes 

associated with DSM-based diagnoses and the Manual’s a-theoretical structure make it difficult 

to consider biological mechanisms that could lead to more effective treatments.   

• New approaches aim to move from the description of mental illnesses as collections of 

symptoms toward methods to bridge neuroscience and cognitive modeling with 

psychopathology. The NIMH RDoC initiative encourages this approach and computational 

modeling can provide a useful approach to solve some challenges highlighted by RDoC (e.g., 

causally linking distinct units of analysis, modeling temporal trajectories and dynamic 

interactions between specific constructs across neurodevelopment). 

• Computational approaches are considered central to progress in neuroscience. They could 

similarly benefit the field of psychiatry.  

 

 

1.5 Further Study 

 

A historical perspective about the field of Psychiatry can be found in Fisher, B.A. (2012). For reviews 

describing the emerging field of Computational Psychiatry, see Montague, Dolan, Friston and Dayan 

(2012); Friston, Stephan, Montague, Dolan (2014) and Stephan and Mathys (2014). To read about the 

NIMH’s RDoC initiative, the reader can consult Kozak and Cuthbert (2016).  
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Chapter 2: Methods of Computational Psychiatry: A brief Survey 
 

Peggy Seriès, University of Edinburgh 

 

"One thing I have learned in a long life: That all our science, measured against reality, is primitive and 
childlike — and yet it is the most precious thing we have." 

Albert Einstein. Creator and Rebel, 1972. 

 

The methods that are currently used in computational psychiatry are very diverse, mirroring progress in 

computational neuroscience and cognitive science, and ranging from early connectionist work to 

reinforcement learning, probabilistic methods and applied machine learning. This chapter offers a brief 

survey of these methods, as well as pointers to additional resources for further study.  

2.1 Neural Networks & Circuits Approach 

 

The earliest models that aimed at explaining mental computations and disorders are known as 

“connectionist” models. Donald Hebb introduced the term “connectionism” in the 1940s to describe a 

set of approaches that models mental or behavioral phenomena as emergent processes in interconnected 

networks of simple units (Figure 2.1), a. k. a “Neural Networks”.  

Those simple units, often called “neurons” by analogy with the brain, are described by their value or 

“output” which can be binary (1/0) or real-valued. The value of each unit is equal to the sum of its 

inputs, passed through a non-linear function, called the “activation function”. The network connections 

typically have a “weight” that determines how strongly the units influence each other. The weight can be 

positive or negative and may change according to a learning procedure. Units may also have a threshold 

such that only if the sum of the signals it receives crosses that threshold is the unit activated.  
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For example, McCulloch and Pitts (1943) proposed a binary threshold unit as a computational model for 

an artificial neuron. This neuron computes a weighted sum of its n input signals xj: 

𝑦 = 𝑓 𝑤!𝑥! − 𝑢!
!!! ;       (1) 

and generates an output y of 1 if the sum is above a certain threshold u. Otherwise, it outputs 0. Here, f is 

chosen to be a unit step function, whose value is zero for negative argument and one for positive 

argument and wj is the synapse weight associated with the jth input. Positive weights correspond to 

excitatory synapses, while negative weights model inhibitory ones. McCulloch and Pitts proved that, in 

principle, this model could be used to implement any Boolean logic function, such as AND, OR, XOR2 

gates (the latter by combining AND, NOT and OR units).  These logical gates are the building blocks of 

the digital logic electronic circuits, which modern digital computers are built from. In principle 

therefore, such circuits could achieve any type of computation. The McCulloch & Pitts neuron has been 

generalized in many ways. Different types of activation functions can be used instead of the unit step 

function, for example sigmoidal functions such as the logistic function: 𝑓 𝑥 = 1/(1+ exp −𝑏𝑥 ) 

where b is a slope parameter.  

 

< Figure 2.1 around here> 

 

2.1.1 Artificial neural network architectures 
 
 
Typically, artificial neural networks are organized in layers. Neural networks can be feed-forward or 

recurrent. In feed-forward networks, the information moves in only one direction, forward, from the 

input nodes, through the intermediate nodes (if any) that are also called “hidden” nodes, and to the 

output nodes. The so-called multilayer perceptron for e.g. has neurons organised into layers that have 

unidirectional connections between them. There are no cycles or loops in the network. In recurrent 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
   The XOr, or “exclusive or”, is a digital logic gate that gives a true (1) output when the number of true inputs is odd. An XOR gate 
implements an exclusive or; that is, a true output results if one, and only one, of the inputs to the gate is true. If both inputs are false (0) or 
both are true, a false output results.  
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networks on the contrary, units in the same layer are interconnected. While feed-forward networks are 

static or “memory-less”, in the sense that they produce only one set of output values from a given input, 

recurrent networks can produce sequences of values and rich temporal dynamics and are considered 

more biologically plausible since neurons in the brain are also heavily interconnected in circuits that 

present loops and can generate rich dynamics, such as oscillations. 

2.1.2 Learning in Feed-Forward networks 
 
 
Learning in neural networks is viewed as the problem of updating network architecture and connection 

weights so that the network becomes more efficient at performing a specific task, defined as mapping a 

desired output to a given input. At a theoretical level, we can distinguish three main learning paradigms: 

supervised, by reinforcement and unsupervised.  In supervised learning, the network is provided with a 

correct output for every input pattern in a training dataset. Weights are dynamically updated to allow the 

network to produce answers as close as possible to the known correct answers. This is achieved using 

learning rules known as error-correction rules. Reinforcement learning is a variant of supervised 

learning in which the network is provided with only a critique on the correctness of network output 

(correct/incorrect or reward/punishment), not the correct answers themselves. In contrast, unsupervised 

learning does not require a correct answer associated with each input pattern in the training dataset. It 

explores the underlying structure in the data, or correlations between patterns in the data, and organizes 

patterns into categories from these correlations.   

The basic principle of error-correction rules is to use the error between the real output of the network 

and the desired output (ydesired – y) to modify the connection weights so as to gradually reduce this error, 

using a method known as gradient descent. For example, the perceptron learning rule is based on this 

error-correction principle. A perceptron consists of a single neuron receiving a number of inputs x={x1, 

x2…, xn} fed through connections with adjustable weights wi and threshold u (Figure 2.1A). The net 

input v of the neuron is:  

𝑣 = 𝑤!𝑥! − 𝑢
!

!
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and the output is set to +1 if v>0 and 0 otherwise. The perceptron can be used to classify two classes of 

inputs: one set of inputs will be trained to lead to an output of 1, while the other set will lead to an output 

of 0. Rosenblatt (1958) showed that this can be achieved by using the following steps:  

1) Initialize the weights and threshold to small random numbers;  

2) Present an input vector xj={xj,1, xj,2,.., xj,n} for pattern j and evaluate the output of the neuron yj;  

3) Update the weights according to:  

𝑤! 𝑡 + 1 = 𝑤! 𝑡 + 𝜂(𝑑! − 𝑦!(𝑡))𝑥!,!       (3) 

 

where dj is the desired output for pattern j, t is the iteration number and 𝜂 is the learning rate, which 

determines how much we adjust the weights in each trial with respect to the loss gradient (the lower it is, 

the slower we travel along the downward slope of the gradient).  

Like most AI researchers, Rosenblatt was very optimistic about the power of neural networks, predicting 

enthusiastically that the “perceptron may eventually be able to learn, make decisions, and translate 

languages.” However, Minsky and Papert (1969) showed that, as a general result, single-layer 

perceptron are very limited in what they can do: they can only separate linearly separable patterns. It 

fails to implement the XOR function, for example. This was perceived as devastating result concerning 

what could be achieved with neural networks and played a part to what is known as the “AI winter” in 

the 1970s and 1980s: a period of reduced funding and interest in artificial intelligence research.   

The “AI winter” came to an end in the middle 1980s, when the work of John Hopfield and David 

Rumelhart revived interest in neural networks. Rumelhart et al (1986) showed that that error correction 

rules could be adapted to multi-layer networks, and provided a method that made neural networks able 

to approximate any nonlinear function: the back-propagation algorithm. Such networks (and the variants 

that followed) can be trained to perform sophisticated classification or optimization tasks, such as 

character recognition and speech recognition. These new results led to a new growth of the field. Neural 

networks would become commercially successful in the 1990s. Initially limited by the computational 

power of early computers, this research was leading the way to the current success of Deep Learning 

networks, which are based on similar principles.  
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2.1.3 Recurrent Networks and Attractor Dynamics 
 
 
Around the same time as the back-propagation algorithm was introduced, physicist John Hopfield was 

able to prove that another form of neural network, now called a “Hopfield net”, could learn and process 

information in a completely new way. The units in a Hopfield net are binary threshold units, like in the 

perceptron, so they take only two different values, usually 1 and -1, depending on whether or not the 

units' summed input exceeds their threshold (Figure 2.1B). The connections in a Hopfield net typically 

have the following restrictions: i) no unit has a connection with itself: wii ≠ 0; and ii) the connections are 

symmetric: wij=wji. 

Updating one unit in the Hopfield network is performed using the following rule: 

𝑥! = 𝑆𝑔𝑛( 𝑤!"𝑥! − 𝑏!!
!!! ) (4) 

where Sgn(x) is the sign function, whose output is 1 or -1, wij is the weight of the connection from unit j 

to unit i; xj is the state of unit j, bi is the threshold of unit i.  

Updates in the Hopfield network can be performed in two different ways: either asynchronously: Only 

one unit is updated at a time. This unit can be picked at random, or a pre-defined order can be imposed 

from the very beginning, or synchronously: All units are updated at the same time. This requires a 

central clock to the system in order to maintain synchronization. Importantly, Hopfield found that the 

network could be described by a quantity that he called the energy E (by analogy with the potential 

energy of spin glass), defined by: 

𝐸 = − !
!

𝑤!"𝑥!𝑥! − 𝑏!!
!!! 𝑥!!

!,!!!   (5) 

As the network state evolves according to the network dynamics, E always decreases and eventually 

reaches a local minimum point, called attractor, where the energy stays constant. Hopfield also showed 

that those energy minima could be set to correspond to particular n-dimensional patterns {ε1, ε2 … ε

This is done by setting the weight from unit j to unit i such that it corresponds to the average (over all 

patterns) product of the ith and jth elements of each pattern:  

𝑤!" =
!
!

𝜀!!𝜀!!
!
!!!   (6) 

where εk ={ε1
k, ε2

k,…, εn
k} denotes the pattern number k to be encoded. This is called the storage stage. 

The network can then be used as an associative memory: in the so-called retrieval stage, an input is 
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given to the network to be used as initial state of the network, and the network will evolve according to 

its dynamics to finally reach an equilibrium that will correspond to the stored pattern that is most similar 

to the input. For example, if we train a Hopfield net with five units so that the state (1, -1, 1, -1, 1) is an 

energy minimum, and we give the network the state (1, -1, -1, -1, 1), it will converge to (1, -1, 1, -1, 1). 

2.1.4 Application to Psychiatry 
 
 
The discovery of the back-propagation algorithm and Hopfield networks triggered a strong revival of 

interest for neural networks. In cognitive science, connectionism – as a movement that hopes to explain 

intellectual abilities in terms of neural networks – became further inspired by the appearance of Parallel 

Distributed Processing (PDP) in 1986. This is a two volume collection of papers edited by David E. 

Rumelhart, Geoff Hinton and psychologist James L. McClelland (D. E. Rumelhart, Hinton, and 

Williams 1986) that has been particularly influential. Connectionism offered a new theory about 

cognition, knowledge and learning – and their impairments. In theory, neural networks can be trained to 

perform any task (pattern classification, categorization, function approximation, prediction, 

optimization, content addressable memory, control) to the level of human participants. The PDP 

approach led to the idea that possible impairments in cognitive function, such as those observed in 

mental illness for example, could be explained by impairments in either the structure or the elements of 

the underlying neural networks e.g. the destruction of some connections, or an increase in the noise of 

some units. 

For example, connectionist models have been prominently applied to schizophrenia. Patients with 

schizophrenia or mania can characteristically display hallucinations and delusions as well as rapidly 

changing, loose associations in their speech. Early work examined how parameters governing the 

dynamics of Hopfield networks might reproduce this. An increase in noise can lead to less specific 

memories, mirroring a broadening of associations in schizophrenia, and less stable, constantly altering 

memories. Similarly, deletions of connections, mimicking excessive pruning, or overload of the network 

with memories beyond its capacity, produce the emergence of localized, parasitic attractors, reminiscent 

of hallucinations or delusions (for a review, see Hoffman and McGlashan 2001).  
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2.1.5 Biological Networks 
 
 
More recently, such hypotheses have been explored in the context of neural networks that are much 

more biologically realistic. Those networks are made of so-called “spiking” neurons that mimic what is 

known of real neurons: biological neurons use short and sudden increases in voltage, known as action 

potentials or “spikes”, to send information (Figure 2.1C). The leaky integrate-and-fire neuron (LIF) is 

probably the simplest example of a spiking neuron model but it is still very popular due to the ease with 

which it can be analyzed and simulated.  

The state of the neuron at time t is described by the membrane potential of its soma v(t). The neuron is 

modeled as a “leaky integrator” of its input I(t): 

 

𝜏!
!"(!)
!"

= −𝑣 𝑡 + 𝑅𝐼(𝑡)  (7) 

 

Here, τm is the membrane time constant and R is the membrane resistance. In electronics terms, this 

equation describes a simple resistor-capacitor (RC) circuit: the membrane of a neuron can be described 

as a capacitor because of its ability to store and separate charges. Ion channels allow current to flow in 

and out of the cell. When more ion channels are open, more ions are able to flow. This represents a 

decreased resistance, which leads to an increase in conductance.  

The dynamics of the spike are not explicitly modelled in the LIF model. Instead, when the membrane 

potential v(t) reaches a certain threshold vth (spiking threshold), it is instantaneously reset to a lower 

value vr (reset potential) and the leaky integration process described by Eq. 7 starts anew with the initial 

value vr. To add more realism, it is possible to add an absolute refractory period ∆abs immediately after 

v(t) crosses the threshold vth. During the absolute refractory period, v(t) might be clamped to vr and the 

leaky integration process is re-initiated following a delay of ∆abs after the spike.  

The input current can be constant, or dynamic. If the neuron is modelled as part of the network, the input 

current will reflect the synaptic inputs coming from other neurons. These in turn can be modelled as 

weighted inputs, where each connection is given a weight (positive for excitatory neurons or negative 

for inhibitory neurons), or in a more realistic way as a synaptic conductance that model the dynamics of 



	
  

	
   38	
  

real synaptic inputs (excitatory post-synaptic potentials, a.k.a. EPSPs – and inhibitory post-synaptic 

potentials, a.k.a. IPSPs). 

 More detailed information about modelling individual neurons and networks of biologically realistic 

neurons can be found for example in Dayan & Abbott (2000).  

Chapter 3 describes applications of such spiking neural networks to understand decision-making and 

working memory deficits in healthy subjects and schizophrenia. Patients with schizophrenia also show 

impairments in cognitive flexibility and control tasks that require the inhibition of a pre-potent response. 

Chapter 4 shows how modelling the circuits involved in those tasks might lead to a better 

understanding of the cognitive control deficits in mental illness.  

 

2.2 Drift-Diffusion models3  

 

Drift-Diffusion models (DDM) belong to another class of models that are also inspired from Physics. 

Here, the aim is to provide a phenomenological description of a particular psychological process: the 

performance of animals or humans when they make simple decisions between two choices, without 

worrying about the underlying possible biological substrate. These models are interesting because 

although they were initially proposed only as phenomenological description of psychological processes, 

it is now clear that they also connect to notions of optimal decision theory as well as observed dynamical 

processes in real biological neurons.  

The DDM is applied to relatively fast decisions (commonly less than 2 seconds) and only to decisions 

that are a single-stage decision process (as opposed to the multiple-stage processes that might be 

involved in, for example, reasoning tasks). Such tasks include for example perceptual discrimination 

(are these two objects the same or different?), recognition memory (is this image new or was it presented 

before?), lexical decision (is this a word or a non-word?) etc. Performance is described in terms of 

reaction times and accuracy. Such tasks are commonly used in Psychiatry to assess how information is 
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processed in different groups. For example, whether anxious or depressed participants process 

threatening or negative information differently from controls when they have to make simple decisions.  

Drift decision models aim at dissecting the different elements that are involved in the decision: in 

particular at separating the quality of evidence entering the decision from decision criteria and from 

other, non-decision, processes such as stimulus encoding and response execution. 

In these models, decisions are made by accumulating noisy evidence, until a threshold has been reached, 

at which point a response is initiated (Figure 2.2).  

 

< Figure 2.2 around here> 

Several mathematical expressions exist for the DDM.  A typical equation will be of the form of a 

Wiener process (one dimensional Brownian motion). The diffusion process x(t) evolves dynamically 

according to: 

!"(!)
!"

= 𝑣 + 𝜎𝜂(𝑡)  (8) 

 

• Where v is called the drift rate. It represents the quality of the information evidence from the 

stimulus. If the stimulus is easily classified, it will have a high rate of drift and approach the 

correct boundary quickly, leading to fast and accurate responses.  

•  𝜂(𝑡) is a white noise term.  

• 𝜎2 is the variance of the process.  

 

In the model, noisy evidence is accumulated from a starting point, z, to one of two boundaries, a, or 0. 

The two boundaries represent the two possible decisions, such as yes/no, word/non-word, etc. Once the 

process x(t) reaches a boundary, the corresponding response is initiated.  

Each component of the model – the boundary separation (a), drift rate (v), starting point (z), and non-

decision processing (Ter) - has a straightforward psychological interpretation. The position of the starting 

point, z, indexes response bias. If an individual is biased towards a response (e.g., through different 

frequencies of each option, or payoffs), their starting point will be closer to the corresponding boundary, 

meaning that less evidence is required to make that response. This will lead to faster and more probable 
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responses at that boundary compared to the other.  The separation a between the two boundaries indexes 

response caution or speed/accuracy settings. A wide boundary separation reflects a cautious response 

style. In this case, the accumulation process will take longer to reach a boundary, but it is less likely to 

hit the wrong boundary by mistake, producing slow but accurate responses. One can also add parameters 

that capture between-trial variability in the starting point, drift rate, and non-decision time. Such 

variability is necessary for the model to correctly account for the relative speeds of correct and error 

responses. The model can also be extended to include contaminants, i.e. responses that come from some 

process other than the diffusion decision process (e.g., lapses in attention) so as to account for aberrant 

responses or outliers in the data.  

This model was shown to be a satisfying description of the choice process as it produces the 

characteristic right skew of empirical RT distributions. For more mathematical details of the diffusion 

model, interested readers can consult Ratcliff and Tuerlinckx (2002) or Ratcliff and Smith (2004). 

There are several advantages of the diffusion model over traditional analyses of RTs and/or accuracy. 

First, it allows for the decomposition of behavioral data into processing components. This allows 

researchers to compare values of response caution, response bias, non-decision time, and stimulus 

evidence. With this approach, researchers can better identify the source(s) of differences between groups 

of subjects.  

For example, White et al (2010b) used the diffusion model to study how processing of threatening 

information might differ in high-anxious individuals. In their lexical decision experiment, participants 

were shown strings of letters and had to decide if the strings were words or non-words. Some words 

were threatening words, while others were neutral. They found a consistent processing advantage for 

threatening words in high-anxious individuals, even in situations that did not present a competition 

between different inputs, whereas traditional comparisons showed no significant differences. 

Specifically, participants with high anxiety had larger drift rates for threatening compared to non-

threatening words whereas participants with low anxiety did not. 

Another advantage of this model is that, by fitting RTs and accuracy jointly, it can aid with the 

identification of different types of bias that are notoriously hard to discriminate: in particular 

disentangling discriminability (a change in the quality of evidence from the stimulus) vs. response bias 

(a shift of the decision criterion). Finally, because it uses all the data at once, contrary to classical 

analyses, which look at RTs or percent correct separately, it is potentially more sensitive to detect 
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differences.  

2.2.1 Optimality and Model Extensions  
 

A number of extensions and variants of the DDM have been proposed. The link with optimality theory, 

on the one hand, and neural studies of decision making, on the other, has led to models in which the 

decision bounds collapse over time. In this model, less evidence is required to trigger a decision as time 

passes.  Another variant, which has a similar effect, has fixed boundaries, but uses an “urgency signal” 

added to the accumulated evidence.   

Recent work has shown that learning effects can be accounted for by integrating the DDM with 

reinforcement learning models (Pedersen, Frank, and Biele 2017). In such models, reward expectations 

are computed and dynamically updated for each of the options using a reinforcement learning scheme, 

while the DDM is the choice mechanism – with the drift rate being dependent on the difference in 

reward expectation for the two options. 

It has also long been known that the random walk of the DDM can be easily related to the Sequential 

Probability Ratio test (Bogacz et al. 2006), a procedure that makes statistically optimal decisions when 

evidence is accumulated in time.  The strict mathematical equivalence between the DDM and a Bayesian 

model has recently been explicitly derived (Bitzer et al. 2014). Other extensions have been proposed to 

account for longer, more complex decisions between more than two options (Roe, Busemeyer, and 

Townsend 2001).  

For a review of DDM models to investigations of clinical disorders and individual differences, see 

White et al. (2010a) and White et al (2016).  

2.2.2 Accumulation of evidence in biological neurons 
 

Whether the brain uses diffusion-like algorithms is a matter of significant interest and contention. In a 

pioneering series of studies, Michael Shadlen, Bill Newsome and collaborators observed that neurons 

in the lateral intra-parietal sulcus (LIP) of macaque monkeys behaved very similarly to what one 

would expect if they implemented a diffusion process (Shadlen and Newsome 2001). These 

researchers used a stochastic motion discrimination task where moving stimuli were shown to a 

monkey and the monkey had to indicate whether the motion was left or right. The experimenter could 

control the amount of motion (the “evidence”) on a single trial. They found that LIP neurons had a 
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mean spike rate that ramped up for choices that result in an eye movement into their response field 

(RF) and ramped down for choices out of their RF. The level to which the neuron’s activity ramped up 

before leading to a saccadic response seemed fixed, mirroring the boundary of diffusion process. 

Moreover, the slope of the ramp was steeper for easier trials, mirroring the drift rate of the model. 

Since then, other cortical and subcortical regions have also been found to also exhibit possible 

correlates of a diffusion process. How evidence accumulation is implemented in real neural circuits is 

still debated, however. This issue has led to great theoretical advances, such as described in Chapter 

3. 

 

2.3 Reinforcement learning models4  

 

In machine learning, Reinforcement Learning concerns the study of learned optimal control, primarily in 

multi-step (sequential) decision problems (Sutton and Barto 1998). Most classic work on this subject 

concerns a class of tasks known as Markov decision processes (MDPs). MDPs are formal models of 

multi-step decision tasks, such as navigating in a maze, or games such as Tetris (Figure 2.3). The goal 

of RL is typically to learn, by trial and error, to make optimal choices. 

 

< Figure 2.3 around here> 

 

Formally, MDPs are expressed in terms of discrete states s, actions a, and numeric rewards r. 

Informally, states are like situations in a task (e.g., locations in a spatial maze), actions are like 

behavioral choices (turn left or right), and rewards are a measure of the utility obtained in some state 

(e.g., a high value for food obtained at some location, if one is hungry, or money). 

An MDP consists of a series of discrete time steps, in which the agent observes some state st of the 

environment, receives some reward rt, and chooses some action at. The agent’s goal is to choose actions 

at each step so as to maximize the expected cumulative future rewards. Future rewards are usually 

penalized by how far in the future they would be received (to account for the intuitive idea that a reward 
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obtained in the near future is more attractive than the same reward in the far future). This delay 

discounting is usually implemented by applying a decay factor γ <1: the expected cumulative future 

rewards is then defined as the sum rt + γrt+1 + γ2rt+2 + . . . of future rewards. Thus, the goal is to 

maximize not the immediate reward of an action but instead the cumulative reward (a.k.a. the “return”), 

summed over all future time steps. Each action not only affects the current reward but, by affecting the 

next state, also sets the stage for subsequent rewards. As a consequence, choosing optimally can be quite 

complicated. What makes these problems nevertheless tractable is the characteristic property of MDPs, 

the Markov conditional independence property: At any time-step t, all future states and rewards depend 

only on the current state and action. This means that conditional on the present state and action, all 

future events are independent of all preceding events.  

To solve such problem, we can compute the “value” of each state. The state value can be written in 

terms of the sum of future expected rewards and, thanks to the Markov property, has a recursive 

mathematical expression: 

 

𝑉 𝑠! = 𝐸 𝑟! + 𝛾𝑟!!! + 𝛾!𝑟!!! +⋯ |𝑠! = 𝑃(𝑟|𝑠!)+ 𝛾 𝑃 𝑠!!! 𝑠! 𝑉 𝑠!!!! !!!   (9) 

Equation 9 is a form of the so-called Bellman equation, versions of which underlie most classical RL 

algorithms.  Here, it says that the expected future reward in state st is given by the sum of two terms: the 

current reward and the second term, which stands in for all the remaining rewards rt + γrt+1 + γ2rt+2 +.. 

The insight is that this sum is itself just the value V of the subsequent state, averaged over possible 

successor states, according to their probability. If we manage to learn the values of all the states in the 

environment (see below), we can choose our actions so as to move towards the most promising ones. 

The agent will use the value function to select which state to choose at each step: taking the step with the 

highest value. This is called value-based reinforcement learning. 

A common alternative, called policy-based reinforcement learning, is to directly compute the value of 

taking any action at in each state st. This is called the state-action value function Qπ (st,at) and is the 

quantity we will want to optimize. This equation has the same form as before: 

𝑄! 𝑠! ,𝑎! = 𝑟! + 𝛾 𝑃(𝑠!!!|𝑠! ,𝑎!)𝑄! 𝑠!!!,𝜋(𝑠!!!)! !!!   (10) 
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The function 𝜋(𝑠!!!) is called the policy and denotes the way by which the agent choses which action to 

perform in a given state. It takes the current environment state to return an action. It can be either 

deterministic or probabilistic.  

 

2.3.1 Learning the V or Q values 
  
 
If we can get a good estimate of the V values, we can choose the best action simply by taking steps that 

will move to the state with highest value. Similarly, if we have an estimate of the Q value function, we 

can choose the best action simply by comparing Q values across candidate actions. Many RL algorithms 

rely on variations on this basic logic.  

How do we learn those values, though? There are two main classes of algorithms for RL based on 

Equation 9. These classes focus on either the left- or right-hand side of the equal sign in that equation 

(Gershman and Daw 2017).  

The first approach (focusing on the right side of equation 9) is known as model-based reinforcement 

learning due to its reliance on learning the probabilistic internal model, i.e. the one-step reward and state 

transition distributions P(rt|st) and P(st+1| st,at). Because these transitions concern only immediate events, 

i.e. which rewards or states directly follow other states, they can be learnt easily from local experience, 

essentially by counting. Given these probabilities, it is possible to iteratively expand the right-hand side 

of Equation 9 to compute the state-action value for any state and possible action. Algorithms for doing 

this, such as value iteration, essentially work by simulation: by listing the possible sequences of states 

that can follow a starting state and action, summing the rewards expected along these sequences, and 

using the learned model to keep track of their probability. The main advantage of model-based learning 

is in its simplicity. However, this simplicity comes with a cost of computational complexity because 

producing the state-action values depends on extensive computation over many branching possible 

paths. 

The second class of algorithms is called model-free reinforcement learning. These algorithms avoid 

learning the internal model (the transition and reward probabilities). Instead, they learn a table of state-

action values Q (the left-hand side of Equation 9) directly from experience and sampling the 

environment. 
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The discovery of such algorithms, - in particular, the family of temporal-difference (TD) learning 

algorithms (Sutton 1988) - was a major advance in machine learning and continues to provide the 

foundation for modern applications. 

Briefly, these algorithms use experienced states, actions and rewards to approximate the right-hand side 

of Equation 9 and average these to update a table of long-run reward predictions. More precisely, many 

algorithms are based on a quantity called the reward prediction error 𝛿!. This quantity corresponds to the 

comparison between the value V(st) (the predicted reward) and the actual reward plus the prediction 

computed one time-step later: 

𝛿! = 𝑟! + 𝛾𝑉 𝑠!!! − 𝑉 𝑠!    (11) 

 

The expression is similar if we are learning the Q values:  𝛿! = 𝑟! + 𝛾𝑄 𝑠!!!,𝑎!!! − 𝑄 𝑠! ,𝑎! . When 

the value function is well estimated, this difference should on average be zero. If the values are 

incorrect, however, there will be a discrepancy between the two sides of the equation. In that case, the 

stored values are updated iteratively to reduce the discrepancy: 

𝑉!!! 𝑠! = 𝑉! 𝑠! + 𝛼𝛿! = 𝑉! 𝑠! + 𝛼(𝑟! + 𝛾𝑉 𝑠!!! − 𝑉 𝑠! )  (12) 

 

where 𝛼 is a learning rate between 0 and 1. This is known as the TD algorithm.  

Decisions under model-free models are much simpler than using model-based algorithms because the 

long-run values are pre-computed and need only be compared to find the best action. However, this 

computational simplicity comes at the cost of inflexibility and less efficient learning. 

 

2.3.2 Reinforcement Learning in the Brain 
 

A most-celebrated success of linking theory and neuroscience was the observation that the firing of 

dopamine neurons in the midbrain of monkeys resembles the reward prediction error of Equation 11, 

when the monkey are engaged in a reward learning task. This suggests that the brain uses this signal for 

reinforcement learning (Montague, Dayan, and Sejnowski 1996). The trial–trial fluctuations in this 

signal track the model quite precisely and can also be measured in rodents using both physiology and 
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voltammetry. A similar signal can also be measured in the ventral striatum (an important target of the 

dopamine neurons) in humans using fMRI.  Many researchers believe that dopamine drives learning 

about actions by modulating plasticity at its targets, for e.g. in the striatum. Elicitation and suppression 

of dopaminergic responses have been shown to modulate learning in tasks specifically designed to 

isolate error-driven learning. 

 The link between dopamine and prediction error has important consequences for understanding mental 

illness and maladaptive behaviors such as addiction. As we will see in Chapter 9, for example, drugs of 

abuse invariably agonize dopamine neurons. This suggests that some aspects of drug abuse and 

addiction could be understood in terms of the drugs hijacking reinforcement learning processes by 

interfering with prediction error signals, giving increasingly higher values to actions leading to the drug. 

2.3.3 Evidence for model-based and model-free systems 
 

How can we assess whether or when the brain is using model-based or model-free learning?  

Although model-free and model-based algorithms both ultimately converge to the optimal value 

predictions (under various technical assumptions), they differ in the trial-by-trial dynamics by which 

they approach the solution. Evidence for one or the other model can be shown in experimental tasks that 

use staged sequences of experience ordered in such a way so as to defeat a model-free learner. For 

example, in latent learning or ‘sensory preconditioning’ tasks, animals are first pre-exposed to an 

environment that does not have any reward (e.g., by exploring a maze). Later, rewards are introduced at 

particular locations. For a model-based learner, this experience results in them first learning the 

transition function P(st+1| st ,at), i.e., the map of the maze, and then, subsequently, the reward function 

P(rt|st) which they will incorporate to their model. However, for a model-free learner, the pre-exposure 

stage does not teach them anything useful (only that Q values are zero everywhere). They will not learn 

a representation of the map of the maze (the state transition distribution). Because of this, when rewards 

are introduced, they must re-learn the navigation task from scratch. 

There is some evidence for model-free learning in animal behavior. As the theory predicts, under certain 

circumstances, animals fail to integrate information about contingencies and rewards if both types of 

information have been learned separately. For instance, following overtraining on lever pressing for 

food, rodents will press the lever even after being satiated – despite satiation corresponding to a 

devaluation in the outcome. However, less thoroughly trained animals can successfully adjust. In 
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general, experiments looking at how animals adjust their decisions following changes in reward value 

(e.g., outcome devaluation) or task contingencies show that their behavior cannot be entirely accounted 

for with model-free RL.  

In psychology, these two sorts of behaviors (incapable and capable of integration, respectively) are 

known as habitual and goal-directed behaviors. The predictions of model-free learning and the 

prediction error theories of dopamine are well matched to habitual behavior but fail to account for goal-

directed behavior and the ability of organisms to integrate experiences. It is thought that model-based 

learning operates alongside the model-free system and that both systems compete to control behavioral 

output (Daw, Niv, and Dayan 2005). Little is known about how the brain determines which of these 

systems controls behavior at one moment in time. Various models have been proposed to govern 

arbitration between MB and MF values – for instance according to their relative certainties (which vary 

with the degree of learning and computational inefficiencies; Daw et al., 2005), or the opportunity cost 

of the time that it takes to perform model-based calculations (Keramati et al. 2011; Pezzulo et al. 2013). 

Lee et al (2014) for example proposed an arbitration mechanism that allocates the degree of control over 

behavior by model-based and model-free systems as a function of the reliability of their respective 

predictions (Figure 2.4; see Section 5.2.2 in this volume). 

 

< insert Figure 2.4 here> 

 

The neural circuits supporting putatively model-based behavior are not well understood. Human 

neuroimaging suggests that there might be more overlap between neural signals associated with model-

based and model-free learning than initially expected.  

 

2.3.4 Implications for Psychiatry 
 

The distinction between model-based learning and model-free learning appear particularly relevant for 

Psychiatry. It has been proposed in particular that addictive and compulsive disorders might involve a 

shift from model-based to model-free decision-making, which would explain inflexible behavior in 
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patients.   

Daw et al. (2011) designed a task (Figure 2.5) to measure the trade-off between the two types of 

learning within an individual. This task has since been examined extensively, with some supporting 

evidence for an association between deficits in goal-directed control and compulsive behavior (Gillan et 

al. 2016). 

 

< Figure 2.5 around here> 

 

More generally, deficits in learning could be at the core of the issues observed in mental illness. 

Learning and decision-making are highly intertwined processes. If learning mechanisms are impaired, 

maladaptive decisions will be taken, which in turn will influence what will be learn.  

The idea that patients with mental illnesses operate with a “wrong” internal model of the world is one 

that is also central to the Bayesian approach, which we discuss next. 

2.4 Bayesian Models and Predictive Coding5 

2.4.1 Uncertainty and the Bayesian Approach. 
 

Bayesian approaches focus on the idea that we live in world of uncertainty. Our environment is 

often ambiguous or noisy, and our sensory receptors are limited. Often, multiple interpretations 

are possible. In this context, the best our brain can do is to try to guess what is happening in the 

world and what best action to take.  

This idea of the brain as a ‘guessing machine’ has been formalized in recent years taking ideas 

from machine learning and statistics. It is proposed that the brain works by constantly forming 

hypotheses or ‘beliefs’ about what is present in the world and the actions to take, and by 

evaluating those hypotheses based on current evidence and prior knowledge. Those hypotheses 

can be described mathematically as conditional probabilities, denoted P(hypothesis | data): the 

probability of the hypothesis given the data, where ‘data’ represents the signals available to our 
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senses. Statisticians have shown that the best way to compute those probabilities is to use Bayes’ 

rule, named after Thomas Bayes (1701–1761): 

 

    𝑝 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑑𝑎𝑡𝑎 = ! !"#" !!"#$!!"#" !(!!"#$!!"#")
!(!"#")

  (13) 

 

Bayes’ rule is of fundamental importance in statistics. Using Bayes’ rule to update beliefs is 

called Bayesian inference. For example, suppose you are trying to figure out whether it is going 

to rain today. The data available might be the dark clouds that you can observe by the window. 

Bayes’ rule states that we can update our belief, the probability P(hypothesis | data), which we 

call the posterior probability, by multiplying two other probabilities: 

- P(data | hypothesis): our knowledge about the probability of the data given the hypothesis 

(e.g. ‘how probable is it that the clouds look the way they do now, when you actually 

know it is going to rain?’), which is called the likelihood, times: 

- P(hypothesis): called the prior probability, which represents our knowledge about the 

hypothesis before we collect any new information, here for example the probability that it 

is going to rain in a day, independently of the shape of the cloud, a number which would 

be very different whether you live in Edinburgh or Los Angeles. 

The denominator, P(data), ensures the resulting probability is comprised between 0 and 1. This 

posterior becomes our new prior belief and can be further updated based on new sensory input. 

In a perceptual context, a hypothesis could be about the presence of a given object, or about the 

value of a given stimulus, while the data consists in the noisy available inputs.  

 

The critical assumptions about Bayesian inference as a model of how the brain works are: 

- The uncertainty of the environment is taken into account and manipulated in the brain by 

always keeping track of the probabilities of the different possible interpretations; 
- The brain has developed (through development and experience) an internal model of the world 

in the form of prior beliefs and likelihoods that can be consulted to predict and interpret new 

situations; 
- The brain combines new evidence with prior beliefs in a principled way, through the 

application of Bayes' rule (or an approximation); 
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- Because currently developed intelligent machines also work in that way — learning from data 

to make sense of their noisy or ambiguous inputs and updating beliefs — we can get 

inspiration from machine learning algorithms to understand how this could be implemented in 

the brain. 

 

2.4.1 Testing Bayesian predictions experimentally 
 

Bayesian inference as a model of cognition makes predictions that can be tested using behavioral 

experiments. This has been the aim of a lot of research in the last twenty years. The first line of research 

focused on multisensory integration, i.e. how the brain combines information coming from different 

sensory modalities, such as vision and sound. Bayesian inference makes clear predictions about how this 

should be done: the individual information sources to be integrated should be weighted according to 

their reliabilities. It also predicts that the combined estimate will then be more reliable than any estimate 

based on a single one of the sensory cues. For example, if the visual information is much clearer than the 

auditory information, it should have much more influence on your experience. This can lead to sensory 

illusions, in situation where there is a conflict between the two modalities and one modality is much 

more reliable than the other (as observed in the ventriloquism illusion, or the McGurk effect). When 

Bayesian model predictions are compared to experimental data, the general finding is that human 

behavior is well approximated by Bayesian integration.  

The Bayesian model not only predicts how simultaneous signals should optimally be combined, 

but also how to include prior knowledge. According to Bayes’ rule, such knowledge can be represented 

as a prior probability, which would serve as a summary of all previous experience, and which should be 

multiplied with the incoming information, the likelihood. An important line of research aims at 

understanding which priors the brain is using and how such priors impact perception, action and 

cognition (see e.g., Seriès and Seitz 2013). A good way to discover the brain’s expectations or 

assumptions is to study perception or cognition in situations of strong uncertainty or ambiguity - where 

the current sensory inputs or the ‘evidence’ is very limited. Studying such situations reveals that our 

brains make automatic assumptions all the time. Sensory illusions have proved particularly important in 

this field. For example, looking at how the brain interprets shaded objects reveals that the brain assumes 

that light comes ‘from above’. This makes sense of course, since light usually comes from the sun, 

above us. Similarly, we seem to expect objects to be symmetrical, to change smoothly in space and time, 
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orientations to be more frequently horizontal or vertical and angles to look like perpendicular corners. 

We also expect objects to bulge outward more than inward (i.e. to be convex shapes, like balloons or 

pears), that background images are colored in a uniform way, that objects move slowly or not at all, that 

the gaze of other people is directed towards us, and that faces correspond to convex surfaces. Such 

assumptions have been successfully described using the framework of Bayesian priors. 

Techniques have been developed that allow measurement of individual participants’ priors based 

on experiment measurements and performance biases, by fitting Bayesian models to performance 

(Stocker and Simoncelli 2006). In the sensory domain, it is commonly found that human participants 

learn quickly effortlessly and unconsciously the statistics of the perceptual environment and come to 

expect the perceptual inputs that are most likely. This can lead to biases in the estimation of sensory 

features, perceiving the world as being more similar to what is expected than it really is, and sometimes 

even “hallucinating” expected inputs, even when they are absent (Chalk, Seitz, and Seriès 2010).  It has 

also been shown that the brain can update ‘long-term’ prior beliefs, such as that light comes from above 

or that objects move slowly, if placed in environments where lights come from below or where objects 

move quickly (Seriès and Seitz 2013). This shows that the brain constantly revises its assumptions and 

updates its internal model of the environment.  

Many aspects of human cognition, such as language acquisition and processing, action selection, 

prediction, reasoning and sensory inference have been modeled as optimal readouts of statistical 

inference processes. 

2.4.3 Decision Theory 
 

Bayes rule computes beliefs about the state of the world s given noisy or ambiguous sensory input D, 

P(s|D). However, it does not specify how these beliefs are used to generate decisions and actions. 

Decision theory extends Bayesian inference to deal with the problem of selecting the best decision or 

action based on our current beliefs and as such, encompasses the methods of reinforcement learning 

described above. The difference of course is that here we have to infer the states, instead of them being 

given as commonly assumed in RL formalisms. The essence for making the best decisions is then to 

minimize the expected loss (or maximizes expected reward/utility) given our beliefs. One simply 

calculates the expected loss for a given action, that is the loss averaged across the possible states 

weighted by the degree of belief in the state: 𝐿 𝑎, 𝑠 𝑃(𝑠|𝐷)!  and then chooses the action that has the 
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smallest expected loss.  

Here, L(a,s) denotes the benefit or loss associated with taking action a in state s, and Σ denotes a 

summation over all possible states s.   

We can also consider domains with temporal dynamics, where s(t) changes over time, with each action 

evoking its own set of stochastic transitions. Here, it is necessary to determine not an individual optimal 

action, but rather a sequence of actions in the light of possible transitions.  

Bayesian Decision Theory (BDT) therefore requires two sorts of inference: one is to compute the 

posteriors to estimate the states as well as possible (using Bayesian inference), and the other is to 

compute the best action. Both are computationally hard; the latter is particularly difficult when it is 

necessary to optimize over long trajectories of future actions—and becomes much harder in the face of 

the first problem. When the state s is known, BDT reduces to common descriptions of reinforcement 

learning (see Section 2.3). 

 

2.4.4. Heuristics and approximations, implementation in the brain 
 
 
Exact Bayesian inference is thought to be intractable for most everyday problems that the brain 

encounters. An important line of research tries to understand whether human behavior can be described 

using simple heuristics that might approximate Bayesian inference, without involving complex 

computations.  

While in theory it seems feasible for neural circuits to implement (possibly rough) approximations of 

Bayesian computations, how such computations are actually implemented in the brain and relate to 

neural activity is still an open question and an active area of research. Whether the Bayesian approach 

can actually make testable predictions for neurobiology (for e.g., which parts of the brain would be 

involved, or how neural activity could represent probabilities) is also debated. It is yet unclear whether 

the Bayesian approach is only useful at the ‘computational’ level, to describe the computations 

performed by the brain overall, or whether it can be also useful at the ‘implementation level’ to constrain 

and predict how those algorithms might be implemented in the neural tissue.  
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2.4.5 Application to Psychiatry 
 
 
Many researchers believe that the Bayesian approach has promising application for the field of 

Psychiatry. Bayesian models could potentially help quantifying differences between different groups 

(e.g. healthy vs. ill) and identifying whether such differences come from using different internal models, 

for example different prior beliefs, or from different learning or decision strategies.  

A common idea in psychiatry is that the internal models used by patients, in particular their prior beliefs, 

could be different from those of healthy subjects. In the study of schizophrenia, for example, it has been 

proposed that ‘positive symptoms’ (hallucination and delusions) could be related to an imbalance 

between information coming from the senses and prior beliefs or expectations (see Chapter 6). In 

autism, similarly, it has been proposed that the influence of prior expectations might be weaker 

compared to that of sensory inputs, which could explain that patients feel overwhelmed by a world 

perceived as being ‘too real’ (see Section 11.1).  

More generally, it has been proposed that three different classes of failure modes could be at the root of 

mental illness. They stem from either: 1) abnormalities in the framing of problems or tasks that the brain 

is trying to solve (abnormalities in the priors, likelihood or utility), or 2) from the mechanisms of 

cognition used to solve the tasks, or 3) from the historical data available from the environment, i.e. 

abnormal experience for e.g. trauma (Huys et al. 2015). 

 

2.4.6 Predictive Coding and Bayesian models used in Psychiatry 
 

Despite the popularity of these ideas, in practice, only a limited number of studies have tried to compare 

or fit the behavior of participants with quantitative models. We here describe some of the models that 

can be found in the literature.   

 

a) Predictive Coding models 

 

Predictive coding became popular as a model of visual processing at the turn of the century (Rao and 

Ballard 1999).  The general idea is to view visual processing as a hierarchical system, composed of a 

number of levels connected by feed-forward and feedback connections. In this system, feedback 
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projections from one level to the lower level are trying to predict the activity of the neurons they 

target: feedback connections carry predictions of lower-level neural activities, whereas the feed-

forward connections carry the residual errors between the predictions and the actual lower-level 

activities (Figure 2.6). It was shown that this model could explain a number of phenomena observed 

in real neural activities in the visual cortex. The idea that the brain uses some form of predictive 

coding has become very widespread. There is however a debate about how such a scheme would be 

implemented in neural activities, in particular about whether neural activities in the visual cortex 

should really be interpreted in terms of prediction errors (as proposed by Rao & Ballard 1999), or 

whether they would be better understood in terms of the predicted input itself – or maybe whether 

there would be different categories of neurons representing either the prediction error, or the 

predicted input. 

 

<Figure 2.6 around here> 

 

Predictive coding and Bayesian inference are concepts that are often confounded. Although predictive 

coding and Bayesian inference do not necessarily imply each other (Aitchison and Lengyel 2017), 

predictive coding is often proposed as an effective way for Bayesian inference to be implemented in the 

brain: while Bayesian inference would describe the general computation that the brain is trying to 

perform, predictive coding would describe the algorithm that is being carried out.  

 

Why the two concepts are related can be understood as follows. As explained above, Bayesian inference 

entails updating our existing belief (the prior distribution) with new information (the likelihood 

distribution) to form our new belief (the posterior distribution). If we assume those distributions are 

Gaussian, they can each be represented by their mean µ and their variance, or precision π (where π refers 

to the inverse variance).  It can be shown that the Bayesian sequential updating of beliefs can be 

expressed as follows (C. Mathys et al. 2011; Palmer, Lawson, and Hohwy 2017), where x is the new 

measurement,  𝜇!"#$%&'"& is the mean of the new posterior and π!"#$%&'"& its precision:  

𝜇!"#$%&'"& = 𝜇!"#$" +
!!"#$!"!!!"
!!"#!"#$%#

(𝑥 − 𝜇!"#$")   (14) 
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Where: 

π!"#$%&'"& = π!"#$" + π!"#$!"!!!"  (15) 

 

This last term of Eq. 14, (x- µprior), can be interpreted as a prediction error: the mean of the prior belief 

(prior), µprior, can be considered a prediction about what the new measurement, x, will be. This means 

that Bayesian inference can be implemented by iteratively updating predictions with the prediction error 

produced by each new measurement. 

The precision of the prior distribution π!"#$"   indicates our confidence in our existing prediction, while 

the precision of the likelihood distribution π!"#$!"!!!" represents the ambiguity inherent in the 

measurement (the noisiness of incoming data). Together, these two parameters give an indication of how 

reliable or informative prediction errors are expected to be regarding the true (hidden) state of the world. 

Prediction errors are therefore weighted by the estimated precision of the new information relative to the 

estimated precision of existing beliefs.  

The weighting term (πlikelihood/ πposterior) plays the role of a learning rate. A high learning rate means that 

prediction errors will drive inference about the state of the world to a greater extent. Conversely, a low 

learning rate means that prior information is given more weight in determining what is inferred. The fact 

that the learning rate depends on the ratio πlikelihood/ (πprior+ πlikelihood) implies that beliefs are more highly 

sensitive to new measurements when we know little about the environment (πprior is small) but less 

sensitive when we have already gathered plenty of information (πprior is large). 

Importantly this update expression – that links Bayesian inference with predictive coding - is not 

specific to the univariate Gaussian case, but can be shown to be valid much more generally6.  

 

b) Hierarchical Gaussian Filter model 

Inference in realistic environments is thought to be hierarchical, involving different levels of predictions, 

described by random variables, which interact with each other. The set of probabilistic steps that can be 

followed to generate the values of these random variables is known as the generative model. Often, we 

represent these steps using a graph representation. In such a graphical model, the nodes represent the 

random variables, and the edges represent condition dependencies (see e.g. Figure 2.6B).  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6	
  to Bayesian updates for all exponential families of likelihood distributions with conjugate prior. 
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While Bayesian belief updating in such generative models is optimal from the point of view of 

probability theory, it is difficult to achieve in practice: it requires computing complicated integrals 

which are not tractable analytically and difficult to evaluate in real time. For this reason, it is thought 

that the brain can only achieve approximations of Bayesian inference. Different types of approximations 

are usually considered, inspired from research in Machine Learning. A popular model recently 

developed is the hierarchical Gaussian filter (HGF). 

 

The Hierarchical Gaussian Filter model (C. Mathys et al. 2011; C. D. Mathys et al. 2014) describes a 

hierarchical generative model of the environment and its (in)stability. In this model, all states except the 

lowest level evolve as coupled Gaussian random walks7, such that each state determines the step size of 

the evolution of the next lower state.  

For example, imagine a task where participants have to perform a binary classification of images as 

either faces or houses, where the images had high, medium or no noise added (Figure 2.6A). A tone 

preceding each image is highly, weakly or not predictive of a given outcome, and the associations 

between images and tones change across time. Such a task can be represented by the graphical model 

depicted in Figure 2.6B, where the lowest level variable x1 describes the uncertainty about outcomes, i.e 

the presence of a house or face, level 2 (x2) addresses uncertainty about the cue-outcome contingencies, 

and level 3 (x3) addresses uncertainty about environmental change, i.e. the volatility of the cue-outcome 

contingencies.  

Using the so-called “mean-field” approximation, Chris Mathys and collaborators derived analytic update 

equations for beliefs at each level, whose form resembles RL updates and the equation (14) above, with 

dynamic learning rates and precision-weighted prediction errors. The update equations make the model 

well suited for filtering purposes, i.e. they can be used to predict the value of, and the uncertainty about, 

a hidden and moving quantity based on all information acquired up to a certain point. Importantly, the 

coupling across levels is controlled by parameters whose values can be fit to each individual participants 

performing the task.  

The HGF model has been used for example to investigate how participants with autism learn about 

changing environments (Lawson, Mathys, and Rees 2017). They used the task described above where 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 A Gaussian random walk is a random walk that has a step size that varies according to a normal distribution. 	
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participants performed binary classification of images as either faces or houses. By fitting the HGF 

model to their data, Lawson et al could show that participants with autism tended to overestimate the 

volatility of the sensory environment, at the expense of building stable expectations that would lead to 

be surprised when aberrant outcomes arise.  

Chapter 6 will provide another example for the use of the HGF in schizophrenia research. 

c) Belief networks and circular inference8 

An alternative, very general, powerful and efficient algorithm to perform inference in generative models 

is known as belief propagation. Consider for example a hierarchical generative model with 3 nodes: the 

“leaf” is caused by a “tree”, which is caused by a “forest”. In belief propagation, sensory information S, 

e.g. the probability that a leaf is present in the image, climbs the hierarchy in a feedforward way and at 

the same time, prior information moves downward as feedback. Each node calculates a belief for the 

underlying variable it represents, equivalent to the posterior e.g. P(Xtree|S) and sends local messages (e.g. 

Mtree->leaf =P(Xleaf|Xtree)) to all the neighboring nodes. As a result, information, in the form of beliefs, is 

propagated throughout the system. Assuming binary variables and using the log-ratios of the 

probabilities, then beliefs and messages can be calculated by the recursive equations of the form: 

𝑀!"
!!! =𝑊!"(𝐵!! −𝑀!"

! )  (16) 

𝐵!!!! = 𝑀!"!!!!  (17) 

where Mij
t is the message from node i to node j at time t, Bi

t is the belief of node i at time t and Wij(B) is 

a sigmoid function of B. 

The second equation simply means that each node calculates a belief by summing the messages coming 

from all its connected neighbors (e.g., the belief about the presence of a tree is equal to the sum of the 

messages from the forest and the leaf nodes). The first equation, on the other hand, means that the 

message travelling from node i (here, the forest) to node j (the tree) is a function of the belief of the 

sending node i after we subtract the effect that the receiving node j has on the sending node i (e.g., here, 

the message from tree to forest). This latter correction is crucial. Without it, the algorithm would 

produce loops, i.e. reverberations of bottom-up and or top-down information. In such “loopy” belief 

propagation, the consequences are treated as causes and vice versa and the information in the upward 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8	
  This section is based on Leptourgos , Denève and Jardri 2017. 
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and the downward stream can be mixed and over-counted. Jardri & Denève have proposed that such 

“circular inference” could underlie the symptoms of schizophrenia and may also be present to some 

extent in the general population (Jardri and Denève 2013; Jardri et al. 2017). 

 

2.5 Model Fitting and Model Comparison 

 

Having provided a brief overview over different modeling techniques, we now turn to a tutorial 

overview of how these techniques can be used to probe behavior and fit to real data.  We mostly focus 

on the computational methods that use a generative framework, namely reinforcement learning models 

and Bayesian models. The following uses material from Huys (2017). 

 

2.5.1 Choosing a suitable model  
 

Assessing whether a given model is a suitable description of the data at hand can be tricky. In theory, 

there will always be many other types of models that could be suitable as well. So how do we choose 

and validate a particular one? As a rule of thumb for good practice, the modeling should contain three 

general steps. We first need to build the model. Second, this model should be validated with artificial 

data. Finally, the model is applied to the real data.  These points are detailed below: 

 

1. Clarifying the hypotheses to be tested. The initial choice of the model is usually motivated by 

the hypotheses that we wish to test.  We will usually be guided by an effort to: i) have a model 

that is flexible enough to describe the data and relates to previous literature in the field; ii) 

contains parameters that directly relate to our hypotheses; iii) is as simple as possible given those 

constraints. There will usually be different possible variants of the model. A reasonable approach 

is to build a series of models starting from a very simple ‘null’ hypothesis (a “no–interest” model 

that does not include the element we wish to show the importance of) and then adding in the 

various features of interest to examine to what extent they contribute towards explaining the 

data. A probabilistic component will need to be included, so as to account for the variability 

intrinsic to each individual’s performance. The different variants can be tested against each other 
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using model comparison (see below). 

 

2. Validation on artificial data means using the model to generate artificial data, by setting the 

parameters by hand and exploring the different behaviors exhibited by the model. First, this is a 

way to check that the data the model generates is actually comparable to the data obtained in the 

experiment. Second, this can be used to test the fitting procedure: once the parameters have been 

chosen by hand, and the artificial data has been generated, we can try to recover the parameters 

using our fitting procedure (i.e. inverting the model): can we discover which parameters were used 

for the model just by looking at the model’s performance? This step is called parameter recovery. 

This is an important step prior to interpreting any parameters. This can be used as well to ask 

whether we can distinguish between the behavior generated by different models, and whether we 

can recover a particular model reliably. This is called model recovery. It is recommended to 

attempt to perform these steps prior to collecting the experiment data as they may suggest changes 

in experimental parameters, such as the number of trials or the number of subjects to run. 

3. Finally, the models need to also be validated on the actual data of interest. One possibility is to 

compare data generated from the model (with fitted parameters) to the real data. For learning 

experiments, it is for instance often useful to plot learning curves and ask whether the model 

captures the shape of these curves well. Once the models have been validated in this way, it is 

meaningful to ask which of the models provides the most parsimonious account of the data. This is 

the domain of model comparison, where the performances of different models are weighted 

against their number of free parameters. Model comparison is always relative: even the best 

amongst a set of models may still be too poor to provide any meaningful information. The 

interpretation of parameters in the models should only follow at the end, once one model has been 

chosen as a satisfactory characterization of the data. 

