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Embedding covert streams into a cover channel is a common approach to circumventing Internet censorship,
due to censors’ inability to examine encrypted information in otherwise permitted protocols (Skype, HTTPS,
etc.). However, recent advances in machine learning (ML) enable detectin g a range of anti-censorship systems
by learning distinct statistical patterns hidden in traffic flows. Therefore, designing obfuscation solutions able
to generate traffic that is statistically similar to innocuous network activity, in order to deceive ML-based
classifiers at line speed, is difficult.

In this paper, we formulate a practical adversarial attack strategy against flow classifiers as a method
for circumventing censorship. Specifically, we cast the problem of finding adversarial flows that will be
misclassified as a sequence generation task, which we solve with Amoeba, a novel reinforcement learning
algorithm that we design. Amoeba works by interacting with censoring classifiers without any knowledge
of their model structure, but by crafting packets and observing the classifiers’ decisions, in order to guide
the sequence generation process. Our experiments using data collected from two popular anti-censorship
systems demonstrate that Amoeba can effectively shape adversarial flows that have on average 94% attack
success rate against a range of ML algorithms. In addition, we show that these adversarial flows are robust in
different network environments and possess transferability across various ML models, meaning that once
trained against one, our agent can subvert other censoring classifiers without retraining.
CCS Concepts: • Networks → Network privacy and anonymity; Network security; • Computing
methodologies→ Adversarial learning.

Additional Key Words and Phrases: Censorship Circumvention, Traffic Classification, Reinforcement Learning,
Adversarial Attacks
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1 INTRODUCTION
Governments and control authorities in some countries carry out network traffic censorship
routinely to restrict the citizens’ access to online information that may be perceived by those
regimes as politically, socially, or morally objectable. To maintain censorship effectiveness and
combat circumvention, e.g., through traffic mimicry and randomization [54], state actors employ a
range of tools including Deep Packet Inspection (DPI), protocol fingerprinting, and active probing.
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Fig. 1. Typical traffic classification pipeline. An attacker may conduct adversarial attacks against the pipeline
with different capabilities/scope. We categorize them into 1) white-box model for which the inner workings of
the classifier (weights, gradients) are visible; and 2) black-box model for which attackers can only craft network
flows and observe outputs without extra knowledge, such as feature engineering and model architecture.

In recent years, protocol tunneling has gained traction as a viable means to circumvent censorship.
Tunneling leverages existing implementations of innocuous protocols (Skype, WebRTC, TLS, etc.)
and embeds covert streams in these protocols to hide destination host identity, payload contents, etc.
[3, 4, 16]. As a result, sensitive information becomes encrypted and message exchanges perfectly
aligned with the behavior of the tunneling protocol. In turn, observing the tunnels barely unveils
any deterministic fingerprints. Censorship is however an arms race, recent studies revealing
that Machine Learning (ML) algorithms, which learn statistical features from network flows, can
effectively identify ‘offending’ tunneled traffic, despite not exhibiting deterministic fingerprints
[11, 54]. For example, although multiple multi-media tunneling tools claim unobservability, simple
ML classifiers such as those based on decision tree and random forest structures can detect tunneled
traffic with high confidence [2]. On the other hand, ML is also employed to devise censorship
circumvention strategies. For example, Geneva [7] designs a genetic algorithm to discover if existing
censorship can be evaded by tampering with canonical TCP implementations, e.g., by corrupting
checksums, breaking Transmission Control Blocks (TCBs) (by injecting a RST), or segmenting
packets with corrupted ACKs. While this attack targets the incompleteness of network stacks
implemented by censors, in this paper we aim to push the boundary of anti-censorship one step
further, where we reasonably assume the censor fixes the implementation issues and leverages ML
classifiers to detect anti-censorship tools.
Since the inner workings of an ML-based classifier are largely unknown to users seeking to

circumvent censorship and the censor can change the underlying neural architecture at any time
(black box), the question we aim to answer in this work is: Instead of perpetually designing new
tunneling tools, can we devise adversarial attacks on black-box ML classifiers to consistently subvert
ML-supported censorship? This approach has not been well studied in the network censorship
domain. In computer vision, finding adversarial examples, i.e., images that should be recognized as
belonging to class A being instead misclassified as of class B, can be achieved by adding adversarial
perturbations such that the modified input images remain visually similar to their original versions,
but produce erroneous classification results [1, 9, 19].

Conducting adversarial attacks in the networking domain is fundamentally different. A common
approach to ML-based network flow classification is to first extract multiple statistical features
(packet size distributions, timing information, etc.), then feed these features to a classifier instead
of raw flows [2, 28], as illustrated in Figure 1. Censors do not reveal what features they utilize,
which poses difficulty in the first step of crafting an adversarial attack. Further, even if users may
discover the set of features employed by a censoring classifier and successfully generate adversarial
samples, there is no guarantee that such samples can be mapped back to legitimate flows, which
renders the entire process unusable in practice. A practical adversarial attack against censoring
classifiers requires manipulation at packet level, instead of feature level, and each packet should be
transmitted without adding significant delays. Early attempts [31, 53] apply attacks on complete

Proc. ACM Netw., Vol. 1, CoNEXT3, Article 9. Publication date: December 2023.