 

2.5.2 A Toy Example 
 

To illustrate this process, we can consider a very simple learning experiment (Huys, 2017). On each 

trial, participants have to choose one of two squares. The blue square yields small rewards on 80% of 

trials, and the red square on 20% of trials. Participants have to discover which of the two squares is best, 
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based on their successive choices. On each trial t, they thus perform a single choice at, which yields an 

immediate reward rt. This choice does not have any influence on future options.  

We can consider two different models. The first model assumes that individuals perform temporal 

difference learning to compute the values of the two stimuli in this extremely simple scenario. Taking 

equation 12 and observing that there is no next state, but only immediate rewards, the temporal 

difference prediction error learning takes the simpler form of Rescorla-Wagner learning (Rescorla and 

Wagner 1972):  

𝑉!!!!" 𝑠! = 𝑉!!" 𝑠! + 𝛼(𝑟! − 𝑉!!" 𝑠! )  (18) 

 

The second model assumes that individuals simply perform averages over the rewards earned for each of 

the two stimuli. This model is actually the correct inference to perform given how the outcomes are 

generated.  

𝑉!!!!" 𝑠! = !
!

𝑟!!!
!   (19) 

It can be easily shown that this equation can also be expressed in this recurrent form: 

𝑉!!!!" 𝑠! = 𝑉!!" 𝑠! + !
!
(𝑟! − 𝑉!!" 𝑠! )  (20) 

Comparing these expressions, we see that while the TD learning rule uses a fixed learning rate α, the 

average has a decaying term 1/t. The TD rule has one free parameter: α, while the averaging rule has no 

free parameter. How can we determine which model best accounts for participants’ performance? 

 

a) Generating data 

We first start by generating artificial data from both models. To do this, we need to determine a model 

for the function that maps the values V onto probabilities of choosing one action or the other (here, 

choosing one square or the other). A frequent choice is the use of a softmax function whereby the 

probability of choosing stimulus s on trial t (e.g. the blue square) is: 

𝑝 𝑎! = 𝑠 𝑉! = !!!!(!)

!!!!(!)!!!!!(!)
  (21) 
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where 𝑠 denotes the alternative stimulus (i.e. the green square) and β determines how precisely the 

choices follow the values, i.e. also how noisy the choice process is. This parameter can also be 

interpreted as controlling exploration vs exploitation. 

 b) Fitting models  

Once we have built a model and generated artificial data from it, we can proceed to the next step: fit the 

model to the generated data to assess how well we are able to recover the model’s parameters. To find 

the set of parameters that are most compatible with the data, we can use maximum likelihood (ML). To 

find the ML parameters, for each subject, we look for the parameters θ (in our example, θ={α,β}) 

that maximize the likelihood of all their T actions a1;… aT : 

 

𝜃!" =   𝑎𝑟𝑔𝑚𝑎𝑥! log𝑝(  𝑎!,𝑎!. . ,𝑎!|θ)  (22) 

 

On first sight, this calculation may appear difficult because the choices at depend on previous choices. 

However, since every choice only depends on the value Vt at the time of the choice t, then the 

probability of observing a sequence of stimulus choices a1, .., aT is simply: 

log𝑝(  𝑎!,𝑎!, . .𝑎!|θ) = log 𝑝(𝑎!|𝑉! )!
!!! = log!

!!! 𝑝(𝑎!|𝑉! ) (23) 

 

This is: once we condition on the values the choices become independent of the previous choices.  

The values can be updated iteratively prior to computing the likelihood of each choice, leading to an 

algorithm that takes this general and very simple form:  

• Initialize the values V for each stimulus 

• foreach trial t do: 

compute log likelihood of choice at on trial t given parameters: 𝑙! = log  𝑝(𝑎!|𝑉! ,𝜃) 

update value Vt+1 given outcomes on trial t 

end 

• compute total log likelihood 𝑙! = 𝑙!!
!  
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The total likelihood (a function of α and β) can now be passed to any of a number of optimization 

tools to solve Equation 22.   

Parameter recovery using ML is however often very imperfect.  This is particularly true in situations 

where parameters have overlapping effects and therefore can trade off each other. A very simple and 

often very powerful solution is to impose a soft prior on the parameters and performing maximum a 

posteriori  (MAP) inference rather than ML. This is very simply achieved by replacing equation 22 with 

𝜃!"# =   𝑎𝑟𝑔𝑚𝑎𝑥! log𝑝   𝑎!,𝑎!. . ,𝑎! θ 𝑝(𝜃)  (24) 

The computation of the posterior likelihood is thus just the same as before but now we also add the log 

likelihood of the prior to the total log likelihood of the choices. The choice of the prior p(θ) is not 

always straightforward. In many situations, it can make sense to infer the prior from the data itself. This 

is called empirical Bayes. There are a number of techniques available for this, and this is becoming a 

more common approach. In this toy example, little would be gained over the basic MAP approach, but 

this would change for larger models (Huys, 2017). 

 

c) Model comparison 

Having fitted the model to the data, the next step is to assess how well the model can actually account 

for the data. Simply look at how closely the model fits the data is not sufficient: a model that is too 

flexible (has many free parameters) could fit the data perfectly but would lead to poor prediction of new 

data. This issue is known as over-fitting.  

Bayesian model comparison takes into account the trade-off between the flexibility of the model and the 

fit it provides to the data by using as a measure of fit not the best possible likelihood, but the average 

likelihood over all possible parameter settings: 

𝑃 𝐴 𝑀 = 𝑑𝜃𝑃 𝐴 𝜃,𝑀 𝑝(𝜃) (25) 

where A denotes the all the behavioral data and M the model. 

The Bayes factor, that measures whether model  M1 is more strongly supported by the data under 

consideration than model M2, is then defined as: 
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𝐵𝐹 = !(!|!!)
!(!|!!)

 (26) 

and is considered substantial if greater than 3, and conclusive if greater than 5. Unfortunately, the 

integral in equation 25 is not always straightforward to evaluate, and there exists a number of 

approximations to it. A commonly used measure is the Bayesian Information Criterion (BIC), defined 

as:  

𝐵𝐼𝐶 = −2log𝑝 𝐴|𝜃!" + 𝑑log(𝑛)  (27) 

where d is the number of parameters in the model and n is the number of data points. Other measures 

exist, such as the Aikake Information Criterion (AIC), or other related techniques such as using a 

Laplace approximation for P(A|M) i.e. approximate the function being integrated with a Gaussian, for 

which the integral can then be computed analytically (see Daw et al 2009). 

 

d) Group studies 

The methods so far have considered individual subjects. However, most studies, particularly in clinical 

settings, deal with group data. Two simple approaches for model fitting exist in this case. First, we can 

treat all individuals in one group as using the same parameters; this is called a fixed-effects treatment. 

Alternatively, we can treat them as having entirely separate parameters. This is called a random-effects 

treatment. A fixed-effects treatment confounds inter- and intra- individual variability and is therefore not 

recommended. On the other hand, a random-effects treatment can inflate noise depending on how the 

parameters are estimated. One solution to this is to consider that individuals in a group tend to be 

similar, and hence should have similar parameters. For instance, parameters of individuals in a group 

could cluster around a particular value. To implement this idea, we can follow a hierarchical approach 

and formulate a model about how the parameters vary across the population.  

Another question is whether all individuals use the same generative model to do the task, which might 

not always be the case. Here again, we can either employ a random-effects treatment over models, 

considerthat some individuals in a group will behave according to model 1, others according to model 2, 

and yet others according to model 3 etc. This implies that different individuals may differ in terms of the 

internal processes they invoke to perform a given task. Alternatively, one can nest multiple models in a 

more complex model. This solution corresponds to assuming that individuals use a mixture of strategies 
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but that this is true across the entire group. Daw et al (2009) offers a more in-depth treatment of those 

issues.  

 

2.5 Chapter Summary 

 

A variety of computational tools have been developed that can be applied to psychiatry, either to 

describe behavior or to try to relate observed behavior to underlying neurobiological differences. The 

choice of the model will depend on the data to be modeled, the hypothesis that is tested and the 

questions to be addressed.  

• Connectionist models, or neural networks, can be used to explore the relationship between 

connectivity, dynamics and function. In psychiatry, they have for example been used to explore 

how attractor dynamics could be impaired in mental illness (see also Chapter 3).  

• Drift diffusion models can be used to dissect the origin of differences in performance and 

reaction times between groups, in tasks involving choices between two alternatives. 

• Reinforcement learning models are used to model the dynamics of learning of an environment, 

where discrete states (or objects) are associated with rewards or punishment. Because of the link 

between prediction error signals and dopamine, reinforcement learning models have shown to be 

very promising tools to understand impairments in learning and decision making in mental 

illness (see also Chapter 5-10). 

• Bayesian models account for learning and decision-making in terms of statistical inference. They 

can be used to assess how “optimal” a given performance is, and to discover the internal models 

that participants have learned or use in a particular environment. Because they explicitly model 

beliefs, they can be used to describe mental illness in terms of maladaptive or broken beliefs and 

false inference.  

• Fitting a particular model to data is usually performed using maximum likelihood or maximum a 

posteriori. One then needs to verify that the model can account well for the data. Model 

comparison is used to assess what model describes the data best, taking into account the number 

of free parameters of each model. Before using them on real data, it is recommended to test the 

model fitting and comparison techniques on artificial data generated by each model, i.e. to 

perform parameter and model recovery. 
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2.6. Further study 

 

Due to space limitations, this chapter could only provide a very quick survey of the methods of 

computational neuroscience and computational cognitive neuroscience that can be applied to the 

psychiatry. Each section has been the subject of entire books and review articles. A great reference 

regarding artificial neural networks is Hertz, Krogh, and Palmer (1991). Dayan and Abbott (2001) is 

also a recommended reference for further study of biological neurons and of neural networks.    

For the Drift decision model, we recommend reviews by Roger Ratcliff, for e.g. Ratcliff et al. (2016). 

The use of DDM in Psychiatry has been covered for example by White, Curl, and Sloane (2016). 

For Reinforcement learning techniques, the classic reference is Sutton and Barto (1998). More recent 

developments and relation to neuroscience have been covered e.g., by Daw (2009) and Gold and 

Shadlen (2007).  

Bogacz (2017) provides a tutorial on the free-energy framework for modelling perception developed by 

Friston, which extends the predictive coding model of Rao and Ballard (1999).  

Readers particularly interested in modelling fMRI data can also consult Cohen et al. (2017).  

  



	
  

	
   66	
  

 

Chapter 3: Biophysically Based Neural Circuit Modeling of Working 
Memory and Decision Making and Related Psychiatric Deficits  

Xiao-Jing Wang1 and John D. Murray2 

1 Center for Neural Science, New York University, New York, New York 10003, USA 

2 Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 

06510, USA  

 

3.1 Introduction 

The brain is not a uniform system made of equal parts. Instead, it is characterized by a modular 

organization of areas with distinct properties, connection patterns and specialized functions. In the 

primate cerebral cortex, certain areas like the prefrontal cortex (PFC) play a central role in higher 

cognitive functions, in contrast to early sensory information processing or motor generation. Those areas 

of the “cognitive type” are the ones commonly implicated in a variety of mental disorders; therefore, 

understanding such systems is especially relevant to the field of Computational Psychiatry.  

A key property of cognitive-type neural circuits is the presence of strong recurrent connections 

underlying reverberatory network dynamics. The behavior of any nonlinear system endowed with an 

abundance of feedback connection loops is difficult to predict by intuition alone. To illustrate our point, 

consider two identical, mutually inhibitory, neurons (Kristan and Katz 2006) (Figure 3.1A). Given this 

“connectome”, how would the network behave? It turns out that experiments and theory have uncovered 

multiple dynamical scenarios. First, both neurons may simply stay silent. Second, when driven by 

inputs, the system may behave as a “switch”, with one neuron active while inhibiting the other neuron, 

or vice versa, and a brief input can switch the system between the two states (Figure 3.1B). Third, if 

neurons are endowed with a slow adaptation, each of the two neurons could take turn to be active and 

over time eventually stop firing due to “fatigue” when the other neuron takes over, leading to a “half-

center” oscillator which is the core of rhythmic central pattern generators (Figure 3.1C). Fourth and 
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finally, under certain conditions, the two neurons can be perfectly synchronized, spike by spike: the two 

neurons fire at the same time, leading to mutual inhibition after a brief delay, and when this inhibition 

decays way they can fire again together (Wang 2010) (Figure 3.1D). This simple example illustrates 

that behavior often cannot be deduced from anatomy in a straightforward fashion; physiology and 

modeling are important for discovering the dynamical operations of neural circuits. 

< Insert Figure 3.1 around here> 

In Computational Psychiatry, some researchers are concerned with behavioral performance and its 

mathematical modeling. For instance, as described later in this book, reinforcement learning models 

have been applied to addiction, anxiety and depression (see Chapters 7-9). Such models can be used to 

quantify abnormal sensitivity to motivation and reward in affected subjects. However, they are typically 

relatively abstract and difficult to relate to specific brain circuits in a concrete manner. Another 

approach, which is the focus of this chapter, strives to develop neural circuit models that are capable of 

linking a particular behavior to the biological mechanism responsible for generating neural activity 

patterns that causally underlie an observed behavioral trait.  

This is a tall order. One could argue that, at present, we do not yet adequately understand how a neural 

system generates complex symptom of any psychiatric disorder. But that is precisely why biologically 

realistic neural circuit modeling should be a priority of our field. Ultimately, a central goal of 

neuropsychiatric research is to explain how symptoms and cognitive deficits arise from neurobiological 

pathologies. This demands us to bridge the stark explanatory gaps between levels of analysis: 

mechanisms underlying a psychiatric disease occur at the level of neurons and synapses, whereas 

symptoms are manifested and diagnosed at the level of cognition and behavior, which involve collective 

computations in brain circuits. Linking these levels is vital for gaining mechanistic insight into mental 

illness, and for the rational development of pharmacological treatments, which act at the molecular level 

with physiological impact at the synaptic level. Biophysically based neural circuit modeling is a 

framework particularly well suited to link synaptic-level disruptions to emergent brain dysfunction. 

In the following, we will review a set of studies that use biophysically based neural circuit models to 

understand how synaptic disruptions may induce cognitive deficits, with particular relevance for 

schizophrenia (Murray et al. 2014; Starc et al. 2017; Lam et al. 2017).  
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3.2 What is biophysically based neural circuit modeling? 

Biophysically based neural circuit modeling incorporates key physiological properties of neurons and 

synapses, as well as circuit connectivity. Dynamic neural activity is simulated through systems of 

differential equations governing the biophysical properties of neurons and synapses (see Section 2.1). 

Emergent patterns of activity in the model can be informed by — and tested with — empirical measures 

of neural activity. In certain circuit models, neural activity can also be mapped onto a behavioral 

response, thereby generating model predictions that can be tested with behavioral data from 

corresponding task paradigms.  

It is important to emphasize that biological realism does not mean that the more biological details a 

model incorporates, the better. We typically first formulate a well-defined question, such as “what is the 

microcircuit mechanism of stimulus-selective persistent activity during working memory?” Then we 

carefully determine the level of complexity of models for single neurons and synapses as well as 

network connectivity that are appropriate for investigating that question. For instance, a single neuron 

can be modeled in detail with morphologically reconstructed dendrite and axon, or using a few 

compartments so that dendritic compartments are separated from soma, or a single compartment 

described by the Hodgkin-Huxley model or the integrate-and-fire model (cf. Section 2.1). Which one to 

choose depends on the question under study (e.g. which may or may not require distinct dendritic 

compartments).  

Neurons in a network interact with each other through synaptic connections, which are either excitatory 

(respectively, inhibitory) if spiking of a (presynaptic) neuron produces an increase (respectively, a 

decrease) of membrane potential in recipient (postsynaptic) neurons. Synaptic excitation is mediated by 

AMPA and NMDA receptors that bind with neurotransmitter glutamate, and which have different times 

constants, NMDA being much slower than AMPA. Synaptic inhibition is mainly mediated by the 

GABAA receptor that binds with neurotransmitter GABA. Like single neuron models, synaptic 

interactions can be described mathematically with varying degrees of complexity. For the sake of 

simplicity, even to this day, many recurrent neural network models use “kick synapses”, namely a 

presynaptic spike induces an instantaneous jump of postsynaptic potential (which is positive for 

excitation, negative for inhibition). Therefore, no temporal aspects (latency, rise and decay times, 

summation) are taken into account. However, the basic dynamical properties of synaptic transmission 



	
  

	
   69	
  

can play a crucial role in shaping the collective behavior of a recurrent neural circuit. As described 

below, for example, slow NMDA receptors at recurrent excitatory synapses have been found to be 

crucial for the maintenance of mnemonic persistent activity (Wang 1999), a theoretical prediction that 

years later was supported by a monkey experiment (Wang et al. 2013).  Such a discovery suggests that 

biologically based modeling has a potential to make predictions at the receptor level that bridges with a 

cognition function via understanding neural circuit dynamics. This may in turn provide opportunities to 

mechanistically understand how synapse-level disruptions produce aberrant neural activity and deficits 

in cognition and behavior. 

The specific scientific questions under study determine the level of biophysical detail included in a 

particular model. For instance, questions related to dopaminergic dysregulation (such as found in 

schizophrenia, see also Chapter 6 and 10) can be addressed in a biophysically based model of an 

individual synapse that includes subcellular signaling pathways (Qi et al. 2010). In contrast, emergent 

circuit-level dynamics, such as oscillations or persistent activity, can be simulated in thousands of 

recurrently connected spiking neurons whose individual dynamics are simplified to include only certain 

channels and receptors (Wang, 2010, 2008). Modeling systems-level disturbances, such as large-scale 

connectivity alterations in schizophrenia, may entail coarse-grained mean-field models of local nodes 

organized in large-scale networks. Such models still contain neurophysiologically interpretable 

parameters and enable study of questions related to Excitatory /Inhibitory (E/I) balance (Yang 

et al. 2014, 2016a).  

An important area of research in clinical neuroscience is the discovery and characterization of predictive 

neurophysiological biomarkers for psychiatric disorders, i.e. characteristics that can be objectively 

measured and evaluated as an indicator of pathogenic biological processes.  

 As one area of modeling progress with relevance to biomarkers, there is a large literature on studying 

neural oscillations that emerge at the network level in recurrent cortical circuits (Wang 2010). Cortical 

oscillatory activity is found to be abnormal in a number of neuropsychiatric disorders. In particular, 

schizophrenia is associated with alterations in oscillatory activity in the gamma (30–80 Hz) range 

(Gonzalez-Burgos and Lewis 2012; Uhlhaas 2013). Computational models, in conjunction with 

physiological findings, support the idea that neocortical gamma oscillations arise from a feedback loop 

in a microcircuit of pyramidal cells reciprocally connected with perisomatic-targeting, parvalbumin-
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expressing interneurons (Buzsáki and Wang 2012). These models of gamma oscillations can be used to 

explore the dynamical effects of putative synaptic perturbations associated with schizophrenia, including 

reduced production of GABA and parvalbumin9 in inhibitory interneurons (Vierling-Claassen 

et al. 2008; Spencer 2009; Volman et al. 2011; Rotaru et al. 2011). In each case, the models provide 

specific hypotheses for how systems-level dynamics, which can be measured in humans through 

techniques such as EEG or MEG, may be altered as a result of synaptic- or cellular-level changes.  

Below, we focus on how circuit models of cognitive functions can be applied to understand cognitive 

deficits resulting from synaptic disruptions associated with schizophrenia. For some core cognitive 

computations, we have knowledge of the neural circuit basis underlying these processes, which typically 

involve contributions from animal studies. For these cases, detailed circuit models can be developed 

rigorously to provide the link from synaptic disruptions to behavior (e.g., cognitive deficits discussed 

below). In other cases, psychiatric symptoms relate to complex cognitive functions for which we lack 

understanding of the underlying neuronal representations or circuit mechanisms. At present, these circuit 

models are limited and cannot be applied to complex behavioral tasks, for which we lack understanding 

of neural circuit correlates. We now turn to the conditions in which circuit models may be best suited to 

study cognitive deficits in psychiatric disorders.  

3.3 Linking propositions for cognitive processes 

A major goal in computational psychiatry research is for biophysically based neural circuit models to 

explain mechanistically how synaptic-level disruptions induce cognitive-level deficits. For this approach 

to be most effective, the circuit model should be grounded in a well-supported relationship between 

neuronal activity and a given cognitive process. Such relationships have been formalized by the concept 

of a linking proposition, which states the nature of a statistical correspondence between a given neural 

state and a cognitive state. Related to the concept of the linking proposition is that of a bridge locus, 

which is the set of neurons for which this linking proposition holds (Teller 1984). Convergent evidence 

supporting a linking proportion comes from a number of experimental methodologies applied to animal 
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models, especially to the behaving non-human primate, given the strong homologies of areas in the 

human and non-human primate brains (Schall 2004). Single-neuron recordings can relate neuronal 

activity to computations posited in psychological processes. Further evidence can come from 

perturbative techniques such as micro-stimulation or inactivation.  

As an exemplary application of this perspective to a non-sensory function, Schall (2004) considered the 

neural underpinnings of the preparation of saccadic eye movements. In the case of saccade preparation, 

a well-supported candidate for the bridge locus is a distributed network of cortical and subcortical areas, 

including the frontal eye field and superior colliculus. During saccade preparation, so-called 

“movement” neurons in these areas exhibit a location-selective ramping of their firing rates, and a 

saccade is initiated when their firing rates reach a threshold level. At the level of mental processes, a 

leading psychological model for response preparation is accumulation of a signal until reaching a fixed 

threshold level that triggers the response. In such accumulator models, sequential sampling of a 

stochastic signal generates variability in the rate of rise to the fixed threshold, which can explain the 

observed variability in saccade reaction times. The linking proposition between a neural state 

(movement cell firing rates) and a psychological state (level of an accumulator) provides a framework 

for detailed hypothesis generation and experimental examination of psychological models.  

What linking propositions do we have for core cognitive functions, and specifically for working memory 

and decision making? The neural correlates of working memory have been studied extensively through 

single-neuron recordings from monkeys performing tasks in which the identity of a transient sensory 

stimulus must be maintained in working memory across a seconds-long mnemonic delay to guide a 

future response. For instance, in one well-studied experimental paradigm, the oculomotor delayed 

response task, the subject is shown a visual cue appearing in one of 8 possible locations. The cue 

disappears during a delay period of a couple of seconds and the subject needs to maintain the position in 

working memory. The subject is then trained to perform a saccadic eye movement to the location of the 

cue so as to receive a reward (Funahashi et al. 1989). These studies revealed that a key neural correlate 

of working memory is stimulus-selective persistent activity, i.e., stable elevated firing rates in a subset 

of neurons, that spans the mnemonic delay (Goldman-Rakic 1995; Wang 2001). These neuronal activity 

patterns are observed across a distributed network of interconnected brain areas, with prefrontal cortex 

as a key locus. In the oculomotor delayed response task, for example, during the mnemonic delay, a 

subset of prefrontal neurons exhibit tuned persistent activity patterns, with single neurons firing at 
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elevated rates for a preferred spatial location (Figure 3.2). These neurophysiological findings have 

grounded the leading hypothesis that working memory is supported by stable persistent activity patterns 

in prefrontal cortex that bridge the temporal gap between stimulus and response epochs.  

< insert Figure 3.2 around here - Funahashi et al (1989) > 

The neural computations underlying decision-making have been most studied in task paradigms in 

which a categorical choice is based on the accumulation of perceptual evidence over time. In one highly 

influential task paradigm, the subject must decide the net direction of random-dot motion stimuli, which 

encourages decision-making based on the temporal integration of momentary perceptual evidence 

(Roitman and Shadlen 2002). Behavior can be well captured by psychological process models of 

evidence accumulation to a threshold. This is for example the idea behind the drift-diffusion model 

described in Section 2.2. Single-neuron recordings have found possible correlates of such an evidence 

accumulation process in association cortex, such as the lateral intraparietal area (LIP): choice-selective 

ramping of neuronal firing rates reflects accumulated perceptual evidence, with activity crossing a 

threshold level reflecting the decision commitment (Gold and Shadlen 2007). This is illustrated in 

Figure 3.3. These neural correlates reflect two key computations needed for perceptual decision 

making: accumulation of evidence and formation of categorical choice.  

<inset Figure 3.3 (Gold & Shadlen (2007)) around here > 

Conceptually, a neural circuit model can instantiate a linking proposition for a cognitive process and 

propose circuit mechanisms underlying the computations. If associated with a hypothesized bridge 

locus, model predictions for these circuit mechanisms can be experimentally tested, such as through 

single-neuron recordings. For instance, in the case of working memory, experiments have tested how 

focal antagonism of specific synaptic receptors affects persistent activity, thereby informing the 

neuronal and synaptic mechanisms supporting the computations (Wang et al. 2013; Rao et al. 2000). The 

stronger these links are among (i) the synaptic and neuronal processes in circuit mechanisms, (ii) neural 

activity, and (iii) the cognitive function, the better the model is validated. Once established, the model 

can then make rigorous predictions for the consequences of alterations in those circuit mechanisms. In 

this way, circuit models can iteratively contribute to our understanding of these links across levels of 

analysis and leverage them to study dysfunction in neuropsychiatric disorders.  
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3.4 Attractor network models for core cognitive computations in recurrent cortical circuits 

Biophysically based neural circuit modeling has provided mechanistic hypotheses for how working 

memory and decision-making computations can be performed in recurrent cortical circuits. As noted 

above, a key neurophysiological correlate of working memory is stimulus-selective, persistent neuronal 

activity across the mnemonic delay in association cortical areas. Delays in working memory tasks (a few 

seconds) are longer than the typical timescales of neuronal or synaptic responses (10-100 ms). Similarly, 

perceptual decision-making demands categorical selection and benefits from temporal integration of 

evidence over long timescales (hundreds of milliseconds). Both of these computations therefore 

implicate circuit mechanisms.  

Motivated by experimental observations of stable persistent activity in single neurons, a leading 

theoretical framework proposes that working memory-related persistent activity states are dynamical 

attractors, i.e., stable states in network activity. In the mathematical formalism of dynamical systems, an 

attractor state is an activity pattern that is stable in time, so that following a small transient perturbation 

away from this state; the network will converge back to the attractor state. A class of neural circuit 

models called “attractor networks” has been applied to explain the mechanisms that allow a recurrent 

network of spiking neurons to maintain persistent activity during working memory 

(Amit 1995; Wang 2001). An attractor network typically possesses multiple attractor states: a low-firing 

baseline state and multiple memory states in which a stimulus-selective subset of neurons is persistently 

active. Because the memory state is an attractor state, it is self-reinforcing and resistant to noise or 

perturbation by distractors, allowing the stimulus-selective memory to be stably maintained over time 

(Brunel and Wang 2001; Compte et al. 2000).  

In a typical attractor network, subpopulations of excitatory neurons are selective to different stimuli. 

Recurrent excitatory synaptic connectivity exhibits a ‘Hebbian’ pattern such that neurons of similar 

selectivity have stronger connections between them (Figure 3.4A). When the strength of recurrent 

excitatory connections is strong enough, the circuit can support stimulus-selective attractor states that 

can subserve working memory (Figure 3.4B). Strong recurrent excitation thereby provides the positive 

feedback that sustains persistent activity. Wang (1999) found that incorporating physiologically realistic 

synaptic dynamics pose constraints on the synaptic mechanisms supporting this positive feedback. 

Strong positive feedback is prone to generate large-amplitude oscillations that can destabilize persistent 
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states and can drive firing rates beyond physiologically plausible ranges. It was found that both of these 

problems could be solved if recurrent excitation is primarily mediated by slow NMDA receptors.  

<Insert Figure 3.4 around here> 

Critically, recurrent excitation must be balanced by strong feedback10 inhibition mediated by 

GABAergic interneurons. Feedback inhibition stabilizes the low-activity baseline state (Amit and 

Brunel 1997; Wang 1999). In a persistent activity memory state, recurrent inhibition also enforces 

selectivity of the working memory representation, preventing the spread of excitation to the entire 

neuronal population (Murray et al. 2014). Attractor dynamics supporting working memory are thereby 

supported by recurrent excitation and inhibition that are strong and balanced.  

These circuit models make predictions for the relationship between synaptic mechanisms and working 

memory activity. These predictions have been confirmed through experiments with simultaneous single 

neuron recording from and pharmacological manipulation of prefrontal cortex: locally blocking 

excitation mediated by NMDA receptors attenuates persistent activity for the preferred stimulus (Wang 

et al. 2013). Similarly, locally blocking inhibition mediated by GABAA receptors reduces stimulus 

selectivity of delay activity by elevating responses to non-preferred stimuli (Rao et al. 2000).  

In addition to working memory computations, strong recurrent excitatory and inhibitory connections in 

cortical attractor networks provide a circuit mechanism for decision-making, supporting temporal 

integration of evidence and categorical choice (Wang 2002; Wong and Wang 2006; Wang 2008). In this 

model, choice-selective neuronal populations receive external inputs corresponding to sensory 

information (Figure 3.4C). Reverberating excitation enables temporal accumulation of evidence through 

slow ramping of neural activity over time (Figure 3.4D). This property highlights that attractor networks 

not only support multiple stable states (representing categorical choices), but also support slow transient 

dynamics that can instantiate computations such as temporal integration. In these models, temporal 

integration via recurrent excitation benefits from the slow biophysical timescale of NMDA receptors 

(Wang 2002). Feedback and lateral inhibition mediated by GABAergic interneurons mediates 

competition among neuronal populations underlying the formation of a categorical choice. Irregular 
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neuronal firing, a ubiquitous feature of cortex, contributes to stochastic choice behavior across trials, 

even when presented with identical stimulus inputs.  

These computational modeling studies demonstrate that an association cortical microcircuit model can 

support working memory and decision-making computations through attractor dynamics. This therefore 

suggests a shared “cognitive-type” circuit mechanism for these functions, which may furthermore 

provide components upon which more complex cognitive processes may be built (Wang 2013). Because 

these functions rely on strong recurrent excitation and inhibition, they are particularly well suited to 

study how cognitive deficits may arise from alterations in synaptic function, which are implicated in 

neuropsychiatric disorders.  

3.5 Altered excitation-inhibition balance as a model of cognitive deficits 

Cortical attractor network models of working memory and decision-making function can be applied to 

characterize the impact of altered E/I balance in association cortex. Alteration of cortical E/I balance is 

implicated in multiple neuropsychiatric disorders, including schizophrenia, autism spectrum disorder, 

and major depression. A key strength of these circuit models is that they make explicit predictions not 

just for neural activity but also for behavior, which can be tested experimentally in clinical populations 

or after causal perturbation.  

In schizophrenia, cortical microcircuit alterations are complex, with observed dysfunction in both 

glutamatergic excitation and GABAergic inhibition. Postmortem investigations of prefrontal cortex in 

schizophrenia find reductions in spines on layer-3 pyramidal cells, which potentially reflect reduced 

recurrent excitation. Such studies also have revealed multiple impairments in inhibitory interneurons, 

which potentially reflect reduced feedback inhibition. Pharmacological models of schizophrenia provide 

complementary evidence. One such approach is to use NMDA receptor antagonists such as ketamine, 

which transiently, safely, and reversibly induce cardinal symptoms of schizophrenia in healthy subjects 

(Krystal et al. 2003). A leading hypothesis regarding ketamine’s effects on neural function is that the 

drug leads to a state of cortical disinhibition, potentially via preferential blockade of NMDA receptors 

on GABAergic interneurons (Greene 2001; Homayoun and Moghaddam 2007; Kotermanski and 

Johnson 2009). However, many questions remain regarding the neural effects of ketamine, such as 
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which NMDA receptor subunits and neuronal cell types may be the preferential sites of action 

(Khlestova et al. 2016; Zorumski et al. 2016).  

Mechanistic links between altered E/I ratio and cognitive impairment remain tenuous, however. To 

address this issue, the aim of the modeling studies described below is to formulate dissociable 

behavioral predictions for distinct sites of synaptic perturbation. In particular, they have looked at 

perturbations of the E/I ratio via hypo-function of NMDA receptors at two recurrent synaptic sites: i) on 

inhibitory interneurons, which elevates E/I ratio via disinhibition; or ii) on excitatory pyramidal neurons, 

which on the contrary lowers E/I ratio (Figure 3.5A).  

< insert Figure 3.5 around here >  

3.5.1 Working memory models 

Working memory function is a promising candidate in clinical neuroscience as an endophenotype, i.e. as 

a quantitatively measurable core trait that is intermediate between genetic risk factors and a psychiatric 

disorder (Insel and Cuthbert 2009). Working memory function involves different component processes: 

encoding of the memory, maintenance, robustness to distraction, precision, and capacity. Ongoing work 

in clinical cognitive neuroscience aims at resolving how these processes are impaired. Many studies 

have found a deficit in working memory encoding in patients with schizophrenia, that is a deficit that is 

observed even when the delay is set to zero seconds (Lee and Park 2005). For visuospatial working 

memory, patients with schizophrenia exhibit deficits not only in encoding but also in maintenance, 

which results in a graded loss of precision (Badcock et al. 2008; Starc et al. 2017). Other visual 

paradigms find reduced capacity of working memory but not necessarily precision (Gold et al. 2010).  

Murray et al. (2014) examined the effects of altered E/I balance in a cortical circuit model of 

visuospatial working memory. Disinhibition, with results in an elevated E/I ratio, was implemented 

through antagonism of NMDA receptors preferentially onto interneurons. In this model, disinhibition 

leads to a broadening in the neural-activity patterns in the mnemonic attractor states (Figure 3.5B). This 

neural change induced specific cognitive deficits. During maintenance, the mnemonic activity pattern 

undergoes random drift, which leads to decreased precision of responses. Disinhibition increased the 

rate of this drift, thereby inducing a specific deficit in mnemonic precision during working memory 

maintenance.  
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Additionally, Murray et al. (2014) found that broadened neural representations make working memory 

more vulnerable to intervening distractors. In the model, distractors correspond to additional distracting 

inputs, modeled identically to the initial cues, with the same intensity and duration, but with a different 

stimulus location. A distractor is more likely to “attract” the working memory activity towards it if the 

two representations overlap. Distractibility therefore depends on the similarity between the 

representations of the memory target and the intervening distractor. Consistent with this model behavior, 

it has been found empirically that in visuospatial working memory, a distractor can attract the memory 

report toward its location, but only if the distractor appears within a “distractibility (spatial) window” 

around the target location (Herwig et al. 2010). Because disinhibition broadens the mnemonic activity 

patterns, this model predicts an increased range of distractors that can disrupt working memory for 

patients with schizophrenia.  

To test the model prediction of broadened working memory representations under disinhibition, Murray 

et al. (2014) analyzed behavior from healthy humans administered ketamine during a spatial delayed 

match-to-sample task (Anticevic et al. 2012). In this task, subjects must retain the position of a cue in 

working memory. Subjects are then presented with a probe stimulus corresponding to different 

locations, and they must indicate if these probes are a “match” to the initial cue, or not. The model 

predicted a pattern of errors that is dependent on whether the probe is similar to the target held in 

working memory (aka the “memorandum”). Analysis of the behavioral data under ketamine versus 

control conditions revealed a specific pattern of errors which was similar to that predicted by the 

computational model. Consistent with model predictions, ketamine increased the rate of errors 

specifically for probes that would overlap with a broadened mnemonic representation. A similar pattern 

of errors has been observed in schizophrenia, with a selective increase in false alarms for “near” non-

target probes but not for “far” non-target probes (Mayer and Park 2012). In contrast to the model 

predictions arising from disinhibition, insufficient recurrent excitation in the model leads to a collapse of 

persistent activity which would induce an error pattern of misses and spatially random errors.  

To more directly test model predictions for patients with schizophrenia, Starc et al. (2017) designed a 

working memory task to be explicitly aligned with the model and with the primate electrophysiology 

task paradigms for which the model was developed. Such an alignment between the clinical study, basic 

neurophysiology findings and computational modelling allows stronger inferences and testing of 

hypotheses. In the working memory task of Starc et al. (2017), the memorandum is a single visuospatial 
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location and the response is a direct report of the remembered location, which provides a continuous 

measure of mnemonic coding. To test the model prediction of increased drift during working memory 

maintenance, the duration of the mnemonic delay is varied. To test the model prediction of increased 

distractibility dependent on target-distractor similarity, a set of trials included a distractor during the 

delay with a variable distance from the target. Starc et al. (2017) found that the experimental results 

largely followed model predictions, whereby patients exhibited increased variance and less working 

memory precision relative to healthy controls as the delay period increased. Schizophrenia patients also 

exhibited increased working memory distractibility, with reports biased toward distractors at specific 

spatial locations. This study illustrates a productive computational psychiatry approach in which 

predictions from biophysically based neural circuit models of cognition can be translated into 

experiments in clinical populations.  

3.5.2 Decision making models 

Broadly, decision-making function is impaired in multiple psychiatric disorders (Lee 2013). To study 

dysfunction in neural circuit models, we focus on perceptual decision-making in task paradigms similar 

to those studied via electrophysiology in non-human primates. As reviewed above, cortical attractor 

network models have been developed to capture behavior and neuronal activity from association cortex 

during random-dot motion paradigms (Wang 2002; Furman and Wang 2008). In these two-alternative 

forced choice tasks, a random-dot motion stimulus is presented, and the subject must report the net 

direction of motion (e.g., left vs. right). The coherence of the random-dot pattern can be parametrically 

varied to control the strength of perceptual evidence and thereby task difficulty. The psychometric 

function, giving the percent correct as a function of coherence, defines the discrimination threshold as 

the coherence eliciting a certain level of accuracy.  

Random-dot motion paradigms have been applied to clinical populations and have revealed impaired 

perceptual discrimination in schizophrenia, as measured by a higher discrimination threshold (Chen 

et al. 2003, 2004, 2005). Similar impairments in the discrimination threshold have also been observed in 

patients with autism spectrum disorder (Milne et al. 2002; Koldewyn et al. 2010). These impairments are 

typically interpreted as evidence of neural dysfunction in sensory representations (Butler et al. 2008). 

However, it is possible that such impairments may also result from dysfunction in evidence 

accumulation downstream from early sensory areas, within association cortical circuits.  
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To explore this issue, Lam et al. (2017) studied the effects of altered E/I balance in the association 

cortical circuit model of decision-making developed by Wang (2002). The E/I ratio was perturbed bi-

directionally, to compare the impact of elevated vs. lowered E/I ratio, via NMDA receptor hypofunction 

on inhibitory vs. excitatory neurons, respectively. Interestingly, Lam et al. (2017) found that the 

disruption of E/I balance in either direction can similarly impair decision-making as assessed by 

psychometric performance, i.e. the dependence of performance on the E/I ration is U-shaped, being 

degraded for both decreased or increased E/I ratio (Figure 3.5D). Therefore, the standard 

psychophysical measurements from clinical populations cannot dissociate among distinct circuit-level 

alterations: elevated E/I ratio, lowered E/I ratio, or an upstream sensory coding deficit.  

Nonetheless, Lam et al. (2017) found that these regimes make dissociable predictions for the time-

course of evidence accumulation. The random-dot motion task promotes a strategy of evidence 

accumulation across the duration of the stimulus presentation. In these settings, it is generally assumed 

that subjects continuously accumulate information during the stimulus presentation and only commit to 

a choice at the end of the stimulus stream. Contrary to these assumptions, however, it can be shown that 

how information is integrated is not uniform in time, and sometimes the decision is actually made long 

before the stimulus presentation ends. Multiple task paradigms have been developed to characterize the 

time-course of evidence accumulation. For instance, in the “pulse” task paradigm (Huk and 

Shadlen 2005; Wong et al. 2007), a brief pulse of additional coherence is inserted at a variable onset 

time during the otherwise constant-coherence stimulus (Figure 3.5E). This pulse induces a shift of the 

psychometric function according to pulse coherence. The dependence of this shift on pulse onset time 

reflects the weight of that time point on choice.  

The pulse paradigm, as well as other paradigms, was able to dissociate distinct decision-making 

impairments under altered E/I ratio (Figure 3.5E). Under elevated E/I ratio, decision is impulsive: 

perceptual evidence presented early in time is weighted much more than late evidence. In contrast, under 

lowered E/I ratio, decision-making is indecisive: evidence integration and winner-take-all competition 

between options are weakened. These effects can qualitatively be captured using a modification of the 

drift-diffusion model, which is a widely used abstract model for decision making from mathematical 

psychology, described in Section 2.3. The standard drift diffusion model assumes perfect integration 

with an infinite time-constant for memory. Lowered E/I ratio in the circuit model can be captured by 

“leaky” integration with finite time-constant for memory. In contrast, elevated E/I ratio can be captured 
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by “unstable” integration, which has an intrinsic tendency to diverge toward the decision threshold. This 

study demonstrates the potential to link synaptic-level perturbations in neural circuit models to 

measurable cognitive behavior, as well as to more abstract models from mathematical psychology.  

3.5.3 State diagram for the role of E/I balance in cognitive function 

As described in the above section, neural circuit models of cognitive functions can generate dissociable 

predictions for how distinct synaptic perturbations impact behavior under various task paradigms. 

Biophysically based models can also suggest what aspects of neural activity or behavior may be 

differentially sensitive or robust to particular manipulations by pathology, compensation, or treatment. 

Changes in certain network parameters, or the combinations of parameters, may have much stronger 

impact on model behavior than changes in other parameter combinations. A “sloppy” axis in parameter 

space is one along which the model response is relatively insensitive to perturbations in that parameter 

combination, whereas a “stiff” axis is one in which the model response is highly sensitive to 

perturbations (Gutenkunst et al. 2007).  

Murray et al. (2014) and Lam et al. (2017) characterized function in theses neural circuit models under 

parametric variation in E/I ratio. Specifically, they explored the parameter space of reductions of NMDA 

receptor conductances onto both inhibitory interneurons (elevating E/I ratio) and onto excitatory 

pyramidal neurons (reducing E/I ratio) (Figure 3.6). For the working memory model, circuit function is 

determined by the width of the mnemonic persistent activity pattern. For the decision-making model, 

circuit function can be measured through the discrimination sensitivity (inverse of the discrimination 

threshold). In both circuit models, E/I ratio was found to be a key parameter for optimal network 

function. Following relatively small perturbations, circuit function is robust as long as E/I balance is 

preserved. Preserved E/I ratio therefore corresponds to a “sloppy” axis in this parameter space. In 

contrast, even subtle changes to E/I ratio (along a “stiff” axis) have a strong impact on model function.  

< insert Figure 3.6 around here> 

If the imbalance is substantial, either elevated or lowered, the circuit can lose multi-stability. If 

disinhibition is too strong (via elevated E/I ratio), then the spontaneous state is no longer stable. 

Conversely, if recurrent excitation is too weak (via lowered E/I ratio), then the circuit cannot support 

persistent activity. Collectively, these analyses reveal that E/I balance is vital for optimal cognitive 
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performance in these cortical circuit models. This suggests that despite the complexity of synaptic 

alterations in a disorder such as schizophrenia, the impact on cognitive function in neural circuits may 

be understandable in terms of their “net effect” on effective parameters, such as E/I ratio, to which the 

circuit is preferentially sensitive.  

3.6 Future Directions  

In this chapter, we have primarily reviewed two studies leveraging biophysically based neural circuit 

models to explore the effects of altered E/I balance on the core cognitive functions of working memory 

and decision making. These studies revealed that E/I ratio is a critical property for proper cognitive 

function in cortical circuits. Furthermore, they provide a test bed for computational psychiatry 

demonstrating that neural circuit models can play a translational role between basic neurophysiology 

and clinical applications. Here we turn to some areas to be addressed in future modeling studies.  

3.6.1 Integrating cognitive function with neurophysiological biomarkers 

As noted above, biophysically based circuit models are well positioned to explore the mechanisms 

through which synaptic-level perturbations may be associated with neurodynamical biomarkers. In the 

context of schizophrenia, for example, circuit models have been applied to studying mechanisms of 

disrupted gamma-band oscillations (Vierling-Claassen et al. 2008; Spencer 2009; Volman 

et al. 2011; Rotaru et al. 2011), which can be related to EEG/MEG data from patients (Uhlhaas and 

Singer 2010). At very different spatiotemporal scales, circuit models of large-scale dysconnectivity can 

be related to resting-state BOLD data (Yang et al. 2014, 2016a). At the moment, such biomarker-related 

models do not directly relate to cognitive function or behavior. Future modeling work is needed in the 

integration of cognitive function with neurophysiological biomarkers across multiple scales of analysis.  

3.6.2 Incorporating further neurobiological detail 

To address increasingly complex and detailed questions about neural circuit dysfunction, future models 

will need to incorporate further elements of known neurobiology, which can be constrained and tested 

with experiments. One notable limitation in the current models is that they usually contain a single type 

of inhibitory interneuron, and therefore they are not able to speak to important questions regarding 

preferential disruptions in specific interneuron cell types. There are key differences between 

parvalbumin-expressing and somatostatin-expressing interneurons, which have differences in their 
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synaptic connectivity and functional responses (Gonzalez-Burgos and Lewis 2008). Microcircuit models 

that propose a division of labor among interneuron classes (Wang et al. 2004; Yang et al. 2016b) have 

the potential to make dissociable predictions for dysfunction in distinct cell types. Another avenue for 

model extension is to take into account the laminar structure observed in cortex (Mejias et al. 2016), 

which may relate to mechanistic hypotheses of impaired predictive coding (Bastos et al. 2012). Beyond 

the level of local microcircuitry, further work is needed on distributed cognitive computations across 

brain areas (Chaudhuri et al. 2015; Murray et al. 2017), and their integration in models of alterations in 

large-scale network dynamics in psychiatric disorders (Yang et al. 2014, 2016a).  

3.6.3 Informing task designs 

These modeling studies offer important considerations for the design of cognitive tasks applied to 

computational psychiatry. In each model, multiple distinct cortical disruptions (e.g., elevated vs. lowered 

E/I ratio vs. upstream sensory coding deficit) can impair performance. Standard performance analyses in 

common task paradigms (e.g., error rates in working memory, or psychometric threshold in decision 

making) may be insufficient to resolve dissociable predictions. Fine-grained analyses of task behavior 

should distinguish different types of errors or deficits, rather than simply measuring overall impaired 

performance, which could be due to deficits in distinct cognitive sub-processes (e.g., encoding vs. 

maintenance for working memory) or opposing deficits in a single sub-process (e.g., leaky vs. unstable 

integration in decision making). Circuit modeling can provide insight into the variety of potential 

“failure modes” in a cognitive function, and into which task designs can reveal them. In turn, alignment 

of a task design with a circuit model allows for generation of mechanistic neurophysiological hypotheses 

from behavioral measurements.  

3.6.4 Studying compensations and treatments 

Finally, of utmost relevance to psychiatry, biophysically based circuit modeling has the potential to 

provide a method for simulating possible effects of treatments that act at level of ion channels and 

receptors. As a proof of principle example of this, Murray et al. (2014) examined in the working 

memory circuit model how E/I balance can be restored through compensations acting on multiple 

parameters; for instance, elevated E/I ratio due to disinhibition can be compensated for by a treatment 

that strengthens inhibition or by one that attenuates excitation. In turn, restoration of E/I balance 

ameliorated the associated deficits in working memory behavior. However, further development and 
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refinement of biophysically based models is needed to go beyond proof of principle. Future 

development in this area will benefit from the other directions noted above. Incorporation of more 

detailed micro-circuitry and receptors will be needed to better capture pharmacological effects. 

Integration of biomarkers and behavior in the models will allow refinement through more direct testing 

with empirical data from pharmacological manipulations in animal models and humans.  

3.6.5 Distributed cognitive process in a large-scale brain system 

In this chapter, we focused on local circuit modeling, but cognitive processes involve multiple cortical 

and subcortical regions. Researchers have begun to consider abnormalities of the global brain 

connectivity and dynamics in mental illness (Rubinov and Bullmore 2013; Yang et al. 2016a), but this 

area of research is still in its infancy. In particular, persistent activity during working memory has been 

observed in a number of brain areas (Christophel et al. 2017). What are the general principles for such 

distributed persistent activity patterns? What determine whether a given brain area does or does not 

display persistent activity? For an area engaged in persistent activity, what does it store in working 

memory and what role does it play in contributing to, or controlling (i.e. as a network hub), the global 

persistent activity pattern? Time is ripe to seriously tackle these questions. Human brain connectomics 

and functional imaging are rapidly developing. At the same time, in animal research it is becoming 

possible to physiologically record from neurons in multiple brain areas of animals during a working 

memory task, and biologically-based large-scale modeling now can be built on quantitative mescoscopic 

connectivity data (Chaudhuri et al. 2015; Mejias et al. 2016; Wang and Kennedy 2016).  

Advances in all these directions hold exciting promise of rationally guiding treatment development in 

psychiatry, grounded in basic neuroscience.  

3.7 Chapter Summary  

Research based on biophysically based neural circuit modeling has led to insights into neural circuits 

involved in cognitive processes in areas such as the prefrontal cortex.  Working-memory is thought to be 

dependent on persistent neural activity during the delay period in areas such as the prefrontal cortex.  

Such persistent activity is usually modeled using attractor models. Decision-making is thought to 

correspond to ramping neural activity during the decision period, corresponding to an “accumulation of 

evidence”. In simulations, excitatory reverberation and maintenance of sustained activity during 
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working memory and accumulation of evidence during decision-making was found to require slow 

synapses, and particularly NMDA receptors. This theoretical prediction was verified experimentally and 

is meaningful for research in psychiatry: NMDA impairments have indeed been observed in 

schizophrenia and other psychiatric illness. Computational models can explain how changes in the 

balance of synaptic excitation and inhibition (through NMDA impairments) give rise to specific 

impairments in working memory and decision-making.  Such local circuit models could provide basic 

building blocks in the development of more sophisticated models and large-scale brain circuit models in 

the emerging field of Computational Psychiatry.  

3.8 Further Study 

Shall (2004) discuss linking propositions and correspondence between mental states and brain states.  

An approach to relating attractor models and schizophrenia, that is related to the one described here, can 

be found in the work of Rolls & Deco (2011).  

Durstewitz et al (2019) provides a more general dynamical systems perspective on psychiatric 

symptoms and disease, and discusses its potential implications for diagnosis, prognosis, and treatment.  

On the physiological side, a recent review of the neural mechanisms that may underlie memory-

associated persistent activity can be found in Zylberberg and Strozbridge (2019).  

O Connell et al (2019) offers a recent description of neural and computational viewpoints on perceptual 

decision-making. 
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4.1. Introduction 

 A core challenge of cognitive, computational, and systems neuroscience research is to provide a 

satisfying answer to the following question: how does cognition arise from neural systems? Although 

researchers have spent decades using variety of tools (e.g., magnetic resonance imaging, 

electroencephalography, single-unit recordings) to investigate this question, we have only begun to 

scratch its surface, in terms of understanding how neural substrates work together in synchrony to give 

rise to complex cognitive processes.  

 To provide an analogy, imagine listening to a concerto performed by a symphony orchestra. 

Perhaps you are interested in understanding how the orchestra can blend together so many different 

sounds from vastly different instruments to give rise to this beautiful masterpiece. In the initial hearing, 

the piece sounds clearly melodic, lyrical, and filled with multiple complex musical layers that sound 

cohesive when in concert. However, upon closer examination, it becomes evident that even such 

complex musical layers can be deconstructed into the contributions from different instruments within the 

entire ensemble. One approach for understanding the concerto may be simply to listen one instrument or 

one section (e.g., attending to a violin solo or the entire violin section when playing the same melody); 

however, that would only provide a small window into how that specific instrument contributes to the 

entire piece. Another approach would be to parse out all of the sounds in the piece by instrument, which 

provides a structural division of the different sounds that comprise the concerto but neglects the 

temporal ordering of when the instruments are played, an important aspect of the composition. Perhaps 

the most insidious problem is that even if we are able to understand the structural and temporal aspects 

of how each instrument contributes to this specific concerto, the same instruments in this symphony 
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orchestra can also perform a wide variety of other compositions (e.g., other concertos, sonatas, ballads) 

at other periods in time! Thus, the characterization of the violin’s contribution to the current concerto 

may not be applicable when considering other musical performances, which makes this type of analysis 

effort not quite as generalizable as one might have hoped. 

 

4.1.1 The Homunculus Problem of Cognitive Control 
 The challenge of this problem and the “orchestra concerto” metaphor becomes particularly 

salient when considering one of the most compelling mysteries of human cognition: how the brain 

enables human beings to plan, implement, and accomplish the types of controlled, complex, and 

temporally extended goal-directed behaviors that make-up much of modern daily life (e.g., preparing a 

multi-course meal, constructing IKEA furniture from an instruction manual, writing a computer 

program, solving a Sudoku puzzle, or figuring out how to successfully complete an MD or PhD). In the 

orchestra metaphor, it would be akin to understanding how the conductor guides the ensemble to put 

together a beautifully sounding and cohesive concerto performance. This mystery has often been posed 

as the “homunculus problem”, which presents the following conundrum: if control over thoughts and 

action emerges from brain function, then are there special neurobiological and computational properties 

that differentiate the components that should be labeled as “controller” from the components that are 

“controlled”? Does the controller/controlled distinction even make sense? And if not, how are we ever 

going to understand the emergence of intelligent, goal-directed behavior in neurobiological terms? 

 Within psychology and neuroscience, researchers have often taken a primarily localizationist 

approach, studying individual brain regions in terms of their associated cognitive functions (Poldrack 

2007). At the other extreme is the integrationist perspective, which focuses on the entire brain, parsing it 

into networks that may be structurally or functionally related (Eliasmith et al. 2012). However, neither 

of these approaches has yet provided a fully satisfying answer to the fundamental problem of cognitive 

control. Indeed, as this discussion hopefully makes clear, properly addressing the seemingly intractable 

homunculus problem likely requires a computational modeling approach. Computational approaches can 

be utilized in both a reductionist and emergentist manner: deconstructing the mysterious intelligence of 

the homunculus into hopefully more understandable “dumb” neural subcomponents, while at the same 

time making clear how complex control functions can emerge from the dynamic interactions among 

these multiple simpler subcomponents of cognitive control.  
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Computational modeling approaches to cognitive control are uniquely powerful, relative to other 

neuroscience techniques, in that they provide the researcher with a means of generating specific and 

concrete hypotheses, along with explicit experimental predictions regarding generative and causally 

efficacious control mechanisms and their influence on brain activity and behavior (Botvinick and Cohen 

2014; O’Reilly 2006; O’Reilly, Herd, and Pauli 2010). More broadly, within the cognitive sciences, the 

utility of modeling approaches has long been established and appreciated (Newell and Simon 1961). 

Over thirty years ago, and as described in Chapter 1 and Figure 1.4, David Marr attempted to formalize 

these approaches by articulating an influential proposal for decomposing and investigating complex 

cognitive systems across three levels of analysis: the computational, the algorithmic, and the 

implementational (Marr 1982; Bechtel 1994). These levels of analyses were initially introduced to tackle 

computational questions in vision, and have been criticized by various researchers as potentially being 

too rigid to be universally applicable (Dayan 2001). Yet the Marr framework can be fruitfully applied 

when considering complementary questions about the neural and computational mechanisms that 

underlie more complex temporally extended goal-directed behavior, such as: What computational goal is 

accomplished by a putative control function?  What is the algorithm that encodes this function? Can we 

identify the neural systems and mechanisms that implement the algorithm?  Consequently, we will make 

use of the Marr framework in this chapter, in order to provide a general intuition for how various 

computational models attempt to address specific questions about cognitive control function.  

 

4.1.2 Why Cognitive Control? 
 

The current chapter highlights past and current computational models of cognitive control, and 

the purpose is two-fold. First, cognitive control is a well-known psychological construct, with a long 

history of researchers using computational modeling approaches to attempt to explain its underlying 

cognitive mechanisms (Newell and Simon 1972; Rumelhart et al. 1986; Cohen, Dunbar, and McClelland 

1990; Braver and Cohen 2000; Anderson et al. 2008). Second, cognitive control ability is disrupted 

across a wide range of mental disorders, with a vast body of literature now supporting the hypothesis 

that cognitive control impairments are prominent in many such disorders, including schizophrenia, 

depression, obsessive-compulsive disorder, ADHD, addiction, Alzheimer’s Disease and Parkinson’s 

Disease (Lesh et al. 2011; Fales et al. 2008; Halari et al. 2009; Greisberg and McKay 2003; van Meel et 
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al. 2007; Vaidya et al. 2005; Belleville, Chertkow, and Gauthier 2007; R. G. Brown and Marsden 1990; 

Wylie et al. 2010; H. R. Snyder, Miyake, and Hankin 2015). Indeed, it may not be an exaggeration to 

argue that an impairment of cognitive control, in one form or another, is the defining feature of many 

forms of mental illness. Thus, understanding the mechanisms that underlie cognitive control function 

can provide a crucial window into psychopathology. 

Cognitive control is operationalized as the ability to perform task-relevant processing in the face 

of distractions or in the absence of environmental support, specifically by active maintenance and 

flexible updating of task representations over time, in order to pursue task-relevant objectives and 

behavioral goals (Engle and Kane 2004; Braver 2012; O’Reilly, Braver, and Cohen 1999). A core tenet 

of cognitive control is the distinction between controlled and automatic processing (Posner and Snyder 

1975; Shiffrin and Schneider 1977; Norman and Shallice 1986). It is now generally appreciated that a 

fundamental tradeoff exists between recruiting and directing cognitive resources to deliberately perform 

a demanding task versus carrying out less effortful and habitual responses that may require fewer 

attentional resources, but which also may be less flexible. Typically, the allocation of control depends on 

the amount of cognitive effort or mental demand required. In other words, the control of behavior arises 

from the cognitive demands required to successfully perform a task, and effort allocation arises from the 

dynamic recruitment of available cognitive processes that can appropriately meet these demands during 

task performance (Botvinick and Cohen 2014). Some have proposed various computational models and 

frameworks to understand this tradeoff between effort and automaticity in controlled behavior (Cohen, 

Dunbar, and McClelland 1990; Schneider and Chein 2003), whereas others have hypothesized that 

humans perform a cost-benefit analyses between expected payoff and cognitive effort to determine the 

optimal allocation of cognitive control (Shenhav et al. 2017; Dixon and Christoff 2012; Kool and 

Botvinick 2014; Westbrook and Braver 2015). All in all, there still remain many unanswered questions 

regarding the computational and neural mechanisms that underlie cognitive control; which we argue can 

be more adequately addressed with computational modeling approaches. 

As a brief aside, we wish to acknowledge that such computational modeling approaches have 

been prevalent and successful in advancing understanding for other related, but potentially more 

specialized cognitive processes, such as attention (Gershman, Cohen, and Niv 2010), learning 

(Tenenbaum, Griffiths, and Kemp 2006), semantic knowledge (Rogers and McClelland 2004), and 

memory (Polyn, Norman, and Kahana 2009). Thus, while this chapter will focus primarily on cognitive 
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control, we hope that the reader may extrapolate these principles to obtain a broader perspective for how 

computational models can be used to study other cognitive systems. 

 

4.1.3 Roadmap to this Chapter 
 

This chapter contains two main sections. First, we will provide a brief review of several key 

computational models that have been influential in advancing understanding of cognitive control 

mechanisms. This review of such models is not meant to be comprehensive but will hopefully provide a 

useful primer for readers to become familiar with classical and current computational models of 

cognitive control, with the understanding that the principles behind these models can be extended to 

other related models. Next, we discuss key features of computational models that make them particularly 

useful and generative in guiding further research efforts (i.e., what “tests” can we run to determine 

whether a computational model can make accurate and generalized predictions about controlled 

behavior?). The chapter concludes with a concrete example of how such modeling frameworks can be 

used to make predictions in mental illness, with some speculation about how cognitive control function 

breaks down in schizophrenia, a psychiatric disorder hypothesized to be strongly associated with 

cognitive control impairment.  

 

4.2. Past and current models of cognitive control  

 

A broad range of computational models have played a prominent role in the development and 

understanding of cognitive control theory and its underlying mechanisms, including those that have 

primarily arisen from symbolic modeling traditions, such as those involving production system 

architectures (ACT-R, Anderson 1996; EPIC, Kieras and Meyer 1997). At the other end of the spectrum 

are models arising from the computational neuroscience tradition (Wang 2013), similar to those covered 

in Chapter 3. Here, we focus on four contemporary models that address challenging and unique 

computational problems integral to cognitive control function, and which have also played an influential 

role in advancing research within this domain:  
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1. How do we determine when to actively maintain versus rapidly update contextual 

information in working memory?  

2. How is the demand for cognitive control evaluated and what is the computational role of the 

anterior cingulate cortex? 

3. How do contextual representations guide action selection during hierarchically organized 

task goals and what is the computational role of the prefrontal cortex?  

4. How are task-sets learned and organized during behavioral performance, and when do they 

generalize to novel contexts?  

 

4.2.1 How do we determine when to actively maintain versus rapidly update contextual 
information in working memory?  
	
  

 How does the brain determine what information is relevant to be maintained (i.e., in working 

memory) during the pursuit of task goals, and when should this information be updated with newer task-

relevant information? A potentially useful analogy for visualizing this issue is the concept of a ‘mental 

blackboard,’ which describes the dilemma of deciding between when learned information in working 

memory should be kept, or instead erased and overwritten (Baddeley 1986). Early computational models 

attempted to use attractor models to understand the mechanisms that underlie robust active maintenance 

of working memory against irrelevant distractors (Changeux and Dehaene 1989; Zipser et al. 1993; 

Cohen, Braver, and O’Reilly 1996; Compte et al. 2000; Durstewitz, Seamans, and Sejnowski 2000; 

Deco and Rolls 2003). However, a major limitation of these models is their lack of a mechanism for 

precisely updating working memory when newer, task-relevant information is introduced. This tension 

between these two working memory functions is difficult to reconcile, as they inherently contradict each 

other – active maintenance increases resistance to distractors, whereas flexible updating makes the 

system more vulnerable to distraction. Thus, the computational challenge lies in building a model which 

can explain how a system regulates the fundamental trade-off between learning when to actively 

maintain context representations (i.e., task-relevant information that is internally represented) to achieve 

controlled processing versus rapidly updating new information into working memory, a core problem of 

cognitive control (O’Reilly, Braver, and Cohen 1999; Braver and Cohen 2000).  

 One approach towards understanding the computational mechanisms that underlie this trade-off 

comes from the “parallel-distributed-processing” approach (also dubbed “connectionist” or “neural 
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network” models in the literature, see Section 2.1). These models view control as arising from the 

interaction of multiple relatively simple elements (e.g., neurons or neural assemblies that perform local 

processes within a single brain system or unit). Thus, the models emphasize how cognitive control 

functions emerge from a network of brain regions activated interactively and in parallel, rather than the 

more historical modular approach of localizing cognitive function to a single brain region (Hinton 1984; 

O’Reilly 2006).  

A well-established model from within the connectionist tradition is the prefrontal cortex and 

basal ganglia (PBWM) model developed by Frank, O’Reilly, and their colleagues (Frank, Loughry, and 

O’Reilly 2001; O’Reilly and Frank 2006; Hazy, Frank, and O’Reilly 2007). In the PBWM model, the 

prefrontal cortex (PFC) and basal ganglia (BG) interact to solve the maintenance vs. updating problem 

by implementing a flexible working memory system with an adaptive gating mechanism. This represents 

an elegant algorithmic solution for resolving this computational question, as it provides two separate 

modes of working memory that optimize active maintenance and flexible updating, respectively (Figure 

4.1a). Specifically, working memory is insulated from distractor signals (i.e., irrelevant sensory input) 

when the gating mechanism is closed, but is receptive to utilizing information from such sensory signals 

when gating mechanisms are open. However, the introduction of this gating mechanism then begs the 

following question: how does the brain know when to open or close the gate? In other words, who or 

what controls the gate?  

At the biological (i.e., implementational) level, the PBWM model proposes that the PFC 

facilitates the active maintenance mechanisms for sustaining task-relevant information, whereas the BG 

provides the selective gating mechanism, which independently switches between updating versus 

maintenance of information in PFC. Specifically, the key component of PBWM is that the BG performs 

this selective dynamic gating via disinhibition, and moreover, that this dynamic gating functionality 

depends upon the dopaminergic system (DA, Figure 4.1b). In this framework, dopaminergic “Go” 

neurons in dorsal striatum fire to disinhibit PFC to enable updating of working memory representations 

in PFC, while “NoGo” neurons counteract this effect to support robust maintenance of PFC working 

memory representations and resistance to distractions. 

 

- Figure 4.1 – 
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Notably, other computational models have proposed similar gating mechanisms that regulate 

flexible updating and maintenance of task-relevant representations during working memory, but driven 

primarily by direct DA projections to PFC (Braver and Cohen 1999, 2000). However, a criticism of the 

global DA firing hypothesis is that this mechanism would not fully explain more complex cognitive 

tasks in which individuals would need to maintain and update different task representations 

simultaneously, such as when there is a hierarchical structure to working memory   (e.g., remembering 

to press a button for a specific stimulus only during on context A, but not context B). 

Taken together, the PBWM leverages the gating mechanism as an algorithmic solution to the 

computational problem of switching between active maintenance and flexible updating within working 

memory mechanisms. This model suggests that the PFC implements active maintenance of task-relevant 

information, whereas the BG contains selective gating mechanisms which switch between “robust 

maintenance” and “selective updating” of information held in PFC during working memory. Midbrain 

DA release is hypothesized to modulate this gating mechanism. However, exactly how, when, and where 

DA firing drives these working memory functions (e.g., only in the BG or also directly in PFC), is a 

question that remains to be fully explored.  

 

4.2.2 How is the demand for cognitive control evaluated and what is the computational role of the 
anterior cingulate cortex? 
 
 Another core computational challenge within the domain of cognitive control is the following: how 

is the current demand for control evaluated, and in what form is this evaluative signal transmitted? In 

other words, how does the brain determine which situations or task conditions require more mental 

resources (than are currently available) to successfully pursue task goals, and what is the necessary 

relevant information that underlies this evaluation? This type of question is difficult to address from a 

purely theoretical perspective, as ‘cognitive demand’ is an elusive construct that appears to arise under a 

wide variety of mentally challenging tasks. Thus, a prerequisite for building a computational solution is 

understanding which experimental conditions demand and elicit greater cognitive control, and 

identifying relevant behavioral measures as empirical evidence for increased cognitive effort (note that 

in the literature, the terms cognitive effort and mental effort are used interchangeably). .   
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 A plethora of work has identified tasks with behavioral measures that demonstrate selective 

recruitment of cognitive control (Botvinick, Cohen, and Carter 2004; Ridderinkhof et al. 2004; Braver 

and Ruge 2006). For example, in the Stroop task, cognitive control is required to override the prepotent 

response to read a word, in order to perform the correct task of reading the color ink of the word. In the 

N-back, cognitive control is required to respond selectively to N-back matches (e.g., in a 2-back task, a 

target response should be given only if the current stimulus matches the one presented 2 slides ago) 

rather than based on simple familiarity. In the stop-signal (or change signal) task, cognitive control is 

required to cancel an already initiated behavioral response if a stop signal (or change cue) is presented. 

In the Erikson flanker task, cognitive control is required to respond selectively to a centrally presented 

stimulus and ignore the flanker stimuli, particularly when these are distracting and incongruent with the 

central stimulus.  Critically, all of these tasks contain experimental conditions that reliably increase 

cognitive control demands in a transient, trial-by-trial manner (i.e., the cognitive system monitors 

ongoing responses and adjusts to the level of cognitive control needed on the current trial). Likewise, 

they are indexed by specific behavioral measures that reflect this enhanced cognitive control demand 

(e.g., Stroop interference effect, stop-signal reaction time).  

A well-established finding is that canonical control tasks, such as the ones listed above, 

consistently co-activate the dorsolateral prefrontal cortex (dlPFC) and the dorsomedial PFC (Egner 

2009; Duverne and Koechlin 2017), a brain region that spans the dorsal anterior cingulate cortex (ACC) 

and pre-supplementary motor area (pre-SMA) (Duncan and Owen 2000; Duncan 2010). The dlPFC is 

thought to play a primary role in actively maintaining representations of task goals and the associated 

actions (or behavioral rules) needed to achieve them.  In contrast, the ACC is thought to be involved in 

signaling when more control should be implemented by the dlPFC to accomplish these goals. It is 

generally accepted that the interaction between these two brain regions is important for dynamically 

adjusting cognitive control. Many have argued for the ACC as an important locus of cognitive control 

(Holroyd et al. 2004; Kerns 2004), although there remains much controversy over what actual 

information is represented by the ACC and signaled to the dlPFC to indicate that cognitive control is 

needed during tasks.  

Several prominent theoretical accounts of  ACC’s computational role in cognitive control have 

arisen in recent years, including the detection of error signals (Gehring et al. 1993; Holroyd et al. 2005), 

reinforcement learning (Holroyd and Coles 2002), conflict monitoring (Botvinick et al. 2001; Botvinick, 
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Cohen, and Carter 2004), error likelihood (Carter et al. 1998; J. W. Brown and Braver 2005), cost-

benefit analyses of implementing control (Shenhav, Botvinick, and Cohen 2013), and even uncertainty 

in the environment (Behrens et al. 2007). An account that was developed to reconcile and unify these 

divergent perspectives, the prediction response-outcome (PRO) model (Figure 4.2; Alexander and 

Brown 2011, 2014). The PRO model contains two components. One component of the model learns to 

predict multiple likely outcomes of various chosen actions, regardless of whether these outcomes or 

good or bad (i.e., response-outcome learning). A second component of the model detects discrepancies 

between actual and predicted outcomes and uses this prediction error signal (i.e., actual outcomes – 

expected outcomes) to update and refine subsequent predictions. Moreover, a key aspect of the 

prediction error signal is that it also indicates “negative surprise”, when an expected outcome does not 

occur. This form of negative surprise signal can indicate not only when an unexpected error occurs, but 

also when the response is slower than expected or when the correct action is more ambiguous (which is 

likely to happen on trials associated with high response conflict). 

  

- Figure 4.2 -- 

 

At the implementational level, the PRO model postulates that separate neural signals within ACC 

represent outcome prediction and prediction error (negative surprise), respectively. Specifically, the 

model suggests that the prediction signal should reliably increase immediately prior to when the mostly 

likely outcome will occur (i.e., a pre-response anticipatory signal). The negative surprise signal, on the 

other hand, will reliably activate after the action that produces an unpredicted outcome has occurred 

(i.e., a post-response evaluative signal). Critically, these hypotheses have been tested empirically across 

multiple tasks (e.g., change signal task, Erikson-flanker), as well as across different types of neural data 

(e.g., fMRI BOLD activity, ERP, monkey single unit neurophysiology). This validation of the PRO 

model across such a wide range of neural data demonstrates that it provides a useful generalizable 

computational algorithm by which the ACC can signal an increased need for cognitive control. Recent 

efforts have attempted to expand this account to include hierarchical representation within ACC and 

dlPFC (Alexander and Brown 2015), a topic relevant to the next section. Other recent efforts have 

attempted to link ACC signals with more affective/motivational quantities (Vassena, Holroyd, and 

Alexander 2017). These include the Expected Value of Control (EVC; Shenhav, Botvinick, and Cohen 
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2013) and related accounts (Holroyd and McClure 2015; Westbrook and Braver 2016), which postulate 

that ACC regulates the allocation and persistence of cognitive effort based on signals indicating the 

current subjective motivational (and/or hedonic) value of task and goal outcomes. 

 

4.2.3. How do contextual representations guide action selection towards hierarchically organized 
task goals and what is computational role of the prefrontal cortex? 
 

 A third computational question of control relates to the issue of abstraction. How can a ‘high-level’ 

goal constrain and implement a ‘lower-level’ goal? As an example, imagine the following scenario: you 

hear the phone ring, and you have an instinctive impulse to lift it up from the receiver to answer it. 

However, context plays an important role in your action plan, so while you might automatically answer 

the phone in your own home, you would inhibit this tendency to answer a ringing phone at your friend’s 

home. Yet, you might switch your action plan if your preoccupied friend asks you to answer the ringing 

phone on their behalf (e.g., when they are preoccupied with a task). This example articulates a 

fundamental computational challenge of implementing task goals – specifically, how do humans utilize 

contextual representations and higher-level goals to guide action selection during pursuit of lower-level 

goals, and how does the brain implement this type of hierarchical control?  

One promising algorithmic solution for this perplexing question is the concept of hierarchical 

organization of task goal representations. The notion of applying hierarchical structure to parse complex 

systems into subordinate and interrelated subsystems has long been established, with subsystems being 

further subdivided into ‘elementary’ units (Simon 1962). Similarly, some theorists have argued that 

control signals used to guide behavioral actions, based on internal plans and goals, can also be 

subdivided into sensorimotor, contextual, and episodic levels of control (Koechlin, Ody, and Kouneiher 

2003; Koechlin and Summerfield 2007; Figure 4.3). Critically, this information-theoretic model (i.e., 

based on principles from information theory; Shannon 1948), which has also been termed the “cascade 

model”, postulates that the hierarchical division occurs according to a temporal dimension; that is, when 

in time control is implemented. Specifically, according to the model, actions selected based on 

temporally proximal stimulus would be lower on the hierarchy, whereas actions selected based on past 

information that is actively maintained in conjunction with the recent stimulus would be higher on the 

hierarchy. According to this framework, greater demand for cognitive control can also be formalized as 
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the amount of information required to be actively maintained over longer time periods to enable 

successful behavioral action selection. As a brief aside, it is worth noting earlier models also utilized 

hierarchical frameworks to understand temporal abstraction in behavior (Cooper and Shallice 2006), but 

the primary thrust of the cascade model and related variants been to use reinforcement learning to 

subdivide temporally abstract complex action plans (i.e., ‘options’) into simpler behaviors, an adaptive 

and efficient encoding strategy relevant for understanding structured abstract action representations 

(Botvinick 2008; Botvinick, Niv, and Barto 2009; Solway et al. 2014; Holroyd and Yeung 2011).  

 

-- Figure 4.3 -- 

 

 At the neural level, the cascade model implements hierarchical cognitive control along the anterior-

posterior (i.e., rostral-caudal) axis of lateral PFC, with control signals higher up in the hierarchy 

represented in more anterior prefrontal regions (Koechlin, Ody, and Kouneiher 2003; Badre 2008; Badre 

and D’Esposito 2009). Although it is well accepted that PFC subserves high-level cognitive function and 

cognitive control, researchers have only recently attempted to build a parcellation scheme of this large 

brain region according to a functional organizing principle (Fuster 2001). Evidence from human 

neuroimaging studies supports the hypothesis of hierarchical representation, with more anterior regions 

of lateral PFC being activated when cognitive control is implemented for past information, and posterior 

regions being activated during action selection from more immediate information (Velanova et al. 2003; 

Braver and Bongiolatti 2002; Braver, Reynolds, and Donaldson 2003; Badre and D’Esposito 2007; Nee 

and Brown 2013). Additionally, single-unit studies in non-human primates are supportive of the idea 

that PFC is functionally organized according to the rostral-caudal axis: whereas caudal regions are 

involved in direct sensorimotor mappings, more rostral regions are involved in higher order control 

processes that regulate action selection among multiple competing responses and stimuli (Petrides 2005; 

Shima et al. 2007). Thus, the hierarchical organization of PFC appears to be central to performing the 

neural computations underlying task goal abstraction and action selection. Active research efforts focus 

on understanding how these divisions in the hierarchy are initially learned (Reynolds and O’Reilly 2009; 

Frank and Badre 2012), and whether the hierarchical structure is primarily anatomic or dynamic 

(Reynolds et al. 2012; Nee and D’Esposito 2016). 
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4.2.4 How are task-sets learned during behavioral performance, and when are they applied to 
novel contexts? 

 

The fourth and final computational question in this chapter relates to the interaction of cognitive 

control and learning. In daily life, humans are faced with the challenge of learning a set of actions, 

sometimes simple or complex, in order to complete a specific task (i.e., a task-set). A related challenge 

is discerning between knowing when task-set rules that are learned in one context can be applied to a 

novel context (i.e., they generalize), or instead when a new task-set needs to be constructed. For 

example, when searching for the restroom at a shopping mall, one may learn a rule to look for signs that 

contain the text “Bathroom” with arrows pointing to a particular location. However, while this task-set 

rule may be pertinent when navigating malls in the United States, the same strategy may not be effective 

when searching for a restroom in other countries (e.g., United Kingdom), since the signs may read 

“W.C.” instead of “Bathroom.” Broadly speaking, creating a set of behavioral tools not tied to the 

context in which they were learned is useful, as this strategy enables flexible and efficient learning of 

task-set rules that can be generalized to novel contexts. However, the neural computations that underlie 

how cognitive control is deployed to learn task-sets are less well understood. Thus, the main motivating 

computational question is the following: in a new context requiring representation of tasks and task-set 

rules, is it more effective and efficient to generalize from an existing task-set representation (presumably 

stably encoded in long-term memory), or to instead build a new representation that is more optimized 

for the current context?  

In the last decade, many accounts of cognitive control looked to algorithms and approaches from 

the reinforcement learning literature for inspiration in how task-set and goal representations might be 

acquired (Botvinick, Niv, and Barto 2009; Dayan 2012). A recent model that directly targeted this 

learning question is the context-task-set (C-TS) model, which aims to approximate how humans create, 

build, and cluster task-set structures (Collins and Frank 2013; Figure 4.4). The model’s algorithm 

harnesses the power of both reinforcement learning and Bayesian generative processes that can infer the 

presence of latent states. Specifically, the model is designed to accomplish three goals: 1) create 

representations of task-sets and their parameters, 2) infer at each trial or time point which task-set is 

relevant in order to guide action selection, and 3) discover hidden task-set rules not already in its 

repertoire. A key element that drives the learning process is context - here defined as a higher-order 
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factor associated with a lower-level stimulus - which influences which action/motor plan would be 

selected. When the model is exposed to a novel context, the likelihood of selecting an existing task-set is 

based on the popularity of that task-set, i.e., its relevance across multiple other contexts. Conversely, the 

probability of creating a new task-set is set to be inversely proportional to a parameter indicating 

conservativeness, i.e. the prior probability that the stimulus-action relationship would be governed by an 

existing rule rather than a new one. Further, if a new task-set is created, the model must learn predicted 

reward outcomes following action selection in response to the current stimulus, as well as determine if 

the task-set is valid for the given context. If a selected action leads to a rewarding outcome, the model 

then updates the parameters to strengthen the association between a context and a specific task-set. 

Thus, the C-TS model provides a computationally tractable algorithm for task-set learning and clustering 

that not only feasibly links multiple contexts to the same task-set, but also discerns when to build a new 

task-set to accommodate a novel context. This process has been since dubbed ‘structure learning.’  

This structure learning process also has an implementational solution, simulated in a biologically 

plausible neural network model (in the same PDP tradition as the PBWM model), which provides a 

specific hypothesis about how structure learning occurs in the brain. In particular, the model formalizes 

how higher and lower level task-set structures and stimulus-action relationships are learned analogously 

within a distributed brain network involving interactions between PFC and BG. The key functional 

components of the model are two corticostriatal circuits arranged hierarchically with independent gating 

mechanisms. The higher-order loop involves anterior regions of PFC and striatum, which learn to gate 

an abstract task-set and cluster contexts associated with the same task set. The lower-order loop between 

posterior PFC and striatum also projects to the subthalamic nucleus, which provides the capability of 

gating motor responses based on the selected task-set and perceptual stimulus. Thus, the execution of 

viable motor responses is constrained by task-set selection, and conflict that occurs at the level of task-

set selection delays the motor response, thus preventing premature action selection until a valid task-set 

is verified.  

Both the algorithmic C-TS and the neural network model lead to similar predictions in human 

behavior.  The convergence between these modeling approaches makes clear their joint utility as 

explanatory tools for understanding the processes that underlie structure learning. Specifically, together 

these models make an important claim: that humans have a bias towards structure learning, even when it 
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is costly, because such learning enables longer-term benefits in generalization and overall flexibility in 

novel situations (Collins 2017). 

  

 

- Figure 4.4 – 

 

From a broader perspective, a unique strength of using multiple computational modeling 

approaches is the ability to provide complementary insight into the cognitive and neural processes that 

result from the interaction of cognitive control and learning functions. These two variants of the C-TS 

model provide an admirable exemplar for how to integrate computational, algorithmic, and implemental 

analysis levels, and thus formalize a theoretical account that can approximate human implementation of 

cognitive control processing and structure learning. Thus, while the C-TS specifically targets 

understanding key mechanisms of cognitive control, the multi-level approach adopted to investigate 

these mechanisms provides excellent scaffolding for future computational investigation in other 

cognitive research domains.  

 

4.3. Discussion: Evaluating Models of Cognitive Control 

 

 Next, we address two relevant issues in evaluating computational models of cognitive control: 1) 

what are good metrics for determining whether a model provides a useful contribution to our 

understanding of cognitive control mechanisms? and 2) how can models in this domain be successfully 

applied to understand the nature of cognitive control deficits in psychiatric disorders?  

 

4.3.1 Model Evaluation: Determining Whether A Computational Model is Useful  
	
  

 A famous adage by the British statistician George E. P. Box states the following – “all models are 

bad; some models are useful.” It is generally accepted that most computational models are limited in 

their ability to account for all observed behavior, and at best typically encompass the critical data 
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variability within a certain limited cognitive domain (e.g., cognitive control phenomena related to 

standard experimental response conflict tasks), but do not generalize well beyond this limited domain, 

such as to novel tasks or contexts. Another common critique of algorithmic approaches in particular, is 

that these computations may not necessarily accurately reflect how cognitive processes are implemented 

on the biological level. For example, while a model may provide a sufficient hypothesis of cognitive 

control function and account for the key behavioral variance in a task, it is possible that the brain-

behavior relationship may arise from a completely different computational or neural process altogether 

in the brain. Thus, an important step in this approach is model evaluation, i.e., deciding whether a model 

has utility. In other words, what makes a model useful for advancing cognitive research? Here we 

describe two complementary metrics for determining the utility of computational models – specifically, 

examining whether they are descriptive or predictive.  

 A computational model is descriptive if it provides a detailed explanation that accounts for 

significant variability of observed data (i.e., how well the model fits the data). Since models provide 

hypotheses about the data generating process, a descriptive computational model should provide insight 

into the mechanisms that give rise to the observed behavioral or neural responses in a given task. For 

example, an indisputable strength of Alexander and Brown’s (2011, 2014) PRO model is its ability to 

account for a diverse range of empirical results, related to evaluation of demands for cognitive control, 

that span across both human and primate studies. Since the PRO model successfully models diverse 

neural and behavioral data from multiple cognitive control studies, it consequently provides compelling 

evidence for the hypothesis that predictive neural computation relating actions to outcomes implemented 

in the ACC and associated medial frontal regions may be a useful signal linked to the engagement of 

cognitive control. However, although the PRO model formalizes one potential algorithmic explanation 

for the generative process underlying extant data, it may neither reflect the actual neural computations 

that occur in the brain, nor necessarily accurately predict data outcomes in future studies. Thus, a 

limitation of this evaluation metric is that while a model with high explanatory power may explain prior 

data, the proposed mechanism may not be able to explain new data.  

 Conversely, a computational model is predictive if it describes a generative process that accurately 

forecasts and extrapolates to novel tasks or contexts. A predictive model contains a specific hypothesis 

about the neural computations that generate relevant data from one task or context and incorporates 

theory to reliably estimate behavioral and neural outcomes in a novel task/context. Collins and Frank’s 
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(2013) convergent C-TS and neural network models provide excellent examples of predictive modeling, 

as both models make accurate predictions of behavioral outcomes in novel tasks/contexts. Critically, a 

theoretical assumption guiding development of these models is that humans spontaneously build task-set 

structure in learning problems. This structure learning assumption was tested in empirical studies, 

validating that the model could generalize to task contexts not previously learned. To summarize the key 

distinction put forth here, both ‘descriptive’ and ‘predictive’ computational models provide process 

mechanisms for how data are generated, but the former describes how well the model may fit extant 

data, whereas the latter describes how well the model generalizes to unseen data.  

 More broadly and generally, a computational model can serve a very useful function if it is explicitly 

specified to the degree that it can provide a focal point to drive and rejuvenate new research efforts. For 

example, while there is much controversy over ACC function, computational models have helped to 

elucidate potentially relevant cognitive mechanisms by providing specific testable hypotheses for 

empirical study (Botvinick and Cohen 2014; Vassena, Holroyd, and Alexander 2017). Moreover, 

although models may not always be accurate, they can highlight limitations of existing theory (e.g. what 

can and cannot be predicted by the model) and provide insight into how the theory should be revised in 

future iterations. The computational models described in this chapter are theory-driven approaches that 

attempt to describe how the brain implements cognitive control in an explicit way, in contrast to more 

vague descriptions by conceptual or verbal models. Thus, by attempting to spell out the exact 

mechanism for how cognitive control systems can be realized, the models described here provide 

explicit answers to the mysterious ‘homunculus’ problem of cognitive control. Furthermore, our hope is 

that such models will eventually be directly useful for elucidating how and why abnormal psychological 

and neurological processes arise in mental illness.  

 

4.3.2 Cognitive Control Impairments in Schizophrenia 
	
  

 As an example of the point made above, we conclude this chapter with an example in which 

computational models of cognitive control have already been directly applied to a psychiatric disorder: 

specifically, to investigate the etiology of cognitive impairments in schizophrenia. A large literature on 

cognitive function in schizophrenia has reliably established that patients with this illness demonstrate 

impairments in attention, working memory, episodic memory, and executive functions (Snitz, 
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MacDonald, and Carter 2006). More specifically, an influential hypothesis is that schizophrenia is 

characterized by disrupted cognitive control, specifically a disturbance in the ability to internally 

represent and maintain contextual or task goal information in the service of exerting control over one’s 

actions or thoughts (Cohen and Servan-Schreiber 1992; Barch and Ceaser 2012; Lesh et al. 2011; Barch, 

Culbreth, and Sheffield 2018). A key feature of the account is that such disruptions in cognitive control 

and context representation are directly linked to dysfunction of the DA neuromodulation in PFC, which 

has long been suggested to be a primary mechanism of pathophysiology in schizophrenia (Meltzer and 

Stahl 1976; S. H. Snyder 1976; Seeman 1987; Toda and Abi-Dargham 2007; Rolls et al. 2008). In 

particular, a common view is that at least some of cognitive impairments observed in schizophrenia 

putatively are related to reduced dysfunctional DA signaling in striatum and PFC, as well as increased 

‘noise’ potentially resulting from increased tonic DA activity or aberrant phasic DA activity (Braver, 

Barch, and Cohen 1999; Rolls and Grabenhorst 2008; Maia and Frank 2017). 

 As a direct test for this hypothesis of dysregulated cognitive control and its relationship to DA and 

PFC, Braver and colleagues modified an extant computational model of prefrontal cortex function and 

context processing. Specifically, the goal was to make explicit predictions about behavioral and brain 

activity patterns that would be observed in schizophrenia patients performing the AX-CPT, an 

experimental paradigm designed to distill key aspects of cognitive control and context / goal 

maintenance (Braver and Cohen 1999; Braver, Barch, and Cohen 1999; Braver, Cohen, and Barch 

2002). A key feature of this connectionist model, similar to the PBWM model discussed earlier by Frank 

and colleagues, is that contextual / goal representations are actively maintained in dorsolateral PFC, via 

mechanisms of recurrent connectivity and lateral inhibition. Most importantly, in this model, DA serves 

a joint neuromodulatory function within PFC, both gating representations into active maintenance (via 

phasic signals) and also regulating the persistence of maintenance (via tonic signals) (Braver, Barch, and 

Cohen 1999; Cohen, Braver, and Brown 2002). Model simulations with this DA neuromodulatory 

mechanism in PFC bolstered this hypothesis, providing evidence that context-dependent task 

performance, a key deficit in schizophrenia, is impaired with a noisy DA system (for more specific 

details, see Braver, Barch, and Cohen 1999). In particular, the model predicted very particular patterns 

of behavioral deficit in the AX-CPT task in participants with schizophrenia, as well as disruptions in the 

temporal dynamics of dorsolateral PFC activity, which were later confirmed experimentally (Barch et al. 

2001; Braver, Cohen, and Barch 2002).  Nevertheless, it has been difficult to demonstrate direct 

evidence that such deficits are specifically linked to DA neuromodulatory mechanisms, though recent 
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advances in fMRI techniques have allowed researchers to more precisely measure dopaminergic phasic 

signals within the brainstem (D’Ardenne et al. 2012). 

 Evidence for a related account of contextual / goal representation deficits in schizophrenia was 

shown by Chambon et al. (2008). Here, the goal was to test Koechlin’s (2003) cascade model of 

hierarchical cognitive control in PFC to see whether it could account for particular patterns of behavioral 

impairment in individuals with schizophrenia. Interestingly, they observed that sensory and episodic 

dimensions of cognitive control were preserved in schizophrenic patients, whereas contextual control 

was impaired compared to matched healthy controls. In the study, patients generated significantly 

greater errors in tasks that required the ability to maintain context representations, and these 

impairments were highly correlated with disorganization score (e.g., a measure of disordered thought 

and behavior). Thus, the evidence is so far consistent with the hypothesis that in schizophrenia the 

ability to represent and actively maintain contextual or task goal information is disrupted. In future 

investigations it will be important to more directly test the claims of the cascade model that these 

deficits map appropriately along the rostro-caudal axis of PFC among individuals with schizophrenia.  

 

4.4. Chapter Summary 

	
  

This chapter highlighted several computational models that have played a seminal role in guiding 

theoretical accounts of cognitive control. Critically, we have selected these models because they provide 

promising testable hypotheses that have already stimulated a great deal of current experimental research, 

and which are likely to guide future investigations seeking to further elucidate the core 

neurocomputational mechanisms that underlie cognitive control. Furthermore, we hope that these 

models can be a useful primer for understanding computational approaches to cognitive processes more 

broadly, and how these processes may be disrupted in mental illness. Although computational modeling 

approaches have played a central role in understanding normative cognitive function (e.g., memory, 

attention), many of these models have not yet been explicitly tested in psychiatric populations. Thus, we 

argue that developing accurate mechanistic models of normative cognitive functions can, in principle 

and in practice, facilitate greater insight into the etiology of psychopathology.  
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4.5 Further Study 

Rumelhart et al (1987) and O’Reilly & Munakata (2000) are seminal textbooks, which both provide an 

in-depth introduction into connectionist computational models. The second book incorporates more 

biologically realistic algorithms and architectures, and explicitly accounts for extant cognitive 

neuroscience data.  

For a review of the main scientific questions of cognitive control, and computational approaches that 

have been proposed to address these questions, see also O’Reilly et al (2010) and Botvinick & Cohen 

(2014). An example of how different modeling levels can be utilized to provide converging evidence for 

cognitive control mechanisms can be found in Collins & Frank (2013). An example of how a 

computational model of cognitive control can be applied to make predictions about psychiatric disorder, 

specifically schizophrenia is offered by Braver et al (1999).  
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Chapter 5: The Value of Almost Everything: Models of the Positive and 
Negative Valence Systems and their relevance to Psychiatry  
 

Peter Dayan 

Max Planck Institute for Biological Cybernetics, Tübingen, Germany.  

 

5.1 Introduction 

Humans and other animals are sufficiently competent at making choices capable of increasing their 

long-run expected rewards and decreasing their long run expected punishments that they can survive in a 

complex, threat-prone, and changing environment. Bodies of formal theory in economics, statistics, 

operations research, computer science and control engineering provide a foundation for understanding 

how systems of any sort can learn to perform well under such circumstances. 

As is richly apparent in the present book, this understanding has been progressively rendered into the 

modern discipline of reinforcement learning (RL; Sutton and Barto, 1998), which provides close links to 

the ethology, psychology and neuroscience of adaptive behaviour. Further, it is perhaps the central 

leitmotif of computational psychiatry (CP) that dysfunctional behavior can be understood in terms of 

flaws, inefficiencies or miscalibration of RL mechanisms (Huys et al. 2015b, 2016; Maia and Frank 

2011; Montague et al. 2012). 

In this chapter, we consider one substantial aspect of these treatments, namely the notion of value – in 

both its definition and use. Conventionally, in RL, immediate utilities quantify the rewards or 

punishments (such as a pellet of food) provided upon doing a particular action (such as pressing a lever) 

when the world is in a given state (for instance, if a particular light is shining). These are weighted and 

summed or averaged over the long run to give rise to values. Since the long-run rewards depend on the 

long-run policy (i.e., the systematic choice of actions at states), various different sorts of values are often 

considered depending on aspects of these policies.  

We here ask about the source and nature of actual and imaginary utilities, the calculations leading to 

value, and the influences of utilities and values on action. 

In particular, we discuss topics phrased at Marr’s computational level (as defined in Section 1.2) and 
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relevant to CP that arise over both the shorter- and longer-term. Shorter-term issues include risk-

sensitivity (when utilities may be combined in a sub- or super-additive manner), and, in social contexts, 

other-regarding preferences (Fehr and Schmidt 1999), which arise when the utility that one agent derives 

depends on the returns that other agents achieve. 

In the longer-term, it turns out to be possible to formalize the drive for exploration as a form of 

optimism in the face of uncertainty. This amounts to a fictitious or virtual reinforcement (Gittins 1979) 

(sometimes known as an exploration bonus) for actions about which there remains ignorance. 

Separately, we can quantify the opportunity cost of passage of time as arising from rewards that are 

foregone (Niv et al. 2007). 

Finally, we also note the algorithmic problems posed by calculations of long-run expected value. These 

are addressed by the use of multiple mechanisms, each of which works well in a different regime of the 

amount of learning, and the time available for making a choice (Daw et al. 2005; Dolan and Dayan 

2013; Doya 1999; Keramati et al. 2011; Pezzulo et al. 2013). 

These ideas provide the lens through which we then view psychological and neural aspects of utility and 

value. We discuss three substantive ways in which this is not transparent. The first concerns the very 

definition of utility and its ties to emotion and affect (Bach and Dayan 2017; Buck 2014; Lindquist and 

Barrett 2012; Russell and Barrett 1999). The second is to consider asymmetries in the representation and 

effect of positive and negative values, along with associated notions of opponency (Boureau and Dayan 

2010; Daw et al. 2002; Dayan and Huys 2009; Deakin and Graeff, 1991). Third, we view various 

apparent flaws in the way that we make choices in terms of heuristics that are tied to values (i.e., 

Pavlovian programming; Breland and Breland 1961; Dayan et al. 2006). Finally, we suggest some 

outline links to psychiatric dysfunction. 

It is regrettably impossible to provide a complete account of such a rich and complex topic as value in a 

short and didactic chapter. The references should be consulted for a fuller picture. 

5.2. Utility and Value in Decision Theory 

5.2.1 Utility 

 

As we have seen in Section 2.3, one of the core concepts in RL is the positive or negative immediate 

scalar utility, ut associated with states or states and actions. This quantity describes that the experience 
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of the state or result of the action can be more or less profitable for the agent. For instance, an agent 

moving in a maze might be penalized (ut < 0) for the cost of every move; and also suffer particular costs 

for being at a location in the maze that is very muddy or wet. Utilities are typically treated as being part 

of the description of the problem (or perhaps the environment) – they are an input to the algorithms that 

we will consider.11 

Although utilities are basic, they are not necessarily simple. Two complexities that are important from 

the perspective of CP are their dependence on the state of the self or of others.  

In terms of the self: utilities depend critically on one’s current circumstances; failing to take this into 

account can readily lead to apparently dysfunctional decision-making. For instance, it seems obvious 

that food should have greater immediate utility when food-deprived; disruptions in this could have an 

obvious association with eating disorders. Similarly, there is some evidence that the marginal utility of 

leisure time also decreases as total leisure time increases (Niyogi et al. 2014a); breakdown in this can 

lead to over- or under-activity. Unfortunately, the relevant calculations for all these are not necessarily 

straightforward – and, as we will see, this problem is exacerbated for the case of distal rewards. The 

latter is particularly important for quantities such as money, whose immediate utility is questionable. 

Again, decreasing marginal utility with increasing wealth has been suggested as underpinning 

phenomena such as risk aversion, i.e. the reluctance to accept risky monetary prospects even when they 

involve an expected gain (but see Rabin and Thaler 2001 for a discussion about the plausibility of this 

explanation). 

Utilities can also depend on other, more psychological, issues such as counterfactual (i.e. imaginary or 

potential) reinforcement (Breiter et al. 2001; Camille et al. 2004; Lohrenz et al. 2007). These can 

generate emotions such as regret (Bell 1982; Loomes and Sugden, 1982). 

In terms of the other: most conventional applications of RL pit a single subject against the vicissitudes 

of an uncaring stochastic environment. However, it is often the case that psychiatric contexts involve the 

cooperation and competition of multiple intentional agents. Characterizing this requires taking 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11	
  There is a prominent exception in much of classical economics to the central role played by utility. There, preference 
between actions is considered to be primary (e.g., that the agent prefers reward A to reward B, without any necessary 
associated utility). Nevertheless under certain regularity conditions, such as transitivity (such that if the agent prefers going 
left to right, and right to up, then it will also prefer going left to up), it is known to be possible to derive a possibly non-
unique set of scalar utilities that are consistent with the preferences (Houthakker 1950; Samuelson 1938, 1948). Of course, 
human (and animal) choices rarely satisfy these conditions, even stochastically, leaving the link to be the subject of rich 
study. The primacy of preference also arises in policy-based RL algorithms such as policy gradient (Baxter and Bartlett 
2001).	
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considerations from Game theory, i.e. mathematical models of strategic interaction between rational 

decision-makers, into account (Camerer 2003). Such contexts typically imply a second dimension of 

complexity to immediate utilities – namely components that depend on the relative outcomes of the 

various players. For instance, consider two players (A and B) sharing a fixed amount of money. The 

utility that player A derives from a split might be decreased if she wins too much more than player B (a 

form of guilt) or not enough more than player B (a form of envy) (Fehr and Schmidt 1999). Such other-

regarding utilities can then underpin strategies that seem beneficent or malign to other players (who then 

may engage in recursive modeling of each other’s utility function in order to optimize their own utilities; 

Camerer et al. 2004; Costa-Gomes et al. 2001). 

 

5.2.2 Value 
	
  

With immediate utility as a basic concept in RL, the essential computational step for all decision-making 

algorithms is to compute either the value of a state (V(st)), or that of a state-action pair (Q(st; at)) under 

either a given policy or the optimal policy. These values are defined as long run summed or averaged 

utilities expected to accumulate over whole trajectories of interaction between a subject and the 

environment (potentially including other subjects). The expectations are taken over states and actions 

(i.e., over the transitions that govern state occupancy) and outcomes or utilities, if these are stochastic. 

There are different ways of quantifying the present value of multiple future utilities – the two most 

common are to use a form of exponential or hyperbolic temporal discounting (Ainslie 1992, 2001; Kable 

and Glimcher 2010; Myerson and Green 1995; Samuelson 1937; Figure 9.2 this volume), or to consider 

the long run average rate of the delivery of utility (Kacelnik 1997; Mahadevan 1996; Stephens and 

Krebs 1986). Oddities of the calibration of this discounting are an obvious route to impulsivity in 

conditions such as attention deficit hyperactivity disorder, for instance (Williams and Dayan 2005). The 

more general observation that hyperbolic discounting leads to temporally inconsistent preferences has 

been of great importance in understanding a variety of behavioural anomalies (Ainslie 1992, 2001). 

Temporal discounting also animates a different aspect of choice – namely when, or perhaps how 

vigorously, to perform a selected action. In some cases, the environment itself mandates an appropriate 

speed (when, for instance, it is necessary to perform a deed by a certain time to avoid a punishment; 

Dayan 2012). In other cases, the passage of time is penalized because the next, and indeed all 
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subsequent, contributions to the long-run utility are postponed when acting slowly. In other words, 

waiting to act will result in not receiving potential, or indeed certain, future rewards sooner. This leads 

to a form of opportunity cost (Niv et al. 2007). If it is also expensive to be quick – for instance, because 

of the energetic cost of a fast movement (Shadmehr et al. 2010), then the optimal choice of speed of 

action arises as a balance between these two costs (Niv et al. 2007; Niyogi et al. 2014b). 

One prominent symptom of neurological (Parkinson’s; Mazzoni et al. 2007) and psychiatric (depression; 

Huys et al. 2015a) diseases is a sloth or reluctance to act; for depression, this could arise because the 

opportunity cost of time is incorrectly perceived to be low (for one of a variety of psychological and 

neural reasons). 

Estimating long-run values is a substantial challenge as trajectories become extended. As explained in 

Section 2.2, two classes of method have considerable currency in RL. Model-based (MB) calculations 

start from a characterization or cognitive map (Tolman 1948) of the environment and calculate forward 

to estimate the value. These calculations could involve building and exploring a tree, as in Monte Carlo 

tree search (MCTS; Kocsis and Szepesvári 2006). Alternatively, they could involve something closer to 

the methods of dynamic programming such as value or policy iteration (Bellman 1952; Puterman 2005). 

MB methods turn out to be statistically efficient, since cognitive maps are straightforward to learn, but 

computationally challenging, since long-run estimates are necessary and require long-run or recursive 

calculations. 

One of the most important aspects of MB methods is that they allow the calculation of scalar utilities by 

combining predictions about what outcomes are imminent with information about the current 

motivational state (Dickinson 1985; Dickinson and Balleine 2002). The resulting sensitivity to occurrent 

changes in motivation (for instance refusing to do work to attain an outcome, such as water, that is not 

currently valuable, such as when not thirsty) is an important form of flexibility. 

Note, though, that making present choices that are sensitive to the motivational state that will pertain in 

the future, i.e., anticipating how we will feel when the outcome will actually arrive – is apparently hard 

for us (Loewenstein 2000, though not necessarily for all organisms; Raby et al. 2007). 

The second class of methods is model-free (MF). These involve caching the results of observed (or 

imagined; Sutton, 1990) transitions, typically by the bootstrapping method of enforcing sequential 

consistency in successive value estimates along trajectories (Samuel 1959; Sutton 1988; Watkins 1989). 

Q-learning MF methods (Watkins 1989) choose actions based on these values: Q(st; at) reports the 
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benefit of performing action at. By contrast, actor-critic methods (Barto et al. 1983) exploit learned 

values V(st) to criticize, and thereby occasion improvement to, a policy, which is the systematic 

specification of what to do at each state. The dependence on value in actor-critic methods is thus subtly 

different. Indeed, one should remember that, as in classical economics, it is the policy that ultimately 

matters; the values are a means to the end of defining an appropriate policy. Multiple different values 

might even be consistent with a given policy.  

MF methods have the opposite characteristics to MB – they are statistically inefficient, since enforcing 

consistency allows inaccuracies to persist for long periods. On the other hand, they are computationally 

efficient (since one only need retrieve the value from the cache). However, this efficiency depends on 

their foundation on scalar utilities. This means that any sensitivity to motivational state has to be 

explicitly learned based on experiencing the utility of an outcome in that state (perhaps as a consequence 

of a relevant action), rather than being inferred, as for MB values. There is evidence for an excess 

influence of model-free decision-making in diseases involving inflexible compulsions (Gillan et al. 

2016; Voon et al. 2015). 

Various rationales have been suggested to govern arbitration between MB and MF values (see e.g. 

Figure 2.4 in this volume) – for instance according to their relative certainties (which vary with the 

degree of learning and computational inefficiencies; Daw et al., 2005), or the opportunity cost of the 

time that it takes to perform model-based calculations (Keramati et al. 2011; Pezzulo et al. 2013). There 

are also possible ways in which the MB and MF systems could interact – for instance MB generation of 

imagined or simulated samples could train MF values or policies (Sutton,1990; Mattar & Daw 2018), 

MF values could be incorporated into calculations primarily involving MB reasoning (Keramati et al. 

2016; Pezzulo et al. 2013), and MB methods could influence the way that MF systems assign credit for 

long-run rewards to actions or states (Moran et al. 2019). 

One particular facet of optimization over trajectories is the influence of ignorance or uncertainty about 

the environment (or about one’s compatriots). This ignorance increases if the environment undergoes 

change; however, it decreases with observations. Since taking optimal advantage of environments 

requires knowing enough about them, there is a form of trade-off between exploration and exploitation. 

Exploration is necessary to be able to be able to exploit; however, if every choice counts, then the 

possibility that the exploratory choice is bad instead of good (a possibility that must exist for exploration 

to be worthwhile in the first place), implies that there is a conflict between the two. One approach to the 
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exploration/exploitation tradeoff that has both formal and informal underpinnings (Dayan 2013; Gittins 

1979; Ng et al. 1999; Sutton 1990; Szita and Lörincz 2008) is the exploration bonus. This is an 

internally awarded addition to the current expected utilities associated with only partly known actions 

and states. It is justified on the grounds that if, when explored, actions appear to be good, then they can 

be employed repeatedly in the future.  

Exploration is particularly complicated in game-theoretic interactions with other intentional agents. An 

important formalism suggested by Harsanyi (1967) involves thinking of agents as having types, which 

determine their utility functions. One example would be their degree of guilt or envy (Fehr and Schmidt 

1999). Agents know their own type; but can only engage in (Bayesian) inference about the unknown 

type of their partner. The fact that the players can model each other, and indeed model the other player’s 

model of them, etc., leads to a structure known as a cognitive hierarchy (Camerer et al. 2004; Nagel 

1995). In combination with the uncertainty about their partner’s type, this can be represented as what is 

called an interactive Partially Observable Markov Decision Process (I-POMDP; Gmytrasiewicz and 

Doshi, 2005). This framework generalizes POMDPs to the presence of other, incompletely known, 

intentional agents. In I-POMDPs, it is necessary to worry that the probing, exploratory, actions that one 

does to gain information about a partially known environment risk convincing other players that one’s 

own utility function is different from its actual form (e.g., that one is more envious and less guilty than is 

true). One’s inferences about the types of other players based on their actions, have similarly to be 

tempered (Hula et al. 2015). 

Other, arguably more heuristic, additions to utilities associated with curiosity and intrinsic motivation 

are also popular (Oudeyer et al. 2007; Schmidhuber 2010; Singh et al. 2004). These offer rewards for 

such things as reducing uncertainty or improving one’s model of the environment. 

However, some forms of ignorance and uncertainty appear to generate negative rather than positive 

value or utility. This is true in the case of ambiguity (or second-order probability) aversion (Ellsberg 

1961; Fox and Tversky 1995), when subjects apparently unreasonably devalue gambles whose outcomes 

are imperfectly known. It is also seen in the fact that subjects are willing to incur costs to resolve 

uncertainty early (Bromberg-Martin and Hikosaka 2009; Dinsmoor 1983; Gottlieb and Balan 2010; 

Kreps and Porteus 1978) – think of how much it would be worth knowing your exam results early, even 

if you can’t change them, and so not experience extended dread (Loewenstein 1987). 
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5.3. Utility and Value in Behaviour and the Brain 

In the previous section, we discussed the abstractions of utility and valence that underpin the formal 

theory of optimizing control. We also saw some of the relevant complexities of both constructs in 

circumstances relevant to CP. In this section, we consider further aspects of their realization in 

psychological and neuroscience terms. 

5.3.1 Utility 

Our first concern is the provenance of utility – i.e., what determines the degree to which a given 

outcome or circumstance is rewarding or punishing. This is less straightforward than it may seem, for at 

least three reasons. First, evolution operates on the macroscopic timescale of reproductive success rather 

than the microscopic one of, for instance, slaking one’s thirst or sating one’s hunger. Our ability to 

procreate will ultimately depend on our survival and ability to maintain internal states, such as body 

temperature and blood sugar levels, within narrowly defined ranges, despite being subject to constantly 

changing external forces. Thus, there are attempts to define utility in terms of change in state relative to 

a point of homeostatic grace (Keramati and Gutkin 2014). Homeostasis involves maintaining a constant 

internal environment (e.g., suitable hydration) in the face of external challenges. Deviations from such a 

set point can be dangerous; so reducing such deviations is rewarding. This therefore provides a 

conventional reward for drinking whilst thirst, for instance. Nevertheless, the difference in timescale 

mentioned above suggests that these many apparently obvious components of utility are secondary to a 

primary aim, rather in the way that money, which clearly affords no direct benefit of its own, has 

become a central secondary target for modern humans. 

One consequence of this is that it becomes compelling to see utility as a pawn in a (micro-economic) 

game between competing or cooperating systems, and so detached from hedonic notions such as liking 

(Berridge and Robinson 2003). That is, if the architecture of control is such that behaviour becomes 

optimized in order to increase notional utility, then these utility functions become surrogate means for 

how systems attempt to achieve ends. In other words, one system can seize control over behavioural 

output indirectly, by manipulating utility, rather than directly, by determining motor output. One 

possible illustration of the sort of behavioural anomalies that can result is anhedonia in chronic mild 

stress (CMS; Willner 2017). Anhedonia is generally defined as the inability to feel pleasure in normally 

pleasurable activities (and is one of the core symptoms of certain types of depression). CMS is a 
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protocol typically for rodents that involves multiple different and unpredictable irritations such as 

changing or wetting their bedding, tilting their home cages, exposing them to white noise, reversing the 

light/dark cycle, etc. Rodents subject to this regime exhibit reduced preference for sweetened, over 

neutral, fluids. From a conventional utility perspective, this might seem puzzling, since although CMS 

might reasonably lead the animals to conclude that the environment contains threats and even lacks 

opportunities, it seems implausible that sugar should be less immediately valuable. However, if one sees 

the utility associated with the sweetness as motivating vigorous behaviour (as it might for a control 

animal), then decreasing it might be appropriate in CMS, as it will prevent the animals embarking on 

potentially dangerous quests in a poor-quality environment. One could imagine that anhedonia in 

depression might arise in a similar manner (Huys et al. 2015a, 2013). 

A second, and related, complexity attached to the provenance of utility is the way it might arise as part 

of a mechanism of arbitration between separate emotional systems (Bach and Dayan, 2017). By treating 

utility as a primitive, we have tacitly adopted a dimensional or, with some caveats, constructionist view 

of emotions (Lindquist and Barrett 2012; Russell and Barrett 1999). These view subjectively 

experienced emotions as constructed representations of more-basic psychological components such as 

valence (positive or negative affectivity – the component of particular relevance to utility) and arousal 

(how calming or exciting the information is). However, there are also many adherents of an alternative 

view, according to which there are multiple separate emotional systems that are individually optimized 

to respond to particular challenges or opportunities in the environment (Buck, 2014). Given that more 

than one such system might be active simultaneously, as for instance in conflicts between approach and 

avoidance, for instance, the brain has to have some form of arbitration. What Bach and Dayan (2017) 

discussed as virtual or “as-if” utilities can arise as an intrinsic part of the mechanism of arbitration - as 

studied in design economics (Roth, 2002). This is another utilitarian notion of utility, detached from any 

strong bond to ‘liking’ (Berridge and Robinson, 2003). 