Amoeba: Circumventing ML-supported Network Censorship via Adversarial Reinforcement Learning 9:3

flows and generate adversarial versions, yet each manipulated packet should be sent before new
packets are received. Having a complete view of a flow to perturb is unfortunately unrealistic. The
inherent imbalance between what censors can observe (flows) and what users can observe and
manipulate (packets) rules out the possibility of applying existing algorithms from other domains
to achieve adversarial attacks for censorship circumvention purposes.

In this paper, we formulate the problem of finding adversarial flows against censoring classifiers
as a packet sequence generation task. To solve it, we design Amoeba,1 a novel black-box attack
through reinforcement learning, which learns to craft adversarial flows solely based on the classifi-
cation results of censoring classifiers, without any further knowledge. This leads to the following
contributions:
(1) We make no assumption about the underlyingmodel of a censoring classifier, which may

or may not apply feature engineering and may not be differentiable (and hence approximating
gradients impractical for generating adversarial flows), but instead treat the problem of finding
adversarial flows as a process of generating sequences of packets that, when considered together
as flows, will be misclassified.

(2) We propose Amoeba, a black-box attack based on Reinforcement Learning (RL) that treats the
classification results as rewards and progresses with a policy that maximizes the expected
future rewards (return). Our design incorporates a StateEncoder – a dedicated Neural Network
(NN) that encodes arbitrarily long network flows into fix-sized hidden representations, to help
the RL agent interpret the context of sequence generation at each timestep.

(3) We evaluate Amoeba on datasets collected using two popular anti-censorship systems, Tor and
TLS tunneling; our experimental results indicate that the adversarial flows generated by our
Amoeba have ∼94% attack success rates, regardless of the type of ML classifier a censor
may deploy. We further show empirically that such adversarial flows are transferable across
models with similar architectures.

(4) We demonstrate that the Amoeba is stable in different network environments, and robust
when receiving noisy and unclear rewards during training.

(5) We discuss practical aspects and potential limitations of deploying our Amoeba as a transport
layer extension, making the case for its adoption for mainstream censorship circumvention.

2 ADVERSARIAL MODELS
As use of ML gains traction in the networking domain, including for Website Fingerprinting (WF)
[24, 34, 35, 38, 45, 46] and network intrusion detection [12, 28, 29], censors are increasingly adopting
ML-based classifiers to detect unwanted protocols or traffic associated with banned web services.
We consider the most common setting where the censor has full control of the network gateway
and enough computational power to examine every network flow traversing it. More precisely,
the censor may collect network traffic generated by ‘forbidden’ protocols/web services along with
innocuous traffic. A group of statistical features may be extracted from individual flows and fed
to a ML classifier for training, as shown in Figure 1. The censor then deploys the ML model on
the gateway to block sensitive flows, e.g., by using and maintaining a blacklist of (src_ip, src_port,
dst_ip, dst_port, protocol) tuples on the firewall. That said, once a traffic flow is recognized as
‘unwanted’ by the censor, the pair of sockets used on the source and destination machine cannot
communicate to establish a connection. The censor would not block the destination IP entirely,
in order to prevent collateral damage, especially as CDNs increasingly serve thousands of service

1Our censorship circumvention algorithm’s name draws inspiration from the unicellular organism with the same name that
is capable of altering its shape. Similarly, our solution alters the shape of network flows.
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with the same address [14]. This is a reasonable practical assumption – for instance, the Great
Firewall blocks port numbers instead of IP address when censoring Shadowsocks [5].
We consider broad scenarios whereby censors need not use deterministic fingerprints in the

decision-making process, such as crypto scheme and SNI in TLS handshakes, since these fingerprints
can be eliminated easily by fixing the protocol implementation. Also, a censor would not conduct
active probing, which is orthogonal to passive observation and outside the scope of our study.

Cloud
Censored Region

tunnelled flows
ordinary flows

Fig. 2. Strictest adversarial model considered for sub-
verting Internet censorship. ‘Attackers’ with no knowl-
edge of the censor’s tools manipulate packet sizes and
inter-packet times based on implicit feedback received
(flow permitted or not), to find a tunneled traffic shap-
ing strategy that evades censorship.