One might have hoped for a neural resolution to the nature of primary utility. For instance, dopamine 

neurons are deeply involvement in reinforcement learning (as we discuss below; Montague et al. 1996; 

Schultz et al. 1997). Amongst other things, their activity reports a signal that includes information about 

at least positive utility. Thus, one might hope that an analysis of the activity of their inputs might 

provide unambiguous information about these utilities. Further, a common assumption had been that at 

least the positive aspects of utility could be associated with nuclei in the lateral hypothalamus (LH), 

which are known to be involved in functions such as reward seeking in the context of food (see, e.g., 
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Berridge, 1996; Kelley et al., 2005). There is also some direct electrophysiological evidence for reward-

sensitivity in neurons in this structure (Nakamura and Ono, 1986). Unfortunately, investigations of the 

activity of those LH neurons that specifically project to dopamine neurons significantly complicate this 

view (Tian et al., 2016). 

A third, psychological, complexity associated with utility is the influence of counterfactual outcomes. 

Counterfactual reasoning captures the process in which humans think about potential or imaginary 

events and consequences that are alternatives to what actually occurred. Regret is the emotion 

experienced upon discovering that an option not chosen would have been more valuable than the one 

that was (rejoicing being the positive alternative). This has an important impact in economic choice 

(Bell 1982; Loomes and Sugden, 1982), including as part of algorithms for game-theoretic performance 

(Camerer and Ho, 1999), and has also been frequently examined in psychological and neuroimaging 

studies (e.g., Coricelli et al. 2007; Kishida et al. 2016; Lohrenz et al. 2007). The prospect of future regret 

plays an important role in certain choice environments, i.e., there can be a substantial contribution to the 

present value of an option from the future disappointment to which it might lead. 

 

5.3.2 Value 

 

We have argued that it is mostly values – of both states and actions at states – that determine behaviour. 

Indeed, ‘true’ utility is only assessable after the fact – in some cases long after. One famous example of 

this involves a comparison between nutritive and non-nutritive sweeteners such as glucose and 

saccharine respectively. An initial preference can develop for both; but then reverse for the latter, 

presumably as subjects discover that they are nugatory (e.g., Warwick and Weingarten, 1994, see also 

the discussion in McCutcheon 2015). This implies that any immediate report on instant palatability (i.e., 

the sweet taste) might be best thought of as a prediction that something of actual biological relevance 

(sugar) has been delivered. More generally, it is the structure of predictions of future outcomes, and their 

net worth, that determines many aspects of behaviour. 

 

5.3.3 Evaluation 
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There is by now a huge wealth of information about the construction and competition of MB and MF 

predictions, at least in the appetitive case (Adams and Dickinson 1981; Balleine, 2005; Daw et al. 2005; 

Daw and Dayan 2014; Daw et al. 2011; Dayan and Berridge 2014; Dickinson, 1985; Dickinson and 

Balleine 2002; Dolan and Dayan 2013; Doya 1999; Hikosaka et al. 1999; Killcross and Coutureau 2003; 

Lee et al. 2014; Montague et al. 1996; Schultz et al. 1997). As noted above, model-free predictions 

typically arise by measuring the inconsistency between successive estimates of long-run value in the 

form of a temporal difference prediction error (Sutton, 1988), and using this to update predictions. 

There is evidence that this prediction error is broadcast via the phasic activity of dopamine neurons 

(Cohen et al. 2012; Eshel et al. 2013; Montague et al. 1996; Schultz et al., 1997) to key target structures, 

notably the striatum (Hart et al., 2014; Kishida et al., 2016), the amygdala, and beyond. Much is known 

about sources of this prediction error (e.g., Matsumoto and Hikosaka, 2007; Tian et al. 2016), although 

the loci where state or state-action values, or even the actor portion of the actor-critic, are stored is less 

clear. One prominent idea is that successive ‘twists’ of a helically spiralling connection between the 

dorsolateral striatum and the dopamine system (Haber et al. 2000; Haruno and Kawato 2006; Joel and 

Weiner 2000) are implicated in forms of MF control (Balleine, 2005) that go from being related to state-

action values (Samejima et al. 2005) towards being simpler and actor-based (Li and Daw 2011). 

This arrangement has various implications. For instance, one of many routes to drug addiction involves 

substances seizing control of this prediction error, allowing them to masquerade as having substantial 

value (Redish et al. 2008; see also Chapter 9). This can then dramatically retune the behavioural 

direction of the subject towards increased acquisition and consumption of these substances. Subsequent 

neural changes, such as adaptation, can then cement the malign assessments, making them hard to 

change. 

MB values are constructed on the fly via a process of planning, for instance through a form of constraint 

satisfaction (Friedrich and Lengyel 2016; Solway and Botvinick 2012) or Monte-Carlo tree search 

(Kocsis and Szepesvári 2006). One account of the latter is episodic future thinking (Schacter et al. 

2012), i.e. using memory for specific happenings in one’s personal past to imagine the future, an 

operation that involves the hippocampus. Other structures implicated in MB evaluation include regions 

of the prefrontal cortex and the dorsomedial striatum (Balleine 2005); and there is evidence that parietal 

regions are involved in the construction and maintenance of the model (Gläscher et al. 2010). Evidence 

for MB decision-making can be found in devaluation paradigms (Dickinson and Balleine 2002). In such 
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experiments, the outcome values are changed suddenly. The change could be internal, e.g. through 

selective satiation of the animal, or external e.g. if the previously pleasurable reward is then poisoned. 

Immediate choice adaptation to this change (before any learning can occur) is evidence for MB (or goal-

directed) control, since the MF (habitual) system would require learning about reward experience before 

it can alter behavior accordingly).  

Other sorts of MB sensitivity have also been reported. For instance, aspects of the expected values 

associated with potential future food rewards appear to be reported in the vmPFC region of prefrontal 

cortex in human subjects (Hare et al. 2008). These representations are modulated by apparent top-down 

goals (potentially via connections with other regions of the PFC) such as healthy eating (Hare et al. 

2009, 2011). Something similar is apparently true for other forms of top-down modulation, as in 

charitable giving (Hare et al. 2010) or even remunerated sadism (Crockett et al. 2017). As with the 

observations above about the malleability of primary utilities, this shows how value may also be a pawn 

in battles over choice. 

When salient outcomes are modestly distant in time, their expectation appears also to have direct 

consequences for value, by generating what are known as anticipatory utilities (Loewenstein 1987). 

Appetitive prospects generate savouring, which grows as the time of acquisition nears (albeit also then 

lasting, and so accumulating, for a shorter period of time); aversive prospects generate dread. It has been 

argued (Iigaya et al. 2016) that such anticipation accounts for the value contributions associated with 

observing, generating the preference for the early resolution of uncertainty mentioned above (Bromberg-

Martin and Hikosaka 2009; Dinsmoor 1983). 

 

5.3.4 Aversive values and opponency 

 

We have so far mostly considered appetitive values. However, aversion, punishment and even the cost 

of effort are also critical – as is the integration between all these factors. One possibility is that utility 

and value are signaled by a single system whose neurons enjoy an elevated baseline firing rate, so that 

positive and negative values could be equally represented by above and below baseline activity 

respectively (or vice versa). There is some evidence for this (Hart et al. 2014); and indeed, the 

dopaminergic architecture of the striatum has been argued to be exquisitely tailored to this job, with 

direct and indirect pathways associated with choosing and suppressing actions and associated with 
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different dopamine receptors, and chiefly sensitive to increases and decreases in dopamine (Collins and 

Frank, 2014; Frank and Claus 2006; Frank et al. 2004). However, there is evidence for asymmetric 

signaling in dopamine activity (Niv et al. 2005), and also for heterogeneity, with particular dopamine 

neurons responding in aversive circumstances (Brischoux et al. 2009; de Jong et al 2019; Lammel et al. 

2014, 2012; Matsumoto and Hikosaka 2009; Mirenowicz and Schultz 1996, but see Fiorillo 2013). 

There are findings that dopamine concentrations barely reflect effort at all (Gan et al., 2010; Hollon et 

al., 2014) (along with known associations between this neuromodulator and vigour; Beierholm et al. 

2013; Hamid et al. 2016; Niv et al. 2007; Salamone et al. 2016). There are, instead, substantial, albeit 

controversial, suggestions for opponent representations of reward and punishment (Boureau and Dayan 

2010; Daw et al. 2002; Deakin and Graeff 1991; Deakin 1983), involving two, interacting, systems. It 

has been argued that these are consistent with what is known as a two-factor account of aversion 

(Johnson et al. 2002; Maia 2010; Moutoussis et al. 2008; Mowrer 1947), in which actions that cancel 

predictions of potential negative outcomes (for instance by leading to signals for safety; Fernando et al. 

2014) are themselves reinforced. To put it another way, a unitary mode of reinforcement of choices 

comes from outcomes being better than expected, rather than good (Dayan 2012; Lloyd and Dayan 

2016). 

We noted above that one could justify exploration in the face of ignorance by the benefit that would 

accrue if one thereby discovers facets of the environment that can be exploited (Dayan 2013). This 

requires a suitable degree of controllability, such that, for instance, actions have reliable consequences 

(Huys and Dayan 2009). Dual to this beneficial effect of uncertainty are aversive assessments which 

amount to forms of predictive anxiety: ignorance can be dangerous if bad outcomes are legion (which 

might perhaps underpin ambiguity aversion; Ellsberg 1961); similarly, change can be expensive, if hard-

won knowledge about how to exploit the environment effectively expires. One interpretation of the 

neuromodulator norepinephrine (NE) is that it reports on forms of unexpected uncertainty - induced by 

unpredictable change (Devauges and Sara 1990; Yu and Dayan 2005); there is indeed evidence of a 

close association between NE, stress and anxiety (Itoi and Sugimoto 2010). 

 

5.3.5 Instrumental and Pavlovian use of values 

 

Given some of the various ways that state and state-action values may be determined and learned, we 
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next consider their effect. It is here that the differences between Pavlovian and instrumental behavior 

become critical (Mackintosh, 1983). State-action values (such as Q(st; at)), which estimate the long-run 

future value that is expected to accrue starting from state st, choosing action at, and then following a 

conventional policy thereafter, are part of an instrumental control structure. These values are learned or 

inferred based on the contingency between actions and outcomes; thus, choice is similarly contingent. 

The same is true when values just of states V(st) are used to train a policy (i.e., in an actor-critic method; 

Barto et al., 1983), based on the changes in these values contingent on the actions. However, animals are 

also equipped with forms of preparatory Pavlovian control (Mackintosh 1983). In this, stimuli 

(signifying states) associated with appetitive or aversive values, i.e., predictions of (net) future gain or 

less respectively, elicit actions without regard to the actual contingent consequences of those actions. 

Appetitive predictions lead to active, vigorous engagement and approach. By contrast, aversive 

predictions lead to withdrawal, inhibition, suppression and freezing. Thus, for instance, pigeons will 

peck at lights that have been turned on just before food is delivered, even if this pecking has no 

contingent consequence at all. These behaviors are presumably evolutionarily appropriate and have the 

benefit of not needing to be learnt. However, the lack of contingency implies that the actions are elicited 

even if they paradoxically actually make less likely the outcomes that support the underlying predictions 

(Breland and Breland 1961; Dayan et al. 2006; Guitart-Masip et al. 2014). For instance, pecking can still 

be observed in omission schedules, i.e., when the pigeons do not actually receive food on any trial in 

which they peck at an illuminated light (Williams and Williams 1969), 

Pavlovian influences interact with instrumental behavior in at least two further ways. One is by 

modulating the vigour of ongoing instrumentally directed responses, in the form of what is known as 

Pavlovian to instrumental transfer (PIT; Cartoni et al. 2016; Estes 1943; Murschall and Hauber 2006; 

Rescorla and Solomon 1967). Pavlovian-instrumental transfer is defined as the phenomenon that occurs 

when a conditioned stimulus (CS) that has been associated with rewarding or aversive stimuli via 

Pavlovian/ classical conditioning alters motivational salience and operant behavior. PIT comes in two 

flavours: specific and general. Specific PIT happens when a CS associated with a reward enhances an 

instrumental response directed to the same reward. For example, a rat is trained to associate a sound 

(CS) with the delivery of a particular food. Later, the rat undergoes an instrumental training where it 

learns to press a lever to get that particular food (without the sound being present). Finally, the rat is 

presented again with the opportunity to press the lever, this time both in the presence and absence of the 

sound. The results show that the rat will press the lever more in the presence of the sound than without, 
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even if the sound has not been previously paired with lever pressing. The Pavlovian sound-food 

association learned in the first phase has somehow transferred to the instrumental situation, hence the 

name 'Pavlovian-instrumental transfer. Under general PIT, instead, the CS enhances a response directed 

to a different reward (e.g. water). The difference between these flavors is analogous to that between the 

MF and MB predictions that may underpin them. 

The anatomical basis of preparatory appetitive and aversive Pavlovian actions and PIT is not completely 

clear, although there is evidence for the involvement of various regions. One is the ventral striatum 

(Reynolds and Berridge 2001, 2002, 2008). Another is dopaminergic neuromodulation (Faure et al. 

2008; Murschall and Hauber 2006), which is important for active responses in appetitive and aversive 

domains, and serotonergic neuromodulation, which plays a particular part in aversive contexts (Faulkner 

and Deakin 2014), underlying its part role as the putative opponent to dopamine (Boureau and Dayan 

2010; Daw et al. 2002; Deakin and Graeff 1991; Deakin1983). Specific and general PIT depend on 

distinct circuits linking central and basal nuclei of the amygdala to the core and shell compartments of 

the ventral striatum respectively (Balleine 2005; Corbit and Balleine 2011; Corbit et al. 2016). 

A second interaction between Pavlovian and instrumental behaviour is more restricted. As we noted, one 

process underlying model-based evaluation of states or actions at states is thought to be building and 

traversing a tree of prospective future states – i.e., chains of episodic future thinking (Schacter et al. 

2012). In planning series of actions in this way, it is usually infeasible to consider all potential future 

sequences; instead, one must cut the expanding decision tree down to a computationally manageable 

size. There is evidence that Pavlovian predictions can be involved in this process of pruning, being 

reflexively evoked by large losses and persisting even when disadvantageous (Huys et al. 2012). This is 

an internal analogue of aversion-induced behavioral inhibition, i.e. the tendency to withdraw from 

unfamiliar situations, people, or environments in the face of expected aversive outcomes. For a more 

concrete example, imagine planning chess moves by considering future board positions. A variation in 

which a queen was lost might be pruned away in this manner, even if this variation would ultimately 

have led to an advantageous checkmate.   

Both instrumental and Pavlovian predictions can themselves be MB or MF. We already pointed to this 

in the instrumental case – apparent, for instance, in the wealth of devaluation paradigms (Adams and 

Dickinson 1981; Dickinson 1985; Dickinson and Balleine 2002). There has perhaps been less focus on 

this in Pavlovian circumstances, although we noted that evidence of both specific and general PIT can 
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be interpreted in this manner; and there are also some direct observations about preparatory Pavlovian 

actions along with modulation of instrumental ones (Dayan and Berridge 2014; Robinson and Berridge 

2013). Furthermore, the form of the preparatory Pavlovian response can be influenced by the nature of 

the outcome as well as that of the predictor (Davey et al. 1989). For, instance pigeons exhibit distinct 

food- and water-directed pecks; and apply them specifically to lit keys that predict food and water 

respectively (Jenkins and Moore 1973). There are also clear individual differences. For instance, during 

Pavlovian conditioning, individuals vary widely in their propensity to engage with CSs (called sign 

tracking) or the sites of eventual reward (goal tracking) in circumstances under which these differ. Sign- 

and goal-tracking subjects appear to rely more on MF and MB systems respectively (Robinson and 

Flagel 2009). 

Along with preparatory Pavlovian responses are consummatory ones that are typically elicited by the 

presence of the biologically significant outcomes that inspire consumption or defense (rather than by 

values). There is a particularly rich and complex set of defensive responses that are specific to the 

species concerned (Bolles 1970), and sensitive to subtle aspects of the relationship between the subject 

and the threat (McNaughton and Corr 2004). This is apparently controlled in rodents (Blanchard and 

Blanchard 1988; Keay and Bandler, 2001) and humans (Mobbs et al. 2007) via a structure called the 

periaqueductal gray. 

 

5.4. Discussion 

 

In this chapter, we have discussed issues of utility and value, which are the engines underlying choice. 

We saw some of the many complexities of the definition and determinants of utility, and then the 

computational issues that arise with either learning (in a model-free manner) or inferring online (in a 

model-based manner) the long-run predicted values of states or states along with actions. We noted 

additional factors such as information, risk, ambiguity and motivational state that can change or 

influence utility and value, along with the behavioral impact of values in terms of mandatory preparatory 

Pavlovian behaviors such as approach and withdrawal. We also noted that values should optimally 

influence the alacrity or vigor of action. 

We observed that many different neural systems are involved in the assessment and effects of both 
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appetitive and aversive utility and value. Evidence is unfortunately currently somewhat patchy as to how 

they all fit together, and indeed the many opportunities that each, and their combinations, afford for 

supporting benign and malign individual differences. Some foundational questions remain to be 

answered, such as whether there is opponency between systems associated with each valence. 

One theoretical approach to computational psychiatry (CP) starts from some of the different sources of 

dysfunctional decision-making: it can result from the brain trying to solve the wrong computational 

problem, solving the correct problem incorrectly, and solving the correct problem, correctly, but 

calibrated to an incorrect environment (Huys et al. 2015b). Although utility and value influence all of 

these in various ways, in terms of the current chapter, it is most straightforward to consider incorrect 

utilities (‘solving the wrong problem’) and inefficient or ineffective calculations (the correct problem 

‘solved incorrectly’). 

It seems obvious that utilities actually define optimal choices – however, we noted that utilities are not 

primary and impenetrable, but rather are contextually determined and what one might call meta-

adaptive. This affords attractive flexibility; but it is also a clear point of vulnerability: utilities might be 

influenced by early insult, or incorrect or outdated priors. For instance, following seemingly random 

aversive events, a person could develop a prior that the world is not very controllable, with actions 

having highly stochastic consequences. This would come with the implication that there is little point 

exerting effort trying to explore it, since the information gained would not be expected to be exploitable 

(Huys and Dayan 2009). As in our description of chronic mild stress, one way for the brain to inhibit 

exploration would be to dial down the subjective utility of outcomes. This would be pernicious, since 

failing to explore may entail failing to find out that the prior no longer pertains. We have argued that 

various such failings of the prior can lead to forms of depression (Huys et al. 2015a), but they can 

readily extend to addiction and beyond. 

Incorrect calculations, leading to incorrect acquisition or calculation of long run values, are another 

substantial source of problems. Some particular cases have been studied. One concerns the automaticity 

of the Pavlovian pruning of the internal search tree used to calculate expected future values; this has 

been considered a point of vulnerability (Huys et al. 2012). Another case concerns the under-weighting 

of MB over MF choice (Voon et al. 2015). This leads to behavior that is inflexible in the face of change 

and fails to reflect information that the subject can be shown to possess. On the surface, many 

psychiatric conditions share this characteristic; a deeper investigation using comparisons with factor 
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analytical summaries of answers to structured questionnaires showed that it is actually most closely 

associated with measures of compulsivity (Gillan et al., 2016). A second set of issues with calculation 

arises from Pavlovian influences over actions. For instance, we see people as being impulsive (Evenden, 

1999) when they are apparently chosen immediate, short term, positive outcomes. One of many possible 

sources of this is a form of Pavlovian misbehaviour (Dayan et al., 2006) – approach in the face of 

predictions of future positive valence irrespective of the contingent consequences. 

 

5.5 Chapter Summary 

In sum, although it might seem that nothing could be simpler than learning to favor actions that lead to 

positive outcomes, there are actually many richly complicating factors. These factors can achieve 

important ends – including tailoring behavior to long run goals; adapting those goals in the light of 

particular contexts; accommodating prior expectations over the brutishness and brevity afforded by 

evolutionary contexts by using hard-wiring and heuristics to avoid as much of the cost and danger of 

learning as possible. These factors leave an architecture of choice replete with readily exposable flaws 

and vulnerability to the sort of psychiatric disorder on which this book concentrates. 

 

5.6 Further Study 

 

Bach, D. R. and Dayan, P. (2017) offers a computational perspective on emotion that analyses its 

relationship with various aspects of appetitive and aversive utility. 

Berridge, K. C. and Robinson, T. E. (2003) is part of a long series of arguments that there is an 

important separation between ‘liking’ (the hedonic components of reward) and ‘wanting’ (the 

motivational and learning force associated with reward that influences choice). 

Hare, T. A., et al (2008) is an early paper using fMRI in humans to dissociate various different signals 

related to value. 

Keramati, M. and Gutkin, B. (2014) argues that movements of the internal state relative to homeostatic 

optimality generate internal rewards. 
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Chapter 6: Psychosis and Schizophrenia from a Computational 
Perspective 
 

Rick A Adams, University College London 

6.1 Introduction 

 

Schizophrenia is a psychiatric disorder that affects around 0.5% of the population worldwide. Whilst it 

is less common than anxiety and depression, it can have more devastating effects: from its onset usually 

around 18-30 years, it can transform a person from being a university student to someone chronically 

unwell and dependent on social support for the rest of his/her life. It also carries the same risk of suicide 

as major depression. It is a ‘psychotic’ disorder, meaning that its sufferers’ experience of reality departs 

from others’ experience of reality in important and characteristic ways. Its diagnostic symptoms form 

three broad clusters, known as ‘positive’, ‘negative’ and ‘disorganized’.  

Positive symptoms include delusions and hallucinations; in schizophrenia, the former are 

commonly beliefs about being persecuted or surveilled, or beliefs that people or events refer to you or 

communicate messages to you in some way, or beliefs that one is controlling or controlled by other 

people or events, although there can be numerous other themes. Hallucinations can occur in any 

modality but the commonest in psychosis are auditory and verbal, i.e. voices. Whilst voice-hearing is not 

uncommon in the general population, voices referring to the subject in the third (rather than second) 

person, e.g. commenting on them or discussing them, especially in unpleasant ways, are more 

characteristic of schizophrenia. Symptoms of ‘thought interference’ are a group of experiences part way 

between hallucinations (i.e. abnormal sensory experiences) and delusions: e.g. that others are inserting 

thoughts into or extracting them from one’s mind.  Such symptoms are often accompanied by a loss of 

‘insight’, i.e. a denial that these experiences might stem from an abnormal state of mind.  

Negative symptoms refer to losses of normal function, including poverty of speech, reduced 

emotional expression, and, above all, a loss of motivation. They are distinct from depression, in which 

affect is very negative (i.e. the person feels very low and cries very easily, etc), in that affect is 

apparently reduced or absent. Disorganized symptoms are also known as ‘thought disorder’ and refer to 

abnormal structure in a person’s speech or writing (as thoughts cannot be directly assessed). These may 
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be relatively mild, in the form of altered or new words (neologisms) or rather circumstantial answers to 

straightforward questions, or more substantial, e.g. sudden tangents or breaks in one’s train of thought, 

or statements that are connected by bizarre or irrelevant associations, or severe, in which it is difficult to 

discern any meaningful content from an utterance. 

     Alongside positive, negative and disorganized symptoms, perhaps the commonest symptom 

of schizophrenia is of a generalized cognitive impairment: a loss of IQ of around 10-20 points (Meier et 

al. 2014). This decrement in cognitive function is hard to detect in a clinical interview, and so it does not 

form part of the diagnostic criteria (which were designed to maximize inter-rater reliability), but it seems 

fundamental to schizophrenia itself and poses a major public health problem, as returning to meaningful 

employment is often the biggest challenge for those diagnosed with the condition. Worse still, whilst 

antipsychotic drugs are reasonably effective for positive and disorganized symptoms, neither the 

cognitive impairment nor the negative symptoms have any effective medical therapy at present 

(although psychological interventions for both have been devised).  

    It should be stressed that the unitary diagnosis of ‘schizophrenia’ is unlikely to stand the test 

of time, although it seems equally unlikely to be replaced in the near future. Psychiatry is gradually 

moving away from categorical diagnostic systems and towards more dimensional approaches, as it 

becomes clear that other psychotic disorders such as bipolar affective disorder and schizoaffective 

disorder share not just some symptoms but also some genetic risk variance (and presumably 

neurobiological mechanisms, and psychosocial risk factors) with schizophrenia itself (Cross-Disorder 

Group of the Psychiatric Genomics Consortium 2013). Population surveys have also revealed that many 

psychotic symptom dimensions (e.g. positive, negative, cognitive and mood symptoms) are also 

continuous with the general population (Linscott and van Os 2010).  

What part can Computational Psychiatry play in the future of schizophrenia research? It should 

make a major contribution to understanding how the different clusters of psychotic symptoms come 

about, by linking the biological, psychological and social risk factors for the disorder to the brain’s 

function as a model of its physical and social environment. Such understanding would benefit our 

categorization of, diagnosis of and design of therapies for psychotic disorders. 
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6.2 Past and Current Computational Approaches 

 

In describing the computational approaches to schizophrenia below, the negative, positive (and 

disorganized) and cognitive clusters will be considered in turn, as the models used to describe each are 

often quite different. 

6.2.1 Negative symptoms 
 

Negative symptoms can be grouped into two domains: those involving the loss of emotional expression 

(in affect and in speech) and those involving the loss of motivation for behavior; crucially, the latter 

predict functional outcome and quality of life. The fundamental question they pose can be stated as: 

“Why do these subjects not pursue policies that would result in outcomes that most people would find 

rewarding?”  

One can easily see the relevance of reinforcement learning (RL) models (described in Section 

2.3 and Chapter 5) to answering this question (much more detailed accounts of reinforcement learning 

in schizophrenia include (Strauss, Waltz, and Gold 2014; Deserno et al. 2013) – what follows is a précis 

of this highly recommended work).  

 There are numerous potential RL-based explanations of why those with negative symptoms might 

not act to obtain rewards: 

i) Because they underestimate the value of rewards. Interestingly, although ‘anhedonia’ (i.e. the 

loss of experience of pleasure) is listed as a negative symptom, subjects with schizophrenia 

actually show normal subjective and hedonic responses to rewards, so an explanation of 

negative symptoms is unlikely to be this straightforward (Strauss and Gold 2012).  

ii) Because they learn more from negative feedback than positive feedback. If striatal dopamine 

release is disordered in schizophrenia, then one might expect greater difficulty in encoding 

positive reward prediction errors (RPEs) – via increased phasic dopamine release – than 

negative RPEs, via pauses in dopamine neuron firing. The consequence of this would be an 

asymmetry in RL, in which relevant stimuli tend not to be associated with rewards but can 

still be associated with punishments or loss of reward, perhaps causing a loss of motivation 
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for most actions over time. Such an asymmetry has indeed been demonstrated in subjects 

with high negative symptoms (Gold et al. 2012). 

iii) Because they have difficulty building more accurate but complex models of the values of 

given actions. There are different ways of learning which action to take in a given situation: a 

simple way is using an actor-critic model to learn which actions are better- or worse-than-

average, or a more complex way is to use Q-learning to learn the expected values of specific 

action-stimulus pairs. The latter is computationally more costly but can differentiate between 

stimuli that are rewarding and those that merely avoid loss. Gold et al. (2012) showed that 

subjects with high negative symptoms learned optimal actions like the simpler actor-critic 

model – which may indicate pathology in orbitofrontal cortex, where representation of 

expected values is thought to occur – whereas controls and schizophrenic subjects without 

negative symptoms were fit best by a Q-learning model.     

iv) Because they have difficulty comparing the values of different stimuli or the costs and 

benefits of a given action. Subjects with schizophrenia describe inconsistent preferences 

when judging between two stimuli even outside a cognitively demanding learning-based task, 

implying that their representation of expected values and its use to make decisions is 

corrupted in the disorder (Strauss et al. 2011). Similarly, subjects with high negative 

symptoms are less likely to select high-cost high-reward actions (Gold et al. 2013), although 

whether this is due to problems in the valuation of reward or effort or the comparison of the 

two is unknown.  

 

Of note, model-based fMRI studies of subjects with schizophrenia have also shown blunted ventral 

striatal activations to reward anticipation and RPEs, which in some cases correlate with the degree of 

negative symptoms (e.g. Juckel et al. 2006; meta-analyzed by Radua et al. 2015).  

Motivational problems in schizophrenia show some similarities to anhedonia in major 

depression, in that in both disorders, basic reward experience and learning mechanisms seem largely 

preserved (e.g. hedonic responses to primary rewards and actor-critic reward learning), whereas 

inferences about – and hence affective responses to – more complex rewards are impaired.    
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6.2.2 Positive symptoms 
 

Given that delusions seem a priori to relate to abnormal learning, and the strong association between 

presynaptic striatal dopamine availability (measured using positron emission tomography, PET) and 

positive symptoms (Howes and Kapur 2009), one might be optimistic that delusions could also be 

explained in terms of aberrant RL mechanisms. The first attempt to link dopamine ‘hyperactivity’, 

behavioural neuroscience and positive symptoms, however, was based not on RL but on the related field 

of motivational salience. 

 In the aberrant salience hypothesis, Kapur (2003) drew on Berridge and Robinson (1998)’s 

observations that some striatal dopamine innervation is crucial not for learning the values of stimuli, but 

for motivating responses to stimuli whose values have already been learned, a property they termed 

‘incentive salience’. Kapur proposed that in early psychosis there is an increased release of dopamine, 

including at inappropriate times (i.e. to stimuli with no expected value). This would generate a state of 

‘aberrant [incentive] salience’ in the subject, in which various percepts, ideas or memories have great 

(but unwarranted) importance. As a consequence, delusions could arise as (rational) attempts by the 

subject to explain these bizarre experiences. Hallucinations could also be a direct consequence of 

percepts (e.g. inner speech) or memories being imbued with too much salience.  

 A Salience Attribution paradigm was devised to test Kapur’s theory, and correlations between 

aberrant salience measures (speeding of reaction times to and/or incorrect beliefs about non-rewarding 

stimulus dimensions) and positive symptoms have been found. However, the most consistent finding in 

subjects with schizophrenia (and those with delusions in particular) is that of reduced explicit aberrant 

salience (i.e. altered belief updating), although implicit aberrant salience (i.e. altered motivational 

signalling) has also been found (J. P. Roiser et al. 2009; Jonathan P. Roiser et al. 2013; Smieskova et al. 

2015; Abboud et al. 2016; Katthagen et al. 2018).  

From a computational perspective, modelling aberrant salience is not straightforward, because 

the term ‘salience’ is now used to describe many different things: not just motivation signals (or, in more 

computational terms, average reward rate) but also unsigned RPEs (some dopamine neurons respond 

equally to rewarding and aversive PEs) and also either surprising or informative (Barto, Mirolli, and 

Baldassarre 2013) sensory states (unrelated to reward, but to which some dopamine neurons also 

respond). Interestingly, more evidence is emerging that dopamine neurons respond to changes in beliefs 
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independent of any reward prediction error (Corlett et al. 2007; Schwartenbeck, FitzGerald, and Dolan 

2016; Nour et al. 2018), and indeed their role may be causal in this regard (Sharpe et al. 2017). 

 Maia and Frank (2016) produced a computationally simpler but still comprehensive account of how 

schizophrenia symptoms could arise from abnormal dopaminergic RPE signaling alone. They propose 

that negative symptoms could result from attenuated dopamine RPEs while positive symptoms could 

result from increased ‘spontaneous’ dopamine RPEs. Crucially, they observe that value and incentive 

salience depend mostly on dopaminergic signals in the limbic (ventral) striatum. However, in 

schizophrenia it is the associative striatum  – where combined representations of states and actions may 

be learned – that is more consistently found to have increased dopamine synthesis and release (Howes 

and Kapur 2009). They therefore propose that delusions, hallucinations and otherwise bizarre and 

disordered thoughts could come about through abnormal gating of random percepts, thoughts or actions 

through the ‘Go’ pathway in associative striatum.   

 This account is admirable for its clarity and for its explanation of abnormal cognition alongside 

abnormal value learning, which the aberrant salience hypothesis struggles to account for. Additional 

hypotheses may be required to account for some other findings in schizophrenia, however. This includes 

in particular the considerable genetic and neuropathological evidence for N-methyl-D-aspartate receptor 

(NMDAR) hypofunction in the disorder, and various empirical findings which seem to relate more to 

NMDAR dysfunction than to dopaminergic abnormalities. One such finding (also see below) is that in 

schizophrenia that is resistant to (anti-dopaminergic) treatment, PET imaging has not found evidence of 

increased striatal dopamine synthesis, but magnetic resonance spectroscopy (MRS) has found evidence 

of cortical glutamatergic abnormalities (Demjaha et al. 2014). Nevertheless, there are complex 

interactions between NMDARs and the dopamine system (Klaas E Stephan, Friston, and Frith 2009) that 

careful empirical work is required to explore. 

 Hierarchical Bayesian predictive coding accounts of schizophrenia share Maia and Frank (2016)’s 

notion that PE signaling is aberrant in schizophrenia, but propose that it is not just RPE signaling in the 

striatum that is affected, but prediction error signaling throughout the cortex (Sterzer et al. 2018; Adams 

et al. 2013). This account is based on the idea that the brain uses (or approximates) Bayesian inference 

on its sensory inputs to infer their hidden causes in the environment (see Section 2.4). To do so it must 

use a hierarchical generative model of its sensations that encodes the sufficient statistics of the 

distributions over their causes – i.e. both their means and their precisions (inverse variances). The most 
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popular scheme for performing inference in such a model is predictive coding – in which higher levels 

pass predictions of activity down to lower levels, that return only errors to the higher levels, which 

correct their predictions, etc. – although other message passing schemes can be used (see below).  

 The key pathology in the predictive coding account of schizophrenia is proposed to be the encoding 

of precision of the signals related to incoming information (the likelihood) and prior beliefs (in the 

cortex and elsewhere). Given precision is used to weight one distribution over another in Bayesian 

inference, its neural substrate is likely to be synaptic gain (the factor by which an input to a neuron is 

multiplied to generate its output), which could likewise alter the influence (but not the content) of neural 

messages. Many neurobiological risk factors for schizophrenia affect synaptic gain, including 

neuromodulators such as dopamine and NMDARs, especially those on inhibitory interneurons which 

affect the oscillatory properties of networks and hence their ease of communication with other brain 

areas.  

 In schizophrenia it seems there is a hierarchical imbalance in synaptic gain, as primary sensory areas 

have been shown to be ‘hyperconnected’ (i.e. show increased correlation with other brain areas 

compared with controls) whereas higher regions (e.g. prefrontal and medial temporal cortex) are ‘hypo-

connected’ (Anticevic et al. 2014). If this corresponds to a similar imbalance in the encoding of 

precision in a hierarchical model, then its effect would be to reduce the effect of priors on inference and 

cause larger belief updates in response to unexpected sensory evidence.  

 A loss of precision of prior beliefs could account for numerous phenomena in schizophrenia, 

including a resistance to visual illusions (which exploit prior beliefs to create their effects), impairments 

in smooth oculomotor pursuit of visual targets, abnormal electrophysiological responses to both 

predictable and oddball stimuli (e.g. the mismatch negativity) and a loss of attenuation of self-generated 

sensations (reviewed in Adams et al. 2013). Likewise, perceiving relatively inconsequential events as 

being imbued with significance (i.e. according too much precision to lower level PEs) and updating 

one’s beliefs as a result fits comfortably with this framework. Indeed, it may be that these kinds of 

higher-level updates, encouraged by the loss of precision encoding in those areas, are the source (or the 

consequence) of the apparently spontaneous dopamine transients in the striatum.    

 It is unlikely that there is a uniform loss of precision of prior beliefs in schizophrenia, however: two 

recent studies have shown that some prior beliefs (about visual stimuli) have a greater influence over 

sensory data in subjects with schizophrenia or schizotypal traits compared with controls (Teufel et al. 
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2015; Schmack et al. 2013), although this is not always the case (Valton et al. 2019). In the auditory 

domain, there is evidence that prior beliefs about sounds learned during a task are more strongly 

weighted in hallucinators, with or without psychosis (Powers, Mathys, and Corlett 2017) and that this 

increased weighting may relate to striatal dopamine (Cassidy et al. 2018). 

 How these apparently opposite imbalances between prior beliefs and sensory evidence might co-

exist in schizophrenia is an open question: there are numerous possible explanations that can only be 

resolved by empirical studies. For example, loss of precision in the middle (e.g. cognitive) levels of a 

hierarchy might allow both sensory evidence and higher level (e.g. affective) beliefs to dominate that 

level, causing sensory hypersensitivity and delusional ideas respectively. Or it may be that there is a loss 

of ability to optimally adjust synaptic gain according to context, rather than a persistent over- or under- 

estimation in any given area.   

 An alternative message passing scheme that could perform Bayesian inference (on discrete, not 

continuous, states – unlike predictive coding) is belief propagation, in which ascending and descending 

messages are not PEs and predictions but likelihoods and prior expectations respectively. Jardri et al. 

(2017) propose that a loss of inhibitory interneuron function in schizophrenia could allow ascending or 

descending messages to be passed back down or up the hierarchy, thus leading to ‘overcounting’ of 

either sensory evidence or prior beliefs. They called their model the Circular Inference model, in 

reference to the loopy amplifications caused by the impaired inhibitory interneurons in the hierarchy. 

They demonstrate evidence for both overcounting of sensory evidence and prior beliefs using a task in 

which subjects with schizophrenia had to update some preliminary knowledge in the light of new data, 

and, interestingly, find that on the group level, these subjects showed more evidence for ascending loops 

(i.e. overcounting sensory evidence), but individual subjects showed evidence for both ascending and 

descending loops which correlated with positive and negative symptom severity respectively (both 

correlated with disorganization).  

 The overcounting (or increased precision) of sensory evidence may contribute to a well described 

phenomenon in probabilistic belief updating in schizophrenia: the ‘jumping to conclusions’ (JTC) bias, 

which is also associated with the presence of delusions (Dudley et al. 2016). This bias is usually 

assessed with the urn or beads task (Garety, Hemsley, and Wessely 1991), in which subjects are shown 

two jars containing red and green beads in ratios of 80:20 and 20:80. The jars are hidden and a sequence 

of beads is drawn (with replacement) from one jar; the subject either has to stop the sequence when they 
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are sure of the jar’s identity (the ‘draws to decision’ version) or rate the probability of the jar after seeing 

each bead (the ‘probability estimates’ version).  

The best-replicated finding in this literature (Dudley et al. 2016) is that many more subjects with 

schizophrenia than controls decide on the jar in the ‘draws to decision’ task after seeing only one or two 

beads (the ‘jumping to conclusions’ bias). There are many other computational parameters, aside from 

sensory overcounting or precision, which could account for this effect, however: a lower decision 

threshold, an inability to inhibit a prepotent response, more stochastic decision-making (i.e. higher 

decision ‘temperature’), a lower perceived cost of making a wrong decision, or a higher perceived cost 

of sampling. Unfortunately, most ‘draws to decision’ paradigms have not controlled or manipulated 

these parameters, so it is not possible to distinguish conclusively between them. 

 Moutoussis et al. (2011) explored whether the last three parameters listed above – i.e. decision 

temperature τ, cost of wrong decision CW or cost of sampling CS – could explain the jumping to 

conclusions bias in schizophrenic subjects with or without active psychosis. The authors found that 

acutely psychotic subjects had much higher τ but no differences in CW and CS. In a subsequent study, 

first episode psychosis subjects were found to have a higher CS and only a borderline increase in τ 

(Ermakova et al. 2019). Note that a higher τ may mean that decisions are truly more stochastic, or it may 

mean that the source of variability in decision-making has not been captured by the model.  

 One weakness of this model is that its τ, CW and CS parameters don’t allow for individual differences 

in belief updating: it assumes that all subjects update their beliefs in a Bayes-optimal fashion. However, 

there is evidence that subjects with schizophrenia update their beliefs differently to controls (neither of 

whom are Bayes-optimal). A scrupulous and well-controlled study of the beads task recently showed 

that whilst the main effect of schizophrenia diagnosis was more liberal (i.e. larger) belief updates, 

delusions were correlated with more conservative (i.e. smaller) belief updates – contrary to most 

interpretations of the ‘jumping to conclusions’ bias (Baker et al. 2019).  

In a similar vein, Averbeck et al. (2010) asked subjects with schizophrenia and controls to 

perform a sequence learning task with probabilistic feedback. This allowed them to estimate how much 

subjects learned from positive and negative feedback. The schizophrenic subjects learned less from 

positive feedback than controls, mirroring their reward-learning deficits described in the preceding 

section. Moreover, the less they learned, the more likely they were to show the jumping to conclusions 

bias. This apparently paradoxical finding is explored in greater detail in the next sections. 
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 Although a significant amount of work has been done on belief-updating and value-learning in 

schizophrenia, there has been relatively little exploration of how language could be spontaneously 

created (as in auditory verbal hallucinations) or become disorganised, both in terms of its form (e.g. 

derailment – one subject changing into another without an obvious connection) or its content (e.g. 

attributing events to bizarre agents, such as famous people). In some pioneering studies, Hoffman and 

McGlashan (2006) showed that excessive pruning of connections and hypodopaminergia (i.e. 

disinhibition) in the hidden layer of a sentence recognition network could reproduce speech detection 

performance in human hallucinators, and that this excessive pruning could also lead to hallucinations 

(although these hallucinations were only of a single word appended to an existing sentence).  

 Hoffman et al. (2011) trained a more complex model comprised of multiple connected modules, 

each containing recurrent networks, to learn 28 narratives of varying emotional intensity and about 

different agents. They showed that of many possible perturbations, only enhancing PE-learning (i.e. 

increasing backpropagation learning rates) during memory encoding matched errors made in 

schizophrenic subjects’ memories for narratives. These included exchanging the identities of agents 

(especially of similar social status) between autobiographical and other stories and derailments from one 

story to another, particularly between those of similar type or emotional valence.  

 

6.2.3 Cognitive symptoms 
 

One implication of Hoffman’s work is that abnormalities of working memory (WM) and memory 

encoding processes may not just manifest in those processes, but also contribute to positive symptoms. 

In a landmark study, Collins et al. (2014) demonstrated that WM deficits could also contribute to 

apparent RL impairments in schizophrenia. Their subjects had to learn stimulus-response associations 

for reward, and the stimuli were presented in sets of size two to six. Under these conditions, smaller sets 

could possibly be learned through WM processes, but larger sets – exceeding WM capacity – would be 

more reliant on incremental (i.e. RL) mechanisms. Fitting an RL model with a WM component to 

individuals’ data, they found that the subjects with schizophrenia had lower WM capacity and greater 

WM decay rate, but their RL and decision stochasticity parameters were no different to controls’. This 

demonstrates that unless WM is explicitly modelled, inferences about RL parameters in schizophrenia 
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must be treated with caution. How WM relates to symptoms is unclear, though, as none of the model 

parameters or their principal components correlated with positive or negative symptoms. 

 In neurobiological terms, this implies that pathology in prefrontal cortex (PFC) and hippocampus 

might make a greater contribution than the striatum to abnormal inference and learning in schizophrenia. 

But what kind of pathology? A highly influential spiking network model of pyramidal cell and 

interneuron function in PFC during a spatial WM task contains excitatory pyramidal cells with 

bidirectional connections to a single inhibitory interneuron and recurrent excitatory connections to 

themselves (see also Chapter 3). Increased activity of one pyramidal cell is therefore a) self-sustaining, 

through the E-E connection, and b) laterally inhibiting, through the E-I connection and subsequent 

inhibition of its neighbouring pyramidal cells. These dynamics can be pictured as energy landscapes 

containing ‘basins’ of attraction, the stability of which is determined by their depth and the level of 

‘noise’ in the network (Rolls et al. 2008). NMDAR hypofunction on pyramidal cells would reduce E-E 

strength and also self-sustaining activity. On the other hand, NMDAR hypofunction on interneurons 

would reduce E-I strength and increase the spread of excitation through the network. A model in which 

E-I strength is reduced more than E-E (i.e. an increased E/I ratio) captures the behaviour of subjects with 

schizophrenia best: it increases ‘false alarms’ to near (but not far) distractors during a spatial WM task 

(due to lateral spread of excitation) but not the rate of ‘misses’ (Murray et al. 2014) (See also Chapter 

3).   

 Other models of PFC function have also incorporated the recently-demonstrated cortical dopamine 

hypo-function in schizophrenia (Slifstein et al. 2015). Dopamine hypo-function reduces activity in both 

pyramidal cells (via D1 receptors) and interneurons (via unique excitatory D2 receptors) in adult rats 

(O’Donnell 2012). Modelling studies suggest that this should exacerbate any NMDAR hypo-function 

and make PFC networks even more vulnerable to distraction (Durstewitz and Seamans 2008). An early 

connectionist model of dopamine’s effects on gating inputs (e.g. sensory cues) into PFC proposed that 

greater variability of dopamine firing makes cues’ effects on PFC less reliable (Braver, Barch, and 

Cohen 1999). There is clearly much still to be learned about cortical-dopaminergic interactions. 

 In the previous section we encountered the puzzling finding that in subjects with schizophrenia, the 

jumping to conclusions bias correlates with a reduced tendency to learn from positive feedback 

(Averbeck et al. 2010). In addition, in the ‘probability estimates’ versions of the beads task, numerous 

groups have demonstrated a ‘disconfirmatory bias’ in schizophrenia, i.e. a tendency to update more than 
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controls on receipt of evidence against one’s current hypothesis (Garety, Hemsley, and Wessely 1991; 

Peters and Garety 2006; Fear and Healy 1997; Young and Bentall 1997). However, when observing 

patients’ behaviour in this task, it appears that they update more to both a ‘disconfirmatory’ bead and to 

the following bead, e.g. R-R-R-G-R (Langdon, Ward, and Coltheart 2010; Peters and Garety 2006). Yet 

like Averbeck and colleagues, others have observed decreased updating in patients to more consistent 

sequences both in this task (Baker et al. 2019) and in stimulus-reward learning tasks, especially in 

patients with more negative symptoms (Gold et al. 2012). Likewise, healthy volunteers given ketamine 

(an NMDAR antagonist used to model psychosis in humans) show a decrement in updating to consistent 

stimulus associations (Vinckier et al. 2016).  

  To summarize, it appears that compared with controls, subjects with schizophrenia may show 

greater belief updating in more uncertain contexts, but (sometimes) lower belief updating in less 

uncertain contexts, rather than a straightforward ‘disconfirmatory bias’. These effects make sense in the 

light of attractor models of cortical function, in that NMDAR hypofunction on both pyramidal cells and 

inhibitory interneurons (to a greater extent) could both reduce recurrent excitation but also increase the 

E/I ratio. An increase in E/I ratio has been shown to cause more rapid updating and impulsive decision 

making in a perceptual task model (Lam et al. 2017). On the other hand, a reduction in recurrent 

excitation could reduce attractor stability (Rolls et al. 2008) and hence make it hard to reach maximum 

confidence in any one decision. This attractor hypothesis motivated the recent study described below.  

   

6.3 Case Study Example: Attractor-like dynamics in belief updating in schizophrenia 

 

 Adams et al. (2018) tested Bayesian belief updating models on ‘probability estimates’ beads task 

data obtained from both healthy volunteers, subjects with schizophrenia, and psychiatric controls. 

Dataset 1 was published previously (Peters and Garety 2006) and comprised 23 patients with delusions 

(18 diagnosed with schizophrenia), 22 patients with non-psychotic mood disorders, and 36 non-clinical 

controls, 53 of whom were also tested again once the clinical groups were no longer acutely unwell. 

Dataset 2 was newly acquired and comprised 56 subjects with a diagnosis of schizophrenia and 111 

controls. Subjects in dataset 1 performed the ‘probability estimates’ beads task with two urns with ratios 

of 85:15 and 15:85 green and red beads respectively (Figure 6.1, upper panel). They had to view a 
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single sequence of ten beads. After each bead, they had to mark an analogue scale (from 1 to 100) 

denoting the probability that the urn was the 85% red. Subjects in dataset 2 performed the same task 

with two urns with ratios of 80:20 and 20:80 red and blue beads respectively (Figure 6.2, lower panel). 

Each subject viewed four separate sequences of ten beads (an A and a B sequence, and A and B again 

but with the bead colours inverted). After each bead, they had to mark a Likert scale (from 1 to 7) 

denoting the probability that the urn was the 80% blue one. Two sequences contained an apparent 

change of jar. 

  The behavioral differences between groups are detailed in Adams et al. (2018). In brief, subjects 

with schizophrenia showed increases in ‘disconfirmatory’ updating in both datasets, although this effect 

was diminished at follow-up in Dataset 1. 

 

< insert Figure 6.1 around here>  

 

The Bayesian belief updating model was the Hierarchical Gaussian Filter or HGF (Mathys et al. 

2011; see Section 2.4.6). The HGF contains numerous parameters that can vary between subjects, thus 

explaining individual differences in inferences whilst preserving the Bayes-optimality of inferences, 

given these parameters. The HGF has been used to demonstrate numerous interesting parameter 

differences between controls and groups with psychiatric diagnoses, e.g. ADHD (Hauser et al. 2014), 

autism (Lawson, Mathys, and Rees 2017) and schizophrenia (Powers, Mathys, and Corlett 2017). The 

models employed here are described in detail in Adams et al. (2018). In brief, the model’s inputs are the 

bead shown u(k) and the subject’s response y(k) on trials k = 1-10. From these inputs and its prior beliefs, 

the model infers the subject’s beliefs about the jar µ1
(k) (a logistic sigmoid function of the ‘tendency’ of 

the jar µ2
(k)) on each trial, and the model parameters (β, ω, φ or κ1 and σ2

(0) – see below, Table 6.1, and 

Figure 6.1). The response model generates the subject’s response y(k) (i.e. where on the sliding scale 

they place the arrow on trial k), which is determined by µ1
(k) and the precision of their response β 

(similar to inverse temperature, i.e. 1/τ) which affects how much y(k) can deviate from µ1
(k) – i.e. the 

(inverse) stochasticity of their responding, given their beliefs. 

Using the HGF and the two datasets, the following questions were addressed: can differences in 

belief updating in schizophrenia compared with controls be explained by: i) group differences in general 
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learning rate ω; ii) differences in response stochasticity β, or by additional parameters encoding: iii) the 

variance of beliefs about the jars at the start of the sequence σ2
(0); or iv) a propensity φ to overweight 

disconfirmatory evidence specifically, or v) a parameter κ1 that simulates unstable attractor states, 

making it easier to shift from believing in one jar to the other (Figure 6.1, lower panel)?  

Furthermore, are these findings consistent between different groups of schizophrenia, or within 

schizophrenia tested at different illness phases, and are they unique to schizophrenia or also present in 

other non-psychotic mood disorders?  

 

< insert Table 6.1 around here> 

 

 Six models were tested, all containing ω and β, and either φ, or κ1, or neither (each with or without 

σ2) – see Table 6.1. Full details of the models, statistical and behavioural results are given elsewhere 

(Peters and Garety 2006; Adams et al. 2018). Bayesian model selection for dataset 1 at both baseline and 

follow-up and dataset 2 produced identical results: Model 6 won in each case. In studies of 

schizophrenia, it is often the case that many patients are fit best by a different model to controls; usually 

a much simpler one, e.g. (Moutoussis et al. 2011; Schlagenhauf et al. 2013). Performing model selection 

within each group separately, however, still found that Model 6 best accounted for the data in all groups 

(Figure 6.3).  

 In dataset 1 at baseline, there were large group differences in the attractor instability κ1 and response 

stochasticity β but not in the initial variance σ2
(0) or the learning rate ω (Figure 6.4, upper row): κ1 was 

significantly larger in the non-clinical controls and the psychotic group  than in the clinical control 

group, and β was smaller in these groups . 

 In dataset 1 at follow-up (Figure 6.4, middle row), the attractor instability κ1 remained larger and 

response stochasticity β smaller in the psychotic group than the non-clinical control group but now the 

clinical and non-clinical control groups were no longer significantly different. Similarly, in dataset 2, κ1 

was significantly higher and β was lower in schizophrenia than in controls. There were no significant 

group differences in ω or σ2
(0) (Figure 6.4, lower row). The model fits for two example subjects are 

shown in Figure 6.5. 
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Neither κ1 or β in dataset 1 at baseline were predicted by any particular subgroup of (positive, 

negative or affective) symptoms. In dataset 2, there was only a weak relationship between β and 

negative symptoms.  

We tested for correlations between the Model 6 parameters: κ1 and β were negatively correlated 

both at baseline and at follow in dataset 1, and in dataset 2. Note that if parameters are highly correlated, 

then it can be impossible to estimate them reliably. 200 datasets were therefore simulated using the HGF 

and the modal parameter values for the control and schizophrenia groups in dataset 2, and then the 

parameters from these simulated datasets were re-estimated in order to check we could estimate them 

reliably (parameter recovery, see Section 2.5). With the exception of σ2
(0) in the simulated schizophrenia 

dataset, the estimated parameter values closely matched their original values. 

In summary, this study showed that in computational models of two independent datasets, all 

subjects – including subjects with schizophrenia – are best fit by a model simulating the effects of 

attractor state dynamics on belief updating (Model 6) rather than a model biased towards 

disconfirmatory updating alone (Model 4). Medium-to-large differences were found between subjects 

with schizophrenia and controls in both datasets in both the attractor instability parameter (κ1 was 

greater in schizophrenia, i.e. more unstable) and the stochasticity of responding (β was smaller, i.e. 

noisier, in schizophrenia), and κ1 correlated with β in both datasets. Furthermore, ν correlated with κ1 but 

not with ω or σ2
(0) in all three experiments, supporting the idea that β is measuring a stochasticity that is 

related to the attractor unstability κ1 by an underlying neurobiological process, rather than an effect that 

just isn’t described by the model. 

These findings are important because they connect numerous reasoning biases previously found 

in schizophrenia – e.g. a disconfirmatory bias, increased initial certainty (Peters and Garety 2006), and 

decreased final certainty (Baker et al. 2019) – with model parameters that describe how non-linear belief 

updating in cortex could be caused by unstable and noisy attractor states. (In this context, ‘non-linear’ 

refers to updating that isn’t uniformly increased or decreased relative to controls, e.g. updating more to 

surprising evidence but less to unsurprising evidence). 

Indeed, two recent studies of similar tasks in populations with schizophrenia have also 

demonstrated evidence of similar belief updating. Jardri et al. (2017) showed that the patients with 

schizophrenia on average “overcount” the likelihood in a single belief update. Jardri et al attribute this 

effect to disinhibited cortical message-passing, but it could equally be attributed to attractor network 
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instability. Stuke et al. (2017) showed in a very similar task that all subjects showed evidence of non-

linear updating, but the group with schizophrenia updated more than controls to “irrelevant information” 

(i.e. disconfirmatory evidence).   

NMDAR hypofunction could contribute to an increased tendency to switch between beliefs and 

increased stochasticity in responding in several ways (Rolls et al. 2008): i) by reducing inhibitory 

interneuron activity, such that other attractor states are less suppressed when one is active, ii) by 

reducing pyramidal cell activity, such that attractor states are harder to sustain, and iii) by reducing the 

NMDAR time constant, making states more vulnerable to random fluctuations in neural activity.  