We define different capabilities of an ‘at-
tacker’ who attempts to circumvent ML-
supported censorship as shown in Figure 1.
The most rudimentary setting for adversarial
attacks is the white-box model: the trained cen-
soring classifier is available to the attacker who
leverages weight and gradient information to
perturb the inputs to the ML model. Under this
setting, the attacker also knows the features
extracted by the censor, thus perturbations are
conducted directly in the feature space instead
of on raw flows/packets. A generated adversar-
ial sample is the set of features of a flow, and
converting the features back into a legitimate
flow is not of this type of attacks’ concern. The
Carlini & Wagner (CW) attack [9, 20] uses pro-
jected/clipped gradient descent to find minimal
perturbations on the inputs, such that the censoring model would misclassify. Generative Adver-
sarial Networks (GAN)-based methods [31, 64] treat the censoring classifier as the discriminator in
a GAN and train a generator to produce adversarial samples.

However, given that the censor is unlikely to reveal the feature engineering process, the training
technique employed and the architecture of ML models, we define a stricter threat model for
adversarial attacks from a realistic perspective, to which we refer as black-box attack, as shown in
Figure 1. Assume the attacker has access to a large number of machines with different IP addresses
on both sides of the gateway, and can establish connections arbitrarily, as shown in Figure 2.
The adversary may finely manipulate every network flow, by controlling packet sizes and packet
inter-arrival times. We assume the manipulated network flows would be examined by the censor
and the attacker can reliably infer the the censor’s decisions. Under this setting:
(1) The attacker does not know which statistical features the censor may extract from each flow;
(2) The attacker does not know the architecture of the classifying ML model;
(3) The ML model may not be built with NNs, but with traditional algorithms, e.g., Support Vector

Machine (SVM) or Decision Tree (DT), so gradient information is not guaranteed to exist.
This black-box setting gives the attacker very limited guidance on how to generate adversarial

samples, while the inherent difference between the networking and other domains (e.g., computer
vision) precludes the use of existing adversarial input manipulation techniques such as Square
Attack [1], to circumvent censorship.

3 PROBLEM FORMULATION
Adversarial flows that seek to subvert censorship must accommodate the original payloads and be
transmissible in real-world network settings. Thus, we first define a set of practical constraints that
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adversarial flows must satisfy, then formulate adversarial attacks as a constrained optimization
problem, which we solve with a purpose-built RL solution.
Constraints on Adversarial Attacks: We represent a network flow by a tuple 𝑆 = (𝑃,Φ),

where 𝑃 is a vector of 𝑛 packet sizes, and Φ a vector of inter-packet delays, i.e.,

𝑃 = [𝑝+1 , 𝑝−2 , ..., 𝑝+𝑛], Φ = [𝜙1, 𝜙2, ..., 𝜙𝑛] .
Superscript ‘+’ indicates packets transmitted from client to server, and ‘−’ vice versa. An adversarial
sample can alter each packet size by padding or truncation, and can delay packets to deceive ML
classifiers. However, the attacker must ensure that bidirectional payloads in the original flows are
transmitted in the correct order. Denote 𝑆 = (𝑃, Φ̃) as the adversarial version of flow 𝑆 , where

𝑃 = [𝑝+1,1, ..., 𝑝+1,𝑘1
, 𝑝−2,1, ..., 𝑝

−
2,𝑘2
, ..., 𝑝+𝑛,1, ..., 𝑝

+
𝑛,𝑘𝑛
], Φ̃ = [𝜙1,1, ..., 𝜙1,𝑘1 , 𝜙2,1, ..., 𝜙2,𝑘2 , ..., 𝜙𝑛,1, ..., 𝜙𝑛,𝑘𝑛 ] .

The sub-sequence [𝑝𝑖,1, ..., 𝑝𝑖,𝑘𝑖 ] represents the adversarial manipulation of original packet sizes 𝑝𝑖 ,
with {𝑘1, ..., 𝑘𝑛} denoting the lengths of all sub-sequences. Since we allow for both packet truncation
and padding, the length of an adversarial flow can be larger than that of the original, i.e., |𝑃 | ≥ |𝑃 |,
though the following constraint on packet sizes must be satisfied:

𝑘𝑖∑︁
𝑗=1

𝑝𝑖, 𝑗 ≥ 𝑝𝑖 , ∀𝑖 ∈ [1, 𝑛], (1)

which ensures that each original packet can be transmitted without data loss. It is straightforward
to derive constraints on timestamps:

𝜙𝑖,1 ≥ 𝜙𝑖 , 𝜙𝑖, 𝑗 ≥ 0, ∀𝑗 ∈ [1, 𝑘𝑖 ], 𝑖 ∈ [1, 𝑛] . (2)

Finding Adversarial Samples: Let 𝑒 (·) be a feature extraction function that takes an arbitrary
flow 𝑆 and outputs 𝑑-dimensional features. Denote 𝑓 : R𝑑 → [0, 1] a binary classifier. 𝑓 can
be a neural network using a sigmoid as the activation function in the final layer, so its output
𝑦 = 𝑓 (𝑒 (𝑆)) is a real number between 0 and 1. Alternatively, 𝑓 can be a traditional ML algorithm
(SVM, decision tree, etc.), which directly outputs discrete classification results ({0, 1}). If using a
NN-based classifier, the censor would use a decision function

𝐶 (𝑦) =
{

1, if 𝑦 ≥ 0.5;
0, otherwise.