Another important aspect of dataset 1 is the finding that κ1 and β were also significantly different 

between the mood disorder clinical group and non-clinical control groups when the former were unwell, 

but not at follow-up, whereas the differences between the schizophrenia and non-clinical controls 

remained. This is interesting in light of past work indicating that neuromodulatory activity can have 

similar impacts on prefrontal network dynamics to NMDARs (Durstewitz and Seamans 2008). One 

might speculate that both the group with schizophrenia and clinical controls are affected by 

neuromodulatory changes when unwell, but only the former has an underlying NMDAR hypofunction 

that is still present once the acute disorder has resolved.  

One might question why, given these relationships between parameters and cognition, there 

weren’t strong relationships between κ1 or β and positive or negative symptom domains (negative 

symptoms were weakly predictive of β in dataset 2 only). One reason may be that the symptom analyses 

– conducted only on patients – were underpowered, but it is also possible that other pathological factors 

contribute to symptoms, beyond those measured here (e.g. striatal dopamine availability and positive 

symptoms). Of note, another study demonstrating clear WM parameter differences between subjects 

with schizophrenia and controls also failed to detect any relationship between those parameters and 

symptom domains (Collins et al. 2014). 

An important future challenge will be to link belief updating parameters to those of spiking 

network models, to understand how NMDAR function on both pyramidal cells and inhibitory 

interneurons and neural ‘noise’ contribute to attractor instability, response stochasticity and inference in 

general (Lam et al. 2017; Soltani and Wang 2010). Beyond that, a true understanding of the disorder will 

probably emerge once we gain a better understanding in computational terms of how the thalamus, 

striatum and cortex all interact with each other, and with dopamine, in performing inference.  
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6.4 Chapter Summary 

 

In this chapter, we have covered the positive, negative and cognitive symptoms of schizophrenia and 

attempts to model them in computational terms. Negative symptoms – broadly, the failure to act to 

obtain reward – have been modelled using RL models with some success. Positive symptoms – 

delusions and hallucinations – are less straightforward to understand. Attempts to model them have 

concentrated either on abnormal dopamine signaling in striatum or abnormal synaptic gain at both ends 

of the cortical hierarchy. Abnormal dopamine signaling would contribute to delusional thoughts 

(through aberrant salience, aberrant RPEs or aberrant gating of thoughts). Abnormal synaptic gain 

would lead to an imbalance (or alternatively a loss of adaptability) in the encoding of precision in the 

brain’s model of the world, such that prior beliefs are underweighted, and sensory evidence is 

overweighed. Such models have not yet given a full account of positive symptoms, however. There is a 

sizable literature on psychological biases (e.g. jumping to conclusions) in schizophrenia, and these are 

beginning to be understood in modelling terms. Relevant to this may also be the modelling of cognitive 

symptoms – e.g. concentration and working memory problems – using spiking network models with 

attractor dynamics. In such models, NMDAR hypofunction, perhaps resulting in an increased E/I ratio 

(due to disinhibition), can make attractors unstable and easily affected by random fluctuations in neural 

firing. These changes can explain spatial working memory performance in subjects with schizophrenia, 

as well as apparent biases in probabilistic inference. Ultimately, to understand schizophrenia, we will 

need a deeper understanding of how the thalamus, striatum and cortex all interact with each other, and 

with dopamine, in performing inference. 

 

6.5 Further Study 

 

Strauss, Waltz, and Gold (2014) provide an excellent summary of RL models of negative symptoms. 

Maia and Frank (2016) offer the most detailed and developed account of dopamine’s potential 

contributions to positive and negative symptoms. 

Adams, Huys, and Roiser (2015)  contains a simplified version of the hierarchical predictive coding 

account of schizophrenia: for more equations and models, see Adams et al. (2013).  
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Rolls et al. (2008) – an excellent review of spiking and neural network models and how they relate to a 

dynamical system view of schizophrenia, containing unstable attractor states, etc. For more on this 

theme, see also Chapter 3 of this volume. 

Collins et al. (2014) is a first rate behavioral modelling paper, demonstrating the importance of 

including WM function in RL models, as performance in schizophrenia is explained by pathology in 

only the former. 
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7. 1 Introduction 

Depression and anxiety disorders are the two most common psychiatric disorders around the world 

(Alonso et al. 2004; Ayuso-Mateos et al. 2001; Üstün et al. 2004; Vos et al. 2012) and display a high 

level of comorbidity: patients suffering from one of these illnesses are often affected by the other one as 

well (Kessler et al. 2003).  In the United States, Kessler et al. (2003) estimated the lifetime prevalence of 

major depressive disorder (MDD) at over 16%. Similar figures have been reported for Europe at 13% 

(Alonso et al. 2004). 

Diagnosis for MDD is commonly based on the Diagnostics and Statistical Manual of mental disorders 

(DSM-V; American Psychiatric Association (2013)). The manual lists two core symptoms of MDD: 

depressed mood and loss of interest or pleasure (anhedonia), of which at least one has to be present for 

diagnosis.  Other symptoms include a significant change in weight, insomnia, hypersomnia, 

psychomotor agitation or retardation, fatigue or loss of energy, feelings of worthlessness or guilt, a 

diminished ability to think or concentrate, and recurrent thoughts of death or suicide.  Overall, five or 

more symptoms have to be present for at least two weeks, cause significant impairments in important 

areas of daily life, and should not be better explained by other psychiatric disorders.  The International 

Classification of Diseases (ICD-10; World Health Organization (1992)) has similar criteria for diagnosis 

of (single) depressive episodes and recurrent depressive disorder. 

Strikingly, according to the DSM definition, it is possible for two people to receive the same diagnosis 

of MDD without sharing a single symptom.  One MDD patient may experience depressed mood, weight 

gain, constant tiredness and fatigue, and regularly think about ending their life. Another MDD patient 
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may experience anhedonia, lose a lot of weight, and go through psychomotor and concentration 

difficulties while being unable to sleep properly.  The existence of these non-overlapping profiles partly 

stems from the fact that categories and symptoms of depression originated from clinical consensus and 

do not necessarily have a basis in biology (Fried et al. 2014).  As a consequence, research often focuses 

on individual symptoms - for example anhedonia (Pizzagalli (2014); see also our case study) - in 

addition to categorical group differences.  In the clinical and drug trial literature, Hamilton Depression 

Rating (HRSD-17) and MADRS are by far the most important rating scales. In research environments, 

the Beck depression inventory (BDI; Beck et al. 1961) is a popular choice to measure overall depressive 

severity and a sub-score can be extracted from items of the questionnaire to quantify anhedonic 

symptom severity. 

Cognitive neuroscience of depression 

Patients often show deficits on a broad range of tasks probing executive function and memory (Snyder 

2013; Rock et al. 2014), and impairments often remain (to some degree) after remission (Rock et al. 

2014). 

An early influential theory, inspired by a wealth of animal studies, is that of learned helplessness 

(Seligman 1972; Maier and Seligman 1976; Abramson, Seligman, and Teasdale 1978).  The theory 

suggests that continued exposure to aversive (stressful) environments over which animals do not have 

any control lead to behavioral deficits similar to those observed in depression.  In such a framework, the 

patients' distress is believed to stem from their perception of a lack of control over the environment and 

ensuing rewards or penalties. This, in turn, could explain patients' distress and lack of motivation to 

initiate actions.  Stress has been proposed as a mechanism for memory impairments in depression 

(Dillon and Pizzagalli 2018) and Pizzagalli (2014) hypothesized that dysfunctional interactions of stress 

with the brain reward system can lead to anhedonia. 

An alternative influential theory about depression concentrated on the prevalence of negative biases 

involved in the development and maintenance of depression (Beck 2008), which led to the emergence of 

cognitive behavioral therapy (CBT). This line of research hypothesized that negative schemas about the 

self, the world, and the future would form due to adverse childhood experiences. According to this 

framework, negative schemas could lead patients to downplay the magnitude of positive events, or 
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attribute negative valence to objectively neutral events. Patients would effectively perceive the world 

through "dark tainted" glasses. 

It has been suggested that negative biases play a causal role in the development and maintenance of 

depression (Roiser, Elliott, and Sahakian 2012) and that antidepressant medications target these negative 

biases rather than targeting mood directly (Harmer, Goodwin, and Cowen 2009). 

Recently, much cognitive research has focused on decreased sensitivity to reward in depression. There 

are at least two important reasons for this focus: First, reward processing appears to align with a lack of 

interest or pleasure (anhedonia), a core symptom of depression and one to which we will come back 

again in the case study of this chapter. Second, reward processes are better understood than mood 

processes, both at the neurobiological and at the behavioral level.  Indeed, cognitive neuroscience has 

started to dissociate and delineate different sub-domains of reward processing, which can be studied 

independently in relation to anhedonia (Treadway and Zald 2013).  For example, "incentive salience" 

("desire" or "want") can be distinguished from "motivation" and "hedonic response" (enjoyment) and we 

may want to independently study the association of each of these sub-domains with depression. For 

instance, your driving attention and focus on a piece of chocolate (a potentially rewarding stimulus) is 

different from how much you enjoy that piece while you are eating it. These two subdomains may also 

be independent from your willingness to expand effort to obtain that piece of chocolate.  

Cléry-Melin et al. (2011) tested depressed patients and healthy controls on a task in which they could 

exert physical effort (through grip force on a handle) to attain monetary rewards of varying magnitudes.  

They found that depressed participants did not exert more physical effort to obtain higher rewards (as 

opposed to lower rewards). However, they believed they had exerted more effort for higher rewards, as 

evidenced by their higher effort ratings.  Controls, on the other hand, objectively exerted more effort for 

greater rewards, but reported subjectively reduced effort ratings for higher rewards compared to lower 

rewards. In another study (Treadway et al. 2012), participants were able to obtain varying amounts of 

money if they managed to make a large number of button presses within a short time window. 

Depressed patients exerted less effort (made less button presses) than controls in order to obtain reward.  

Together these studies suggest that depression, and anhedonia in particular, may be related to 

impairments in the motivation and willingness to exert effort for rewards.  This may also explain why 
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behavioral activation therapies have been reported to work well for depressed patients12: these practices 

specifically target decreased motivation (Treadway et al. 2012). 

Overall, there is large overlap between different theories of depression. Most cognitive theories place a 

large emphasis on biases influencing emotional processing (Gotlib and Joormann 2010), but some differ 

in their explanation of the development of these biases; for example whether they develop in response to 

early stressful life experiences (Beck 2008, Pizzagalli 2014) or stem from biased perceptual and 

reinforcement processes (Roiser, Elliott, and Sahakian 2012). 

Several neurotransmitters, most commonly serotonin and dopamine, are implicated in reward and 

punishment processing in depression (Eshel and Roiser 2010).  Dopamine is heavily implicated in 

reinforcement learning processes (Schultz 2002) and has consistently been associated with depression in 

humans and animals (Pizzagalli 2014).  Serotonin has long been implicated in the processing of aversive 

stimuli and learned helplessness and depression may be related to a failure of stopping such aversive 

processes (Deakin 2013). Antidepressant medications commonly work by altering serotonin levels 

(Eshel and Roiser 2010).  Neuroimaging studies have revealed abnormal activation and connectivity of 

many cortical and subcortical brain regions in depression (Pizzagalli 2014, Chen et al. 2015).  Reporting 

of blunted striatal response to reward in MDD has been particularly consistent (Pizzagalli 2014, Arrondo 

et al. 2015).  The orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (vmPFC) are implicated 

in the representation of internal values (Chase et al. 2015). Depression is associated with abnormal 

activation in these regions (Pizzagalli 2014, Cléry-Melin, Jollant, and Gorwood 2018), possibly related 

to abnormal use of reward values during decision-making (Rupprechter et al. 2018).  Large meta-

analyses have concluded that MDD is associated with reduced hippocampal volume (Schmaal et al. 

2016) and alterations in cortical thickness, especially in OFC (Schmaal et al. 2017). 

7.2 Past and current computational approaches 

A variety of different computational approaches, ranging from connectionist and neural networks, to 

drift diffusion models, reinforcement learning and Bayesian decision theory, have been used to study the 

behavior of MDD patients.  We will, in turn, briefly describe findings from each of these approaches. 
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7.2.1 Connectionist Models 

One early approach that has been used to model depression is a connectionist approach, which is 

inspired by the idea that complex functions can naturally arise from the interaction of simple units in a 

network (see Section 2.1). 

Siegle, Steinhauer, and Thase (2004) asked groups of depressed and healthy individuals to perform a 

Stroop color naming task.  In this task, color words are presented on each trial with different ink colors 

matching or not matching the word (e.g. the word "red" written in blue ink), and participants have to 

name the ink color while refraining from reading the word itself (Figure 7.1).  The task is typically used 

to probe attentional control. Pupil dilation measurements were used as an indicator for cognitive load, 

because pupils reliably dilate under cognitively demanding conditions (Siegle, Steinhauer, and Thase 

2004).  Previous studies had shown impairments within groups of depressed subjects, but the nature of 

these impairments varied, with patients sometimes showing slower responses and other times increased 

error rates.  Siegle, Steinhauer, and Thase (2004) found similar performance patterns for the two groups, 

but differences in pupil dilation. Depressed individuals showed decreased pupil dilation, consistent with 

decreased cognitive control.  A neural network was used to identify possible mechanisms that could 

have resulted in these group differences. The modelling suggested that decreased prefrontal cortex 

activity could lead to the observed cognitive control differences in this experiment. Such a disruption 

might also explain attentional deficits commonly observed in depression (Siegle, Steinhauer, and Thase 

2004). 

 

< insert Figure 7.1 around here> 

 

Siegle and Hasselmo (2002) provided another example of how neural network models can be used to 

better understand deficits in depression during (negatively biased) emotional information processing.  

The task considered was one where emotional word stimuli were observed, which participants had to 

label as positive, negative, or neutral. Patients typically show biases in emotional information 

processing, for example quicker responses to negative information (Siegle and Hasselmo 2002).  A 

neural network model was used to simulate classification of emotional stimuli.  It could reproduce the 

typically observed behavior of depressed patients: it was quicker to identify negative information than 
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positive information and showed larger sustained activity when confronted with negative words.  

Different mechanisms could lead to these observed abnormalities in the network, including over-

learning of negative information, which can be related to rumination, i.e. the tendency to repetitively 

think about the causes, situational factors, and consequences of one's negative emotional experience. A 

network that had over-learned on negative information could be retrained using positive information 

(akin to a cognitive behavioral therapy), which resulted in the normalization of network activity in 

response to negative information.  The longer the network had "ruminated", the longer it took for the 

"therapy" (i.e. retraining) to work, providing insights into the recovery from depression using CBT and 

its interactions with rumination. Siegle and Hasselmo (2002) therefore suggested that rumination can be 

predictive of treatment response and should be routinely assessed in depressed individuals. 

7.2.2 Drift Diffusion Models 
	
  

Drift diffusion models (DDMs; see Section 2.2) have also been used to better understand the 

mechanisms underlying depressive illness.  These models are especially useful when the modelling of 

reaction time and accuracy in combination is of primary interest. 

For example, Pe, Vandekerckhove, and Kuppens (2013) modelled behavior on the emotional flanker 

task to analyze negative biases in depression. In this task, participants are shown a positively or 

negatively valenced word that they are asked to classify according to valence. The central stimulus is 

flanked by two additional words with positive, negative or neutral valence (Figure 7.2).  The authors 

hypothesized that higher depressive symptomatology and rumination (as measured by self-report 

questionnaires) are related to negative attentional biases (i.e. a bias towards negative target words).  

Classical analyses showed that the higher the rumination score, the stronger the facilitation effect 

(computed from accuracy scores) of negative distracters on negative targets and the weaker the 

facilitation effect of positive distracters on positive targets. After controlling for depression, only the 

former effect remained. A DDM analysis on the other hand revealed more effects involving the drift 

rate, which corresponds to the rate at which information is being processed.  The drift rate was 

negatively correlated with rumination scores on trials where a negative target word was flanked by 

positive words and was positively correlated with rumination scores on trials where negative words 

flanked a negative or positive word.  After controlling for depression scores, rumination still predicted 

attentional bias for negative information, but depression scores were no longer predictive after 
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controlling for rumination. The computational modelling therefore revealed that rumination was 

associated with an enhanced processing of words flanked by negative words and decreased processing in 

the presence of positive flankers. 

< insert Figure 7.2 around here>  

In addition to negative biases, depression is also associated with impairments in executive function 

(Snyder 2013).  Dillon et al. (2015) used a combination of three drift diffusion processes to account for 

behaviour on a different (non-emotional) version of the flanker task.  In this version, stimuli and 

distracters were three arrows pointing left or right. The central and flanking arrows could either be 

congruent (pointing in the same direction) or incongruent. Depressed and healthy participants had to 

indicate the direction of the arrow in the middle.  The authors' goal was again to address inconsistent 

findings of previous studies, which had sometimes found enhanced executive functioning in depression 

during tasks that demand careful thought.  Depression can lead to increased analytical information 

processing (c.f. rumination), which results in worse performance during tasks requiring fast decisions 

but can also lead to increased accuracy when a careful approach is necessitated and when reflexive 

responses need to be inhibited. Dillon et al. (2015) found that depressed participants were more accurate 

but slower than controls on incongruent trials. They decomposed behavior on the flanker task into three 

different mechanisms that might be affected by depression, and which were modelled by separate drift 

diffusion processes: (1) a reflexive mechanism biased to respond according to the flankers, (2) a 

response inhibition mechanism able to suppress the reflexive response, and (3) executive control 

responsible for correct responses in the presence of incongruent flankers.  The analysis of model 

parameters showed that the drift rate for the executive control mechanism was lower in depression, 

which on its own would lead to slower, but also less accurate responses. However, this executive control 

deficit was offset by an additional decreased drift rate in the reflexive mechanism.  This could explain 

impaired executive function but highly accurate responses in MDD (Dillon et al. 2015). 

One more example comes from Vallesi et al. (2015), who used DDMs to better understand deficits in the 

regulation of speed-accuracy trade-offs in depression.  At the beginning of each trial, a cue signaled 

whether participants should focus on speed or accuracy.  It was found that MDD patients, unlike 

controls, adjusted their decision threshold based on the instructions for the previous trial, with speed 

instructions decreasing the decision boundary (independently of the cue for the current trial). That is, 

patients had difficulties overcoming instructions from the previous trial and flexibly switching between 
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fast and accurate decision-making.  In addition, drift rates within the patient group were generally lower 

than in the control group, indicating a slowing down of cognitive processing, which is commonly found 

in MDD patients. 

7.2.3 Reinforcement Learning Models 

In reinforcement learning models, behavior is captured on a trial-by-trial basis. An agent makes a 

decision based on some internal valuation of the objects in the environment, observes an outcome, and 

then uses this outcome to update the internal values (see Section 2.3 and Chapter 4).  There exists 

substantial behavioral and neural evidence, often supported by computational modelling, for impaired 

reinforcement learning during depression (see Chen et al. 2015 for a review). 

Chase et al. (2010) fitted a Q-learning model to the behavior of MDD patients and healthy controls on a 

probabilistic selection task. On each trial, one of three possible stimulus pairs was displayed and 

participants had to choose one of the stimuli, which were followed by positive or negative feedback 

according to different probabilities. They did not find evidence for their initial hypothesis that patients 

would preferentially learn from negative outcomes due to a tendency in depression to focus on negative 

events.  Participants' anhedonia scores, however, negatively correlated with positive and negative 

learning rate as well as the exploration-exploitation (softmax) parameter.  The study therefore provided 

evidence that depression, and specifically anhedonia, is related to altered reinforcement learning.  

Huys et al. (2013) performed a meta-analysis on the Signal Detection Task (Pizzagalli, Jahn, and O’Shea 

2005). In contrast to the previous study, they concluded that anhedonia is principally associated with 

blunted sensitivity to reward as opposed to an impaired ability to learn from experienced rewards.  The 

task and their approach will be covered in detail in the case study section of this chapter. 

Temporal difference (TD) prediction-error learning signals have been linked to the firing of dopamine 

neurons in the brain (Montague, Dayan, and Sejnowski 1996; Schultz 1998; Schultz 2002; O’Doherty et 

al. 2004) and there exists substantial evidence that these neurons play an important part in the 

experience of pleasure and reward (Dunlop and Nemeroff 2007).  Using fMRI and a Pavlovian reward-

learning task, Kumar et al. (2008) investigated whether TD learning signals would be reduced in MDD 

patients.  The authors indeed found blunted reward prediction error signals in the patient group and 

additionally a correlation between such blunting and illness severity ratings. This provides a link 
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between an impaired physiological TD learning mechanism and reduced reward learning behavior as 

observed in anhedonia. 

The previous study (Kumar et al. 2008) investigated Pavlovian learning during which participants 

passively observed stimulus-outcome associations. An early study to look at instrumental learning 

through active decision-making in depression was performed by Gradin et al. (2011).  Stimuli were 

associated with different reward probabilities, which slowly changed. Prediction errors and expected 

values of a Q-learning model were regressed against fMRI brain activity.  Compared to healthy controls, 

depressed patients did not display behavioral differences.  However, physiologically they showed 

reduced expected reward signals as well as blunted prediction error encoding in dopamine-rich areas of 

the brain. This blunting correlated with anhedonia scores.  This shows that model-based fMRI can reveal 

differences in reward learning; even in the absence of behavioral effects. 

7.2.4 Bayesian Decision Theory 

At a more abstract level, Bayesian decision theory (BDT) has been used to explain common symptoms 

of depression such as anhedonia, helplessness and pessimism (Huys et al. 2008; Trimmer et al. 2015; 

Huys, Daw, and Dayan 2015).  Bayesian decision theory allows to formulate optimal behavior during a 

task and then to analyze how sub-optimal behavior can arise (see Section 2.4). 

Huys et al. (2008) fitted a Bayesian reinforcement learning model to the behavior of depressed and 

healthy participants in two reward learning tasks. Importantly, their formulation of the model included 

two parameters, describing sensitivity to reward and a prior belief about control (cf. helplessness).  

Higher values of the control parameter corresponded to stronger beliefs about the predictability of 

outcomes following an action.  Individuals who believe they have a lot of control over their environment 

would predict that previously rewarded actions will likely be rewarded again, while someone with a low 

control prior would expect weaker associations between action and reward. Huys et al. (2008) showed 

how a linear classifier could be used to distinguish between healthy and depressed participant after they 

had played a slot machine game, based purely on the two values of individuals' parameters. This 

suggests that model parameters obtained by fitting a behavioral task, such as a probabilistic learning 

task, could be used to classify MDD to a high accuracy.  The classification of diseases is an important 

goal of computational psychiatry (Stephan and Mathys 2014). 
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A comprehensive evaluation framework formulated through BDT was introduced by Huys, Daw, and 

Dayan (2015), in which they discuss how depressive symptoms can arise from impairments in utility 

evaluation and prior beliefs about (the control over) outcomes. They argued that it is primarily model-

based reinforcement learning, rather than model-free learning, which is abnormal in depression. 

A theoretical description of how optimal decision-making can lead to (seemingly) depressed behavior 

and inaction similar to learned helplessness in a probabilistic environment can also be found in Trimmer 

et al. (2015). They concluded that to understand a patient's current depressed behavior, the history of the 

individual should be considered by describing it much further back in the past than what is the current 

norm. Imagine, for example, that Bob gets fired from his job due to "corporate restructuring" due to an 

economic crisis. Further, no other company seems interested in hiring while the economy is in this 

downswing, which is unlikely to change for the foreseeable future. Best efforts and repeated attempts to 

get a new job fail and adverse events in the environment increase (e.g. he loses friends or family or 

becomes homeless). Bob starts to learn that his actions do not seem to influence his environment. 

Negative outcomes appear unavoidable and over time his willingness to try to escape his situation 

decreases. Distressed and desperate, Bob starts to show symptoms reminiscent of depression. He has 

"learned to be helpless". 

7.3 Case study: How does reward learning relate to anhedonia? 

The case study in this chapter is a meta-analysis published by Huys et al. (2013) of a behavioral task that 

has consistently revealed reward-learning impairments in depressed and anhedonic individuals and other 

closely related groups.  

Anhedonia is a core symptom of depression. Different behavioral tasks have been used to show that 

reward feedback objectively has less impact on participants who subjectively report anhedonia (Huys et 

al. 2013). However, there are different ways through which such a relationship could be realized. The 

goal of the meta-analysis was to find out whether anhedonia was principally associated with the initial 

rewarding experience of stimuli, or the subsequent learning from these rewards.  The two mechanisms 

are important to disentangle, as they would likely correspond to distinct etiologies and different 

strategies for therapies (Huys et al. 2013). 
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7.3.1 Signal Detection Task 

The Signal Detection Task (see Figure 7.3) consists of many (often 300) trials. In each trial one of two 

possible stimulus pictures (cartoon faces) is shown and the participant is prompted to indicate which 

picture was observed. This can be quite difficult, because the stimuli look very similar---they only differ 

slightly in the length of their mouth---and are only displayed for a fraction of a second.  If participants 

correctly identify a stimulus, they sometimes received a reward (e.g. in the form of points) and 

sometimes receive no feedback.  Participants are told to maximize their reward. 

 

< insert Figure 7.3 around here> 

 

The most important aspect of the task is the asymmetrical reward structure. Unbeknownst to 

participants, one of the stimuli (called the “rich” stimulus) is followed by reward approximately three 

times as often as the alternative “lean” stimulus. If participants are not certain about the stimulus, they 

can incorporate knowledge about their reward history into their decision and choose the rich stimulus so 

as to maximize their chances to accumulate rewards. Healthy individuals have consistently shown to 

develop a response bias towards the rich option (Huys et al. 2013). 

Using this task, Pizzagalli, Jahn, and O’Shea (2005) found a reduced ability in (healthy) participants 

with high depression (BDI) scores to adjust their behavior based on their reward history, while low BDI 

participants developed a stronger response bias towards the rich stimulus.  Similarly, worse performance 

has been observed in MDD patients (Pizzagalli, Iosifescu, et al. 2008), stressed individuals (Bogdan and 

Pizzagalli 2006), euthymic (i.e. neutral mood) bipolar outpatients (Pizzagalli, Goetz, et al. 2008), as well 

as volunteers receiving medication (Pizzagalli, Evins, et al. 2008), and even healthy participants with a 

history of MDD (Dutra et al. 2009; Pechtel et al. 2013). 

These studies used signal detection theory and summary statistics from raw behavior to analyze the data. 

Huys et al. (2013) extended this by using trial-by-trial reinforcement learning (RL) modelling to better 

understand the evolution of the behavior through time and get to a finer granularity in the analysis of the 

behavior. 
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While anhedonia has been associated with a diminished ability to use rewards to guide decision-making 

(such as in studies listed above), there exist varied possibilities for this impairment.  Of primary interest 

in this case study was the distinction between the primary reward sensitivity, the immediately 

experienced consummatory pleasure following reward, and the learning from reward. Huys et al. (2013) 

included these two factors as parameters into a reinforcement learning model. Figure 7.4 shows how 

changes in either reward sensitivity (𝜌) or learning rate (𝜀) could lead to the empirically observed 

changes in response bias. 

 

<insert Figure 7.4 around here> 

 

7.3.2 A basic RL model 

As described in Chapter 2.3, a standard Q-learning update rule incorporates learning rate � in the 

following way: 

𝑄!!! 𝑎! , 𝑠! = 𝑄! 𝑎! , 𝑠! + 𝜀×𝛿! (Eq. 1) 

where 𝑠! is the displayed stimulus on trial 𝑡, 𝑎! is the action on trial 𝑡 (i.e. which button was pressed), 

𝑄! 𝑎! , 𝑠!  denotes the internal value assigned to the stimulus action pair 𝑎! , 𝑠!  at trial 𝑡, 𝑟 ∈ {0,1} is 

the observed outcome, and 𝛿! = 𝜌𝑟! − 𝑄! 𝑎! , 𝑠!  is the prediction error. Note that Huys et al. (2013) 

included a reward sensitivity parameter 𝜌 that scales the true value of the reward.  A lowering of the 

learning rate 𝜀 increases the time needed to learn about the stimulus-action pairs, while a lowering of the 

reward sensitivity 𝜌 alters the asymptotic (average) values of Q that are associated with each pair. 

In addition, Huys et al. (2013) included a term, 𝛾𝐼 𝑎! , 𝑠! , encoding participants' ability to follow the 

task instructions (i.e. press one key for the short mouth stimulus, and the other key for the long mouth 

stimulus), where: 

𝐼 𝑎! , 𝑠! = 1 if stimulus 𝑠! required action 𝑎!, and 

𝐼 𝑎! , 𝑠! = 0 if action 𝑎! is the wrong response to stimulus 𝑠! 
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Higher values for the parameter 𝛾 indicate a better ability to follow instructions and will result in 

generally higher accuracy.  The two terms for 𝐼 and 𝑄 were added together to form a "weight" for a 

particular stimulus-action pair (on trial 𝑡): 

𝑊! 𝑎! , 𝑠! = 𝛾𝐼 𝑎! , 𝑠! + 𝑄! 𝑎! , 𝑠!  (Eq. 2) 

These weights are related to the probability of choosing action 𝑎 when stimulus 𝑠 was presented. From 

the above equation we can see that the probability of choosing an action does not only depend on 

following the task instructions (𝐼), but also on the internal value based on previous experience (𝑄). Huys 

et al. (2013) used the popular SoftMax decision function to map these weights to action probabilities: 

𝑝 𝑎�|𝑠! = !

!!!"# ! !! !!,!! !!! !!,!!
 (Eq. 3) 

𝑊! 𝑎! , 𝑠!  is the weight associated with choosing the wrong action for stimulus 𝑠 at trial 𝑡. The softmax 

gives the probability that individuals choose the correct action given a certain stimulus. While 

individuals' parameters are not directly accessible, it is possible to infer them by fitting the model to 

their sequence of actions, i.e. by finding parameters that maximize the probability that the model would 

produce a similar sequence of actions when presented with the same sequence of stimuli (see Section 

2.5).13 

7.3.3 Including uncertainty in the model 

The above model ignores one central aspect of the Signal Detection Task: stimuli are only displayed 

very briefly and so participants can never be certain about which of the two stimuli they actually 

observed. To account for perceptual uncertainty about the stimulus, Huys et al. (2013) expanded the 

model to assume that when participants compute their internal weights that guide their decision, they 

incorporate the possibility for both stimuli to have been presented. This leads to an updated equation for 

the weights, which now includes a term for stimulus 𝑠 as well as a term for the alternative stimulus 𝑠: 

𝑊! 𝑎! , 𝑠! = 𝛾𝐼 𝑎! , 𝑠! + 𝜁𝑄! 𝑎! , 𝑠! + 1− 𝜁 𝑄! 𝑎! , 𝑠!  (Eq. 4) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13	
   	
  One might wonder about the fact that the softmax function here does not include an (inverse) temperature 
parameter. However, it can be shown that such a parameter would be equivalent to 𝜌 in these models (Huys et al. 
2013). 
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Huys et al. (2013) use the parameter 𝜁 to capture the average certainty (i.e. their belief) about which 

stimulus they actually observed and called this model "Belief". 

7.3.4 Testing more hypotheses 

Reinforcement learning models can be used to describe specific hypotheses about the behaviour of 

participants while performing the task. Model comparison (see also Section 2.5) then allows one to find 

the model that "best fits" the data, by which is generally meant that the model is neither too simplistic 

nor too complex and can explain how the data was generated. Usually, model comparison is used to test 

different hypotheses, heuristics, or strategies that participants may employ to solve the task. One other 

such hypothesis about performance in the Signal Detection Task is that participants could feel as if they 

are being punished when they do not receive a reward on a given trial.  In the models described above, 

the reward 𝑟 was coded as 1 or 0 (presence or absence of reward).  Huys et al. (2013) changed the 

model to test the possibility that participants would perceive a lack of reward as punishment by 

including a punishment sensitivity parameter 𝜌!. The prediction error term therefore becomes 

𝛿! = 𝜌𝑟! + 𝜌! 1− 𝑟! − 𝑄! 𝑎! , 𝑠!  (Eq. 5) 

A final possibility is that participants might completely ignore the stimuli and only focus on the values 

of actions.  Huys et al. (2013) formalized an "Action" model by setting the 𝜁 parameter of the model 

"Belief" (in Eq. 4) to 0.5, which results in the weights equation 

𝑊! 𝑎! , 𝑠! = 𝛾𝐼 𝑎! , 𝑠! + !
!
𝑄! 𝑎! , 𝑠! + !

!
𝑄! 𝑎! , 𝑠!  (Eq. 6) 

The 𝜁 parameter captures the average 'belief' about which stimulus they actually observed. By fixing the 

parameter at 0.5, participants are assumed to (on average) ignore the stimulus and only update the value 

of their actions. This means they would only learn about the values of "left" or "right" button press. 

Table 7.1 summarizes all four models. 

< Insert Table 7.1 around here> 

7.3.4 Results 

Huys et al. (2013) found that the model "Belief" best explained the data and therefore focused further 

analysis on this single model (Figure 7.5A).  The authors also performed additional checks. For 

example, they confirmed that the model could explain more choices than a null model that assumed 
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participants always chose options randomly. Huys et al. (2013) then attempted to relate the estimated 

model parameters to measures of depressive symptoms severity, and in particular to anhedonia. The 

authors used the anhedonic depression (AD) questionnaire. They performed a correlation analysis to 

investigate whether primary reward sensitivity (𝜌) or learning (𝜀) was most associated with AD (Figure 

7.5B). They found a negative correlation between 𝜌 and AD, but no significant correlation between 𝜀 

and AD. This suggested that reward sensitivity rather than learning rate is primarily impaired in 

anhedonic depression. 

 

< Insert Figure 7.5 around here> 

There are limitations to these results. For example, Huys et al. (2013) found that reward sensitivity and 

learning rate were strongly negatively correlated.  Additionally, the reward sensitivity parameter could 

not be distinguished from a temperature parameter typically included in the SoftMax decision rule. This 

means that differences in the reward sensitivity parameter might have masked differences in the 

exploration-exploitation behavior of participants.  Another aspect of reward processing that the study did 

not touch on is effort, which is a large part of everyday decision making.  Because in the signal detection 

task participants always have to exert the same amount of effort (a button press) independent of the 

stimulus they chose, it was not possible to address this here. 

7.4 Discussion 

Depression is a devastating disease with a major societal impact and rising prevalence (Vos et al. 2012), 

which make it an important area of study.  Due to unclear boundaries between categorical definitions of 

psychiatric disorders, current research often focuses on individual personality traits such as neuroticism 

or depression symptoms such as anhedonia, both of which have been identified as promising 

endophenotypes of depression (Pizzagalli 2014).  However, it has been noted that anhedonia itself 

encompasses various subdomains (e.g. hedonic response to pleasurable stimuli, but also motivation to 

pursue such stimuli) and these also need to be teased apart (Treadway and Zald 2013). 

Patients suffering from depression routinely display impairments in a range of different experimental 

paradigms (Snyder 2013; Rock et al. 2014; Chen et al. 2015; Rupprechter et al. 2018).  Different 

computational tools and techniques (connectionist models, diffusion models, reinforcement learning 
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techniques, Bayesian decision theory) have been used to describe this (abnormal) behavior and brain 

activity in depression, to gain insight into cognitive and neural processes, and to make predictions. 

An important aim for computational psychiatry is the development of computational assays that can be 

used to separate patients into subgroups, generate treatment recommendations, and make predictions for 

the outcome of those treatments (Stephan, Baldeweg, and Friston 2006; Stephan and Mathys 2014; 

Chekroud et al. 2016).  As Huys et al. (2016) put it, "Aspects of decision-making that have predictive 

value may become useful for the guidance of treatment or for alternative (and complementary) 

classifications of psychiatric disorders and individual patients."  Reinforcement learning has been 

described as especially promising in this regard (Hitchcock et al. 2017) and has indeed shown potential 

for classification of depression from purely behavioral data without the need for (subjective) 

questionnaires (Huys et al. 2008). 

Commonly observed pessimistic cognitive biases in depression have been explained using prior beliefs 

within the framework of Bayesian decision theory (Huys, Daw, and Dayan 2015; Stankevicius et al 

2014).  Simulations of neural network models have shown that biases could arise from a combination of 

different mechanisms including over-learning of negative information and rumination (Siegle and 

Hasselmo 2002).  Drift diffusion models have been used to explain how aberrant behaviour relates to 

executive control deficits (Dillon et al. 2015; Vallesi et al. 2015) and rumination (Pe, Vandekerckhove, 

and Kuppens 2013). 

RL models in which behavior is fitted on a trial-by-trial basis make it possible to measure group 

differences in behavior that are not obvious from raw data. Our case study (Huys et al. 2013) pooled 

data from various studies using the same experimental paradigm and fitted different reinforcement 

learning models according to hypotheses of the behavior of participants. The goal was to better 

understand anhedonia and how it is related to aberrant reward processing. Results indicated that the 

symptom is primarily associated with the initial experience of reward, rather than the reward learning 

mechanism.  

On the neuronal level, there is substantial evidence that dopamine neuron activity encodes reward 

prediction errors (among other things; Schultz 1998; Iglesias et al. 2017).  Work by Kumar et al. (2008) 

and Gradin et al. (2011) revealed that in depression prediction error signals appear reduced in the 
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striatum and other dopamine rich regions of the brain, suggesting that symptoms of depression are 

associated with an abnormal encoding of reward learning signals. 

It is worth noting that in the meta-analysis of Huys et al. (2013), the authors found the two parameters of 

interest (reward sensitivity and learning rate) to be highly negatively correlated. Small changes in one of 

the parameters could therefore be compensated by changes in the other parameter, and Huys et al. 

(2013) had to perform additional analyses in order to increase their confidence in the fitted parameter 

values. The authors used the popular SoftMax function to model decision probabilities but decided 

against adding a temperature (or exploration-exploitation) parameter, because it would have traded off 

against the important reward sensitivity parameter. Changes in one of these parameters could have been 

compensated by changes in the other parameter.  The larger question here is how to reliably distinguish 

between parameters. At least some computational variables are thought to be encoded in the brain 

(Iglesias et al. 2017), for example dopamine neurons' activity is believed to encode prediction errors. 

However, to discover these biological correlates we need reliable estimates that are not confounded by 

other parameters.  The signal detection task was not initially designed with RL modelling in mind for 

example, and one could think about running a subtask to isolate exploration-exploitation behavior and 

estimate the temperature parameter independently. Replication of results, especially involving larger 

number of participants, will also be important before useful computational assays can be developed. 

Paulus, Huys, and Maia (2016) published a pipeline describing additional phases necessary for 

computational psychiatry to support the development for new drugs. 

Current research has often focused on reward. While the omission of a reward might be felt as 

punishment by participants (as was assumed in Huys et al. 2013), Chen et al. (2015) point out that 

reward and punishment processing involve different neural bases. They hypothesize that depression 

might be characterized by a gain-loss asymmetry, so that patients experience decreased reward 

sensitivity but increased punishment sensitivity.  As mentioned above, reward processing can also 

further be sub-divided into different domains. The association between anhedonia and the motivation to 

exert effort could not be addressed in our case study.  In natural settings, patients weigh the pros (reward 

outcome) against the cons (effort required) to make a decision (cost-benefit analysis).  Therefore, when 

an individual displays an abnormally large effort sensitivity, perceiving efforts as more effortful than 

they objectively are, they may decide against engaging in a potentially rewarding activity.  The effort 

cost might be perceived as outweighing the potential reward outcome.  This is also related to what is 
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observed in Parkinsons’ patients who display high levels of apathy (a symptom akin to anhedonia; 

Husain and Roiser 2018).  In the future, scientists may want to design tasks that enable them to test 

hypotheses about different reward learning domains such as effort sensitivity and reward sensitivity. 

While much research points towards behavioral deficits of patients suffering from MDD, there is also 

evidence for improved performance in depression (Beevers et al. 2013). Replications and robust 

(computational) techniques will be needed to pinpoint exactly when impairments occur and how they 

relate to aberrant brain activity. Memory impairments are common in depression (Rock et al. 2014; 

Snyder 2013), but computationally they seem as of yet still largely unexplored.  Notably, Dombrovski et 

al. (2010) included a memory parameter in their reinforcement-learning model and found that depressed 

suicide attempters discounted previously observed rewards more than healthy controls.  It has been 

proposed that many observed impairments in schizophrenia could potentially be explained by deficits in 

the memory of patients (Strauss et al. 2010; Collins et al. 2014).  Future research might want to consider 

whether memory impairments could also be a (partial) explanation for many of the observed 

abnormalities in depression. 

 

< insert Box 7.1 here, Open Questions> 

 

7.5 Chapter Summary 

Behavioral impairments are prevalent in depression and computational methods provide a useful tool to 

tease apart different (neural) mechanisms that might influence learning and decision-making.  

Computational modelling of behavior in participants with depression has provided refinement and 

additional evidence for theories of MDD, which suggest that negative (perceptual) biases, deficient 

cognitive control, impaired reward learning, and beliefs about the controllability of the environment are 

all important aspects of the disease. Clever task design and replication involving larger samples, 

combined with robust computational techniques, are now needed to advance the field.  It is important as 

well not to neglect the study of patients with moderate-severe mood disorder (rather than participants 

with low mood or mild forms of depression, who are often easier to study) and even of treatment-

resistant patients.  We want to move from findings that are able to distinguish between groups of 
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patients and healthy control participants to results that show convincing individual differences along 

symptom dimensions.  This will ultimately be necessary to make treatment recommendations and 

predictions of outcomes for individuals based on non-invasive measurements. 

7.6 Further Study 

Chen et al. (2015) review a large number of computational studies in depression, focusing on 

reinforcement learning approaches. Early model-based neuroimaging studies showing altered brain 

activity during Pavlovian and instrumental learning in depression can be found in Kumar et al. (2008) 

and Gradin et al. (2011). Huys, Daw, and Dayan (2015) provide a compelling decision-theoretic analysis 

of depression and its symptoms. A recent study by Pulcu and Browning (2017) suggests that affective 

biases (i.e. the tendency to differentially prioritise the processing of negative events relative to positive 

events) - commonly observed in depression - may be related to individuals attributing higher 

information content to negative events than positive events. Recently, the availability of large amounts 

of data has enabled machine-learning approaches to be used for treatment outcome predictions 

(Chekroud et al. 2016). 
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Is there a more objective way to diagnose major depression, which does not rely on (subjective) 

interviews? 

Can we build automated assessment or screening tools using (computational modelling of) 

behaviour during decision-making tasks? 

Should we focus on categorical definitions, individual symptoms, or networks of symptoms (cf. 

Borsboom and Cramer 2013)? How are symptoms of depression related to other psychiatric 

disorders -- especially anxiety? 

How far will brief experimental studies in the lab or clinical setting take us in the quest to better 

understand depression? How important is it to assess behaviour within more ecologically valid 

environments (e.g. using mobile phones to collect data during day-to-day activities)? 

How can we combine machine learning (data-driven) approaches with theory-driven 

computational modelling (cf. Huys, Maia, and Frank 2016) to make use of vast amounts of data? 

When is it sufficient to look at behaviour and at what point do we need to include the analysis of 

brain activity? 

How are abnormalities in brain function related to alterations in brain structure? 

What are the sub-domains of reward and punishment processing and how to these sub-domains 

(e.g. "liking" and "wanting") relate to symptoms of depression? 

Can memory impairments explain many of the observed behavioural abnormalities? 

Can we use the knowledge gained through the computational approach to depressive disorders to 

develop better pharmacological or psychological therapies or prevention strategies? 

Box 7.1: Open questions in computational research regarding depressive disorders.   
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Chapter 8: Anxiety Disorders from a Computational Perspective 
 

Erdem Pulcu and Michael Browning 
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8.1 Introduction   

 

Anxiety disorders are among the most common psychiatric diagnoses, with the lifetime prevalence of 

any of the disorders estimated to be as high as 33% (Alonso, Lépine, and ESEMeD/MHEDEA 2000 

Scientific Committee 2007). A range of specific diagnoses is included under the umbrella term of 

anxiety disorders (). Many of these specific diagnoses are based around the context in which symptoms 

of anxiety are evoked. For example, social anxiety disorder describes a condition in which anxiety is 

evoked by social situations whereas agoraphobia describes a condition in which anxiety is evoked by 

being in situations from which it is difficult to escape from (or where help is not available). There has 

been some debate about the precise set of diagnoses which should be included as anxiety disorders with 

the recent version of the Diagnostic and Statistical Manual (DSM-V) opting to move obsessive-

compulsive disorder and post-traumatic stress disorder out of the anxiety category and into their own 

categories (see  for summary of anxiety related diagnoses in recent diagnostic manuals). Generally a 

diagnosis of one of the anxiety disorders requires that significant symptoms of the disorder are present, 

often for at least 6 months, that the symptoms cause significant difficulties in everyday life, and that 

they cannot be better accounted for by other psychiatric or medical conditions or by the effects of drugs 

or alcohol.  

 

< insert Table 8.1 around here> 

 

A second approach to subdividing the anxiety disorders, other than the context in which symptoms are 

evoked, is whether symptoms of fear or worry are predominant in the presentation of the disorder. Fear 
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describes a set of responses, including physiological, behavioral and subjective, to a well-defined threat 

and is characteristically seen in the specific phobias, such as phobias of animals like spiders, or 

situations such as darkness. In contrast, worry describes a set of responses to less well-defined, often 

potential future threats and is characteristically seen in generalized anxiety disorder. It is generally easier 

to elicit fear responses in a laboratory setting or in animal models than it is to induce worry. As a result 

of this much of the etiological work relevant to anxiety, including that reviewed below, has focused on 

the systems responsible for the production of fear responses rather than those implicated in worry.  

Lastly, as with many psychiatric conditions, it is worth noting that symptoms of anxiety in the 

population appear to occur on a continuum with little evidence of qualitative shifts in symptoms 

between “clinical” and “non-clinical” groups. Because of this, studies that examine “trait anxiety”, the 

tendency to experience symptoms of anxiety in everyday life, can be informative when considering 

etiological processes in the anxiety disorders. 

In this chapter we provide a brief overview of the relevant conceptual background and results of recent 

studies which have taken a computational approach to study anxiety (see also; Raymond, Steele, and 

Seriès 2017; Grupe, D.W. 2017; Bishop and Gagne 2018 for review) before describing one study 

(Browning et al. 2015) in more detail. We end by briefly summarizing the state of the literature and 

suggesting how it may most effectively be developed. 

 

8.2 Past and Current Computational Approaches  

 

The observation that underpins much of the mechanistic work investigating anxiety disorders is that 

individuals can learn to fear stimuli or situations that they previously did not fear and, equally, can learn 

that previously feared stimuli or situations are in fact safe. This was memorably demonstrated a century 

ago in the experiments carried out by John Watson and Rosalie Rayner on the 9-month old child known 

as “Little Albert”. In these studies, Albert was allowed to play with a white laboratory rat, to which he 

showed no fear. Following this, whenever he touched the rat, the experimenters made a sudden loud 

noise by banging a hammer against a steal bar, which startled Albert. Subsequently, when the rat was 

shown to Albert he would react with fear, even though no loud sounds were made. In other words, 

Albert had associated a neutral stimulus (the rat; in conditioning parlance, called the conditioned 
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stimulus; CS+) with an aversive stimulus (the loud sound or unconditioned stimulus; US) and had thus 

learned to show a fear response (crying or the conditioned response; CR) to the rat. Notwithstanding 

developments in the ethical oversight of experimental studies that have curtailed psychologists’ freedom 

to traumatize infants, the same general experimental procedure has formed the basis of a large body of 

fear conditioning studies in humans and animals. The methodology of the studies has been developed by 

including control stimuli (CS-) which are not paired with aversive outcomes and by examining 

extinction (i.e. the reduction of a previously learned fear association which occurs when the CS+ is 

presented in the absence of a US), which allows these studies to test some simple hypotheses about the 

etiology of anxiety disorders:  

a. Do patients with anxiety disorders demonstrate an enhanced learning of fear association to the 

CS+? 

b. Do patients with anxiety disorders demonstrate a reduced extinction of fear associations? 

c. Do patients with anxiety disorders demonstrate a greater generalization of the fear CR (i.e. do 

patients respond to safe stimuli, CS-, as if they were associated with the aversive outcome)?  

A recent meta-analysis of fear conditioning studies in anxious participants (Duits et al. 2015) did not 

find evidence for enhanced fear learning to the CS+ (although see the earlier meta-analysis reported by 

Lissek et al. 2005 for slightly different conclusions), but did find evidence for reduced extinction of the 

CS+ and for increased generalization from the CS+ to the CS-.  

The relative ease with which fear conditioning paradigms can be deployed in animal models has 

stimulated a well-developed mechanistic literature on the amygdala-based neural systems which support 

fear learning (Duvarci and Pare 2014; Johansen et al. 2011) and a parallel clinical neuroimaging 

literature in anxious patients (LeDoux and Pine 2016; Craske et al. 2017).  The overarching picture from 

the latter describes a tendency for anxious individuals to show increased limbic (including amygdala) 

and reduced frontal activity in response to aversive stimuli (Indovina et al. 2011). While this work has 

led to mechanistic models which describe specific roles for distinct neural systems in the anxiety 

disorders (LeDoux and Pine 2016), to date computational approaches have not been employed in this 

work. As a result, we focus in the rest of this chapter on studies, which examine the behavior of anxious 

individuals and how computational techniques have been used to investigate this. 

Conditioning studies such as those described above are well suited to computational descriptions with 

much of the early models of reinforcement learning being used to capture learning behavior in animal 
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conditioning studies (Rescorla and Wagner 1972). However, computational approaches have rarely been 

applied to behavioral or physiological measures in human fear conditioning studies relevant to anxiety. 

One reason for this may be that traditional human fear conditioning tends to employ “strong situations” 

(Lissek, Pine, and Grillon 2006) in which a CS+ (e.g. a shape on a screen) is paired deterministically 

with a unconditioned stimulus such as a shock. When faced with this sort of radically simple study 

design human participants can generally learn the association between the CS+ and the aversive 

outcome in one or two trials. In this sort of simple learning situation, behavioral or physiological 

responses over only a handful of trials are generally collected. Such responses can be adequately 

captured using simple summary statistics and computational analysis tends not to add much. However, 

concern as to the ability of strong situations to capture the aspects of fear learning most relevant to 

anxiety has prompted recent studies to explore how anxiety is related to learning in more ambiguous 

situations. Such situations represent areas in which computational descriptions start to be more useful.  

One approach to introducing ambiguity into fear conditioning studies has been to utilize strong fear 

conditioning procedures, with CS+/CS- stimuli strongly associated with the presence/absence of 

aversive outcomes, but then test participants’ response to stimuli that are ambiguous with regard to their 

identity as CS+ or CS-. For example, Lissek and colleagues (Lissek et al. 2010) used a large ring 

stimulus as a CS+ and a small ring as an unambiguous CS- in patients with panic disorder and controls. 

Following this, participants were presented with stimuli of intermediate size, while startle response was 

measured using electromyography (EMG). In keeping with similar work in a variety of clinically 

anxious populations from the same laboratory, patients with panic disorder showed a greater degree of 

generalization of the CR than controls; that is, they reacted to a greater proportion of the ambiguous 

stimuli as if they were a CS+ than controls. This work suggests that anxiety may be associated with a 

difficulty in precisely representing states of the world, in accurately assigning credit for aversive 

outcomes or with a reduced belief in one’s ability to avoid future aversive outcomes (Zorowitz, 

Momennejad, and Daw 2019). While finding the optimal approach to generalization and credit 

assignment is a core question tackled by the machine learning literature (Alpaydin, Ethem 2009), to date 

fear conditioning studies in humans which examine generalization (see; Dymond et al. 2015 for a recent 

review) have again tended to rely on summary statistics rather than computational approaches. 

A second way in which ambiguity may be introduced to conditioning studies is by reducing the strength 

of the association between conditioned and unconditioned stimuli (i.e. by reducing the probability with 
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which an aversive outcome follows a cue) and/or by employing designs in which the strength of this 

association changes over time (i.e. by changing which cue is most predictive of an outcome; Yu and 

Dayan 2005). These designs begin to capture some of the complexity missing from simple conditioning 

studies and highlight the real-world challenges faced by an individual trying to learn what may harm 

them in the environment. While the specific challenges introduced by this ambiguity are described in 

more detail in the case study example below, their effect is straightforward— they vastly increase how 

difficult it is to learn about the causes of aversive outcomes and therefore to select the optimal behaviors 

which avoid such outcomes. A number of lines of evidence suggest that humans employ various 

heuristics, simplified decision rules, in order to render this problem more tractable (Tversky and 

Kahneman 1992; Kahneman and Tversky 1979). The degree to which use of these heuristics is 

associated with anxiety have been examined in a number of studies using computational techniques.  

Two of the most consistently reported heuristics are risk aversion—the tendency to select certain over 

probabilistic outcomes even when the expected value (i.e. the probability multiplied by the magnitude) 

of the certain outcome is lower; and loss aversion—the tendency to be more influenced when making a 

decision by potential losses than potential gains. Avoidance of perceived threatening situations is 

believed to be a causal process in the anxiety disorders (Barlow, D. H. 2004) suggesting that both of 

these heuristics may be exaggerated in anxiety disorders and that reducing them may be an important 

component of treatment. In order to assess this possibility, Charpentier and colleagues (Charpentier et al. 

2017) compared the behavior of a group of clinically anxious patients with non-anxious controls using a 

gambling task in which both risk and loss aversion could be independently estimated as parameters of a 

Prospect Theory (Tversky and Kahneman 1992) inspired decision rule. The authors reported 

significantly increased risk but not loss aversion in the anxious group suggesting that the core process 

associated with anxiety is an aversion of risk rather than a general overweighting of negative outcomes, 

although the same group also report an increased loss learning rate in response to aversive stimuli 

(Aylward et al. 2019). 

A complementary view of behavioral heuristics during learning and decision making suggests that 

humans (and animals) combine both a flexible instrumental learning system, which learns the best action 

to take in response to specific stimuli, with a stereotyped Pavlovian system which responds in an 

evolutionary pre-specified manner to stimuli (Dickinson, T. and Balleine, B. 2002). The Pavlovian 

system leads to fast, rigid responses to stimuli such as generally withholding responses to punishments 
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while facilitating responses to rewards. Mkrtchian and colleagues (Mkrtchian et al. 2017) probed these 

systems in patients with anxious or mood disorder and controls, using a task in which, on some trials, 

participants had to respond in line with Pavlovian biases and other trials in which they had to generate 

opposing responses (e.g. withhold a response to gain a reward or respond to avoid a punishment). This 

design allowed the authors to separately estimate the impact of the instrumental and Pavlovian systems 

on participant behavior using a reinforcement-learning model that included parameters which estimated 

the influence of both systems. The patient group was found to be more strongly influenced by the 

Pavlovian bias to withhold responses to a punishment, with other model parameters unchanged. The 

authors suggested that this reliance on Pavlovian inhibition provided mechanistic insight into the 

behavioral avoidance that is characteristic of anxiety disorders, that is, the avoidance arises because 

anxious individuals are more influenced by the automatic tendency to withhold responses in the face of 

punishment.   

The final way in which computational approaches have been used in studies of anxiety is as a tool to 

further decompose cognitive processes that are associated with the disorders. Beyond the learning-based 

work described above, cognitive accounts of anxiety suggest that habitual threat-related biases, i.e. the 

tendency to prioritize threat-related information at the expense of non-threatening information, are 

causally linked to the disorders (Mathews and MacLeod 2005). For example, experimental studies 

suggest that a greater tendency to direct attention towards threat-related information is causally 

associated with anxiety (MacLeod et al. 2002). Three separate studies have used drift-diffusion models 

to decompose reaction time data from tasks investigating such negative biases in anxiety. As described 

in Section 2.2, Drift-diffusion models attempt to capture the process by which decisions (generally 

perceptual decisions) are made (Ratcliff et al. 2016), breaking this process into an initial non-decision 

making stage and a later stage in which evidence is noisily accumulated over time until a decision 

boundary is crossed.  Firstly, White and colleagues (White et al. 2010) reported that high anxious 

subjects demonstrated a higher drift rate for threatening, relative to neutral, stimuli, with a later result 

providing similar evidence using a slightly different metric (White et al. 2016). Aylward and colleagues 

(Aylward et al. 2017) report similar findings using positive outcomes with higher anxiety being 

associated with a lower drift rate for positive stimuli. Together these results are consistent with two 

possible interpretations: a) that anxious participants view the threatening stimuli as more threatening 

(and positive stimuli as less positive) or b) that anxious individuals use a lower threshold to classify a 

stimulus as threatening and a higher threshold to classify positive stimuli. By re-parameterizing the 
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traditional measures of negative bias reported for anxious participants, these studies hint at the “where” 

in the process of evidence accumulation, biases may be created. 

In summary, the centrality of learning and decision making to the mechanistic literature on anxiety and 

its disorders makes them well placed to benefit from the insights provided by computational approaches. 

However, to date relatively few studies of anxiety have employed computational techniques. In the 

following section we describe in more detail the results from a final study that investigated how anxious 

individuals deal with the uncertainty caused by learning about an association that changes over time. 

 

8.3 Case Study Example: Anxious individuals have difficulty in learning about the uncertainty 

associated with negative outcomes (from Browning et al. (2015))  

8.3.1 Theoretical Background, Expected and Unexpected Uncertainty 
 

As described in the previous section, learning in the real world is more challenging than that captured by 

traditional conditioning studies (see Pulcu and Browning 2019 for a general discussion of uncertainty 

estimation). Below we present an example to illustrate the different sources of uncertainty that 

complicate learning and then describe how this uncertainty can be dealt with.  

Imagine trying to learn what mood your cat is in based purely on observing whether it does or does not 

scratch you when you stroke it (Figure 8.1). When the cat is in a good mood it will only scratch you 

when it is play-fighting, say on 10% of the times you stroke it (Figure 8.1 green areas), whereas when it 

is in a bad mood it will scratch you on 80% of the times you stroke it (Figure 8.1, red areas). The cat’s 

mood is therefore useful to know—because it will help you predict how likely you are to be scratched in 

the future. However, given that you can’t directly observe the cat’s mood, you need to infer it based on 

previous events (whether it scratches you when you stroke it). The first challenge in this task is that 

being scratched (or not) by the cat is an ambiguous measure of the cat’s mood-- if you are scratched, it 

may be because the cat is in a bad mood (and is therefore more likely to scratch you) or it may be 

because it is play-fighting. Similarly, if you are not scratched, it may be because the cat is in a good 

mood or that you were just lucky and this time, for whatever reason, it chose not to scratch you even 

though it was in a bad mood. One way to get a better estimate of the cat’s mood is to study its behavior 

over a longer time period; if you have stroked it 10 times and it has only scratched you once then it is 
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probably in a good mood (although you still can’t be certain of this). However, a further challenge limits 

how useful collecting data over a longer time period is--the cat’s mood is characterized by some degree 

of volatility, i.e. it will change over time, so even if the cat was in a good mood the last time you stroked 

it, it may be in a bad mood now, which means you can’t rely on the cat’s previous behavior, particularly 

in the distant past, as being representative of its current mood.   

 

< Figure 8.1 around here>  

 

In order to learn as accurately as possible what the cat’s mood is and therefore how likely it is that you 

will be scratched you need to deal with the uncertainty generated by the two challenges described above; 

first the cat’s behavior is probabilistic rather than deterministic, so even if you know precisely what its 

mood is, you will not be able to predict with certainty whether it will scratch you when you stroke it. 

This form of uncertainty is sometimes called “expected uncertainty” (Yu and Dayan 2005) as, after 

sufficient experience, it can be precisely determined (e.g. you can know that the probability of the cat 

scratching you is exactly 10% when it is in a good mood even though you can’t say with certainty what 

will happen on each occasion you stroke it). Expected uncertainty erodes how informative each 

individual event is when you are learning. For example, imagine your cat’s behavior had low expected 

uncertainty so that it never scratched you when it was in a good mood but always scratched you when it 

was in a bad mood. In this case you can instantly tell what mood the cat is in after you have stroked it 

once. On the other hand if the cat’s behavior has high expected uncertainty so that it scratches you 40% 

of the time when it is in a good mood and 60% of the time when it is in a bad mood, it becomes much 

more challenging to estimate its mood. In other words, the higher the expected uncertainty the less 

informative each particular event (i.e. stroking the cat and observing whether it scratches you) is. A 

second form of uncertainty is produced by changes in the underlying association that you are learning 

and is sometimes called “unexpected uncertainty” (Yu and Dayan 2005). This occurs when the cat’s 

mood changes from good to bad or vice versa, so that the probability that it will scratch you changes. 

The effect of unexpected uncertainty is to reduce how informative previous events are during learning. 

For example, imagine your cat’s mood never changes and the probability that it will scratch you is 

always 30%. In this case the unexpected uncertainty is low and the most accurate way to precisely 

estimate how likely it is to scratch you (and therefore its mood) is to estimate over many trials the 
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average rate at which it scratches you. In contrast, when learning about a cat whose mood changes 

frequently, that is whose behavior has high unexpected uncertainty, you can’t rely on distant events as it 

is likely that they occurred when the cat was in a different mood than currently and you have to rely 

more on recent events. In other words, previous events become increasingly less informative the higher 

the unexpected uncertainty. In the next section we introduce a simple learning model to illustrate how 

one should adapt to these sources of uncertainty during learning.  

8.3.2 Learning as a Rational Combination of New and Old Information 
 

 The Rescorla-Wagner learning rule (Rescorla and Wagner 1972) provides a simple description of how 

one might learn what the cat’s mood is: 

𝑟(!!!) = 𝑟(!) + 𝛼(𝑠 ! − 𝑟 ! ) 

In this equation, 𝑟(!) is the model’s estimate of the probability that the cat will scratch you at time 𝑡, 

which we will use as a metric of its mood (i.e. when 𝑟 is 1 the cat’s mood is as bad as it can be, when it 

is 0 the cat’s mood is as good as it can be). We initialise this so 𝑟! = 0.5 and then update the model’s 

belief every time the cat is stroked using the outcome information 𝑠(!) which equals 1 if the cat scratches 

and 0 otherwise. A single parameter is included, the learning rate 𝛼, which lies between 0 and 1. 

Generally the learning rate is treated as a free parameter or is arbitrarily set at some value. However, in 

order to learn as efficiently as possible, the learning rate used should adapt to the two sources of 

uncertainty describe above (or, at least, to the learner’s estimates of these uncertainties).  

Note that in the above equation, 𝑠(!), the outcome, represents the new information presented to the 

model each time the cat is stroked and 𝑟(!) is the model’s current belief about the mood of the cat, which 

has been influenced by all the previous times it has been stroked. If we rearrange the above equation to 

separate these two variables we get: 

𝑟(!!!) = (1− 𝛼)𝑟(!) + 𝛼(𝑠 ! ) 

This demonstrates that the Rescorla-Wagner model’s belief after each event is simply a weighted mean 

of the information provided by the recent event (𝑠(!)) and the model’s previous belief (𝑟(!)) with the 

learning rate acting as the weight. When the learning rate is 1 all the weight is placed on the new 
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information and the model discards its previous belief, whereas when the learning rate is 0, the model 

places all the weight on its previous belief and ignores the new information. 

In the previous section, we described how expected and unexpected uncertainty influence how 

informative events are—a high expected uncertainty reduces how informative new events are, a high 

unexpected uncertainty reduces how informative previous events are. Efficient learning requires beliefs 

to be more influenced by informative than non-informative events indicating how expected and 

unexpected uncertainty should influence learning rate. High expected uncertainty (i.e. a noisy 

relationship between cue and outcome) reduces how informative current events are indicating that a 

lower learning rate should be used to reflect the fact that previous events are relatively more 

informative, high expected uncertainty (volatility) reduces how informative previous events are 

indicating that a higher learning rate should be used. The relationship between unexpected uncertainty 

and learning rate is illustrated in Figure 8.2 in which it can be seen that a model with a high learning 

rate is better at learning about a volatile cat, whereas a low learning rate is better for a stable cat. 

 

< Figure 8.2 around here> 

 

8.3.3 Effect of Volatility on Human Learning  
 

As explained above, learning about a volatile process is more efficiently achieved with a higher learning 

rate. A number of studies (Behrens et al. 2007; 2008; Nassar et al. 2012) have examined whether 

humans adapt their learning as described above, that is whether humans estimate the volatility of the 

process they are learning about and tune their learning rate to increase learning efficiency. In all of these 

studies, participants were required to learn about the association between a cue and a reward during 

periods in which the association between the two was either volatile or stable. The consistent findings of 

the studies are that participants adapted the learning rate they used precisely as described above 

employing a higher learning rate in volatile than stable contexts. Interest has also focused on 

physiological markers of this volatility estimation process. An early synthesis of animal work (Yu and 

Dayan 2005) suggested that phasic activity of the central norepinephrine system (NE) may contain an 

estimate of volatility or unexpected uncertainty. This proposition is consistent with current theories 
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(Aston-Jones and Cohen 2005) on the broader role of NE, which is argued to increase the gain of 

sensory representations and thus increase their impact on behavior (i.e. analogous to an increased 

learning rate which, as described above, is an appropriate response to volatility). Phasic activity of the 

central NE system is correlated with pupil dilation in primates (Joshi et al. 2016) suggesting that it may 

be possible to estimate activity of this system using pupillometry. Nassar and colleagues (Nassar et al. 

2012) collected pupillometry data during their study and reported a positive correlation between the 

learning rate participants employed and the magnitude of pupillary dilation during the outcome phase of 

their task. These findings are in line with the proposal by Yu and Dayan (2005) and suggest that 

estimates of central NE may provide a physiological marker of the neural process that adapts learning 

rate to estimated volatility. 

8.3.4. Summary of Browning et al. Study 
 

 The background presented above suggests that humans adapt their learning to statistical aspects of their 

environment—such as the stability or volatility of the association they are learning. This observation 

raises the possibility that anxiety may be associated with difficulties in implementing this adaptation, 

rather than (or as well as) gross differences in learning about or extinguishing fear associations. 

In order to test this possibility Browning and colleagues (Browning et al. 2015) recruited a group of non-

clinical participants who had been pre-screened to ensure a range of trait anxiety scores. Participants 

completed an aversive learning task (Figure 8.3) in which two shapes were probabilistically associated 

with receiving an electric shock while pupilometry data was collected. The crucial manipulation of the 

task is that it was formed of two blocks (Figure 8.3b)—one volatile and one stable.  

The learning rate for each participant and each block was estimated by fitting a computational model to 

participant choice in that block. The model consisted of three stages with a single free parameter in each 

stage. First, a simple Rescorla-Wagner rule was used to learn the probability that the shock was 

associated with ‘shape A’: 

  

In this stage, 𝑟!!!"#$(!) is the model’s belief on trial 𝑖 that the shock would be associated with shape A 

(note that the belief for shape B is simply 1 – that for shape A), 𝜀!!!"#$(!) is the prediction error and the 

𝑟!!!"#$(!!!) = 𝑟!!!"#$(!) +   𝛼𝜀!!!"#$(!) 



	
  

	
   173	
  

free parameter 𝛼 is the learning rate. The second stage calculated the value gshape of each shape by 

combining this learned probability, 𝑟!!!"#$(!!!), with the shock magnitude, 𝐼!!!"#$ !!! : 

 

 

In this stage, 𝐹(!,!) transforms the learned probability using the free parameter 𝛾. The effect of this 

parameter is to either increase or decrease the relative weight of the probability vs. the magnitude when 

calculating the value (𝑔!!!"#$(!!!)) of each shape (i.e. this allows for the possibility that participants did 

not use the exact produce of probability and magnitude when making decisions but rather could be more 

influenced by outcome probability (𝛾 > 1) or magnitude (𝛾 < 1)). Finally, the two values are combined 

using a SoftMax equation: 

 

 

This stage has a single free parameter, 𝛽, the inverse temperature that controls the degree to which the 

values influence choice. The results derived from fitting this model are displayed in Figure 8.4. The 

critical result is displayed in panel B, which shows the relationship between trait anxiety and the degree 

to which participants altered their learning rate between the volatile and stable blocks. As can be seen, 

participants with lower anxiety adjusted their learning rate to a greater extent than participants with high 

anxiety. In other words, anxiety was not associated with a grossly increased or decreased learning rate 

during this task; rather anxious participants were less sensitive to the volatility of the task and adjusted 

their learning rate less. 

The second question addressed in the study was the degree to which the physiological measure of central 

NE function, pupil dilation, was related to the behavioral measure of learning rate and to trait anxiety 

(Figure 8.5). This was assessed using a two-stage analysis of the pupil data, similar to that employed in 

fMRI studies. At the first level, regression analyses were performed for each subject, which estimated 

the degree to which a range of explanatory variables, including estimated volatility, influenced pupil 

dilation on a trial-by-trial basis. Separate regression analyses were performed for each time point of 

pupillary data over six seconds after outcomes were presented. These analyses produced time series of 

beta weights which estimate the degree to which pupil dilation in an individual participant was 

𝑔!!!"#$  (!!!) = 𝐹 𝑟!!!"#$(!!!), 𝛾 ∗ 𝐼!!!"#$(!!!) 

𝐹 𝑟, 𝛾 = max[min 𝛾 𝑟 − 0.5 + 0.5 , 1 , 0] 

𝑃(!!!"#$!!!!"#$) =   
1

1+ exp(!!(! !"#$%& !! !"#$%& ) 

𝑃(!!!"#$!!!!"#$) =   
1

1+ exp(!!(! !"#$%& !! !"#$%& ) 
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influenced by a particular explanatory variable. A second level of analysis then combined these time 

series across all participants to test whether the explanatory variables influenced pupil dilation across the 

population of participants.  These analyses demonstrated that a greater differential pupil dilation 

between volatile and stable blocks was positively associated with a greater behaviorally estimated 

learning rate difference between blocks (results not shown) which is consistent with Yu and Dayan’s 

proposal for the role of NE (Yu and Dayan 2005). Critically the analysis also revealed that the pupils of 

participants with higher anxiety differentiated between volatile and stable blocks less than those of low 

anxious participants. 

  

< Figure 8.5 around here>  

 

Overall this study provided initial evidence that computational approaches may be usefully used to 

unpick the abnormal fear learning associated with anxiety. Specifically, it suggested that anxiety may be 

associated with difficulties in estimating the unexpected uncertainty of an environment or in using these 

estimates to guide learning.  

 

 

8.4 Discussion 

 

As reviewed in this chapter, anxiety disorders are a prime target for investigations that utilize 

computational approaches largely because there is clear evidence for a role of abnormal learning and 

decision-making in their etiology. To date, relatively few studies using computational approaches in 

anxiety have been published. Although preliminary, the computational work which has been completed 

has begun to describe differential use of decision making and learning heuristics in anxious individuals 

(Charpentier et al. 2017; Mkrtchian et al. 2017), reduced sensitivity to statistical aspects of the 

environment (Browning et al. 2015) and biased evidence accumulation processes during threat 

perception (White et al. 2016; 2010; Aylward et al. 2017). 

A common theme across these studies is that computational approaches have been used to identify and 

describe cognitive processes linked to anxiety that are not readily apparent using traditional analytic 
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strategies. For example, the study by Mkrtchian and colleagues sought to separately estimate the impact 

of an automatic Pavlovian and a more flexible instrumental learning system on decision making in 

anxiety, which would be difficult to achieve without some formal estimation of the effects of the two 

systems. The motivation for identifying and characterizing such cognitive processes is that they may 

improve our etiological understanding of anxiety which, it is hoped, will ultimately facilitate better 

patient care by improving our ability to stratify diagnoses and/or by guiding the development of novel 

treatments.  

A related observation about the published computational studies is that they have all used case-control 

designs to investigate and delineate cognitive differences between anxious and non-anxious groups. This 

is clearly a reasonable first step in identifying processes that are perturbed in anxiety, however these 

designs rarely provide tangible clinical benefit as they don’t provide strong evidence for a causal 

relationship between the processes and symptoms of anxiety or provide the sort of information that 

might usefully guide treatment. We believe that progress in realizing the clinical benefit of 

computational studies will require a broader range of study designs to be implemented in the future and 

suggest two specific examples. Firstly, having identified computationally defined processes associated 

with anxiety it will be important to test whether measurement of these processes may be useful in 

clinical situations, for example, do they predict prognosis or treatment response, suggesting that they 

may be used to guide treatment decisions? Longitudinal studies in depression have begun to find 

associations between computationally defined processes and treatment response suggesting that this 

approach is feasible (Huys et al. 2016) and may be usefully deployed in anxiety disorders. The second 

example concerns the development of novel treatments. Relationships between a cognitive process and 

anxiety, such as those described in this chapter, are particularly interesting when the relationship is 

causal. Causality is most clearly established using experimental designs in which the computational 

process is manipulated and the effects of this on symptoms are then measured. Conceivably, 

computationally defined processes which are causally related to symptoms may provide a new class of 

treatment targets for anxiety so it will be important to establish which of the identified processes are 

indeed causally related to symptoms rather than simply being associated with them. Manipulation of 

computational processes may be achieved using targeted cognitive interventions such as those used in 

the cognitive bias modification literature (Browning et al. 2012). However, an advantage of 

computational approaches generally is that they have been successful in linking cognitive processes to 

the underlying neural and neurochemical systems that produce them. This raises the possibility of also 
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using pharmacological interventions to manipulate the computational processes, such as using 

norepinepheric agents to alter learning rate (Jepma et al. 2016). Currently, the most commonly used 

pharmacological treatments for anxiety are benzodiazepines, which enhance central GABA 

transmission, and serotonin reuptake inhibitors, which increase synaptic serotonin (NICE 2007). While 

the molecular effects of these agents have been well characterized, their impact on cognitive processes is 

less clear. Computational approaches may also be used to extend our understanding of these drugs’ 

mechanism of action, possibly by examining their impact on the computational outcomes described in 

this chapter. 

A final observation is that, if a clinical impact is to be achieved it will be essential to ensure that 

published computational results are as robust and reliable as possible. Reliability is demonstrated by the 

replication of results and robustness requires the collection of large clinical data sets. Both of these goals 

will be facilitated by closer collaboration between disparate research teams in the computational field. 

Such collaborations are becoming increasingly feasible with developments in online communication 

technology as well as stimulus presentation and analysis software that facilitate the sharing of tasks and 

code as well as general communication between centers. The nascent field of computational psychiatry 

is well placed to take advantage of these developments (Browning et al. 2019). 

To conclude, computational approaches in anxiety are in their infancy, they have shown early promise in 

being able to identify and describe novel cognitive processes related to anxiety. Translation of this 

promise into clinical benefit will require the adoption of robust study methodology and a willingness to 

employ a broader range of study design. 

 

8.5 Chapter Summary  

 

A large amount of previous work has demonstrated that anxiety and its disorders are associated with 

abnormal learning about aversive outcomes. Computational approaches can be particularly useful when 

investigating both learning and decision making although relatively few studies to date have employed 

these techniques in anxious populations. The studies that have been published suggest that anxious 

individuals utilize different decision making and learning heuristics, show reduced sensitivity to 

statistical aspects of the environment and biased evidence accumulation during threat perception. While 
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computational work in anxiety is in its infancy, it shows promise in being able to identify novel 

cognitive processes which are relevant to the disorders and which are not apparent using standard 

analytic approaches. Future work needs to employ robust methodology and a broader range of study 

design if this promise is to be realized. 

 

8.6 Further Study  

 

Craske and colleagues (Craske et al. 2017) provide a recent and broad (although not computational) 

review of diagnostic, mechanistic and treatment related issues in the anxiety disorders including a 

section on the neural, genetic and cognitive associations of the disorders. This paper would be of interest 

to those who want a broad introduction to issues in anxiety research. A more focused review on the 

neurobiology of subjective vs. behavioral fear is provided by LeDoux and Pine (LeDoux and Pine 

2016). The example study in this chapter measured the changes in learning rate induced by volatility by 

fitting a simple learning model to a stable and a volatile block of trials. However, computational 

approaches can also be used to describe the underlying calculations necessary to estimate volatility. A 

number of previous papers have described different approaches to this problem. While these papers 

don’t specifically focus on anxiety disorders, they provide a useful computational background on how 

the volatility effect described in this chapter may be conceptualized. Firstly a seminal study by Pearce 

and Hall (Pearce and Hall 1980) describe how the Rescorla-Wagner model may be modified such that it 

adapts to the how surprising stimuli are (one way of estimating volatility is as the frequency with which 

surprising outcomes are observed). Secondly a neuroimaging paper by Li and colleagues (Li et al. 2011) 

suggested that a smoothed version of a Pearce-Hall signal was present in the human amygdala. Behrens 

and colleagues (Behrens et al. 2007) describe a fully Bayesian approach to this problem.  
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Chapter 9: Addiction from a Computational Perspective 
 

A. David Redish 

University of Minnesota, USA. 

 

9.1 Introduction: what is addiction? 

 

Everyone knows what addiction is.  We all know people whose lives have been ruined by drugs and we 

all have behaviors that we wish we could stop, but don’t.  However, the definition of addiction remains 

elusive.   Early definitions related to a “lack of will” and suggested addiction was a moral failing. 

However, this theory did not lead to reliable treatments and left many incapable of ending their 

addictions. Later definitions defined addiction as a disease and suggested that behavioral and chemical 

treatments could alleviate it.  In particular, these disease-related theories suggested that many drug 

addictions arose from biological responses to chemical imbalances that could be treated 

pharmacologically.  Some of these pharmacological treatments, such as methadone treatment for heroin 

addictions (Meyer and Mirin, 1979) and the nicotine patch for smoking (Hanson et al., 2003), have been 

very successful, but other addictions (stimulants, alcohol) have been much more difficult to treat 

pharmacologically. Furthermore, pharmacological definitions do not include the possibility of non-

chemical addictions, such as gambling, which is now seen as an addiction-like problem.   

Current definitions of addiction are based on conceptualizations of addiction as a problem with decision-

making systems (Heyman, 2009; Redish, 2013), often evidenced as continued use despite stated 

preferences (Goldstein, 2000, Ainslie 2001) and as continued use despite high cost (Robinson and 
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Berridge, 2003; Koob and Le Moal, 2006). The most recent models identify addiction as arising from 

vulnerabilities leading to failure-modes in decision-making algorithms (Redish et al 2008).   

One of the most common popular descriptions of addiction lies in the addict’s continued use despite 

making explicit statements of a desire to stop.  Current theories of decision-making reject the hypothesis 

of the unitary decision-maker – each individual is actually a multiplicity of decision-making systems 

(algorithms, processes) competing for behavioral control (O’Keefe and Nadel, 1978; Daw et al., 2005; 

Rangel et al., 2008; Redish et al., 2008; Kahneman, 2011; van der Meer et al, 2012; Redish, 2013). 

While this theory provides an explanation for this conflict (Kurzban, 2010), computational models of 

addiction have not emphasized this conflict because it is hard to study in non-linguistic animals (i.e. 

non-humans), while human rights limitations make it difficult to do controlled studies of addiction in 

humans.  Nevertheless, the study of decision-making systems and their interaction is well established in 

both human and non-human animals and has been used computationally to guide treatment. 

One of the classic descriptions of addiction is based on the observation that addicts will continue to use 

even in the face of high costs.  This can be quantified through the economic concept of elasticity as a 

measure of how much one’s willingness to buy something changes by its cost (Bickel et al. 1993; Hursh 

et al., 2005).  Things that diminish slowly by cost are inelastic. Researchers have suggested that drugs 

are fundamentally inelastic: as costs increase, the number of rewards paid for decrease less than they 

should.  Of course, there are many things that are inelastic that are not considered addictive – oxygen, 

for example (where the withdrawal symptoms are particularly traumatic), but also some behaviors 

continued even in the face of high costs are celebrated, such as Kerri Strug’s 1996 Olympic vault 

performed on a sprained ankle, or Osip Mandelstam continuing to write poetry even after Stalin had 

thrown him in the gulag for it. 

A key to the question of addiction is to separate the science of why an agent continues its behavior from 

the decision to treat and change that behavior. This conceptualization parallels Jerome Wakefield’s 

conceptualization of psychiatry as depending on harmful dysfunction (Wakefield, 1992).  “Dysfunction” 

reflects a system not working as it was intended to. For example, mu-opioid activation signals pleasure 

in mammalian brains (Berridge and Robinson, 2003).  These receptors were certainly not evolved to 

respond to heroin, but they do. “Harmful” reflects a society’s choice of what to change. For example, 

American society is currently transitioning from treating marijuana as so dangerous as to be illegal with 

severe penalties to something that can better be handled under legal regulation. Things can be harmful 
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without being dysfunctional, such as tribal wars, which are extremely harmful, but likely reflect the 

natural evolution of human behavior (Turchin, 2003; Diamond, 2006), and dysfunctional without being 

harmful, such as synesthesia (Cytowic, 1998). 

Computational models of addiction are aimed at understanding the science of why an agent continues its 

behavior and the science of how one could change that behavior if one so desired.  Importantly, the 

decision of whether to change that behavior has not been computationally assessed.  Such a decision 

would depend on sociological models, which are not the focus of this chapter.  Instead, this chapter will 

focus on computational approaches to addictive behavior and its modification. 

 

9.2 Past approaches 

 

Past computational approaches to addiction can be divided into three broad categories: economic 

models, in which drugs are seen as economic objects that have feedback properties that make them 

overvalued; homeostatic models, in which drugs change intrinsic biological properties and shift 

allostatic set-points which subsequently require drugs to reach that set-point; and reinforcement learning 

models, in which drugs hijack learning algorithms to produce aberrant learning.  Current views on 

addiction suggest that these three hypotheses are all failure modes of decision-making systems, and that 

there are many endophenotypes of drug addiction. 

9.2.1 Economic models 
	
  

Although popular descriptions of drug use (e.g. Reefer Madness [Gasnier, 1949], Long Day’s Journey 

into Night [O’Neill, 1956], The Lost Weekend [Wilder, 1945], Sid and Nancy [Cox 1986]) suggested 

that drugs were overwhelming and addicts would spend any cost to achieve drug-taking, experimental 

studies have long suggested that drugs were economic objects and that drug use decreased with 

increasing costs (Bickel et al., 1993; Liu et al., 1999; Grossman and Chaloupka,1998; Hursh et al., 

2005). The first economic model of drug use is Becker and Murphy’s 1988 “Rational Addiction” model, 

which is an economic utility model in which subjects are assumed to select the most cost-effective 

choice with the highest value.  Drugs are assumed to have a positive feedback so that the more one takes 

those drugs, the more valuable they become. Becker and Murphy show that under these assumptions, a 
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hypothetical user could be shown to become addicted when the positive feedback overwhelms the 

negative consequences of the drug use. 

These models led to quantitative analyses of drug use, asking direct questions of the economic demand 

curves of drug use.  Demand curves are quantitative measures of elasticity. This can be measured either 

through effort (how many lever presses will a non-human animal push for reward?) or through monetary 

costs (how many grams of drug will you buy?)  In a typical demand curve (Figure 9.1), there is an 

inelastic portion, where increases in cost have little effect on number of rewards bought, and an elastic 

portion, where the number of rewards bought falls off very quickly. These are separated by an inflection 

point (pMax).  Addicts can be defined as people where this inflection point has shifted far to the right, 

but nevertheless, their demand curves do have this typical, canonical shape. 

 

< Figure 9.1 around here> 

 

A key insight from this economic perspective on drug use is that drugs provide fast rewards and slow 

consequences. All animals (human and non-human) discount future rewards, valuing rewards more if 

they are delivered in a shorter time frame (Ainslie, 1992; Madden and Bickel 2010).  Economically, this 

makes sense as immediate rewards can be invested, and consequences can prevent the use of later 

rewards. Importantly, as described in Section 5.2, all animals (human and non-human) show non-

exponential discounting curves (Figure 9.2), which means that preferences can cross – thus it is possible 

both to prefer to smoke the cigarette in your hand and to prefer to not smoke in the future. (Of course, 

when the future becomes now, one will want to smoke the cigarette now again.) Addicts show 

particularly fast discounting functions, which can exacerbate this problem (Bickel and Marsch, 2001). 

There is some evidence that successful treatment modifies these discounting rates in subjects with 

particularly fast discounting functions (Bickel et al., 2014) and that these discounting rates are predictive 

of relapse (Sheffer et al., 2014). It is possible to modify discounting rates, by guiding the subject’s 

attention to delayed rewards by providing episodic cues about the delayed rewards to make those 

delayed rewards more concrete (Peters and Büchel, 2010). Recent evidence has suggested that these 

changes can reduce drug use (Stein et al., 2018; Snider et al., 2018). However, whether these changes 
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are due to changes in discounting rates per se or to changes in interacting multiple decision systems 

remains an open question. 

 

< Figure 9.2 around here> 

While the basic economic story that drugs are economic objects that are discounted quickly is clearly 

correct, drug use is context sensitive in ways that make these simple economic descriptions incomplete 

(Bernheim and Rangel, 2004).  We will return to the question of these economics later, when we come 

to the interacting multiple systems models, below. 

9.2.2 Homeostatic models 
 

All drugs that are reliably self-administered, either by humans or other animals, are pharmacologically 

similar in some way to endogenous chemicals used in neural processing (Koob and Le Moal, 2006).  For 

example, active opioids such as morphine, heroin, or oxycodone activate the mu-opiate receptor, cocaine 

blocks dopamine reuptake in the synapse, which increases dopamine in the synapse, amphetamine 

encourages release of dopaminergic vesicles, and nicotine activates acetylcholine receptors.  Biological 

systems in general and neural systems in particular are very sensitive to levels of these endogenous 

chemicals and have extensive negative feedback processes (such as trafficking of receptors in and out of 

the synaptic membrane) that keep the sensitivity balanced. In situations where receptors are flooded, 

they will normalize their levels requiring more activation to produce the same effects. 

For example, many self-administration experiments (in which animals are trained to press a lever for 

drug reward) can be described quantitatively in terms of maintenance of pharmacological levels of drug 

(Tsibulsky and Norman 1999, Keramati et al., 2017). Negative feedback processes driving maintenance 

interact with the positive feedback processes of drug utility (as suggested by Becker and Murphy) to 

produce dramatic differences in valuation between drugs and non-drug rewards (with drugs being valued 

much higher than non-drugs, leading to over-taking of drug rewards.) 

Three quantitative models based on issues of homeostatic balance are the Tsibulsky and Norman (1999), 

the Keramati et al. (2015), and the Dezfouli et al. (2009) models (Figure 9.3).  The Tsibulsky and 

Norman model explicitly hypothesizes that animals are attempting to maintain a specific level of 

cocaine, which explains quantitatively the observed shifts in response to changes in the dosages given 
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with each lever press. Keramati et al. notes, however, that there are short-term dynamics when the 

changes actually occur which are not explicable by a simple set-point hypothesis, particularly in the 

transition that occurs with increased access to drug. They therefore add in a learning component based 

on the reinforcement learning models detailed below. The Dezfouli et al. model is based on a 

homeostatic expansion of the Redish (2004) model (see below), particularly looking at the effect of 

homeostatic set-points driving pharmacological effects of dopamine on learning. While the Redish 

model is based on the temporal-difference-reinforcement learning dopamine-as-delta model of 

Montague et al. 1996, and is thus a hijacked-learning model, the Dezfouli et al. model is based on the 

average reward dopamine hypothesis of Daw and Touretzky (2000), and becomes a homeostatic model. 

Opponent process theory 

One of the earliest models of drug use is the opponent process theory of Solomon and Corbit (1974, see 

Koob and Le Moal, 2006 for extensive discussion of this model), in which drugs are assumed to produce 

a strong positive reward followed by a strong negative recovery. Homeostatic processes are assumed to 

normalize the excess drug to decrease the positive factors, and increase the negative factors, which leads 

to increased need for drugs to return the homeostatic process to baseline. These models have been 

supported by evidence that chronic drug use leads to enhancement of positive valuation neuron activity 

in the nucleus accumbens (Kourrich et al. 2007; Volman et al. 2013) and evidence that the emotional 

crash after drug use is an important factor in driving self-administration (Rothwell et al. 2010). 

While the Solomon and Corbit and Koob and Le Moal models are not quantitative, Gutkin et al. (2006) 

proposed an opponent process model in which there is habituation of response processes to a continuous 

delivery of nicotine – a phasic increase at the start and a phasic decrease at the end, and a decrease in the 

overall tonic dopamine levels. The normalization caused by the assumed decrease in dopamine levels 

leads to a decrease in ability to learn non-drug related cues, which leads to an increase in attention to and 

learning of drug-related cues. Thus, Gutkin et al. shows how an opponent process model can hijack 

learning process by disrupting the difference between learning on and off drug.  

 

< Figure 9.3 around here>  

 



	
  

	
   184	
  

9.2.3 Reinforcement models 
	
  

The third family of computational models is based on the concept that learning depends on physical 

processes, and those physical processes can be modulated by external chemicals and other processes. In 

animal learning theory, the concept of reinforcement is separate from the concept of reward. 

Reinforcement is any mechanism that makes an agent more likely to return to an action. An external 

chemical that increases reinforcement would increase drug-seeking and drug-taking (di Chiara 1999, 

Redish 2004).   

In the 1950s, it was discovered that electrical stimulated of specific neural sites was reinforcing, in that 

both human and non-human animals would activate the stimulation (Olds and Milner 1954), even to the 

extent of avoiding many other rewards.  Interestingly, in humans (who could rate “pleasure” 

linguistically) these studies found that the most reinforcing stimulations were not always the most 

pleasant (Heath 1963).   

An important breakthrough in the understanding of reinforcement came when Berridge and Robinson 

directly measured reinforcement and pleasure in non-human animals and discovered that they were 

separable. It was well-known that many drugs of abuse affected dopaminergic functioning and that the 

stimulation drove dopamine release and it was thought that dopamine would drive pleasure signals. 

However, when Berridge and Robinson (2003) directly tested this hypothesis, it was discovered that this 

was wrong – dopamine and pleasure were dissociable.  In their elegant studies, they measured facial 

expressions of pleasure and disgust in rats under manipulations of dopamine and opiate signals.  

Dopamine manipulations affected reinforcement but did not affect facial expressions of pleasure. In 

contrast, manipulations of opiate signals (e.g. mu-opiate and kappa-opiate agonists and antagonists) 

affected pleasure responses.  This led them to hypothesize that drugs that affected dopamine increased 

the “incentive salience” or “value” of a reward, which drove seeking, independently of the pleasure 

experienced by that reward. 

Around this time, a major breakthrough occurred in the understanding of dopamine function in animal 

learning – Wolfram Schultz and his team discovered that dopamine cells burst when provided a 

surprising reward but did not fire when the reward was predicted by a cue (Ljungberg et al., 1992).  
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Read Montague and colleagues (1996) realized that this signal was the value prediction error (VPE)14 

signal δ (delta) that underlay a theory of robotic learning called temporal difference reinforcement 

learning (TDRL) that had become very successful in the field of computer science15 (Sutton and Barto, 

1998; see also Section 2.3). 

As described in Section 2.3, the temporal difference reinforcement learning algorithm (TDRL) defines 

value as the total reward one can expect to achieve given a policy of actions to be taken in given 

situations. TDRL maintains a representation of the currently believed value for each situation, and then 

calculates the difference between that remembered value and the observed value.  This difference is the 

value prediction error or VPE.  Positive VPE occurs anytime a value is better than expected and drives 

an increased willingness to take an action, while negative VPE occurs anytime a value is worse than 

expected and drives a decreased willingness to take an action.  The concept of VPE is best understood 

through an example. Imagine a soda machine. If you put your money in the soda machine and get two 

sodas out, then you will be more willing to put money in that soda machine next time. (You have 

positive VPE.)  If you put your money in the soda machine and get nothing out, then you will be less 

willing to put money in that soda machine next time.  (You have negative VPE.)  And, most importantly, 

if you put the correct amount of money in the soda machine, get your expected soda out, then you 

understand how that machine works and you don’t need to learn anything about it.  (You have zero 

VPE.)  Notice that you still get the pleasure (such as it is) of drinking the soda, but you don’t need to 

change your willingness to put money in that machine.  VPE is about learning the value of actions.  

Computer simulations had shown that VPE would allow an agent to learn to behave in simulated 

environments (Sutton and Barto, 1998).   These processes can be expressed in the following equations:  

𝑉 𝑆! =  𝛾!!!𝐸[𝑅 𝜏 ]𝑑𝜏
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14	
  The	
  dopamine	
  signal	
  is	
  often	
  described	
  as	
  a	
  “reward	
  prediction	
  error”	
  signal,	
  but	
  this	
  is	
  a	
  misnomer,	
  
as	
  bursts	
  also	
  occur	
  when	
  unexpected	
  value	
  appears.	
  	
  Thus	
  it	
  is	
  better	
  referred	
  to	
  as	
  a	
  “value	
  
prediction	
  error”	
  signal.	
  
15	
  Although	
  many	
  studies	
  have	
  supported	
  the	
  hypothesis	
  that	
  the	
  phasic	
  bursting	
  of	
  dopamine	
  signals	
  
positive	
  value	
  prediction	
  error	
  and	
  that	
  pauses	
  in	
  firing	
  signal	
  negative	
  value	
  prediction	
  error,	
  recent	
  
experiments	
  have	
  suggested	
  that	
  the	
  story	
  may	
  be	
  more	
  complex	
  than	
  previously	
  thought.	
  	
  	
  Recent	
  
experiments	
  have	
  found	
  that	
  not	
  all	
  costs	
  are	
  reliably	
  included	
  in	
  this	
  calculation	
  (Gan et al. 2010; 
Wanat et al. 2010).	
  	
  	
  And	
  recent	
  experiments	
  looking	
  at	
  tonic	
  levels	
  have	
  suggested	
  that	
  dopamine	
  is	
  
actually	
  signalling	
  value,	
  so	
  that	
  value	
  prediction	
  error	
  would	
  occur	
  only	
  from	
  high-­‐pass	
  frequency	
  
filters	
  of	
  dopamine	
  (Hamid et al. 2016).	
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𝛿 𝑡 = 𝛾! 𝑅 𝑆! + 𝑉 𝑆! − 𝑉 𝑆!   

𝑉 𝑆! ← 𝑉 𝑆! +η𝛿 

Where 𝑉 𝑆!  is the value of state 𝑆!, 𝛾! is a discounting parameter16, reflecting expected value 

decreases over observed delay 𝑑, 𝑅 𝑆! + 𝑉 𝑆!  is the value achieved on entering state 𝑆!, and 𝛿 𝑡  is 

the value prediction error (the difference between the observed and expected value).  By changing the 

value of state 𝑆! towards the observed value (with learning rate η), 𝑉 𝑆!  will approach the observed 

value.  Theories hypothesized that dopamine signaled the value prediction error 𝛿 𝑡 .   

Redish (2004) proposed that if drugs were providing a dopamine signal pharmacologically, then taking 

drugs would lead to positive VPE, even if the neural calculation of VPE should have been 0 (Figure 

9.4). Effectively, Redish’s model predicted that the dopamine signal at reward contained two 

components, one from the calculation of 𝛿 𝑡 , and the other from the pharmacological action of the 

drug. This meant that even with experience, there would always be a non-compensable VPE signal at the 

reward, which would increase the predicted value of the reward, driving that value to infinity.  (Or with 

normalization, normalizing all other values to zero.) 

𝛿 = max 𝛾! 𝑅 𝑆! + 𝑉 𝑆! − 𝑉 𝑆! + 𝐷 𝑆! ,𝐷 𝑆!  

where 𝐷 𝑆!  reflects the effect of the pharmacological dopamine from the drug.  

In his 2004 paper, Redish used computer simulations to show that this model would lead to developing 

inelasticity (as in the Becker and Murphy hypothesis) and made several untested predictions. The first 

prediction was that there would be a double surge of dopamine in drug experiments. In the TDRL 

theory, 𝛿 𝑡   first appeared at the time of reward (as it was initially unexpected) and then it shifted to 

earlier cues that reliably predicted the reward (because the reward was now expected – thus δ=0, but the 

cues indicated an unexpected increase in value – thus δ>0). Similarly, Schultz and colleagues (see 

Schultz, 2002) had found that dopamine shifted from the reward (when unexpected) to the cue (once the 

animal learned that the cue predicted the reward). In Redish’s model, the extra pharmacological 

component would always appear, even as the dopamine signal appeared at the cue. Since then, this 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
16	
  Note	
  that	
  these	
  equations	
  use	
  exponential	
  discounting	
  to	
  reflect	
  value	
  decreases	
  over	
  observed	
  
delay.	
  	
  It	
  is	
  possible	
  to	
  construct	
  consistent	
  TDRL	
  equations	
  that	
  express	
  behaviors	
  that	
  reflect	
  non-­‐
exponential	
  discounting,	
  but	
  this	
  requires	
  additional	
  complexities	
  beyond	
  what	
  is	
  necessary	
  for	
  this	
  
chapter	
  (Kurth-­‐Nelson	
  and	
  Redish,	
  2009,	
  2010).	
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double surge of dopamine has been observed, but as with any theory, reality is more complex than the 

model, and each component of the double-surge occurs separately, with the reward-related surge 

appearing in accumbens shell and the cue-related surge appearing in accumbens core (Aragona et al. 

2009). 

 

<Figure 9.4 around here> 

 

The two other key predictions of the Redish 2004 model were (1) that additional drug use would always 

lead to increased valuation of the drug and (2) that drugs would not show Kamin blocking. These 

predictions have since been tested and provide insight into the mechanisms of drug addiction. 

In the Redish (2004) model, the excess dopamine provides additional value, no matter what. Marks et al. 

(2010) directly tested this hypothesis in an elegant experiment, where rats were trained to press two 

levers for a certain dose of cocaine (both levers being equal).  One lever was then removed and the other 

provided smaller doses of cocaine. The Redish (2004) theory predicts that the second lever should gain 

value, while expectation or homeostatic theories like those discussed earlier would predict that the 

second lever should lose value (because animals would learn the second lever was providing smaller 

doses). The Marks et al. data was not consistent with the Redish excess-delta model. However, as noted 

above, a key factor in drug addiction is that not everyone who takes drugs loses control over their drug 

use and becomes an addict. Studies of drug use in both human and non-human animals suggest that most 

animals in self-administration experiments continue to show elasticity in drug-taking, stopping in 

response to high cost, but that a small proportion (interestingly similar to the proportion of humans who 

become addicted to drugs) become inelastic to drug-taking, being willing to pay excessive costs for their 

drugs (Anthony et al., 1994; Hart, 2013).  One possibility is that the homeostatic models (like that of 

Tsibulsky and Norman, 1999) are a good description of non-addicted animals, which have a goal of 

maintaining a satiety level, but that addiction is different.  

The Redish (2004) model also predicted that drugs would not show Kamin blocking. Kamin blocking is 

a phenomenon where animals don’t learn that a second cue predicts reward if a first cue already predicts 

it (Kamin, 1969). This phenomenon is well-described by value prediction error (VPE) – once the animal 

learns that the first cue predicts the reward, there is no more VPE (because it’s predicted!) and the 
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animal does not learn about the second cue (Rescorla and Wagner, 1972). Redish noted that because 

drugs provided dopamine and dopamine was hypothesized to be that VPE delta signal, then when drugs 

were the “reward”, there was always VPE. Thus, drug outcomes should not show Kamin blocking. The 

first tests of this, like the Marks et al study, did not conform to the prediction – animals showed Kamin 

blocking, even with drug outcomes (Panlilio et al., 2007). However, Jaffe et al (2014) wondered whether 

this was related to the subset problem – that only some animals were actually overvaluing the drug. Jaffe 

et al. tested rats in Kamin blocking for food and nicotine. All rats showed normal Kamin blocking for 

food. Most rats showed normal Kamin blocking for nicotine. But the subset of rats that were high 

responders to nicotine did not show Kamin blocking to nicotine, even though they did to food, exactly as 

predicted by the Redish model. 

9.3 Interacting multi-system theories 

Studies of decision-making in both human and non-human animals have, for a long time, found that 

there are multiple decision-making processes that can drive behavior (O’Keefe and Nadel, 1978; Daw et 

al., 2005; Rangel et al., 2008; Redish et al., 2008; Kahneman, 2011; van der Meer et al, 2012; see 

Redish, 2013 for review). These processes are sometimes referred to as different algorithms because 

they process information differently.  They are accessed at different times and in different situations; 

they depend on different neural systems. How an animal is trained and how a question is asked can 

change which system drives behavior. Damage to one neural structure or another can shift which system 

drives behavior. 

The key to these different systems lies in how they process information. Decision-making can be 

understood as a consequence of three different kinds of information – what has happened in similar 

situations in the past (memory), the current situation (perception) and the needs/desires/goals 

(teleology). How information about each of these aspects is stored can change the selected action – for 

example, what defines “similar situations” in the past?  What parameters of the current situation matter?  

Are the goals explicitly represented or not?  Each system answers these questions differently. 

Almost all current decision-making taxonomies differentiate between planning (deliberative) systems 

and procedural (habit) systems. Planning systems include information about consequences – if I take this 

action, then I expect to receive that outcome, which can then be evaluated in the context of explicitly 

encoded needs. Planning systems are slow but flexible. Procedural systems cache those actions – in this 

situation, this is the best action to take, which is fast but inflexible. As described earlier (Section 2.3 & 
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5.2), many current computational models refer to planning systems as model-based (because they 

depend on a model of the consequences in the world), while procedural systems are model-free (which 

is an unfortunate term because procedural systems still depend on an ability to categorize the current 

situation, which depends on a model of the world [Redish et al. 2007; Gershman et al. 2010]). Some 

taxonomies also include reflex systems, in which the past experience, the parameters of the current 

situation that matter, and the action to be taken are all hard-wired within a given organism and are 

learned genetically over generations. Most taxonomies also include a fourth decision-system, variously 

termed Pavlovian, Emotional, Affective, or Instinctual, in which a species-important action (e.g. 

salivating, running away, approaching food) is released as a consequence of a learned perception 

(context or cue).   

The importance of these systems is three-fold:  (1) How a question is asked can change which system 

controls behavior;  (2) Damage to one system can drive behavior to be controlled by another (intact) 

system, and (3) There are multiple failure modes of each of these systems and their interaction.  We will 

address each of these in turn. 

9.3.1 How a question is asked can change which system controls behavior 
 

One way to measure how much rats value a reward such as cocaine is to test them in a progressive ratio 

self-administration experiment (Hodos 1961). In this experiment, the first hit of cocaine costs one lever 

press, but the second costs two, the third costs four, the fourth eight, etc.  Eventually a rat has to press 

the lever a thousand times for its hit of cocaine. Measuring when the rat stops pressing the lever 

indicates the willingness-to-pay and the value of the cocaine to the rat. Not surprisingly, many 

experiments have found that rats will pay more for cocaine than for other rewards such as saccharine, 

indicating that cocaine was more valuable than saccharine. However, Serge Ahmed’s laboratory found 

that if those same rats were offered a choice between two levers, one of which provided saccharine 

while the other provided cocaine, the rats would reliably choose the saccharine lever over the cocaine 

lever, indicating that saccharine was more valuable than cocaine [Lenoir et al. 2007, see Ahmed et al 

2010]. The most logical explanation for this contradiction is that the progressive ratio accesses one 

decision system (probably procedural) while the choice accesses another (probably deliberative) and that 

the two systems value cocaine differently. Interestingly, Perry et al. (2013) found that a subset of rats 

will choose the cocaine, even in the two-option paradigm. These are the same subset of rats that over-

value cocaine in other contexts, such as being willing to cross a shock to get to the cocaine (Deroche-
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Gamonet et al. 2004). Whether they are also the high responders or whether they no longer show Kamin 

blocking remains unknown. 

9.3.2 Damage to one system can drive behavior to another 
	
  

Imagine an animal pressing a lever for an outcome (say cheese).  If the animal is using a planning 

system to make its decisions, then it is effectively saying “If I push this lever, I get cheese.  Cheese is 

good. Let’s press the lever!” If the animal is using the procedural system, then it is effectively saying 

“Pressing the lever is a good thing.  Let’s press the lever!” – cheese never enters into the calculation. 

What this means is that that if we make cheese bad (by devaluing it, which we can do by pairing cheese 

with a nauseating agent like lithium chloride), then rats using planning systems won’t press the lever 

anymore (“If I push this lever, I get cheese.  Yuck!”), but rats using procedural systems will (“Pressing 

the lever is a good thing.  Let’s press the lever!”).  (See, for example, Niv et al. 2006 for a model of this 

dichotomy.) Many experiments have determined that with limited experience, animals are sensitive to 

devaluation (i.e. they are using a planning system), while with extended experience they are not (i.e. 

they are using a procedural system), and that lesions to various neural systems can shift this behavior 

(Killcross and Coutureau 2003; Schoenbaum et al 2006).  A number of studies have suggested that many 

drugs (cocaine, amphetamine, alcohol) drive behavior to procedural devaluation-insensitive systems, 

which has led some theoreticians to argue that drug addiction entails a switch from planning to habit 

modes (Everitt and Robbins, 2005). 

Building on the anatomical data known to drive the typical shift from planning to procedural decision 

systems, Piray et al. (2010) proposed a computational model in which drugs disrupted the planning 

valuation systems and accelerated learning in the procedural valuation systems. This model suggested 

that known changes in dopaminergic function in the nucleus accumbens as a consequence of chronic 

drug use could lead to overfast learning of habit behaviors in the dorsal striatum and would produce a 

shift from planning to habit systems due to changes in valuation between the two systems. 

9.3.3 There are multiple failure modes of each of these systems and their interaction  
	
  

However, rats and humans will take drugs even when they plan. A drug addict who robs a convenience 

store to get money to buy drugs is not using a well-practiced procedural learning system. A teenager 

who starts smoking because he (incorrectly) thinks it will make him look cool and make him attractive 
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to girls is making a mistake about outcomes and taking drugs because of an error in the planning system 

(the error is in his understanding of the structure of the world.) 

Some researchers have argued that craving depends on the ability to plan, because craving is transitive 

(one always craves something), thus it must be depend on expectations and a model-based process 

(Tiffany 1999; Redish and Johnson, 2007). In fact, there are many ways that these different decision 

systems could drive drug-seeking and drug-taking (Redish et al. 2008). Some of those processes would 

depend on expectations (i.e. would be model-based, depend on planning) and explicit representations of 

outcomes, and could involve craving, while other processes would not (i.e. would be model-free, 

depending, for example, on habit systems).  [An important consequence of this is the observation that 

seems to get rediscovered every decade or so that craving and relapse are dissociable – you can crave 

without relapsing and you can relapse without craving.] 

In 2008, Redish and colleagues surveyed the theories of addiction and found that all theories of 

addiction could be re-stated in terms of different failure modes of this multi-algorithm decision-making 

system. An agent that succumbed to over-production of dopamine signals (Redish 2004) from drug 

delivery would over-value drugs and would make economic mistakes to take those drugs.  An agent that 

switched decision-systems to habit faster under drugs (Everitt and Robbins, 2005; Piray et al. 2010) 

would become inflexible in response to drug offerings and take drugs even while knowing better. An 

agent with incorrect expectations (“smoking makes you cool”, “I won’t get cancer”) would make 

planning mistakes and take drugs in incorrect situations. An agent that discounted the future (“I don’t 

care what happens tomorrow, I want my pleasure today.”) would be more likely to take drugs than an 

agent included future consequences in its plans (Bickel and Marsch, 2001). All of these are different 

examples of vulnerabilities within the decision-making algorithms. Redish et al (2008) proposed that 

drug addiction was a symptom, not a disease – that there were many potential causes that could drive an 

agent to return to drug-use, and that efficacious treatment would depend on which causes were active 

within any given individual. 

9.4 Implications 

9.4.1 Drug-use and addiction are different things 
	
  

At this point, the evidence that a subset of subjects have runaway valuations in response to drugs is 

overwhelming (Anthony et al., 1994; Deroche-Gamonet et al. 2004, Koob and Le Moal, 2006; Hart, 
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2013; Perry et al., 2013; Jaffe et al., 2014). This is true both of animal models of drug addiction and 

humans self-administering drugs. This suggests a very important point, which is that drug use and 

addiction are different things. If we want to treat the harm that drugs do, then we may want to address 

drug use rather than addiction, which would require sociological changes (Hart, 2013). As noted above, 

these sociological models are beyond the scope of this chapter, which is addressing computational 

models of addiction.   

9.4.2 Failure modes 
	
  

This chapter has discussed three families of models. The first family was economic models, which 

simply defined addiction as inelasticity, particularly due to mis-valuations. However, these models did 

not identify what would cause that mis-valuation. The second family was pharmacological models, 

which defined addiction as a shift in a pharmacological set-point which drove value in an attempt to 

return the pharmacological levels back to that set-point.  The third family was learning and memory 

models, which suggested that addiction derived from vulnerabilities in the neural implementations of 

these algorithms, which drove errors in action-selection.    

The multiple failure-modes model suggests that all three families provide important insights into 

addiction. It suggests that there were multiple potential vulnerabilities that could drive drug use (which 

could lie in pharmacological changes in set-points or in many potential failure modes of these learning 

systems). The multiple vulnerabilities model suggests that addiction is a symptom not a disease. Many 

failure modes can create addiction. Importantly, identifying which failure modes obtain within any given 

individual would require specially designed probe tests; this model suggests that it would not be enough 

to merely identify extended drug use. In fact, these failure modes are likely to depend on specific 

interactions between the drug and the individual and the specific decision processes driving the drug-

seeking/drug-taking behavior. 

9.4.3 Behavioral addictions 
 
If addictions are due to failure modes within neural implementations of decision-making algorithms, 

then addiction does not require pharmacological effects (even if pharmacological effects can cause 

addictions) and it becomes possible to define behavioral problems as addictions.  For example, problem 

gambling is now considered an addiction, and other behaviors (such as internet gaming, porn, or even 

shopping) are now being considered as possible addictions. As noted at the beginning of the chapter, the 
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definition of addiction is difficult.  Nevertheless, computational models of addiction have provided 

insight into problem gambling and behavioral change in general, whether we call those behaviors 

addictive or not. 

Classic computational models of problem gambling have been based on the certainty and uncertainty of 

reward delivery, but these models have been unable to explain observed properties of gamblers, such as 

that gamblers tend to have had a large win in their past (Custer, 1984; Wagenaar, 1988), that they are 

notoriously superstitious about their gambling (Griffiths 1994), or that they often show hindsight bias (in 

which they “explain away losses”, Parke and Griffiths 2004), or the illusion of control (in which they 

believe they can control random effects, Langer, 1975).   