That said, if the predicted score is smaller than 0.5, the flow is to be blocked. A flow 𝑆 is regarded as
an adversarial version of 𝑆 if𝐶 (𝑓 (𝑒 (𝑆))) = 1. The task of finding 𝑆 can be rephrased as a constrained
optimization problem:

max 𝐶 (𝑓 (𝑒 (𝑆))) s.t.
𝑘𝑖∑︁
𝑗=1

𝑝𝑖, 𝑗 ≥ 𝑝𝑖 , 𝜙𝑖,1 ≥ 𝜙𝑖 , 𝜙𝑖, 𝑗 ≥ 0,∀𝑗 ∈ [1, 𝑘𝑖 ], ∀𝑖 ∈ [1, 𝑛] .

Are upper bound constraints necessary? Different from the computer vision domain, we
do not impose upper bound constraints on both payload and timing. The adversarial examples 𝑥
of an image 𝑥 must satisfy an 𝑙𝑝 -norm bound, i.e., | |𝑥 − 𝑥 | |𝑝 ≤ 𝜖 [1], because 𝑥 should not tamper
with the semantics of the original image 𝑥 from a human perspective. An image of a panda should
still ‘look like’ a panda after adversarial perturbation. However, in the networking domain, as long
as the original payload is transmitted, and the sender and the recipient can interpret messages
identically, the semantics remain the same. Therefore, minimizing data overhead and timing delays
are not hard constraints for the problem we solve, but optional requirements that users may have
in order to prevent performance degradation, for which we also offer a solution in Section 4.2.
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Fig. 3. The architecture of the proposed adversarial reinforcement learning algorithm – Amoeba.

4 AMOEBA DESIGN
Traditional adversarial attacks do not comply with the specifics of network flows, because (1)
the length of adversarial samples are variable, according to each flow, and the optimal length is
unknown; and (2) one should be able to send adversarial samples packet-by-packet, whereas existing
attacks generate the feature set of an entire flow at once, without considering the practicalities of
transmission.

Instead,we regard finding adversarial versions of network flows as a sequence generation
process, which takes an input (a packet and the associated timestamp in the original flow) at
each timestep and outputs adversarial manipulations of that input. The adversarial packets can
be transmitted in almost real-time, rather than waiting for the entire flow to finish first. Each
packet in a flow should be morphed to maximize the chances that the complete flow in the future
will be misclassified, which requires an algorithm to look ahead of time and progresses through
binary signals received from the censor. Given these requirements, RL is particularly well-suited to
our task, where we treat the output of the censoring classifier as reward that guides a RL agent
to learn a packet sequence generation policy. We design Amoeba to generate adversarial flows
that circumvent censorship. Amoeba models censor decisions as a reward function, and trains
an agent to interact with the censor in discrete timesteps. At each step 𝑡 , the agent receives a
packet from the transport layer, takes an adversarial action (effectively modifying the size and
timing of the packet), and obtains a reward based on how good that action is. The agent aims to
maximize the future rewards when generating adversarial samples. Note that Amoeba does not
change the implementation of any existing protocol in terms of handshake, error handling
and acknowledgment, but simply alters the ‘shape’ of each packet with payload to deceive ML
classifiers. In other words, an adversarial TCP flow is still a legitimate TCP flow. Amoeba comprises
four major elements: Network Environment, State Encoder, an Adversarial Actor and a Critic (see
Figure 3). Next, we provide a RL primer, before diving into our solution.

4.1 RL Primer
Our algorithm takes a reinforcement learning approach with an agent interacting with the en-
vironment in discrete timesteps. At step 𝑡 , the environment gives an observation 𝑥𝑡 = (𝑝𝑡 , 𝜙𝑡 ),
representing an original packet to send with size 𝑝𝑡 and inter-packet delay 𝜙𝑡 . For each flow, the
actor maintains a vector of previous observations [𝑥1, 𝑥2, ..., 𝑥𝑡−1], as well as a vector of previous
actions [𝑎1, 𝑎2, ..., 𝑎𝑡−1], with each action 𝑎𝑖 = (𝑝𝑖 , 𝜙𝑖 ) representing the manipulation of an original
packet 𝑥𝑖 . In this paper, we use actions and adversarial packets interchangeably. The state at step 𝑡
is the history of both the observations and the actions, i.e., 𝑠𝑡 = (𝑥1, 𝑎1, ..., 𝑥𝑡−1, 𝑎𝑡−1, 𝑥𝑡 ). Note that
𝑠𝑡 ≠ 𝑥𝑡 , because the actor needs a broad understanding of the current environment based on what
has been generated up to that point. The actor parameterized by 𝜃 maps a state to a probability
distribution over the actions 𝜋𝜃 (𝑠𝑡 ). An action is randomly sampled 𝑎𝑡 ∼ 𝜋𝜃 (𝑠𝑡 ), and given to the
environment, leading to a reward 𝑟 (𝑠𝑡 , 𝑎𝑡 ) and the next observation 𝑥𝑡+1. An episode 𝜏 indicates the

Proc. ACM Netw., Vol. 1, CoNEXT3, Article 9. Publication date: December 2023.



Amoeba: Circumventing ML-supported Network Censorship via Adversarial Reinforcement Learning 9:7

entire process of generating an adversarial sample given a flow, i.e. 𝜏 := (𝑠1, 𝑎1, ..., 𝑠𝑇 , 𝑎𝑇 ). The aim
of the actor is to select actions at every timestep in a way that maximizes the total future rewards:

max
𝜃
E𝜏∼𝑝𝜃 (𝜏 ) [

𝑇∑︁
𝑡=1

𝑟 (𝑠𝑡 , 𝑎𝑡 )] .

The above problem can be solved by iteratively updating 𝜃 [47]:

𝜃𝑘+1 = 𝜃𝑘 + 𝛼E𝑡 [∇𝜃 log𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 )] ,
where 𝛼 represents step size, and 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ) is known as the action-value function that produces
the discounted total future reward. Approximating 𝑄 values directly suffers from high variance in
practice. Thus, a baseline is always subtracted from 𝑄 while keeping the objective unbiased [47]:

𝜃𝑘+1 = 𝜃𝑘 + 𝛼E𝑡 [∇𝜃 log𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )𝐴𝜋 (𝑠𝑡 , 𝑎𝑡 )] (3)

in which Advantage 𝐴(𝑠𝑡 , 𝑎𝑡 ) = 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ) −𝑉 𝜋 (𝑠𝑡 ). Here, the second term is called the state-value
function 𝑉 𝜋 (𝑠𝑡 ) = E𝑎𝑡∼𝜋 [𝑄 (𝑠𝑡 , 𝑎𝑡 )], which represents the expected future reward from step 𝑡 , and
𝐴(𝑠𝑡 , 𝑎𝑡 ) intuitively indicates how much better the current action 𝑎𝑡 is than the average.

4.2 Environment
The network environment offers observations and rewards, given new actions.

Generating Observations. In practice, observations (packets) originate from the buffer in the
transport layer. When there is no traffic obfuscation in place, the payload in the buffer would be
encapsulated in packets and transmitted immediately. However, to generate adversarial samples,
the payload cannot be sent directly but should be passed through the adversarial actor, which
decides appropriate packet sizes and timings, such that the 𝑄 value can be maximized.
Therefore, as the first step we use a transport layer emulator that reads a payload with 𝑝𝑖

bytes from the buffer as the vanilla transport layer does. To adversarially manipulate this packet
(observation), 𝑥𝑡 = (𝑝𝑖 , 𝜙𝑖 ) is given to the agent, which morphs the packet based on a given policy
𝜋 , truncating or adding padding to it along with some delays. Both truncation and padding are
supported to expand the action space that the agent can explore, and thereby create adversarial
flows with more variability. Only supporting either operation may result in the failure of generating
adversarial flows. For example, an attack by only padding cannot circumvent censoring models
[38, 45] that leverage directional features, since padding only changes the size of each packet but
the packet directions in a flow remain the same after morphing; attacks by only truncating may
hardly protect protocols with fixed payload unit size such as Tor cells, given that censoring can
easily recover by summing the packet sizes in the same direction. Since we allow for truncation, it
is possible that the adversarial packet (action) 𝑎𝑡 = (𝑝𝑖 , 𝜙𝑖 ) is smaller than the original one, leaving
𝑝𝑖 − 𝑝𝑖 byte payload to send. In that case, the emulator does not read more payload from the buffer,
but generates a second adversarial packet by giving the agent 𝑥𝑡+1 = (𝑝𝑖 − 𝑝𝑖 , 𝜙𝑖+1). Such operation
is repeated until the remaining payload is fully sent, and then the emulator reads more payload
from the buffer. For example, assume the agent truncates an original packet 𝑛 times, the list of the
observations sent to the agent and the list of actions would be:

[(𝑝𝑖 , 𝜙𝑖 ), (𝑝𝑖 − 𝑝𝑖,1, 𝜙𝑖+1), ..., (𝑝𝑖 −
𝑛−1∑︁
𝑗=1

𝑝𝑖, 𝑗 , 𝜙𝑖+𝑛−1)], and [(𝑝𝑖,1, 𝜙𝑖,1), (𝑝𝑖,2, 𝜙𝑖,2), ..., (𝑝𝑖,𝑛, 𝜙𝑖,𝑛)] .

Padding occurs if the final adversarial packet is larger than the input size, i.e., 𝑝𝑖,𝑛 > 𝑝𝑖 −
∑𝑛−1
𝑗=1 𝑝𝑖, 𝑗 .