Redish and colleagues (2007) noted that most models of decision-making were based on learning value 

functions over worlds in which the potential states were already defined. Furthermore, they noted that 

most animal learning experiments took place in cue-poor environments, where the question the animal 

faced was “What is the consequence of this cue?” However, most lives (both human and non-human) 

are lived in cue-rich environments, in which the repeated structure of the world is not given to the 

subject. Instead, the subject has to identify which cues are critical to the definition of the situation the 

subject finds itself in. They noted that this becomes a categorization problem and had been well studied 

in computational models of perception. Attaching a perceptual categorization process based on 

competitive learning models (Hertz et al., 1991) to a reinforcement learning algorithm, they built a 

model in which the tonic levels of dopamine (i.e. longer-term averages of 𝛿 𝑡 ) controlled the stability 

of the situation-categorization process. This identified two important vulnerabilities in the system 

depending on over- and under-categorization, particularly in the different responses to wins and losses. 

In their model, wins produced learning of value, while losses produced recategorizations of situations. 

Their simulated agents were particularly susceptible to near misses and surprising wins, leading to 

models of hindsight bias and the illusion of control. 

In general, these multi-system models suggest that addiction is a question of harmful dysfunction – 

dysfunction (vulnerabilities leading to active failure modes) within a system that causes sufficient harm 

to suggest we need to treat it.  They permit both behavioral and pharmacological drivers of addiction. 

9.4.4 Using the multi-system to treat patients 
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However, the suggestion that different decision-making systems can drive behavior provides a very 

interesting treatment possibility, which is that one could potentially use one decision-system to correct 

for errors in another.  Three computational analyses of this have been done –changing discounting rates 

with Episodic Future Thinking (Peters and Büchel, 2010; Snider et al., 2018; Stein et al., 2018),  

analyses of Contingency Management (Petry, 2012; Regier and Redish, 2015), and analyses of 

Precommitment (Kurth-Nelson and Redish, 2010).   

Episodic future thinking is a process in which one imagines a future world (Atance and O’Neill, 2001), 

which is the key to planning and model-based decision-making, in which one simulates (imagines) an 

outcome, and then makes one’s decision based on that imagined future world (Niv et al., 2006; Redish, 

2013, 2016).  Models of planning suggest that discounting rates may depend in part on the ability to 

imagine those concrete futures. Part of the discounting may arise from the intangibility of that future 

(Rick and Loewenstein, 2008; Trope and Liberman, 2010; Kurth-Nelson et al., 2012), which may 

explain why making future outcomes more concrete reduces discounting rates (Peters and Büchel, 

2010).  Other models have suggested that these discounting rate decreases occur through changes in the 

balance between impulsive and more cognitive decision systems (McClure and Bickel, 2014). 

Nevertheless, recent work has found that treatments in which subjects are provided concrete episodic 

future outcomes to guide episodic future thinking can decrease discounting rates (providing a more 

future-oriented attitude) and decrease drug use (Snider et al., 2018; Stein et al., 2018). Whether this 

effect comes from the changes in discounting rates per se or whether those changes are reflective of 

other processes (such as an increased ability to use planning and deliberative systems) is currently 

unknown.  

Contingency Management is a treatment to create behavioral change (such as stopping use of drugs) 

through the direct payment of rewards for achieving that behavioral change – effectively paying people 

to stop taking drugs (Petry, 2012). Contingency Management was originally conceived of economically: 

if drugs have some elasticity (which they do, see Figure 9.1), then paying people not to take drugs 

increases the cost of taking drugs, by creating lost opportunity costs.  In psychology, this would be 

called an alternate reinforcer.   

However, Regier and Redish (2015) noted that the rewards that produced success in contingency 

management did not match the inelasticity seen in either animal models of addiction nor in real world 

measures of inelasticity due to changes of drug costs in the street. Building on the idea that choosing to 
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take a drug or not (a go/no-go task, asking one’s willingness-to-pay) accesses different decision-making 

algorithms than choosing between two options (take the drug or get the alternate reward), Regier and 

Redish suggested that contingency management had effectively nudged the subject to use their 

deliberative decision-making systems. They then suggested that this could provide improvements to 

standard contingency management methods, including testing for prefrontal-hippocampal integrity 

(critical to deliberative systems) and providing concrete alternatives with reminders (making it easier to 

imagine those potential futures).  Whether these suggestions actually improve contingency management 

has not yet been tested. 

The fact that addicts show fast discounting functions with preferences that change over time suggest two 

interesting related treatments: bundling and precommitment. Bundling is a process whereby multiple 

rewards are grouped together so as to calculate the value of the full set rather than each individually 

(Ainslie, 2001).  For example, an alcoholic may want to go to the bar to drink one beer but recognizing 

that going to the bar will entail lots of drinking, may reduce the value of going to the bar relative to 

staying home. This can shift the person’s preferences from going to the bar to staying home. 

A similar process is that of precommitment, where a subject who knows in advance that if given a later 

option, the subject will take the poor choice, prevents the opportunity in the first place.  The classic 

example is that a person who knows they will drink too much at the bar decides not to go to the bar in 

the first place. Economically, precommitment depends on the hyperbolic discounting factors that lead to 

preference reversals (Ainslie, 2001). Preference reversals imply that the earlier person wants one option 

(to not drink) while the later person wants a different one (to drink). Although many experiments have 

found that the average subject shows hyperbolic discounting (Madden and Bickel, 2010), individuals 

can show large deviations from good hyperbolic fits.  Computationally, an individual’s willingness to 

precommit should depend on the specific shape of their discounting function (Kurth-Nelson and Redish, 

2010). 

Furthermore, Kurth-Nelson and Redish (2010) proved that neurophysiologically, precommitment 

depends on having a multi-faceted value function – that is, the neural implementation of valuation has to 

be able to represent multiple values simultaneously.  One obvious possibility is that the multiple 

decision-making systems each value options differently, and conflict between these options can be used 

to drive precommitment to prevent being offered the addictive option in the first place. 
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<Figure 9.5 around here> 

 

9.5 Chapter Summary 

 

Because addiction is fundamentally a problem with decision making, computational models of decision 

making (whether economic, motivational [pharmacological], or neurosystem) have been important to 

our definitions and understanding of addiction. These theories have led to new treatments and new 

modifications that could improve those treatments. 

9.6 Further Study 

	
  

Koob and Le Moal. (2006) provides a thorough description of the known neurobiology of addiction.  

Bickel et al (1993) is a seminal article showing that behavioral economics provides a conceptual 

framework that has utility for the study of drug dependence. 

Redish (2004) was the first explicitly computational model of drug addiction and set the stage for 

considering addiction as computational dysfunction in decision systems.   

Redish et al (2008) provides evidence that addiction is a symptom rather than a fundamental disease and 

proposed that the concept of vulnerabilities in decision processes offers a unified framework for thinking 

about addiction.  
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Chapter 10 : Tourette Syndrome from a Computational Perspective 
 

Vasco A. Conceição and Tiago V. Maia 

Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal 

 

10.1. Introduction 

 

10.1.1. Disorder definition and clinical manifestations 
 

Tourette syndrome (TS) is a disorder characterized by tics—repetitive, stereotyped movements and oral-

nasopharyngeal noises—that are usually preceded by aversive sensations called premonitory urges 

(American Psychiatric Association 2013; Leckman, Walker, and Cohen 1993; Robertson et al. 2017). 

Tics have sometimes been characterized as involuntary, but they may instead be voluntary (or “semi-

voluntary”) responses aimed at alleviating the preceding premonitory urges (Hashemiyoon, Kuhn, and 

Visser-Vandewalle 2017; Jankovic 2001). Tics may be motor or phonic, and they are classified as 

simple, if they involve only a small group of muscles or simple oral-nasopharyngeal noises such as 

sniffing or grunting, or complex, if they instead involve several muscle groups or more elaborate phonic 

phenomena such as the utterance of words or phrases (American Psychiatric Association 2013; 

Robertson et al. 2017). TS has an estimated prevalence of 0.3–1% (Robertson et al. 2017). 

 

10.1.2. Pathophysiology 
 

TS is strongly (Conceição et al. 2017; Neuner, Schneider, and Shah 2013; Worbe, Lehericy, and 

Hartmann 2015) and likely causally (Caligiore et al. 2017; Pogorelov et al. 2015; Tremblay et al. 2015) 

mediated by disturbances in the motor cortico-basal ganglia-thalamo-cortical (CBGTC) loop, which 

seems to be strongly implicated in both simple and complex tics (Conceição et al. 2017; Pogorelov et al. 

2015; Tremblay et al. 2015). The associative and limbic CBGTC loops are strongly implicated in 

attention-deficit/hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD; Castellanos 
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et al. 2006; Fineberg et al. 2018; Maia, Cooney, and Peterson 2008; Makris et al. 2009; Norman et al. 

2016; Tremblay et al. 2015), which occur in approximately half or even more of patients with TS 

(Hashemiyoon, Kuhn, and Visser-Vandewalle 2017; Robertson et al. 2017). Studies in animals, in fact, 

suggest that the same disruption in CBGTC loops may produce tics, complex tics and inattention with 

hyperactivity-impulsivity, or obsessive-compulsive symptoms depending on whether that disruption 

affects motor, associative, or limbic CBGTC loops, respectively (Grabli et al. 2004; Tremblay et al. 

2015; Worbe et al. 2009). 

 The motor loop is implicated in the learning and execution of habits (Horga et al. 2015; Yin and 

Knowlton 2006). Habits correspond to stimulus-response (S-R) associations that initially are learned on 

the basis of outcomes but then become independent from such outcomes, thereby implementing 

“cached” action values (Daw, Niv, and Dayan 2006; Delorme et al. 2016; Yin and Knowlton 2006). 

Learning S-R associations bypasses the need to learn a model of the environment, so habit learning is 

often called “model-free” (Daw et al. 2011; Delorme et al. 2016). Such designation contrasts with that 

used for goal-directed learning, which relies on internal models of the world and is thereby often called 

“model-based” (Daw et al. 2011). The use of the term “model-free” can be somewhat confusing because 

many reinforcement learning (RL) models work in a model-free way (Box 10.1). The term “model-free” 

refers to the absence of an explicit internal model of contingencies in the world, not to the absence of a 

computational model. 

The implication of the motor loop in both habits and tics is consistent with the idea that “tics are 

exaggerated, maladaptive, and persistent motor habits” (Maia and Conceição 2017, 401). Habit learning 

and execution, moreover, are strongly modulated by dopamine, which likely explains the role of 

dopamine in TS (Maia and Conceição 2017; 2018; Nespoli et al. 2018), as we will discuss in detail 

below (Section 10.3).  

Cortical motor areas are organized hierarchically, with lower- and higher-order motor cortices 

being responsible for simpler and more complex movements, respectively (Kalaska and Rizzolatti 2013; 

Rizzolatti and Kalaska 2013; Rizzolatti and Strick 2013). This hierarchical organization likely explains 

why primary and higher-order motor cortices seem to be implicated in simple and complex tics, 

respectively (Worbe et al. 2010). Interestingly, and consistent with the implication of somatosensory 

regions in the premonitory urges that typically precede tics (Conceição et al. 2017; Cox, Seri, and 

Cavanna 2018), simple tics are associated with disturbances in somatosensory cortices that may be more 
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restricted to primary somatosensory cortex (Sowell et al. 2008), whereas for complex tics, those 

disturbances extend farther into higher-order somatosensory cortices (Worbe et al. 2010).  

As briefly mentioned above, some evidence suggests that the associative CBGTC loop may also 

be implicated in complex tics (Tremblay et al. 2015; Worbe et al. 2012; 2009). The associative CBGTC 

loop is involved in goal-directed behaviors (Yin and Knowlton 2006), which may explain why complex 

tics often seem to have a more intentional character than simple tics do (American Psychiatric 

Association 2013). 

 

10.1.3. Treatment 
 

TS can be treated pharmacologically (Ganos, Martino, and Pringsheim 2017; Mogwitz et al. 2018; the 

ESSTS Guidelines Group et al. 2011a) or behaviorally (Fründt, Woods, and Ganos 2017; Robertson et 

al. 2017; the ESSTS Guidelines Group et al. 2011b). Consistent with the likely implication of 

dopaminergic hyperinnervation in TS (Buse et al. 2013; Hienert et al. 2018; Maia and Conceição 2018), 

patients with TS are typically prescribed antipsychotics (dopamine D2 antagonists), because of their 

greater efficacy (Ganos, Martino, and Pringsheim 2017; the ESSTS Guidelines Group et al. 2011a), or 

α2 agonists, which also reduce dopaminergic transmission (Maia and Conceição 2018), because of their 

more favorable side effects (Ganos, Martino, and Pringsheim 2017). Aripiprazole, an antipsychotic with 

a different mechanism of action (Casey and Canal 2017; Mailman and Murthy 2010), may be 

particularly efficacious for TS (Mogwitz et al. 2018). Indeed, in the striatum, aripiprazole may combine 

favorable actions both on postsynaptic D2 receptors, where it may partially block the effects of 

endogenous dopamine, and on presynaptic D2 receptors, where its effects may be more akin to those of 

an agonist, thereby reducing dopamine release (Maia & Conceição, 2018).   

Behaviorally, the treatments with most evidence for efficacy are habit reversal therapy (HRT) 

and exposure with response prevention (ExRP), both of which are recommended as first-line treatments 

for TS (Fründt, Woods, and Ganos 2017). HRT trains patients to suppress tics by executing tic-

competing responses, via the use of antagonistic muscles, following the detection of premonitory urges 

and/or early movements that precede tic execution (McGuire et al. 2014; Rizzo et al. 2018; Verdellen et 

al. 2011). In ExRP, patients are encouraged to suppress all tics while focusing on the premonitory urges, 
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so as to promote premonitory-urge habituation; in addition, the patient is often exposed to situations (in 

vivo or imaginarily) that tend to elicit tics, while being encouraged to suppress the tics and focus on the 

premonitory urges (Fründt, Woods, and Ganos 2017; Rizzo et al. 2018; the ESSTS Guidelines Group et 

al. 2011b). Although clinically the protocols for HRT and ExRP are different, their mechanisms of 

action might be similar or even the same (van de Griendt et al. 2013). Indeed, premonitory-urge 

habituation is also a key component of HRT (McGuire et al. 2014), and both therapies involve 

suppressing tics (through a competing response in HRT and through the patient’s own strategies in 

ExRP). Both HRT and ExRP may also be administered within broader behavioral interventions (Fründt, 

Woods, and Ganos 2017). HRT, for example, is a primary component of the comprehensive behavioral 

intervention for tics (CBIT; Fründt, Woods, and Ganos 2017; McGuire et al. 2014), which is also 

currently recommended as a first-line treatment for TS (Fründt, Woods, and Ganos 2017). Although 

HRT and ExRP have the advantage of avoiding medication’s side-effects, pharmacological treatment, or 

the combination of behavioral and pharmacological treatments, may be necessary for, at least, the most 

severely affected patients (Ganos et al., 2017).  

Some patients are refractory to all pharmacological and behavioral treatments (Kious, Jimenez-

Shahed, and Shprecher 2016). In such cases, for very severely affected patients, invasive treatments, 

such as deep brain stimulation (DBS; Akbarian-Tefaghi, Zrinzo, and Foltynie 2016; Baldermann et al. 

2016; Hashemiyoon, Kuhn, and Visser-Vandewalle 2017) or even psychosurgery (Hashemiyoon, Kuhn, 

and Visser-Vandewalle 2017), may be justified. The best targets for these treatments are still under 

investigation but generally involve nodes or fibers in the CBGTC loops (Akbarian-Tefaghi, Zrinzo, and 

Foltynie 2016; Baldermann et al. 2016; Hashemiyoon, Kuhn, and Visser-Vandewalle 2017). Even such 

invasive treatments, however, can sometimes be only moderately successful (Akbarian-Tefaghi, Zrinzo, 

and Foltynie 2016; Baldermann et al. 2016; Hashemiyoon, Kuhn, and Visser-Vandewalle 2017). 

10.1.4. Contributions of computational psychiatry 
 

Despite substantial progress, fundamental questions concerning the etiology, pathophysiology, and, 

more importantly, the adequate treatment of TS remain (Hashemiyoon, Kuhn, and Visser-Vandewalle 

2017; Robertson et al. 2017; Thenganatt and Jankovic 2016). There is a pressing need both for a more 

detailed and integrative mechanistic understanding of TS (and its treatment) and for practical, clinically 

relevant predictive tools (whether based on an understanding of mechanism or not). These two needs 
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align closely with the two main branches of computational psychiatry: theory- and data-driven, 

respectively (Huys, Maia, and Frank 2016; Maia 2015). Moreover, the potential of the combined 

fulfilment of these two needs relates to the potential of combining these two approaches to 

computational psychiatry (Huys, Maia, and Frank 2016; Maia 2015). 

As described in the remainder of this chapter, computational-psychiatry work in TS has already 

started to address these needs. While these efforts are still in their early days, with much work remaining 

to be done, theory-driven computational psychiatry has already yielded a mathematically rigorous theory 

of multiple aspects of TS (section 10.3), data-driven computational psychiatry has started to yield proof-

of-concept classifiers for automated TS diagnosis (section 10.2.3), and the combination of these 

approaches has started to characterize computationally the neurocognitive disturbances that may 

underpin TS (section 10.2.1). 

10.2. Past and Current Computational Approaches to TS 

 

Consistent with the implication in TS of disturbances in the dopaminergic system (reviewed below; 

section 10.3) and in the motor loop (reviewed above; section 10.1.2), multiple studies have reported 

alterations in RL and in habit learning in TS. Studies that have used data-driven approaches to 

automatically classify patients with TS, moreover, have offered additional evidence for the involvement 

of the motor loop in TS. In this section, we review the findings from these three lines of research: RL, 

habit learning, and automated classification in TS. Then, in the next section, we show how all those 

findings may be reconciled under the hypothesis that TS involves dopaminergic hyperinnervation. 

10.2.1. Reinforcement learning in TS 
 

Unmedicated patients with TS seem to have increased learning from rewards: they learned from rewards 

but not from punishments in a subliminal task (Palminteri et al. 2009), and they had increased internal 

reward values (𝑅!, Box 10.1) relative to controls in a motor skill-learning task (Palminteri et al. 2011). 

Two studies failed to find significant differences between unmedicated patients and controls in learning 

from rewards (Salvador et al. 2017; Worbe et al. 2011), including specifically in 𝑅! (Worbe et al. 2011). 

Both of those studies, however, had a substantially greater proportion of males in the patient group than 

in the control group: the ratio of males to females in patients vs. controls was 2.16 vs. 1.17, respectively, 
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in one study (Worbe et al. 2011), and 3.25 vs. 1.22, respectively, in the other (Salvador et al. 2017)17. 

The increased proportion of females in the control group in these studies could have masked increased 

learning from rewards in patients because females learn better from rewards than males do (Evans and 

Hampson 2015)—a finding that is consistent with higher striatal presynaptic dopamine synthesis 

capacity (Laakso et al. 2002) and possibly higher striatal dopaminergic innervation, as assessed by 

dopamine transporter binding (Wong et al. 2012), in females relative to males. Furthermore, the study 

that found no differences in 𝑅! between unmedicated patients and controls (Worbe et al. 2011) suffered 

from model identifiability issues (Maia and Conceição 2017) that we discuss briefly below (section 

3.2.2). A third study did not find differences in learning from rewards between patients with TS, many 

of whom were unmedicated, and controls, other than differences due to ADHD comorbidity (Shephard, 

Jackson, and Groom 2016). That study, however, used a simple deterministic task, and accuracy 

throughout the task was very high for all participants; the task therefore likely engaged explicit, rule-

based learning, which may be largely unaffected in unmedicated patients with TS (Maia and Conceição 

2017). 

Patients with TS on antipsychotics other than aripiprazole have consistently been reported to be 

impaired at learning from rewards: they learned from punishments but not from rewards in a subliminal 

task (Palminteri et al. 2009), and they had decreased 𝑅! relative to controls in two studies (Palminteri et 

al. 2011; Worbe et al. 2011). These findings are most likely due to the medication, because 

antipsychotics also decrease learning from rewards in healthy humans, patients with other disorders, and 

animals (Maia and Conceição 2017; Maia and Frank 2017). Patients on aripiprazole, unlike those on 

other antipsychotics, seem to have spared simple learning from rewards (Salvador et al. 2017; Worbe et 

al. 2011). The mechanisms of action of aripiprazole are different from those of other antipsychotics 

(Casey and Canal 2017; Maia and Conceição 2018), as aripiprazole is characterized by “functional 

selectivity” (Mailman and Murthy 2010), which may explain this difference in effects. Aripiprazole does 

impair more complex forms of learning—namely, counterfactual learning—in a dose-dependent manner, 

but that may be due to detrimental effects on executive function (Salvador et al. 2017). Indeed, 

counterfactual learning involves learning from the outcomes of actions that one did not take but could 

have taken, which requires more complex inference and therefore requires executive function. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
17	
  In both studies, statistical tests did not reveal a statistically significant difference in the sex 
distribution between the groups, but failure to reject the null hypothesis cannot be construed as proof of 
no differences.	
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10.2.2. Habits in TS 
 
 
As noted above, the motor loop is associated with both habits and tics, which suggests that “tics are 

exaggerated, maladaptive, and persistent motor habits” (Maia and Conceição 2017, 401). Further 

support for that idea comes from a study that found that patients with TS over-rely on habits relative to 

goal-directed behaviors (Delorme et al. 2016). The same study, moreover, found positive correlations 

between (1) overreliance on habits and tic severity, (2) overreliance on habits and structural connectivity 

between motor cortex and putamen, and (3) tic severity and structural connectivity between 

supplementary motor cortex and putamen (the latter two in unmedicated patients only), thereby 

demonstrating an association among habits, tics, and increased structural connectivity within the motor 

loop. Other studies have also shown positive correlations between structural connectivity within the 

motor loop and both (1) tics in patients with TS (with patients, moreover, having increased structural 

connectivity within the motor loop relative to controls; Worbe et al. 2015) and (2) habit learning in 

healthy controls (de Wit et al. 2012). 

Two older studies found that patients with TS performed worse than healthy controls did in the 

weather prediction task (Kéri et al. 2002; Marsh et al. 2004), a probabilistic classification task that was 

designed with the goal of probing the gradual learning of S-R associations (Knowlton, Squire, and 

Gluck 1994). Moreover, this impaired performance did not seem attributable to medication or 

comorbidities. Those articles interpreted the impaired performance as indicative of impaired habit 

learning; however, neither study included any of the tests that are now considered necessary to classify a 

behavior as a habit (Yin and Knowlton 2006), a particularly pertinent concern because performance in 

the weather prediction task may also rely on other cognitive processes (Price 2009). Neither study, 

moreover, disentangled learning from positive vs. negative prediction errors (Box 10.1); as we will 

discuss later (section 10.3.2), the reported impairments might therefore be a consequence of impaired 

learning from negative, but not positive, prediction errors in TS. 

10.2.3. Data-driven automated diagnosis in TS 
 
 
As noted above (section 10.1.2), somatosensory and motor regions are strongly implicated in 

premonitory urges and tics, respectively (Conceição et al. 2017; Cox, Seri, and Cavanna 2018; Worbe, 
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Lehericy, and Hartmann 2015). Consistent with such involvement, studies that have applied data-driven 

computational-psychiatry approaches to build classifiers using data from magnetic resonance imaging 

(MRI) suggest that sensorimotor regions are key to distinguish patients with TS from healthy controls or 

from patients with other neuropsychiatric disorders, as described next. 

Three studies used MRI data to automatically distinguish medication-naïve children with TS 

from healthy children. The three studies were conducted by the same research group using substantially 

overlapping samples and the same machine-learning approach: support vector machines (SVMs) with 

cross-validation. The studies differed in the specific MRI modalities used: resting-state functional MRI 

(rs-fMRI; Wen et al. 2018), diffusion MRI (Wen, Liu, Rekik, Wang, Zhang, et al. 2017), and both 

structural and diffusion MRI (Wen, Liu, Rekik, Wang, Chen, et al. 2017). In one of the studies, children 

with TS had no comorbidities (Wen et al. 2018), and in the other two they had no comorbidities other 

than ADHD (Wen, Liu, Rekik, Wang, Chen, et al. 2017; Wen, Liu, Rekik, Wang, Zhang, et al. 2017). 

All three studies achieved classification accuracies above 85%, and they all implicated sensorimotor 

regions, or their connectivity, as key discriminating features between children with TS and healthy 

children. They also implicated several other regions—for example, the inferior frontal gyrus (IFG), 

which is strongly implicated in inhibitory control (Aron, Robbins, and Poldrack 2014)—or their 

connectivity as discriminating features.  

Two additional studies used rs-fMRI data to distinguish children with TS from healthy children 

but using samples in which a considerable percentage of the children with TS was medicated (Greene et 

al. 2016; Liao et al. 2017). Both studies also used SVMs with cross-validation. One study used inter-

hemispheric intrinsic functional connectivity and included only boys without comorbid ADHD or OCD; 

that study strongly implicated sensorimotor and limbic regions in successful discrimination, and it 

achieved a classification accuracy of over 90% (Liao et al. 2017). The other study, which did not 

exclude patients with comorbidities, strongly implicated connectivity within and between sensorimotor 

and/or cognitive-control regions in successful discrimination (Greene et al. 2016), but it had a much 

lower classification accuracy (~70%) than the other studies.  

A final study used cortical and subcortical morphological variations to classify children or adults 

who were either healthy or diagnosed with one of several neuropsychiatric disorders, including TS 

(Bansal et al. 2012). The medication status of patients with TS was not reported. For each pair (or set) of 
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groups to be compared, the discriminating features were preselected as those that differed with high 

significance between those specific groups. For children with TS vs. healthy children, the chosen 

features involved the surface morphology of the right globus pallidus and hippocampus; for adults with 

TS vs. healthy adults, they involved only the surface morphology of the right hippocampus. 

Classification accuracy was remarkably high when grouping features into two groups (e.g. adults with 

TS vs. healthy adults), but not into three groups (e.g. adults with TS vs. adults with schizophrenia vs. 

healthy adults). Although the study used both leave-one-out cross-validation and multiple independent 

split-half replication analyses, the preselection of features for each discrimination seems to have used 

the full sample of subjects to be discriminated—including, as far as we can tell, the subjects held out for 

test in the leave-one-out cross-validation and split-half analyses—which may have introduced 

overfitting. 

In short, consistent with the main theme of this chapter, automated classification studies 

highlight the importance of sensorimotor regions for the classification of patients with TS, although they 

also point to other potentially relevant regions. In terms of clinical application, however—the aim of 

applied computational psychiatry (Huys, Maia, and Frank 2016; Paulus, Huys, and Maia 2016)—this 

work has important limitations. Arguably, the most fundamental limitation of this work is that the nearly 

exclusive focus on classification of patients with TS vs. healthy controls does not respond to a real 

clinical need; clinicians face many difficult tasks in which they could use the help of computational 

psychiatry—e.g., prognosis, prediction of treatment outcome, or differential diagnosis (Huys, Maia, and 

Frank 2016)—but distinguishing patients from controls usually is not one of primary concern. Amongst 

all of the studies reviewed above, only one tried to tackle the more realistic problem of distinguishing 

between different disorders, and it even tried to tackle classification into more than two groups (Bansal 

et al. 2012). Unfortunately, as noted above, that study might have suffered from overfitting; moreover, 

even with the possible overfitting allowed by the feature-selection process, the study had very limited 

success in the classification into more than two groups, which highlights the difficulties inherent in that 

process. Ultimately, we hope that more researchers interested in automated classification turn their 

attention to problems with potential for real clinical impact (Huys, Maia, and Frank 2016; Paulus, Huys, 

and Maia 2016). 

10.3 Case Study: An Integrative, Theory-Driven Account of TS 
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CBGTC (Neuner, Schneider, and Shah 2013; Worbe, Lehericy, and Hartmann 2015) and dopaminergic 

(Buse et al. 2013) disturbances have long been implicated in TS. To the best of our knowledge, 

however, there was no cohesive, integrated account capable of explaining the multiple findings in TS 

obtained with various methods: molecular imaging, pharmacology, structural imaging, tic-related and 

resting-state functional imaging, and experimental behavioral data. Given that parsimony is a 

fundamental principle of science, we recently suggested a mechanistic, integrated theory of TS that 

provides a unified explanation for these multiple findings (Conceição et al. 2017; Maia and Conceição 

2017; 2018). First, we conducted a systematic review of all positron emission tomography (PET) and 

single-photon emission computed tomography (SPECT) studies of the dopaminergic system in TS and 

considered related postmortem studies and the mechanisms of action of all medications with proven 

efficacy in TS; we showed that the hypothesis that TS involves dopaminergic hyperinnervation—i.e., an 

increased number of dopaminergic terminals—provides a simple and unified explanation for all of those 

findings (Maia and Conceição 2018). Second, we used insights concerning the computational roles of 

phasic and tonic dopamine in action learning and selection (Collins and Frank 2014; Maia and Frank 

2017) to formulate a computational description of how increases in phasic and tonic dopamine—

themselves resultant from dopaminergic hyperinnervation—may promote tic learning and expression 

and also explain the findings from the studies that have assessed RL and habits in TS. This formulation 

also allowed us to explain detailed observations concerning the time course of action of antipsychotics 

in the treatment of TS that had previously been unappreciated (Maia and Conceição 2017). Third, we 

reviewed studies that used anatomical imaging, resting-state functional imaging, and tic-related 

functional imaging in TS, focusing on the relation between such data and the genesis and severity of tics 

and premonitory urges (Conceição et al. 2017); using that information, we expanded the theory that we 

had formulated (Maia and Conceição 2017) to explain the neural substrates of premonitory urges and the 

computational roles of such urges in tic learning and execution (Conceição et al. 2017). We review each 

of these three steps below (sections 10.3.1-10.3.3).  

10.3.1. Dopaminergic hyperinnervation as a parsimonious explanation for neurochemical and 
pharmacological data in TS 
	
  

PET/SPECT studies of the dopaminergic system suggest that patients with TS have increases in 

dopamine transporter (DAT) binding, amphetamine-induced dopamine release, and possibly also in 

vesicular monoamine transporter 2 (VMAT2) binding and F-Dopa accumulation (Maia and Conceição 
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2018). Dopaminergic hyperinnervation would be expected to cause all of these findings (Figure 10.2; 

Maia and Conceição 2018). The full ensemble of findings of PET/SPECT studies of the dopaminergic 

system in TS presents important interpretational challenges, and typically there are about as many 

studies with null findings as studies with positive findings supporting the disturbances we mentioned 

above. Careful consideration of the studies with null findings, however, shows, first, a widespread and 

unmistakable lack of power—most studies used extremely small samples—and, second, in several 

studies, important age-, sex-, and/or medication-related confounds (Maia and Conceição 2018). At the 

moment, therefore, the dopaminergic-hyperinnervation hypothesis seems to successfully reconcile all 

extant PET/SPECT findings (Maia and Conceição 2018). This hypothesis has recently received 

additional support from a meta-analysis that confirmed increased striatal DAT binding in TS (Hienert et 

al. 2018). Furthermore, the dopaminergic-hyperinnervation hypothesis explains why all medications 

with well-established efficacy for TS—antipsychotics, low-doses of certain dopamine agonists like 

pergolide (which act mostly on presynaptic D2 receptors), ecopipam (a selective D1 antagonist), VMAT2 

inhibitors, and even α2/α2A agonists—reduce dopaminergic transmission (Maia and Conceição 2018). 

Moreover, if indeed TS involves dopaminergic hyperinnervation, then it can be expected to involve 

increased tonic and increased phasic dopamine. As we will discuss in the next section, such increases 

explain a wide range of clinical and experimental findings in TS. 

10.3.2. The roles of phasic and tonic dopamine in TS 
	
  

Extensive evidence implicates phasic and tonic dopamine (Box 10.2) in action learning and selection 

(Box 10.1; Figure 10.1), and these effects have been elegantly captured computationally in the OpAL 

model (Collins and Frank 2014; Maia and Frank 2017). We have used these ideas, albeit under a slightly 

different mathematical instantiation from that in prior formulations of OpAL, to suggest that increased 

phasic and tonic dopamine in TS—themselves due to dopaminergic hyperinnervation (Figure 10.2; 

Maia and Conceição 2018)—may promote tic learning and expression (Maia and Conceição 2017). 

The CBGTC-inspired RL model 

OpAL (Collins and Frank 2014) expands the actor component of the actor-critic model (Barto 1995; 

Sutton and Barto 1998) to explicitly account for the existence of direct (Go) and indirect (NoGo) 

CBGTC pathways (Box 10.1; Figure 10.1). It does so by subdividing state-action preferences, 𝑝(𝑠,𝑎) 

(where 𝑠 and 𝑎 denote a state and an action, respectively), into two “sub-preferences,” 𝐺(𝑠,𝑎) and 
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𝑁(𝑠,𝑎), which denote positive and negative parts of the preference, respectively, and are coded by Go 

and NoGo pathways, respectively (Collins and Frank 2014). Loosely speaking, the preference then 

becomes equal to the difference between these two sub-preferences: 𝑝 𝑠,𝑎 = 𝐺 𝑠,𝑎 − 𝑁 𝑠,𝑎 . As we 

will discuss next, however, these sub-preferences are differentially modulated by dopamine. 

Go and NoGo striatal medium spiny neurons (MSNs) express mostly D1 and D2 dopamine 

receptors, respectively, which are excitatory and inhibitory, respectively (Soares-Cunha et al. 2016). For 

this reason, dopamine modulates the excitability (or gain) of Go and NoGo striatal MSNs in opposite 

directions: higher striatal dopamine levels increase and decrease the excitability of Go and NoGo MSNs, 

respectively, and lower dopamine levels have the opposite effects (Figure 10.1). The positive and 

negative action sub-preferences (G and N, respectively) are therefore differentially modulated by 

dopamine. In OpAL, this differential modulation is captured by using different gains for the positive and 

negative action sub-preferences: 𝛽! and 𝛽!, which represent the gains of the Go and NoGo pathways, 

respectively, and which are modulated by dopamine in opposite directions (Collins and Frank 2014; 

Maia and Frank 2017). This opposite modulation in OpAL is achieved in a simple formulation by 

making 𝛽! and 𝛽! depend on the level of dopamine, ω, with different signs:  

𝛽! = 𝛽 1+ 𝜔 , 

and 

𝛽! = 𝛽 1− 𝜔 , 

where 𝛽 is a constant. The dopamine-modulated preference then becomes: 𝑝 𝑠,𝑎 = 𝛽G𝐺 𝑠,𝑎 −

𝛽N𝑁 𝑠,𝑎 . Actions can then be selected, for example, with the softmax, as in other RL models (Box 

10.1), but using these dopamine-modulated preferences. 

We previously associated mostly tonic dopamine with action selection (Maia and Conceição 

2017), under the assumption that phasic firing of dopamine neurons occurs only in specific 

circumstances and its corresponding transients are short-lived (Venton et al. 2003). Tonic dopamine 

levels, which are in the nanomolar range (Sulzer, Cragg, and Rice 2016), likely act mostly on the NoGo 

pathway because, in the striatum, D1 and D2 receptors appear to be predominantly in low- and high-
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affinity states, respectively (Dreyer et al. 2010; Sulzer, Cragg, and Rice 2016). Thus, we had suggested 

that, in most cases, the gain parameters could be simplified to: 

𝛽! = 𝛽, 

𝛽! = 𝛽(1− 𝜏), 

where τ represents tonic dopamine, which has a limited effect on βG. On the other hand, we had 

already suggested that if action selection occurred shortly following phasic dopamine firing, it would be 

modulated by the corresponding dopamine transients (Maia and Frank 2017). In other words, we had 

suggested that ω = τ + ρ, where ρ represents phasic dopamine (Maia and Frank 2017), which could 

then affect βG. Recent evidence (da Silva et al. 2018), added to other evidence (Howe and Dombeck 

2016; Syed et al. 2016), suggests that phasic responses might commonly occur prior to self-initiated 

action, increasing the probability of, and invigorating, subsequent movement. Thus, we now favor the 

formulation in which action selection is commonly modulated by both tonic and phasic dopamine 

components, which can affect both βN and, if there is a phasic dopamine component, βG. 

In addition to its effects during action selection, dopamine also has differential effects on 

plasticity (Lerner and Kreitzer 2011; Shen et al. 2008), and therefore learning, in the Go and NoGo 

pathways (Maia and Conceição 2017). Specifically, dopamine increases cause long-term potentiation 

(LTP) in corticostriatal projections to the Go pathway and may cause long-term depression (LTD) in 

corticostriatal projections to the NoGo pathway, whereas dopamine decreases may have the opposite 

effects, causing long-term potentiation (LTP) in corticostriatal projections to the NoGo pathway and 

possibly causing long-term depression (LTD) in corticostriatal projections to the Go pathway (Lerner 

and Kreitzer 2011; Shen et al. 2008). Thus, in our formulation of the OpAL model, prediction errors 

affect learning in the Go and NoGo pathways in opposite directions:  

𝐺!!! 𝑠! ,𝑎! =
𝐺! 𝑠! ,𝑎! + 𝛼!,!"#𝛿!,  if 𝛿! ≥ 0
𝐺! 𝑠! ,𝑎! + 𝛼!,!"#𝛿!,  if 𝛿! < 0 

and 

𝑁!!! 𝑠! ,𝑎! =
𝑁! 𝑠! ,𝑎! − 𝛼!,!"#𝛿!,  if 𝛿! ≥ 0
𝑁! 𝑠! ,𝑎! − 𝛼!,!"#𝛿!,  if 𝛿! < 0  , 
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where the parameters α!,!"#, α!,!"#, α!,!"#, and α!,!"# are learning rates between 0 and 1, and the sub-

preferences 𝐺(𝑠! ,𝑎!) and 𝑁(𝑠! ,𝑎!) represent the strength of the corticostriatal synapses onto MSNs of 

the Go and NoGo pathways concerning the current state, 𝑠!, and the selected action, 𝑎! (Maia and 

Conceição 2017). Given that these sub-preferences are meant to represent synaptic weights, they are 

constrained to be greater than, or equal to, 0 (Collins and Frank 2014). 

The CBGTC loops have exactly the right anatomy to implement these computations (Figure 

10.1; Maia and Conceição 2017; Maia and Frank 2017). 

Mechanistic explanation of behavioral findings on RL in TS 

From the five RL studies reviewed above (Section 10.2.1), two seem particularly consistent with the 

dopaminergic-hyperinnervation hypothesis of TS (Palminteri et al. 2009; 2011). In one of these studies, 

which applied an RL task in which the cues were presented subliminally, unmedicated patients with TS 

learned from rewards, but they did not learn from punishments (Palminteri et al. 2009). Both of these 

effects are consistent with dopaminergic hyperinnervation: increased learning from rewards is consistent 

with increased phasic dopamine, given the role of increases in phasic dopamine in the learning from 

positive prediction errors (Box 10.2); decreased learning from punishments is consistent with increased 

tonic dopamine, which might blunt the signaling of negative prediction errors by phasic decreases in 

dopamine. Furthermore, in that same study, the opposite pattern was found in unmedicated patients with 

Parkinson’s disease (PD), who learned from punishments but not from rewards (Palminteri et al. 2009). 

The finding of opposite patterns in unmedicated patients with TS and PD is particularly relevant because 

PD is characterized by dopaminergic hypoinnervation, and we hypothesize that TS is characterized by 

dopaminergic hyperinnervation—hence, the two disorders are hypothesized to have the opposite 

dopaminergic disturbances. Further evidence for the dopaminergic-hyperinnervation hypothesis comes 

from the finding that patients with PD on levodopa and dopamine agonists became like unmedicated 

patients with TS, learning from rewards but not from punishments. 

In the other study that supports the dopaminergic-hyperinnervation hypothesis, unmedicated 

patients with TS had higher internal reinforcement, 𝑅! (Box 10.1), for a monetary reward as compared 

with healthy controls (Palminteri et al. 2011). Dopamine does not seem to be implicated in the hedonic 

value of the reinforcements (Berridge 2007), which, at first sight, relates more closely to 𝑅!. However, 

unless the task is designed carefully and appropriate parameter-recovery simulations are conducted—see 
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discussion in the Supplemental Materials in (Maia and Conceição 2017), —the biological interpretation 

of RL parameters is often complex and can be misleading. Specifically, in the context of our discussion 

here, R+ can potentially relate to the signaling of positive prediction errors, and hence to phasic 

dopamine, rather than to hedonic value—a possibility to which we now turn. 

In tasks in which the only non-negligible reinforcement is a positive reward, 𝑟, prediction errors, 

𝛿, can be described by 𝛿! = 𝑅! − 𝑉(𝑠!), where R+ is the internal value of r (Box 10.1)18. We have noted 

that dopaminergic hyperinnervation is expected to lead to an increase in phasic dopamine release in TS. 

Suppose that such increase is additive; in other words, suppose that the increase in phasic dopamine 

release in TS is well captured by an additive parameter, 𝑎, that scales 𝛿! into 𝛿!!" = 𝛿! + 𝑎. We can 

rewrite 𝛿!!" as follows: 𝛿!!" = 𝛿! + 𝑎 = 𝑅! − 𝑉 𝑠! + 𝑎 = 𝑅! + 𝑎 − 𝑉 𝑠! . In other words, the 

change in phasic dopamine release would be well captured by a change in R+ to R+ + a (i.e., the change 

in phasic dopamine release would be captured as a change in the R+ parameter). Of course, we do not 

know if the increase in dopamine release is additive. In fact, the dopaminergic-hyperinnervation 

hypothesis may suggest that the increase is multiplicative because more fibers would be available to 

release dopamine for the same signal. Even if the change is multiplicative, however, that may still lead 

to a change in R+19.  

We cannot overstate the importance of considering in detail the meaning of RL parameters and 

of conducting appropriate tests to ensure that, in a given task, parameters are identifiable and capture the 

intended meaning (Maia and Conceição 2017; see in particular the Supplemental Materials). For 

example, whereas one study found increased R+ in unmedicated patients with TS, as discussed above, 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
18	
  For simplicity, but without loss of generality, we focus our exposition on prediction errors as 
calculated by the critic in bandit tasks.	
  
19	
   To see this, suppose that the increase in phasic dopamine release in TS is well captured by a 
multiplicative parameter, m, that scales 𝛿! into 𝛿!!" = 𝑚𝛿!. In RL equations (Box 10.1), 𝛿! is multiplied 
by a learning rate (e.g., α), so this multiplicative transformation should in principle be better captured by 
a change in α such that 𝛼!" = 𝑚𝛼. However, in models with a single learning rate (α) for both positive 
and negative prediction errors—as was the case in the study under consideration (Palminteri et al. 
2011)—this learning rate cannot adjust to increase only learning from positive prediction errors. In fact, 
if α increases, that will increase learning from both positive and negative prediction errors—and, as 
already discussed, learning from negative prediction errors might be blunted, rather than increased, in 
TS. Hence, it is not too surprising that the improved learning from positive prediction errors is captured, 
at least in part, by an increase in R+.  
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another found no alterations in R+ (Worbe et al. 2011). We have shown through simulations, however, 

that the parameters in the latter study were not identifiable (Maia and Conceição 2017). Moreover, we 

also showed that blunted learning from negative prediction errors—i.e., a reduced 𝛼!—would, by 

following the model-fitting procedures in that study, erroneously be reflected in a reduced value for 𝑅! 

(Maia and Conceição 2017, Supplemental Materials). Now, note that dopaminergic hyperinnervation in 

TS would cause both (1) increased learning from positive prediction errors, which, as noted above, could 

be captured as an increase in R+, and (2) reduced learning from negative prediction errors, which, as we 

have shown in simulations, could be captured as a decrease in R+. These two opposing effects might 

therefore cancel each other out, leading to the observed finding of no alterations in R+ in unmedicated 

patients with TS vs. controls (Worbe et al. 2011). 

In addition to these computational arguments, there is also empirical evidence that R+ in these 

studies may have captured dopaminergic effects. Indeed, patients with TS on antipsychotics, which 

block dopamine, had reduced, rather than increased, values of R+ in both studies (Palminteri et al. 2011; 

Worbe et al. 2011). Such reductions in R+ values, like the finding that medicated patients with TS, 

contrary to unmedicated patients with TS, failed to learn from rewards in the aforementioned subliminal 

task (Palminteri et al. 2009), likely are explained, at least in part, by the fact that, when administered 

chronically, antipsychotics decrease the firing of dopaminergic neurons and decrease phasic and tonic 

dopamine (Maia and Conceição 2017). Antipsychotics also have other, more complex effects that 

further explain why they blunt Go learning (Maia and Conceição 2017).  

Relatedly, the finding that medicated patients with TS, like unmedicated patients with PD, but unlike 

unmedicated patients with TS, learned from punishments in the subliminal task that we first discussed 

(Palminteri et al. 2009) may be explained by considering other effects of antipsychotic administration. 

Except for aripiprazole, antipsychotics seem to exert their beneficial effects in TS by blocking 

postsynaptic D2 receptors (section 10.1.3). Computationally, the blockade of D2 receptors in NoGo 

MSNs translates into an increase in the excitability (or gain, 𝜷𝐍) of the NoGo pathway, as well as into a 

tendency for strengthening of corticostriatal synapses onto NoGo MSNs, given that LTP and LTD in 

such synapses respectively depend on the lack of stimulation and stimulation of D2 receptors (Figure 

10.1; Maia and Conceição 2017). Such effects therefore explain why patients with TS under 
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antipsychotics learn better from punishments than unmedicated patients with TS do20.Mechanistic 

explanation of behavioral findings on habits in TS 

As reviewed in section 10.2.2, unmedicated patients with TS seem to over-rely on habitual, compared to 

goal-directed, behavioral control. As mentioned above, dopamine mediates habit learning and execution 

(section 10.1.2), with (1) increased phasic dopamine promoting excessive Go learning and (2) increased 

tonic dopamine, or increased phasic-dopamine release prior to action selection (da Silva et al. 2018), 

promoting excessive execution of the most ingrained motor actions (Figure 10.1). Thus, dopamine 

hyperinnervation provides a natural explanation for the reported over-reliance of unmedicated patients 

with TS on habits. In addition, the hypothesis that tics themselves are “exaggerated, maladaptive, and 

persistent motor habits” (Maia and Conceição 2017, 401) explains the observed positive correlation 

between the overreliance on habits and tic severity (Delorme et al. 2016). 

As mentioned in section 10.2.2, two older studies found impaired habit learning in TS, but those 

studies did not disentangle learning from positive versus negative prediction errors (Kéri et al. 2002; 

Marsh et al. 2004). As mentioned above, under the dopaminergic-hyperinnervation hypothesis, one 

expects impaired learning from negative prediction errors because phasic dopamine decreases become 

blunted. The findings of those studies are therefore consistent with the dopaminergic-hyperinnervation 

hypothesis if they are driven mostly by impaired learning from negative prediction errors. A more recent 

study (Shephard, Groom, and Jackson 2018) lends further credence to this hypothesis. That study found 

that patients with TS, most of whom were unmedicated, were not impaired in a sequence learning task. 

However, they were impaired in switching from a sequenced block to a non-sequenced one, arguably the 

process that most relied on negative prediction errors. Interestingly, patients with TS on that study were 

also faster overall, in both sequenced and non-sequenced blocks, without a decrement on accuracy, 

possibly due to increased tonic dopamine. Indeed, increased dopamine, by increasing the gain of the Go 

relative to the NoGo pathway, should lead to faster responses overall (Collins and Frank 2014). 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
20	
  Two other studies failed to find differences between unmedicated (Salvador et al. 2017) or 

mostly unmedicated (Shephard, Jackson, and Groom 2016) patients with TS and controls in RL tasks, 

but those studies suffered from confounds that were already discussed (section 10.2.1).  
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Mechanistic explanation of tic learning and expression in TS 

As mentioned in section 10.1.2, dopaminergic hyperinnervation seems to explain why there is an 

increased propensity for tics to be learned and expressed in TS (Figure 10.3A), via increased phasic and 

tonic dopamine. Indeed, tic learning may be driven either by maladaptive, aberrantly-timed phasic-

dopamine release or by phasic-dopamine released following the cessation of premonitory urges by tic 

execution (Maia and Conceição 2017); thus, tic learning is likely facilitated by the higher striatal phasic-

dopamine release that is predicted to occur under dopaminergic hyperinnervation21.  

Furthermore, tic execution, like the execution of other well-learned motor actions, is likely 

facilitated by higher striatal dopamine levels—including both tonic and phasic dopamine—provided that 

the Go values of tics are considerable (Figure 10.1). Considering the aforementioned evidence on the 

overlearning of habits in TS (Delorme et al. 2016; Shephard, Groom, and Jackson 2018) and the 

association between tics and habits, the existence of tics with considerable Go values is likely generally 

the case in TS.  

Tics, however, are not necessarily dependent on the existence of higher striatal dopamine levels, 

but rather on the existence of an overactivation of the Go compared to the NoGo motor pathway (Figure 

10.1). Consistent with this idea, chronic administration of quinpirole, which is a D2/D3 agonist and 

therefore suppresses the NoGo pathway, causes tics in a juvenile-rat model of TS (Nespoli et al. 2018). 

In that rat model, however, dopaminergic projections to the dorsal striatum had been lesioned 

previously, which in itself is sort of the opposite of dopaminergic hyperinnervation, so these findings 

have to be interpreted with care. Nonetheless, chronic quinpirole administration, without prior lesioning 

of the dopamine system, also induces compulsive checking in rats (Szechtman, Sulis, and Eilam 1998), 

which is interesting given the very high comorbidity of OCD in patients with TS.  

Mechanistic explanation of the therapeutic effects of medication in TS 

In addition to providing a mechanistic explanation for the role of dopaminergic hyperinnervation in tics, 

the proposed CBGTC-inspired RL model seems to explain both the fast (Figure 10.3B) and cumulative 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
21	
   The mechanisms underlying tic learning following the cessation of premonitory urges are 

comprehensively explained in section 10.3.3 and in Conceição et al. (2017). 
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(Figure 10.3C) therapeutic effects of antipsychotics in TS (Maia and Conceição 2017), as well as 

possible increases in tic expression following withdrawal from antipsychotics (Figure 10.3D). The 

proposed model, moreover, seems to explain the therapeutic effects of all other medications with well-

established efficacy in TS because all such medications reduce phasic and/or tonic dopaminergic 

neurotransmission (Maia and Conceição 2018).  

As we suggested previously, from the medications with proven efficacy in TS, ecopipam, a D1 

antagonist, could be particularly interesting from a scientific perspective because, given the lower 

affinity of D1 receptors, it should mostly antagonize phasic dopamine (Maia and Conceição 2018). We 

had associated phasic dopamine with tic learning, but not necessarily with tic execution (Maia and 

Conceição 2017). The existence of novel, strong evidence implicating phasic dopamine in action 

execution (da Silva et al. 2018), however, indicates that ecopipam should target tic execution, in 

addition to tic learning, which further helps to explain its efficacy in TS (Gilbert et al. 2018). 

The aforementioned mechanisms of TS medication also help to develop a rationale for the 

combination of pharmacological and behavioral treatments. Successful execution of tic-competing 

responses in HRT and successful tic suppression in ExRP (see Section 10.1.3) both are conditional on 

the probability of tic execution not approximating 1. At least for the most severely affected patients 

(Ganos, Martino, and Pringsheim 2017), therefore, increasing NoGo relative to Go activation 

pharmacologically (e.g., through antipsychotic medications) may permit sufficient inhibition of the tic to 

allow the behavioral therapy to work. For other therapies, such as contingency management and massed 

negative practice, which work by assigning a negative value to tics, co-adjuvant medication may have a 

more direct therapeutic effect, by increasing learning and expression of negative values (Maia and Frank 

2011). Chronic antipsychotic administration, for example, shifts the plasticity of corticostriatal synapses 

onto (motor) NoGo MSNs towards LTP, compared to LTD (Maia and Conceição 2017), besides leading 

to an increased gain of NoGo MSNs). By facilitating the NoGo learning and expression of tics (Figure 

10.3), chronic antipsychotic administration might therefore conceivably promote the success of 

contingency management or massed negative practice. Although these therapies are yet to present 

convincing results when administered as monotherapies (Fründt, Woods, and Ganos 2017), we are not 

aware of any systematic attempts to combine them with pharmacological therapies. 

10.3.3. Premonitory urges and tics in TS: computational mechanisms and neural correlates 
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Premonitory urges are aversive, distressful sensations that often precede, and are ceased by, tics (Brandt 

et al. 2016; Leckman, Walker, and Cohen 1993). Phasic dopamine is released following positive 

prediction errors (Schultz 2016; Maia 2009), including those elicited by the avoidance, and cessation, of 

aversive stimuli (Maia 2010; Navratilova and Porreca 2014; Seymour et al. 2005); thus, premonitory-

urge cessation, via tic execution, may lead to phasic dopamine release. Such phasic release is possibly a 

key driver of tic learning (Conceição et al. 2017), via negative reinforcement (Capriotti et al. 2014)—

that is, reinforcement due to escape from, or avoidance of, an aversive stimulus. However, as previously 

mentioned, aberrant, ill-timed phasic bursts may also reinforce tics. 

Computational mechanisms of premonitory-urge-driven tic learning and execution 

Two RL approaches may be used to describe how positive prediction errors may arise following 

premonitory-urge cessation (Conceição et al. 2017): an average-reward RL approach (Mahadevan 1996) 

and a standard RL approach [based on the actor-critic or similar state-value learning models (like OpAL 

models), but not on Q-learning models, which do not seem adequate to capture escape- or avoidance-

learning behavior (as detailed in Box 10.1)]. In average-reward RL, there is an ongoing computation of a 

recency-weighted average reinforcement, 𝑟!!!, which is used to evaluate the obtained reinforcements 

(Mahadevan 1996). Specifically, in average-reward RL, a positive reinforcement is not necessarily 

“rewarding” (nor is a negative reinforcement necessarily “punishing”, respectively) unless it is higher 

(lower, respectively) than the online estimate of the average reinforcement. Average-reward RL 

therefore attempts to optimize action policies by strengthening the associations between states and 

actions that yield a reinforcement higher than the average reinforcement at the time of action execution 

and by weakening those that yield a reinforcement lower than the average reinforcement. Given that, in 

this approach, all reinforcements are evaluated according to a mean reinforcement value, there is no 

mathematical reason to use a temporal discount factor γ (Mahadevan 1996), leading to the following 

equation for prediction-error calculation:  

𝛿! = 𝑟(𝑠!)− 𝑟!!! + 𝑉! 𝑠! − 𝑉! 𝑠!!! , 

where 𝑟 𝑠!  denotes the fact that the obtained reinforcement may be state dependent. This equation has 

been shown to capture pain-termination-driven RL in humans (Seymour et al. 2005), which we have 

previously hypothesized to parallel tic learning due to premonitory-urge termination in patients with TS 

(Conceição et al. 2017), as described next.  
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Premonitory urges, 𝑈, are inherently aversive sensations [𝑟 𝑈 < 0] that build up in time 

(Brandt et al. 2016); thus, immediately before premonitory-urge termination, 𝑟!!! should typically be 

much lower than 0 [𝑟!!! ≪ 0]. Therefore, unless premonitory-urge termination (via tic execution) is 

accompanied by a very negative reinforcement [𝑟(𝑠!) ≪ 0], the term 𝑟(𝑠!)− 𝑟!!! should be sufficiently 

positive to guarantee that, following premonitory-urge termination, 𝛿! > 0, irrespective of the difference 

in state values at that time, 𝑉! 𝑠! − 𝑉! 𝑠!!! , thereby strengthening the tic. Thus, under average-reward 

RL, state values are likely not necessary to explain tic learning, although they may certainly play a role 

(Conceição et al. 2017). 