Observe that the emulator satisfies the constraint on packet sizes (Eq. 1) by design, so that
the adversarial actor does not have to consider it while learning the policy. Also, the observation 𝑥𝑡
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and the associated packet size 𝑝𝑖 do not share the same subscript because the emulator may read
from buffer once, but uses multiple timesteps to send the payload, due to truncation.

Reward Function Design. The reward function evaluates how good an action 𝑎𝑡 is under the
current state 𝑠𝑡 . Since our aim is to find adversarial network flows, the reward should first reflect
the judgment of the censor, i.e., 𝐶 (𝑓 (𝑒 (·))). There are two standard strategies to assign rewards for
each action-state pair. The first is not assigning intermediate rewards while the sequence is being
generated, but only assigning a final reward when the episode terminates. One typical example is
AlphaGo [44], which assigns either +1 or −1 when a round of go game ends. The other strategy is
to give a reward at each timestep, which was adopted for cartpole or Mario game play. The first
strategy might seem suitable for our task, since all the intermediate actions should serve the final
aim, that is, the adversarial flow as a whole should be misclassified. However, this would imply that
the environment knows in advance when a flow will terminate, so it defers a reward until the last
packet. In reality, a flow may terminate at an arbitrary timestep due to different communication
purposes or network status. Note that in our adversarial model, attackers can control each packet,
meaning that they can also terminate a flow at any point. In other words, we consider it possible
for the censor to make a classification decision at any timestep, as if this is the last in an episode.
Formally, consider 𝑎𝑡 = (𝑝𝑖,𝑛, 𝜙𝑖,𝑛) at timestep 𝑡 is generated by the attacker given 𝑥𝑡 = (𝑝𝑖 −∑𝑛−1
𝑗=1 𝑝𝑖, 𝑗 , 𝜙𝑖+𝑛−1) and sent over the network. The censor already witnesses a1:𝑡 = [𝑎1, 𝑎2, ..., 𝑎𝑡 ].

Thus, the reward regarding distinguishability is defined as:

𝑟 (𝑠𝑡 , 𝑎𝑡 )𝑎𝑑𝑣 = 𝐶 (𝑓 (𝑒 (a1:𝑡 ))).

Besides, we also consider extra penalties in terms of data overhead and time delays. One may
expect the adversarial sample is as close to the original flow as possible, i.e., introducing the smallest
padding and delays, which would do minimal harm to the application performance. We therefore
introduce a data overhead penalty and a time overhead penalty:

𝑝 (𝑠𝑡 , 𝑎𝑡 )𝑑𝑎𝑡𝑎 =
{
𝑝𝑖 −

∑𝑛
𝑗=1 𝑝𝑖, 𝑗 + 𝜆𝑠𝑝𝑙𝑖𝑡𝑛, if 𝑝𝑖,𝑛 < 𝑝𝑖 −

∑𝑛−1
𝑗=1 𝑝𝑖, 𝑗 ;∑𝑛

𝑗=1 𝑝𝑖, 𝑗 − 𝑝𝑖 , otherwise.

When the size of the adversarial packet at timestep 𝑡 is smaller than that of the original packet,
the penalty is proportional to the number of truncations 𝑛 plus the remaining bytes to send. When
padding occurs (𝑝𝑖,𝑛 > 𝑝𝑖 −

∑𝑛−1
𝑗=1 𝑝𝑖, 𝑗 ), the penalty is linear in the extra bytes to send. We do not use

symmetric penalties for the two circumstances, because we find empirically that Amoeba is inclined
to truncate packets into multiple instances of minimal size. Thus, we discourage this behavior
by assigning an extra penalty when packet truncation occurs. The penalty for time delays is
straightforward: 𝑝 (𝑠𝑡 , 𝑎𝑡 )𝑡𝑖𝑚𝑒 = 𝜙𝑖,𝑛 − 𝜙𝑖+𝑛−1.. The expression of the reward function thus becomes:

𝑟 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 )𝑎𝑑𝑣 − 𝜆𝑑𝑝 (𝑠𝑡 , 𝑎𝑡 )𝑑𝑎𝑡𝑎 − 𝜆𝑡𝑝 (𝑠𝑡 , 𝑎𝑡 )𝑡𝑖𝑚𝑒 ,

where 𝜆𝑠𝑝𝑙𝑖𝑡 , 𝜆𝑑 and 𝜆𝑡 are hyperparameters that balance each component.

4.3 Adversarial Actor & Critic
As mentioned in Section 4.1, the state at timestep 𝑡 is the history of the observations and the actions,
meaning that the length of the state would vary as 𝑡 increases. However, if the agent is built with
non-recurrent neural networks, such as Multi-Layer Perceptron (MLP), it requires inputs of fixed
size. To overcome this problem, we design StateEncoder, a two-layer, pre-trained Gated Recurrent
Unit (GRU) that encodes an arbitrary long network flow to a fixed-size hidden representation. The
pretraining and the performance of the StateEncoder are documented Appendix A.2 and A.3.
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The adversarial actor aims to pick an optimal action at each timestep, such that the future
rewards can be maximized. However, the action space for packet sizes is overwhelmingly large,
i.e., 1,448 discrete actions for TCP and 16,384 for TLS, while the action space for time delays is
infinite. Thus, we first treat both packet sizes 𝑝 and time delays 𝜙 as continuous, and discretize
them when the actor makes a choice. For example, for the TCP layer, we let the actor choose an
action (𝑝𝑖 , 𝜙𝑖 ), 𝑝𝑖 ∈ [−1, 1], 𝜙𝑖 ∈ [0, 1], and then discretize the packet size by 𝑖𝑛𝑡 (𝑝𝑖 × 1, 460) 𝑏𝑦𝑡𝑒
and the time delay 𝑖𝑛𝑡 (𝜙𝑖 ∗𝑚𝑎𝑥_𝑑𝑒𝑙𝑎𝑦) 𝑚𝑠 , where𝑚𝑎𝑥_𝑑𝑒𝑙𝑎𝑦 indicates the maximum allowed
delay for a packet. Note that packet sizes can be negative to represent backward traffic.

We follow an actor-critic design where the actor network 𝜋𝜃 (·) approximates the best action given
a state, and a critic network 𝑉𝑐 (·) estimates the state value. The two networks are parameterized
by 𝜃 and 𝑐 respectively. Specifically, the learning objective of the actor is as described by Eq. (3).
The critic network aims to approximate the state-value by minimizing the Mean Squared Error
between estimated values and the discounted future rewards (𝑅𝑡 ):

min
𝑐
E𝑡 [(𝑉𝑐 (𝑠𝑡 ) − 𝐸𝑎∼𝜋 [𝑄 (𝑎𝑡 , 𝑠𝑡 )])2] ≈ E𝑡 [(𝑉𝑐 (𝑠𝑡 ) − 𝑅𝑡 )2] . (4)

In practice, we set 𝜋𝜃 and 𝑉𝑐 as MLPs and find this network structure to be effective in our task.
The adversarial actor has two output units: packet size 𝑝 and inter-packet delay 𝜙 . To satisfy the
time constraint on inter-packet delays in Eq. 2, we let 𝜋𝜃 output a value Δ𝜙 representing how
much extra delay should be added to each packet apart from the existing delay 𝜙 provided by the
environment, i.e., 𝜙 = 𝜙 + Δ𝜙 .

4.4 Optimization
Optimizing RL algorithms is challenging due to high variance among trajectories and the trade-offs
between exploration and exploitation that need to be achieved. A few techniques are widely used
to stabilize the training process, speed up convergence, and ensure the networks are differentiable,
which we also adopt in training our agent, including (1) surrogate objective function [41]; (2)
reparameterization trick, and (3) parallel rollout [41]. Interested readers can refer to Appendix A.1.
The full training algorithm is detailed in Algorithm 1.

5 EXPERIMENTS
In this section, we empirically evaluate the effectiveness of applying Amoeba on two popular types
of anti-censorship systems, namely Tor network and generic TLS tunneling:
(1) Tor Network is a anonymity system that utilizes relay nodes with onion protocol to conceal

user location and prevent network surveillance [48]. The traffic routed inside the Tor network
is encrypted by TLS and only the exit node has access to the original traffic, which is forwarded
to the real destination. However, Tor is proven to be distinguishable by ML classifiers due to
the fixed-size cells of the onion protocol [54].

(2) V2Ray is a generic TLS tunneling tool that tunnels arbitrary TCP/UDP packets inside TLS
connections [52]. Users of this type of systems usually do not demand anonymity but only
seek to bypass firewalls. Thus, these tools are widely used in countries that employ censorship,
such as China. We use V2Ray as the supporting tunneling system rather than its alternatives
[17, 26, 49], given that it has the largest community of both maintainers and users, and it is also
widely supported by 3rd party clients across multiple platforms [51].
Both system types are vulnerable to ML classifiers due to the fact that the statistical features of

the tunneled flows deviate from real TLS/HTTPS traffic.

5.1 Censoring Classifiers
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Algorithm 1 The training algorithm of Amoeba
1: Inputs:

𝜆𝑠𝑝𝑙𝑖𝑡 := packet truncation overhead coefficient
𝜆𝑑 := data overhead coefficient; 𝛾 := discount
factor
𝜆𝑡 := time delay coefficient; 𝑁 := number of
environments
𝑇 := the length of each rollout in the
environment;

2: Initialisation:
Initialize 𝜋𝜃 and 𝑉𝑐 via Xavier initialization [18]
Obtain StateEncoder E from Algorithm 2
Initialize N 𝐸𝑛𝑣 , each of which is provided a
feature extractor 𝑒 (·) and a pretrained classifier
𝑓 (·)
Initialize a rollout buffer with size 𝑁 ×𝑇