In standard RL (based on state-value learning models; see above), no average reinforcement is 

computed. Instead, prediction errors are calculated by: 

𝛿! = 𝑟 𝑠! + 𝛾𝑉! 𝑠! − 𝑉! 𝑠!!! , 

where 𝛾 is the aforementioned temporal discount factor (Box 10.1). The termination of an aversive 

premonitory urge does not per se result in a reward; in other words, r(st) will not in general be positive. 

Thus, in standard RL, the elicitation of the positive prediction errors that may underlie tic learning is 

explained in terms of differences in state values (Conceição et al. 2017). Specifically, the combination of 

the aversive character of premonitory urges and the fact that they predict their own continuation means 

that the state of having a premonitory urge has a negative value [𝑉 𝑈 < 0]. Given that a tic terminates 

(even if only temporarily) a premonitory urge, the tic elicits a transition from a state with a negative 

value to a state with a neutral value, which produces a positive prediction error that reinforces the tic 

(Conceição et al. 2017). In other words, if it is assumed, for simplicity, that, on average, (1) 𝑉! 𝑠!  has 

no intrinsic value—because 𝑠! is no longer characterized by the presence of a premonitory urge—and 

that (2) premonitory-urge termination is accompanied by a null, or no, primary reinforcement, 𝑟(𝑠!), the 

prediction-error equation is therefore simplified into: 𝛿! = 0− 𝑉! 𝑈 ⇒ 𝛿! > 0. Strikingly, however, 𝛿! 

would still be positive if premonitory-urge termination was accompanied by a negative 𝑟(𝑠!) (e.g., 

social embarrassment) and/or by a negative 𝑉! 𝑠! , provided that 𝑟 𝑠! + 𝛾𝑉! 𝑠!  is less negative than 

𝑉! 𝑈 , which seems a reasonable assumption for most cases, given that premonitory urges are so 

aversive that they are often considered more distressing and life-impairing than tics themselves 

(Leckman, Walker, and Cohen 1993). 
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The positive prediction error elicited by premonitory-urge termination will tend to strengthen the 

association between the preceding state—having the premonitory urge—and the tic. Thus, the state of 

having a premonitory urge will come to elicit the tic, so premonitory urges will themselves come to 

elicit tic execution. 

Neural correlates of premonitory-urge-driven tic learning and execution 

The insula and somatosensory cortices are strongly implicated in premonitory urges (Figures 10.4 and 

10.5; Cavanna et al. 2017; Conceição et al. 2017; Cox, Seri, and Cavanna 2018). In fact, the insula is 

also strongly implicated in natural urges (Jackson, Parkinson, Kim, et al. 2011) and in urges in addiction 

(Naqvi and Bechara 2010). Moreover, the insula is strongly implicated in interoceptive processing 

(Quadt, Critchley, and Garfinkel 2018), whose interaction with exteroceptive processing, in which the 

somatosensory cortices are strongly implicated, seems to underlie premonitory urges (Figure 10.5; Cox, 

Seri, and Cavanna 2018). Abnormal interoceptive sensibility, in particular, correlates with both the 

severity of premonitory urges and tics in TS (Rae, Larsson, et al. 2018). Furthermore, the insula and 

somatosensory cortices are both structurally and functionally abnormal in TS, in addition to being 

aberrantly coupled structurally and functionally with regions from the motor CBGTC loop (Figure 10.5; 

Conceição et al. 2017; Cox, Seri, and Cavanna 2018; Rae, Polyanska, et al. 2018; Sigurdsson et al. 2018; 

Wen et al. 2018) that are implicated in tic learning and execution (Conceição et al. 2017; Maia and 

Conceição 2017). Like abnormal interoceptive sensibility, insular (structural and/or functional) 

connectivity has also been shown to correlate with both tic and premonitory urge severity (Conceição et 

al. 2017; Rae, Polyanska, et al. 2018; Sigurdsson et al. 2018). The aforementioned abnormalities 

involving the insula and somatosensory cortices and their connections to the motor CBGTC loop are 

thereby likely to provide the substrate for premonitory urges and premonitory-urge-driven tic execution 

(Figure 10.4; Conceição et al. 2017). 

The insula, together with the ventral striatum (VS), is also strongly implicated in RL (Garrison, 

Erdeniz, and Done 2013; Palminteri and Pessiglione 2017; Seymour et al. 2004; 2005)—particularly, in 

the case of the insula, with aversive outcomes (Garrison, Erdeniz, and Done 2013; Palminteri and 

Pessiglione 2017; Palminteri et al. 2012). Indeed, the insula has been strongly implicated in the coding 

of aversive state values [𝑉 𝑠 < 0] (Palminteri et al. 2012; Seymour et al. 2004), aversive prediction 

errors (𝛿 < 0) (Garrison, Erdeniz, and Done 2013; Seymour et al. 2004; 2005), and aversive outcomes 

(r < 0), even when such outcomes are fully predicted and therefore do not elicit a prediction error 
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(Conceição et al. 2017; Nitschke et al. 2006). The insula is therefore a prime candidate to represent three 

of the tic-learning-related variables mentioned in the previous subsection: the intrinsic negative primary 

value of a premonitory urge [𝑟 𝑈 < 0], its associated negative state value [𝑉 𝑈 < 0], and the negative 

prediction errors (𝛿 < 0) associated with the onset of premonitory urges and their estimation over time 

(not to be confused with the positive prediction errors elicited by the offset of premonitory urges when a 

tic is executed; Figure 10.4; Conceição et al. 2017).  

More speculatively, the shell of the nucleus accumbens, which is a part of the VS, may be a good 

candidate to represent the average reinforcement, 𝑟, over time (Figure 10.4; Conceição et al. 2017) [see 

also Niv et al. (2007) for a related proposal]. Indeed, dopamine in the shell has a set of unique properties 

that should, in principle, allow the online computation of 𝑟. Calculating 𝑟 requires (1) inputs 

representing the (signed) primary reinforcers, r, and (2) a mechanism for the integration of those inputs 

over time. Dopamine in the shell might fulfill these two requirements: (1) appetitive and aversive stimuli 

have been shown to respectively cause phasic increases and decreases of dopamine in the shell, in a 

manner that does not seem to depend on how predictable or unpredictable such stimuli were 

(McCutcheon et al. 2012; Sackett, Saddoris, and Carelli 2017) [see also Roitman et al. (2008)]—so, 

dopamine in the shell might represent the signed value of primary reinforcers; (2) DAT expression is 

comparatively low in the VS (Haber 2011), thereby permitting the slow integration of the shell’s 

dopaminergic inputs over time, which would not be possible if the amount of DAT in the shell was such 

that phasic dopaminergic changes were always rapidly nullified, via dopamine reuptake (Conceição et 

al. 2017). 

The existence of direct and indirect projections from both the shell and the insula to the VTA, in 

turn, explains how the VTA may have access to all variables that are necessary to calculate the 

prediction errors that are implicated in tic learning, as well as in the learning of related state values 

(Figure 10.4; Conceição et al. 2017). Finally, striato-nigro-striatal spirals (Haber 2011) may allow the 

propagation of the prediction errors implicated in tic learning from the ventral to the dorsal striatum, 

where they can be used to update the Go and NoGo values of actions (in this case, the Go and NoGo 

values of tics) stored in the corticostriatal synapses onto D1 and D2 MSNs, respectively (Figure 10.4; 

Conceição et al. 2017). 
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Premonitory urges and tics: clinical implications 

Considering the likely causal role of premonitory urges in tic learning and execution, we have 

previously suggested that optimal treatment strategies for TS would likely have to act upstream of tics, 

in premonitory-urge related processes, possibly by targeting the insula and/or the somatosensory cortices 

(Conceição et al. 2017). In line with such prediction, successful tic reduction via high-frequency DBS of 

the thalamus was shown recently to correlate with changes in the activity of both the insula and 

sensorimotor regions (Jo et al. 2018). This prediction also has potential implications for repetitive 

transcranial magnetic stimulation (rTMS) treatment in TS (Conceição et al. 2017). Indeed, rTMS over 

the motor cortices has yet to prove better than sham stimulation in TS (Hsu, Wang, and Lin 2018), 

possibly because it is acting too downstream; it certainly seems that it would be worth trying rTMS over 

the insula or the somatosensory cortices to see if, by acting farther upstream, the effect would be better. 

10.4. Discussion 

	
  

10.4.1. Strengths of the proposed theory-driven account: a unified account that explains a wide 
range of findings in TS 
 

The hypothesis that TS involves dopaminergic hyperinnervation provides a parsimonious and integrated 

explanation for extant neurochemical and pharmacological data in TS (Maia and Conceição 2018). Such 

hypothesis, moreover, is supported by a recent meta-analysis that found significantly increased striatal 

DAT binding in patients with TS, compared to controls (Hienert et al. 2018). Still, additional research on 

this issue is necessary because those meta-analytic findings became non-significant when controlling for 

age (Hienert et al. 2018), and most studies of the dopaminergic system in TS had very small samples and 

were subject to various other confounds (Maia and Conceição 2018). 

Extensive evidence implicates phasic and tonic dopamine in action learning and selection, 

respectively (Collins and Frank 2014; Maia and Frank 2011; 2017), with recent evidence also 

implicating phasic dopamine in action selection (da Silva et al. 2018). Dopaminergic hyperinnervation 

would be expected to increase both phasic and tonic dopamine, which, in turn, would thereby increase 

both tic learning and expression (Maia and Conceição 2017). Hyperdopaminergia should also increase 

learning from rewards and increase habit learning, which are the main findings from RL and habit-

learning studies in TS, respectively (Maia and Conceição 2017). 
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Finally, a ubiquitous clinical characteristic of TS is the presence of premonitory urges, which are 

alleviated temporarily by tics (Brandt et al. 2016; Leckman, Walker, and Cohen 1993). We have argued 

that the termination of premonitory urges likely elicits positive prediction errors, which reinforce tics 

(Conceição et al. 2017). These positive prediction errors likely elicit phasic firing of dopamine neurons, 

which again links to hyperdopaminergia in TS. A detailed consideration of the neural substrates of 

premonitory urges and their interactions with the motor system further explains how premonitory urges 

might play a role not only in tic learning but also in tic execution (Conceição et al. 2017). In short, our 

theoretical account, reviewed in Section 10.3, provides a rigorous and comprehensive account of a wide 

range of findings in TS (Figure 10.5). 

 

10.4.2. Limitations and extensions 

Other regions and neurochemical disturbances 

	
  

We focused on the role of the motor CBGTC loop in tics and on the roles of the somatosensory cortices 

and insula in premonitory urges (as summarized in Figures 10.4 and 10.5). Multiple other regions, 

however—among which, for example, the cerebellum [which is bidirectionally connected with the basal 

ganglia via disynaptic connections (Bostan and Strick 2018)] and the IFG—have been strongly 

implicated in TS (Caligiore et al. 2017; Jo et al. 2018; Neuner, Schneider, and Shah 2013; Wen, Liu, 

Rekik, Wang, Chen, et al. 2017; Wen et al. 2018; Wen, Liu, Rekik, Wang, Zhang, et al. 2017). We also 

did not address possible differences between the mechanisms and neural correlates underlying motor vs. 

phonic tics, but some evidence suggests that phonic tics might be specifically related to limbic regions 

(Foltynie 2016; Jo et al. 2018).  

We also focused on the involvement of the dopaminergic system, and specifically dopaminergic 

hyperinnervation, in TS. Multiple neurochemical abnormalities, however, have been implicated in TS 

(Cox, Seri, and Cavanna 2016; Kataoka et al. 2010; Lennington et al. 2016; Robertson et al. 2017), and 

some evidence suggests that targeting neuromodulators other than dopamine may also be beneficial for 

patients with TS (Augustine and Singer 2019; Thenganatt and Jankovic 2016). We should therefore 

emphasize that our focus on dopamine is not meant to imply that dopamine is the only or even the 

primary disturbance in TS. Other disturbances may also lead to TS if, like dopaminergic 
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hyperinnervation, they have the same circuit-level effects: increased plasticity and excitability of the Go, 

relative to the NoGo, motor pathway (Conceição et al. 2017; Maia and Conceição 2017).  

 

Inhibitory control in TS 

There has been substantial interest in inhibitory control in TS due to the hypothesis that tics might result 

from impaired inhibitory control (Morand-Beaulieu et al. 2017). Alterations in inhibitory control in TS 

would be consistent with the implication of the IFG in classification studies discriminating patients with 

TS from controls (Section 10.2.1) because the IFG is strongly implicated in inhibitory control (Aron, 

Robbins, and Poldrack 2014). Indeed, recent meta-analytic evidence seems to suggest that patients with 

TS have impairments in inhibitory control22. However, the same meta-analysis reported that inhibitory 

control was significantly more impaired in patients with TS that had comorbid and in patients with TS 

under medication than in unmedicated patients with TS, who were themselves quite similar to controls 

(Morand-Beaulieu et al. 2017). Thus, impaired inhibitory control in patients with TS may be a 

consequence of comorbid ADHD—indeed, inhibitory control is substantially impaired in ADHD 

(Brocki et al. 2007; Willcutt et al. 2005)—or of the medications. Some researchers, in fact, have even 

suggested that TS might involve enhanced (compensatory) cognitive control, including enhanced 

inhibitory control (Baym et al. 2008; Jackson, Parkinson, Jung, et al. 2011; Jung et al. 2013). 

Appearance of tics before premonitory urges in development 

We emphasized tic learning through negative reinforcement due to premonitory-urge termination, but 

children often develop tics before they start to report premonitory urges (Cavanna et al. 2017; Sambrani, 

Jakubovski, and Müller-Vahl 2016). One possible explanation for tic learning without premonitory-urge 

termination is that tics may also be learned due to excessive, “random” phasic dopamine transients. An 

alternative explanation for this seeming contradiction in timing during development is that children’s 

failure to report premonitory urges does not mean that such premonitory urges are non-existent; it may 

simply mean that children are impaired at reporting them (Conceição et al. 2017; Martino, Ganos, and 

Worbe 2018). In line with this statement, children with TS are even impaired at reporting tics 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
22	
  Cohen’s d = 0.33, p < 0.001, when comparing patients with TS and controls, and Cohen’s d = 0.26, p 
< 0.01, when comparing patients with TS without comorbidities and controls; Morand-Beaulieu et al. 
2017.	
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themselves (Conceição et al. 2017), and the intensity of premonitory urges seems to be similar in 

children and youth of different ages (Raines et al. 2018; Steinberg et al. 2010; Woods et al. 2005). Also 

in line with the learning of tics through negative reinforcement, a recent report of two cases describes 

the onset of premonitory urges before tics and as early as at the age of 5 (Li et al. 2019). Moreover, 

subliminal learning from rewards is increased in TS (Palminteri et al. 2009), which might imply that 

subliminal learning from positive prediction errors in general—including those due to negative 

reinforcement—might be increased in TS. Thus, it is certainly possible that negative reinforcement plays 

a role even when premonitory urges fail to be reported (Conceição et al. 2017). 

A related consideration is that urges may only become especially notorious for the individual 

when the individual attempts to inhibit the corresponding behavior. A parallel might be drawn here to 

natural urges (e.g., to urinate, etc.). There, too, early in development, children might feel an urge that, 

however, is almost too fleeting to be noticed because it is immediately followed by the corresponding 

behavior (e.g., an urge to urinate, which leads immediately and necessarily to urination). It is only as 

children learn to inhibit the behavior that the urge may become more notorious and that the link between 

the urge and the behavior may become more apparent; prior to that, the urge and behavior may be linked 

into a single experiential unit that makes noticing the urge as a separate entity more difficult. The same 

thing may occur with tics: it may be only as children learn to inhibit tics that premonitory urges become 

more noticeable (even if they were there, and could support negative reinforcement, all along). In line 

with these ideas, premonitory-urge intensity is indeed higher during tic suppression (Brandt et al. 2016). 

 

Feedback connections and oscillations in the basal ganglia  

We focused on RL models formed by sets of equations that predominantly capture the feedforward 

functioning of CBGTC loops (Box 10.1; Figure 10.1). However, there are several phenomena, such as 

neuronal oscillations within CBGTC loops (Brittain and Brown 2014), that those models cannot capture 

due to the underlying circuit oversimplifications (see, e.g., Augustine and Singer 2019). Here, we 

address such oscillatory behavior because pathological, low-frequency neuronal oscillations have been 

implicated in hyperkinetic symptoms from several movement disorders (Ellens and Leventhal 2013; 

Neumann et al. 2018), including TS (Hashemiyoon, Kuhn, and Visser-Vandewalle 2017; Neumann et al. 

2018). In TS, indeed, symptom severity has been shown to correlate with increased low-frequency 
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oscillations, namely with pallidal and thalamic oscillations in the theta and beta bands (Neumann et al. 

2018), and some authors now believe that prolonged theta bursts may be specifically implicated in 

involuntary movements (Neumann et al. 2018). Furthermore, in TS, DBS-induced reductions of tic 

severity have been shown to correlate with a relative increase of oscillations in the higher-frequency, 

gamma band (Hashemiyoon, Kuhn, and Visser-Vandewalle 2017). 

The subthalamic nucleus (STN) and the globus pallidus external segment (GPe) seem to be 

centrally implicated in oscillatory behavior within CBGTC loops (Frank 2006; Gatev, Darbin, and 

Wichmann 2006). The STN and Gpe are connected in a negative feedback loop, in which the STN 

stimulates the Gpe, which in turn inhibits the STN. This negative feedback loop, driven by other inputs, 

may underlie the oscillatory behavior within CBGTC loops (Frank 2006; Gatev, Darbin, and Wichmann 

2006). The projections from both the STN and Gpe to the output nuclei of the basal ganglia, the globus 

pallidus internal segment / substantia nigra pars reticulata, in turn, allow the propagation of the 

aforementioned oscillations through CBGTC loops (Frank 2006). Simplified CBGTC-inspired RL 

models, like OpAL models (Collins and Frank 2014; Maia and Conceição 2017; Maia and Frank 2017; 

section 10.3.2.1), do not explicitly account for STN-Gpe bidirectional connectivity (see, e.g., Figure 

10.1), which explains why those models cannot be used to describe oscillatory behavior within CBGTC 

loops. These models also do not capture other phenomena that may similarly contribute to such 

oscillatory behavior (see, e.g., Llinás et al. 2005). 

Although the models we have emphasized do not themselves exhibit oscillatory behavior, our 

main hypothesis that TS involves dopaminergic hyperinnervation is consistent with the observed 

increase of low-frequency oscillations in TS (Neumann et al. 2018). Indeed, these oscillations are 

present not only in TS but also in levodopa-induced dyskinesias in PD, where they arise specifically 

with levodopa administration (Alonso-Frech et al. 2006), which shows a clear association with 

dopamine. Moreover, these oscillations are also present in dystonia (Ellens and Leventhal 2013; 

Neumann et al. 2017), which, as hypothesized in Neumann et al. (2018), again might relate to dopamine 

because dystonia involves increased D1 receptor availability (Simonyan et al. 2017)—which, like 

hyperdopaminergia, should increase Go pathway activation. Thus, dopaminergic hyperinnervation in 

TS, and the consequent hyperdopaminergia, might be the cause of the observed low-frequency 

oscillations. 
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10.5. Chapter Summary 

 

TS, a disorder characterized by tics, seems to be associated with dopaminergic hyperinnervation, which 

likely causes increases in both phasic and tonic dopamine (section 10.3.1; Figure 10.5A). Given the 

roles of phasic and tonic dopamine in habit learning and execution, these increases lead to an overactive 

habit system (Figure 10.5B), with tics likely being persistent, maladaptive motor habits. This relation 

between tics and habits explains why the motor loop is centrally involved in both (Figure 10.5B). The 

central role of hyperdopaminergia in the overactivity of the habit system in TS, with consequent tics, 

explains why all medications with well-established efficacy for TS reduce dopaminergic 

neurotransmission (section 10.3.2; Figure 10.5A–B). 

Tics are usually preceded by, and terminate, premonitory urges—aversive, distressful sensations 

in which the somatosensory cortices and insula seem to be strongly implicated (Figure 10.5C). 

Premonitory-urge termination likely elicits positive prediction errors, which are signaled by phasic 

dopamine and reinforce tics (section 10.3.3; Figure 10.5C). Under dopaminergic hyperinnervation, this 

signaling might be excessive, which, again, might contribute to tic learning. 

In the context of this book, it is worth articulating briefly the overall strategy underpinning the 

theoretical proposals in this chapter. We started with a well-motivated computational model of the 

function of CBGTC circuits and the role of dopamine therein, for which there is much evidence 

independent of TS; to understand dysfunction computationally, it is fundamental to first understand 

function, to be able to understand how such function may be disrupted. We then used this model to 

investigate the multiple implications of a simple and parsimonious hypothesis about an underlying 

disturbance in TS—dopaminergic hyperinnervation. We found that this simple hypothesis, when 

considered in light of the model, provided an explanation for a very broad range of experimental and 

clinical findings in TS—ranging from experimental findings about reinforcement and habit learning in 

TS to clinical findings about the medications that are used to treat TS. This body of work therefore 

showcases one of the key uses of theory-based computational psychiatry: developing a rigorous and 

integrated mechanistic understanding capable of explaining and bringing together a wide variety of 

seemingly disparate findings. 
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Box 10.1. Commonly Used Reinforcement Learning Models 

Two standard computational models from the machine-learning literature—Q-learning (QL) and the 

actor-critic (Barto 1995; Sutton and Barto 1998; Watkins 1989)—have been used commonly and with 

considerable success to capture reinforcement learning (RL) in animals, healthy humans, and patients 

with Tourette syndrome (TS) and several other disorders (see, for example, Frank et al. 2007; Maia 

2009; Roesch, Calu, and Schoenbaum 2007; Worbe et al. 2011). We briefly review those models here 

for two reasons: (1) understanding these models is necessary to understand the alterations in model 

parameters that have been described in TS (reviewed in section 10.2.1); (2) these models—specifically, 

the actor-critic—provide the backbone for a more elaborate model that we have used to provide an 

integrated, mechanistic account of multiple aspects of TS (as discussed in section 10.3). 

Both QL and the actor-critic perform “model-free RL”: a potentially misleading term because 

these are computational models but a reflection of the fact that these models do not explicitly learn a 

model of the world contingencies. Instead, they use prediction errors (commonly represented by 𝛿) to 

learn directly the equivalent of Thorndikian stimulus-response (S-R) associations. In RL, it is common 

to speak of states rather than stimuli; states are more general because they include stimuli, situations, 

and contexts (which may be external and/or internal). In addition, although in psychology “responses” 

can be distinguished from “actions” (Dickinson 1985), in RL there is typically no such distinction, so 

responses—the accurate psychological term in the context of S-R associations (Dickinson 1985)—are 

also called actions. Thus, in RL, learning S-R associations corresponds to learning weights linking states 

and actions, 𝑤!(𝑠,𝑎) (where the subscript t indicates that these weights will vary over time with 

learning). QL and the actor-critic learn such weights in slightly different ways (described below). In 

both cases, however, those weights can be converted into action probabilities: 𝑃! 𝑎! 𝑠! , which gives the 

probability of selecting action 𝑎! in the state 𝑠! at time t. A common formula to convert the weights into 

probabilities is the softmax (Sutton and Barto 1998): 

𝑃! 𝑎! 𝑠! =
𝑒!  !! !!,!!

𝑒!  !! !!,!!!!

, 

where 𝛽 is the inverse temperature or gain (𝛽 ≥ 0). This equation ensures that actions with greater 

weights tend to be selected more often, with the degree to which that happens being controlled by 𝛽, 
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which therefore controls the degree of exploration (trying out random actions regardless of their 

weights) vs. exploitation (always selecting the action or actions with the greatest learned weights; Daw 

2011; Sutton and Barto 1998).  

QL and the actor-critic both learn the weights 𝑤!(𝑠,𝑎) in a way that seeks to maximize the 

expected total sum of future reinforcements (although, as noted above, they do so slightly differently): 

𝐸 𝛾!!!𝑟!

∞

!!!

, 

where t denotes the current time, and rτ denotes the reinforcement at time τ. This expected total sum 

of future reinforcements is formally called a value. The sum has an infinite number of terms because, 

formally, values consider all future reinforcements. The discount factor, 𝛾 (0 < 𝛾 < 1), which discounts 

future reinforcements, is therefore usually necessary to ensure that the sum converges. 

We turn next to the specific meaning of the weights and the mechanism that supports their 

learning in QL (next subsection) and the actor-critic (subsequent subsection).  

a) The standard QL model	
  

In QL, the weight 𝑤!(𝑠,𝑎) corresponds to an estimate at time t of the value of performing action a in 

state s—i.e., the expected total sum of future reinforcements obtained by performing action a in state s. 

Such state-action values are commonly called Q values and represented as 𝑄!(𝑠,𝑎) (Maia 2009; Sutton 

and Barto 1998; Watkins 1989). Q values are learned using prediction errors (𝛿s) that consist of the 

difference between (1) the sum of the obtained reinforcement with the discounted estimated state-action 

value for the best action in the next state and (2) the state-action value estimated prior to action 

execution (Maia 2009; Watkins 1989): 

𝑄!!! 𝑠! ,𝑎! = 𝑄! 𝑠! ,𝑎! + 𝛼  𝛿!, 

𝛿! = 𝑟! + 𝛾  max!!
𝑄!(𝑠!!!,𝑎!)− 𝑄! 𝑠! ,𝑎! , 

where 𝑠! and 𝑎! are the state and the action executed at time 𝑡, respectively, 𝛼 is a learning rate 

(0 ≤ 𝛼 ≤ 1), 𝑟! is the reinforcement obtained at time 𝑡, 𝛾 is the future-discount factor, and the 
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max!! 𝑄!(𝑠!!!,𝑎!) term represents the estimated state-action value of performing the best action in the 

subsequent state (Maia 2009; Sutton and Barto 1998; Watkins 1989). 

b) The standard actor-critic model	
  

Instead of estimating state-action values, the actor-critic estimates the values of states, 𝑉(𝑠), which 

correspond to the expected sum of future reinforcements starting in state 𝑠 (essentially marginalizing all 

actions that can be performed in that state). State values are stored and learned in the critic component 

of the actor-critic. As in QL, state values are also learned using prediction errors (𝛿s) but correspond to 

the difference between (1) the sum of the obtained reinforcement with the discounted estimated value of 

the next state and (2) the prior value of the state (Barto 1995; Maia 2009; Sutton and Barto 1998): 

𝑉!!! 𝑠! = 𝑉! 𝑠! + 𝛼!   𝛿!, 

𝛿! = 𝑟! + 𝛾  𝑉!(𝑠!!!)− 𝑉! 𝑠! , 

where 𝛼!  is the critic learning rate. 

In the actor-critic, the weights 𝑤!(𝑠,𝑎) therefore do not directly correspond to state-action 

values. Instead, these weights, commonly called preferences, 𝑝!(𝑠,𝑎), and stored and learned in the 

actor component, are learned using the prediction errors calculated in the critic (Barto 1995; Maia 2009; 

Sutton and Barto 1998): 

𝑝!!! 𝑠! ,𝑎! = 𝑝! 𝑠! ,𝑎! + 𝛼!  𝛿!, 

where 𝛼! is the actor learning rate. Contrary to state values, which, in time should converge to the value 

of the state, the preferences are unbounded. 

c) Simplifying prediction-error calculation	
  

In so-called bandit tasks, action execution under the current state (st) does not affect the transition to 

subsequent states (st+1, st+2, …; Sutton and Barto 1998). In such cases, the equations for prediction-error 

calculation may be simplified into 

 𝛿! = 𝑟! − 𝑄! 𝑠! ,𝑎!  

in Q-learning models or  
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𝛿! = 𝑟! − 𝑉! 𝑠!  

in actor-critic models.  

For simplicity, in this chapter we generally adopt these simplified equations, except where otherwise 

noted. 

d) Extending QL and actor-critic models to be more realistic biologically	
  

Positive and negative prediction errors are signaled differently by dopaminergic neurons: positive 

prediction errors are signaled via burst-firing of dopamine neurons, and negative prediction errors are 

likely signaled via the duration of pauses in the firing of dopamine neurons (Maia 2009; Maia and Frank 

2011). Specific dopaminergic disturbances may therefore affect the signaling of positive and negative 

prediction errors differently; thus, models intended to capture these effects need to distinguish between 

positive and negative prediction errors computationally. In addition, it is sometimes of interest to assess 

individual or between-group differences in the internal representation of reinforcements (e.g., a $1 

reward may have a very different effect on different participants). These extensions may be captured by 

the following set of generalized equations: 

𝑄!!! 𝑠! ,𝑎! = 𝑄! 𝑠! ,𝑎! + 𝛼 𝛿!   𝛿! , 

𝛿! = 𝑓 𝑟! − 𝑄! 𝑠! ,𝑎! , 

𝛼 𝛿! = 𝛼!,                        𝑖𝑓  𝛿! ≥ 0
𝛼!,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 

where 𝛼! and 𝛼! are positive and negative learning rates, respectively, which capture learning 

following positive and negative prediction errors, respectively (Frank et al. 2007), and 𝑓 𝑟!  denotes the 

internal value of the reinforcement obtained at time 𝑡. In tasks in which the only non-negligible 

reinforcement is a positive reward, 𝑟, 𝑓 𝑟!  may be simplified to:  

𝑓 𝑟! = 𝑅!,                                𝑖𝑓  𝑟! = 𝑟
0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.   

We mention this special case because the latter equation was used by two studies that assessed RL in TS 

(Palminteri et al. 2011; Worbe et al. 2011), and so we refer specifically to 𝑅! in section 10.2.1. 
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Unpacking the actor learning rate into two prediction-error-dependent learning rates, or capturing the 

internal values of reinforcements, can be done similarly in actor-critic models.  

Although using two learning rates to capture differential learning from positive vs. negative 

prediction errors is a step in the right direction to make the models more realistic biologically, it is likely 

insufficient. Direct, or Go, and indirect, or NoGo, motor (and associative) CBGTC pathways 

respectively mediate motor (and cognitive) action facilitation and inhibition (Figure 10.1; Collins and 

Frank 2014; Maia and Frank 2011; 2017). Both phasic increases and phasic decreases of dopamine (see 

Box 10.2)—signaling positive and negative 𝛿s, respectively—may simultaneously affect the Go and 

NoGo motor (and associative) CBGTC pathways in opposite directions, and not necessarily with the 

same magnitudes. Thus, (at least) four learning rates—besides the critic learning rate(s) in the actor-

critic, or analogous, frameworks—may be needed to appropriately model RL via the CBGTC loops 

(Maia and Conceição 2017).  

It would similarly be possible to unpack the critic learning rate into two prediction-error-

dependent learning rates or, indeed, into four learning rates that depended on both the sign of the 

prediction error and the pathway affected (Go or NoGo). Such unpacking, however, could be slightly 

trickier to interpret because the critic is often associated with the ventral (limbic) striatum (Maia 2009; 

O’Doherty 2004; Rothenhoefer et al. 2017), and the limbic indirect pathway presents considerable 

anatomical and neurochemical differences from motor and associative indirect pathways (Soares-Cunha 

et al. 2016). We therefore do not address 𝛼! unpacking in this chapter. 

Concerning action selection, there are alternatives to the softmax, some of which better 

orthogonalize the processes implicated in action selection (see, e.g., Guitart-Masip et al. 2012). Here, 

however, we focus exclusively on the softmax because it is widely used in the literature and because 

expanding it to use two inverse temperatures (or gains), rather than a single gain, has been used to model 

the differential effects of dopamine in the expression of the positive and negative values of actions 

learned through the Go and NoGo pathways, respectively (Collins and Frank 2014; Maia and Conceição 

2017; Maia and Frank 2017). Striatal dopamine at the time of action selection promotes the expression 

of the learned positive values of actions while suppressing the expression of the learned negative values 

of actions, by increasing the gain of the Go pathway (𝛽!) while suppressing the gain of the NoGo 

pathway (𝛽!), respectively (as comprehensively explained in Section 10.3.2; Figure 10.1; Collins and 
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Frank 2014; Maia and Conceição 2017; Maia and Frank 2017). Irrespective of the chosen action-

selection equation, several other processes (not addressed here) may also be considered during action 

selection (see, for example, Daw 2011; Guitart-Masip et al. 2012). 

Although we have highlighted how models with more parameters might be more realistic 

biologically, increasing the number of parameters in a model can create problems with model 

identifiability—especially when the parameters are far from being orthogonal, as in RL. Either extreme 

care must be exercised in task design to ensure that the parameters in models with a larger number of 

parameters are identifiable, or one must resort to simpler models. Still, the physiological basis for the 

use of (at least) four learning rates and (at least) two inverse temperatures (Maia and Conceição 2017) 

means that careful interpretation of the results from simpler models is needed, even when they seem to 

nicely capture physiological processes. For example, suppose that a given pathology or medication 

causes an impairment in long-term depression of the Go pathway (which should normally occur 

following negative prediction errors; Maia and Conceição 2017). In a model with only two learning 

rates, 𝛼! and 𝛼!, such an effect would likely be captured by a reduced 𝛼!; if, naively, one assumed that 

𝛼! was only associated with the NoGo pathway, this might be interpreted as suggestive of a NoGo-

pathway-related abnormality, which would not be correct in this specific case. 

e) Differences between QL and actor-critic models	
  

The differences between QL and actor-critic models, although seemingly subtle, have important 

implications. Indeed, QL and actor-critic models may, in some circumstances, lead systematically to 

prediction errors with distinct signs for the same action in the same state (because only actor-critic 

models consider the past outcomes of all actions in a given state, via state-values, when calculating 

prediction errors). Such a difference is extremely relevant when considering the role of dopamine in 

TS—and, indeed, in psychiatric disorders more generally—because, as noted previously, positive and 

negative prediction errors are coded differently by dopaminergic neurons. 

One case that illustrates these differences is that of active-avoidance learning. In active- 

avoidance learning, animals have to learn to perform a response that avoids an aversive outcome that 

would otherwise occur. Under the actor-critic framework, the expectation of the aversive outcome elicits 

a negative value [𝑉 𝑠 < 0]. When the animal performs the avoidance response, the successful 

avoidance of the aversive outcome elicits a positive prediction error because the observed outcome is 
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null but the predicted outcome was negative [𝛿 = 0− 𝑉 𝑠 > 0 because 𝑉 𝑠 < 0]; it is this positive 

prediction error that reinforces the avoidance response (Maia 2010). In QL, however, the prediction 

error is 0: the state-action value is 0 [i.e., Q(s, a) = 0 when a is the avoidance response] because the 

avoidance response has itself never been associated with a negative outcome, so the prediction error is 

also 0 [𝛿 = 0− 𝑄 𝑠,𝑎 = 0 because 𝑄 𝑠,𝑎 = 0]. This null prediction error is therefore unable to 

reinforce the response. Thus, for the response to be learned, the subject needs to execute a potentially 

infinite number of candidate actions—all possible actions other than the avoidance response—and to 

learn that the execution of all such actions leads to a negative outcome. Only after all other actions have 

negative Q values will the avoidance response, with its zero Q value, become preferred to the other 

actions (see the softmax equation at the beginning of this Box). Although in very constrained laboratory 

situations the set of candidate actions may be fairly constrained—especially in experiments with 

humans, who can be instructed about the possible actions (e.g., two possible buttons to press)—such a 

learning process clearly does not generalize to the real world. 

This line of reasoning, together with the fact that non-overlapping implementations of both the 

actor and the critic have been identified (Maia 2009; O’Doherty 2004), seems to suggest that actor-critic 

models capture the actual biological implementation in animals and humans better than QL models do. 

However, the superiority of actor-critic over QL models is not yet consensual, with some 

electrophysiological data in animals actually favoring the latter (Roesch, Calu, and Schoenbaum 2007). 
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Box 10.2. Tonic and Phasic Dopamine 

In this chapter, we often mention tonic and phasic dopamine, as well as differences in the specific 

contributions of tonic and phasic striatal dopamine to action selection and learning. Here, we briefly 

explain the difference between tonic and phasic dopamine. This distinction arises because dopaminergic 

neurons may fire in two distinct manners: in a spontaneous, low-frequency, single-spike manner and in a 

high-frequency, burst manner (Grace and Bunney 1984b; 1984a).  

Spontaneously active neurons fire at a baseline frequency of approximately 5 Hz (Grace and 

Bunney 1984b; Sulzer, Cragg, and Rice 2016; Wightman and Robinson 2002) due to the alternation 

between a slow, pacemaker-like depolarizing current and an ensuing afterhyperpolarization (Grace and 

Bunney 1984b). Such firing, together with the mechanisms underlying the synthesis, release, reuptake, 

and degradation of dopamine, defines the tonic dopamine levels, which are relatively stable and spatially 

homogeneous (Venton et al. 2003; Sulzer, Cragg, and Rice 2016). In the striatum, tonic dopamine levels 

range between 10–30 nM (Sulzer, Cragg, and Rice 2016).  

Dopaminergic neurons that are tonically active can be driven to burst-fire, provided that there is 

incoming excitatory drive to those neurons (Grace and Bunney 1984b; Lodge and Grace 2011). Bursts 

correspond to a small number of action potentials (typically up to 10) at high frequencies, sometimes 

exceeding 30 Hz (Grace and Bunney 1984a; Wightman and Robinson 2002); thus, burst firing may 

cause abrupt, spatially heterogeneous, and massive increases in dopamine release (Grace and Bunney 

1984a; Sulzer, Cragg, and Rice 2016; Venton et al. 2003). These large increases are called phasic; they 

are typically in the micromolar range and often—albeit not always (da Silva et al. 2018; Matsumoto and 

Hikosaka 2009; Wenzel et al. 2015)—signal positive prediction errors (Maia 2009; Schultz 2016). In 

addition to these phasic increases in dopamine, there are also phasic decreases. These occur when 

dopaminergic neurons temporarily pause firing, such as when a negative prediction error occurs (Maia 

2009).  

 

10.6. Further Study 

	
  

Maia, T. V., & Frank, M. J. (2011) shows how a biologically detailed model of reinforcement learning 

in the basal ganglia, closely related to the models described in this chapter, sheds light on multiple 



	
  

	
   235	
  

neuropsychiatric disorders: Tourette syndrome (TS), Parkinson’s disease, attention-deficit/hyperactivity 

disorder, addiction, and schizophrenia. The article’s proposals about TS are precursors for several of the 

ideas in this chapter. In addition, the article shows how a single model can help to understand not only 

TS but also multiple other disorders that similarly involve disturbances in the dopaminergic system and 

basal ganglia. 

Maia, T. V., & Frank, M. J. (2017) reconciles evidence from studies of the dopaminergic system with 

behavioral and functional neuroimaging data from patients with schizophrenia, using a model and ideas 

akin to those that we later applied to TS and describe in this chapter. This inter-related treatment of TS 

and schizophrenia is particularly apt because, despite their very distinct clinical presentation, both are 

hyperdopaminergic disorders. Thus, for example, some of the insights on the effects of antipsychotics 

originally developed in the 2017 article have close parallels in this chapter’s account of the effects of 

antipsychotics in TS.  

Maia, T. V. (2010) shows how learning to (actively) avoid aversive outcomes relies on positive 

prediction errors, using an actor-critic framework. This link between negative reinforcement and 

positive prediction errors, which are signaled by phasic dopamine responses, provided much of the 

motivation for our suggestions linking the termination of premonitory urges with tic reinforcement in the 

context of hyperdopaminergia in TS. 

Seymour, B et al., O’Doherty, J. P., Koltzenburg, M., Wiech, K., Frackowiak, R., Friston, K., & Dolan, 

R. (2005) showed how average-reward learning can explain the relief signal that occurs when a painful 

stimulus is terminated. This account formed the basis for one of our accounts of how the termination of 

premonitory urges can reinforce tics (although the two accounts reviewed in this chapter are closely 

related, as they both imply that the termination of premonitory urges elicits positive prediction errors 

that strengthen tics).  

Hienert, M et al., Gryglewski, G., Stamenkovic, M., Kasper, S., & Lanzenberger, R. (2018) reports what 

is, to the best of our knowledge, the first and, to date, only meta-analysis of molecular-imaging studies 

of the dopaminergic system in TS—specifically, PET and SPECT studies of the dopamine transporter 

and D2 receptor in the striatum. Consistent with the idea that TS involves dopaminergic 

hyperinnervation, the meta-analysis found significantly increased dopamine transporter binding in TS 

(although that finding was not entirely conclusive because it became non-significant after controlling for 

age). 
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Chapter 11:  Perspectives and Further Study in Computational 

Psychiatry 
 

Peggy Seriès, University of Edinburgh 

 

11.1 Processes and Disorders not covered in this book 

 

This book described examples of methods and questions that are currently at the forefront of 

research in computational psychiatry, and which have offered new insights into the mechanisms that 

underlie several psychiatric disorders. The examples we have covered describe multiple levels of 

analysis, from the biophysically detailed level (Chapter 3) and network level (Chapter 4) to 

algorithmic and normative models that are more abstract using tools from reinforcement learning and 

Bayesian methods (Chapter 5-10). 

There are a number of important topics that have not been covered in the current volume, 

however.  

In terms of processes as defined by RDOC (see Chapter 1), Chapter 3 and Chapter 4 cover 

cognitive and reinforcement processes respectively, and Chapter 10 touches on motor processes. 

However, social processes (affiliation and attachment, social communication, perception and 

understanding of self and others) – a domain where research has grown significantly in the last years 

(see Hackel and Amodio (2018) for a recent review) - would deserve a much better treatment. Arousal 

and regulatory systems (circadian rhythms, sleep and wakefulness) are also absent from this volume but 

very little research exists in this area in the context of computational psychiatry.   

In terms of disorders, similarly, the book only covers a subset of disorders. Notably absent are 

bipolar disorder and particularly mania, autism spectrum disorders (ASD), obsessive compulsive 

disorders (OCD), attention deficit hyperactivity disorder (ADHD), eating disorders, personality 

disorders (e.g., borderline, paranoid, antisocial personality disorder) and post-traumatic stress disorder 

(PTSD). 
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In the following, we offer some pointers on research that exists in those domains, as a starting 

point for the interested reader. This list is by no means exhaustive. While some of those topics are 

starting to attract a lot of interest from a computational point of view, others have only been addressed 

by a handful of studies to date. The idea we would like to convey is that understanding is still mostly 

lacking for those issues. Computational Psychiatry is still in its infancy and the field is wide open for 

interdisciplinary research progress.  

11.1.1 Autistic spectrum disorder 

 

There is a growing computational literature regarding autistic spectrum disorder (ASD).  

A dominant theory is that ASD could be regarded as a disorder of prediction or Bayesian 

inference (Sinha et al. 2014; Palmer, Lawson, and Hohwy 2017). The general hypothesis is that the 

weight, also called ‘precision’ (see Section 2.4.6), ascribed to sensory evidence and prior expectations 

would be imbalanced in ASD, resulting in sensory evidence having a disproportionately strong influence 

on perception. This relatively stronger influence of sensory information could explain the 

hypersensitivity to sensory stimuli and extreme attention to details that are observed in ASD. The 

weaker influence of prior expectations would also result in more variability in sensory experiences. The 

desire for sameness and rigid behaviours could then be understood as an attempt to introduce more 

predictability in one’s environment (Pellicano and Burr 2012). Furthermore, this could lead to prior 

expectations which are too specific, and which do not generalize across situations (Van de Cruys et al. 

2014).  

While all theories agree that the relative influence of prior expectations is weaker in ASD, the 

primary source of this imbalance has been debated: would it arise from increased sensory precision (i.e. 

sharper likelihood) or from reduced precision of prior expectations? While early authors argued for 

attenuated priors (Pellicano and Burr 2012), the hypothesis of increased sensory precision is currently 

gaining more traction (Lawson, Rees, and Friston 2014; Palmer, Lawson, and Hohwy 2017; Karvelis et 

al. 2018).  

More recently, it has also been proposed that key differences in ASD could be in the extent to 

which participants can predict whether the environment is dynamically changing or whether it is 
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relatively stable (Lawson, Mathys, and Rees 2017). ASD may be associated with an overestimation of 

the volatility of the environment, which would then lead to a failure to make use of relevant priors.  

Although the above theories have gained a lot of popularity, conclusive experimental evidence is 

still largely lacking. 

The interested reader can consult Palmer, Lawson, and Hohwy (2017) and  Haker, Schneebeli, 

and Stephan (2016) for recent reviews of the Bayesian approach. 

At a more biological level, it has been proposed that deficits in prediction and inference could be 

related to an imbalance between excitation and inhibition in neural circuits (Rosenberg, Patterson, and 

Angelaki 2015). It is thought that, in the cortex, a key computation performed by neural circuits is that 

of “divisive normalization”, which divides the net excitatory drive to a neuron by a measure of the local 

population activity. Alterations in divisive normalization, due to excitation/inhibition imbalances, may 

give rise to autism symptomatology (Rosenberg, Patterson, and Angelaki 2015). More experimental 

support is still needed to confirm this model.  

 

11.1.2 Bipolar Disorder 

 

Recent computational theories propose that bipolar disorder may be related to the perception of 

reward and its interaction with mood (Eldar et al. 2016; Mason, Eldar, and Rutledge 2017). When we 

are in a good mood, we may perceive rewards as better than they actually are. Reciprocally, when we 

are in a bad mood, we may perceive rewards as worse than they actually are.  People whose moods bias 

their perception of rewards too strongly will be more likely to experience greater mood swings in 

reaction to the same sequence of good or bad events, potentially resulting in extreme behavior. Eldar et 

al. (2016) and Mason, Eldar, and Rutledge (2017) show that computational models based on such simple 

ideas can explain a range of symptoms observed in bipolar disorder.  

 

11.1.3 Obsessive Compulsive Disorder 
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As described elsewhere in this book (Section 2.3.3, and Chapter 5), it is thought that decisions 

can arise from two distinct, parallel systems of instrumental control, called the goal-directed and 

habitual systems. In goal-directed control, choices are made depending on their likely affective 

outcomes as predicted by a model of the environment. In habitual control, on the contrary, choices aim 

to reproduce actions that were previously rewarded. Disorders of compulsivity have been associated 

with a bias towards model-free (habit) acquisition instead of towards the goal-directed system (Voon et 

al. 2015).  

Additional insights into OCD might be gained by considering how beliefs and actions are 

coupled. For example, someone with OCD will tell you that they know their hands are clean, but 

nevertheless won’t be able to stop washing them. Two things that are normally linked together—

confidence and action—have become uncoupled. Using computational methods, it has been found that 

the degree to which action and confidence are uncoupled in a simple decision task correlates with OCD 

severity (Vaghi et al. 2017).  

 

11.1.4 Attention Deficit Hyperactivity Disorder (ADHD) 

 

Behaviorally, ADHD is best characterized by increased variability across multiple cognitive 

domains and timescales. 

  Ziegler et al. (2016) offers a detailed review of how drift-diffusion models (DDM, Section 2.2) of 

decision-making and reinforcement learning models (Section 2.3) have been applied to understanding 

individual differences in ADHD. They conclude that empirical studies agree with theories’ prediction 

for a lower DDM drift rate and reduced reinforcement learning choice sensitivity (“noisier” SoftMax 

parameter).  

At a more neurobiological level, Hauser et al. (2016) propose that this reduced choice sensitivity 

could be explained by impairments in neural gain i.e. the degree to which neural signals are amplified or 

suppressed, a computation commonly associated with catecholaminergic neurotransmitter systems (i.e., 

dopamine and noradrenaline). They suggest that impaired gain modulation could then explain ADHD 

abnormalities, in particular increased variability, spanning from behavior to neural activity.  
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11.1.5 Post-Traumatic Stress Disorder 

 

Computational psychiatry is a promising tool for understanding PTSD (Seriès 2019). Indeed, it is 

commonly believed that PTSD results from abnormalities in learning during and after the traumatic 

event. Fear conditioning could explain why neutral stimuli (people, places, sounds, etc.) that have been 

associated with the traumatic event acquire the capacity to trigger and maintain anxiety long after the 

trauma itself. Why this association doesn’t weaken over time could be explained either by the fact that it 

was abnormally strong in the first place or—more likely—due to deficits in extinction processes, i.e., a 

failure for the association to weaken when the same cues are re-encountered without leading to the 

traumatic event. This could be a result of patients’ avoidance strategies: individuals with PTSD avoid 

encountering such cues again and thus may never experience them as being safe. Other theories assume, 

on the contrary, that PTSD is related to basic deficits in acquiring associations between specific cues and 

the traumatic event. This would result in associating the trauma with the environment as a whole, 

causing heightened contextual anxiety and/or overgeneralization of fear to all cues resembling the initial 

cues.  

Despite the popularity of the theories mentioned above, the specific components of anomalous 

learning in PTSD remain unclear. Recently, however, research studies associating behavioral avoidance-

learning tasks, computational modelling and fMRI have started to dissect how learning mechanisms 

could differ in PTSD. Homan et al. (2019) and Brown et al. (2018) found for example that combat-

exposed veterans suffering from PTSD pay more attention to surprising aversive outcomes. The 

researchers could also identify the neural structures involved in these differences. This greater attention 

to perceived threat could in turn explain hypervigilant responses.  

 

11.1.6 Personality Disorders 

 

Computational perspectives in the fields of personality and personality disorders have been very 

limited. A recent review about the use of computational psychiatry methods in borderline personality 

disorder can be found in Fineberg, Stahl, and Corlett (2017). Lee (2017) offers a review of data and 

theories regarding paranoid personality disorder. Patzelt, Hartley, and Gershman (2018) also provide an 
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interesting discussion of the concept and promise of a computational phenotype—a collection of 

mathematically derived parameters that precisely describe individual differences in personality, 

development, and psychiatric illness. 

11.1.7 Eating Disorders 

 

Computational approaches have yet to provide detailed theories and models of eating disorders. 

However, a growing body of evidence suggests that patients with anorexia nervosa have impairments in 

value-based learning and decision making (Verharen et al. 2019). Similarly, binge eating disorders have 

been linked to impairments in making goal-directed decisions (Voon et al. 2015) and to biases towards 

exploratory behaviour (Morris et al. 2016).  

 

11.2 Data-driven approaches  

 

This volume focussed on theory-driven approaches, which, as described in Chapter 1, employ 

mechanistic models to make explicit hypotheses at multiple levels of analysis. On the other side of the 

spectrum, data-driven approaches use machine-learning to make predictions from high dimensional data 

and are generally agnostic as to underlying mechanisms. As the availability of large and multi-

dimensional datasets is increasing, either through large neurophysiological studies, online behavioral 

studies and through the use of mobile devices like smartphones, data-driven approaches are currently 

getting a lot of attention. They are perceived as very promising ways to provide individual predictions of 

diagnosis, clinical outcome and treatment response.   

Readers interested in learning about the advances and challenges in the use of big data and 

machine learning approaches in psychiatry can refer to the recent review by Rutledge, Chekroud, and 

Huys (2019). Steele and Paulus (2019) also discuss how machine-learning approaches applied to 

neuroscience data can impact clinical practice. Both reviews illustrate, based on recent studies, how 

objective and clinically useful predictions can be made for individual patients regarding diagnoses, 

illness severity, relapse, and psychotherapy or medication treatment outcomes. They also emphasize the 

fact that machine-learning techniques can be misapplied so care is needed in their use and interpretation.  
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It is important to note that data-driven and theory-driven approaches are not incompatible: 

theory-driven models can provide descriptions that efficiently summarize complex data and these 

summaries can provide inputs for machine learning algorithms. The combination of both methods has 

been found to outperform data-driven approaches alone (Huys, Maia, and Frank 2016). 

 

11.3 Realizing the potential of Computational Psychiatry 

 

As will hopefully be obvious from the previous chapters, Computational Psychiatry has already 

led to many insights into the neurobehavioral mechanisms that underlie several psychiatric disorders.  

A number of tools have shown clinical potential (Paulus, Huys, and Maia 2016). For example, 

the development of theories and tasks related to model-free vs model-based learning has resulted in rich 

computational analyses and new insights in a variety of disorders, including substance abuse and OCD. 

Similarly, as described in many chapters of this book, theories about the role of dopamine in 

reinforcement learning have led to the development of tasks and models that have been applied to a wide 

range of disorders and can ultimately inform pharmacotherapy. It is often thought that computational 

assays, such as those based on Bayesian approaches, could help diagnostic tests (Haker, Schneebeli, and 

Stephan 2016). Computational psychiatry could also help psychotherapy: psychotherapy being a 

learning process, it may benefit from the rich computational understanding of learning processes 

(Moutoussis et al. 2018).  

However, what is still lacking is a structured initiative to take computational psychiatry from the 

laboratory to the clinic.  

As the field is maturing, there is a growing reflection about key developments required in the 

practice and infrastructure of computational psychiatry research to accelerate its clinical usefulness 

(Paulus, Huys, and Maia 2016; Browning et al. 2019; Teufel and Fletcher 2016).  

These studies comment on the issue of measurement in computational psychiatry. Measurements 

usually involve choosing a behavioral task, to be modeled using an algorithm such as a reinforcement 

learning model and potentially used also in fMRI. It is important that the reliability and validity of such 

a computational assay be assessed and iteratively optimized. As mentioned in Section 2.5, parameter 
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identifiability needs to be assessed through analysis of parameter recovery, model recovery and model 

comparison. The reliability of the measurement also needs to be assessed, e.g. whether measurements 

are consistent across time can be assessed by test-retest reliability. Other important measures of 

assessment include clinical utility (is the measurement related to clinically important outcomes such as 

symptom scores, treatment response or illness course?) and convergent/divergent validity (does the 

measurement correlate with other measures of the same construct?). Meaningful measures for clinical 

purposes are then likely to consist not in one model parameter but in the relations between multiple such 

parameters within or across tasks. These relations can be obtained by collecting data from a range of 

related assays within a single population of participants and by using data-driven techniques such as 

clustering.  

It is then crucial that the measured latent structures address clinically meaningful questions. This 

can be assessed by examining the predictive ability of the assay (e.g. can it predict response to 

treatment?) and/or the causal relationship between the process measured by the assay and clinically 

important outcomes such as symptoms. If causality can be established between the measurements and 

outcomes, the process measured by the assay can constitute a treatment target.  

Related to this, an important issue is the recruitment of participants. For obvious practical 

reasons, emphasis has been in recruiting participants with mild and transient illness, rather than patients 

with severe and enduring illness or moderate-severe recurrent illness during periods of significant 

illness. Such bias in data collection could partly explain why progress in computational psychiatry has 

not yet been more significant. 

Ideally, this process should be carried out at multiple sites involving individual laboratories that 

include a close collaboration between academic psychiatrists or psychologists and theoretical and 

computational neuroscientists. To be successful, the research environment must be developed to 

encourage large-scale, collaborative, interdisciplinary consortia. 

 

11.4 Chapter Summary 

 

Computational Psychiatry is still in its infancy. While the potential of the field is clear, there is 

still much to do to take computational psychiatry from the laboratory to the clinic. As the field matures, 
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improved and unified methodologies will be needed, as well as large-scale, collaborative, 

interdisciplinary consortia.  

It is our hope that this book will inspire a generation of students who can make a difference.  

 