3: while not converged do
4: Sample 𝑁 ×𝑇 observations by interacting 𝜋𝜃 with 𝑁 𝐸𝑛𝑣

5: for Each observation 𝑥𝑡 , action 𝑎𝑡 and reward 𝑟𝑡 do
6: Let x1:𝑡 := {𝑥1, ...𝑥𝑡 }, a1:𝑡 := {𝑎1, ...𝑎𝑡 }
7: Generate the state representation
8: by 𝑠𝑡 = E(x1:𝑡 ) | |E(a1:𝑡 )
9: Compute𝐴𝑡 =

∑∞
𝑙=0 (𝛾𝜆)

𝑙 [𝑟𝑡+𝑙 +𝛾𝑉 (𝑠𝑡+𝑙+1) −𝑉 (𝑠𝑡+𝑙 )]
10: Compute Return 𝑅𝑡 = 𝐴𝑡 +𝑉𝑐 (𝑠𝑡 )
11: end for
12: Store each (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝐴𝑡 , 𝑅𝑡 ) in the rollout buffer and split

them into 𝐾 mini-batches {D1, ..,D𝐾 }.
13: Set 𝜋𝜃𝑜𝑙𝑑 ← 𝜋𝜃
14: for 𝑘 = 1, 𝐾 do
15: Compute 𝐼𝑡 (𝜃 ) = 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 )
16: Update 𝜃 via
17: ∇𝜃 1

|D𝑘 |
∑ [

min(𝐼𝑡 (𝜃 )𝐴𝑡 , 𝑐𝑙𝑖𝑝 (𝐼𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴𝑡 ) + 𝐻𝜋𝜃 (𝑎𝑡 )
]

18: Update 𝑐 via −∇𝑐 1
|D𝑘 |

∑ (𝑉𝑐 (𝑠𝑡 ) − 𝑅𝑡 )2
19: end for
20: end while
21: return E

We adopt a range of state-of-the-art
traffic analysis models as censoring
classifiers:

Deep Fingerprinting (DF) [45] is
a state-of-the-art Convolutional Neu-
ral Network (CNN)-based deep learn-
ing model that automatically extracts
features from raw network flows and
performs WF.

StackedDenoisingAutoencoder
(SDAE) [38] follows a MLP-based
encoder-decoder architecture to ex-
tract latent features from network
flows directly for WF.

Long Short-TermMemory (LSTM)
[38] is a multi-layer recurrent neural
network that takes arbitrary long net-
work flows as input to perform WF.
LSTM is designed to learn long-term
dependencies, and therefore can bet-
ter interpret timeseries data such as
consecutive packets.
CUMUL [34] separates different

classes of data by using SVM with a
radial basis function (RBF) kernel to
find the hyperplane that maximizes
the margin between classes.

The original versions of DF, SDAE
and LSTM are fed with packet direc-
tions only (i.e., (−1, 1)), and vanilla
CUMUL leverages the cumulative
representation of network traces
without timing features. For consis-
tence, we tailor these classifiers to uti-
lize the flow representation in Sec. 3

as input. That said, these classifiers do not need an external feature extractor.
Tree-based models [2]: Traditional ML models, such as DT and Random Forest (RF), exhibit

promising performance in detecting multi-media tunneling protocols . Tree-based approaches
possess better interpretability compared to DL models, since the decision-making process can be
visualized as a set of tree-like rules. We follow [2] to extract 166 features from each network flow,
covering bi-directional packet/timing statistics, burst behaviors, percentile features and flow-level
information, and use them to train the DT/RF.

5.2 Adversarial Attack Benchmarks
We choose three advancedwhite-box adversarial attacks as benchmark algorithms for our evaluation:

CW Attack [9] uses projected gradient descent to find minimal perturbations on the inputs,
while maximizing the probability of the inputs being misclassified. The CW attack iteratively
queries the classifier for a single input, until an adversarial sample is found.
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NIDSGAN [64] regards the censoring classifier as the discriminator in a GAN architecture, and
trains a generator to learn minimal perturbation patterns needed to fool the discriminator. The
generator directly produces adversarial samples given inputs, without needing iterative updates.
Blind Adversarial Perturbation (BAP) [31] also aims at training generator-like NNs, but

is more flexible in allowing inserting packets into a given flow, i.e., the length of an adversarial
sample is not always identical to the input, posing larger difficulties for censoring classifiers.

We do not consider black-box benchmark algorithms [1, 8, 10], since existing ones are infeasible
under our threat model where feature extraction is performed (see Figure 1). We implement the
NN-based classifiers, CW attack, NIDSGAN, BAP and Amoeba in Pytorch [37], and import the rest
of the classifiers from the scikit-learn package in Python. Detailed hyperparameter selection is
documented in Appendix A.4.
5.3 Evaluation Metrics
To evaluate the effectiveness of our solution against ML classifiers, we measure their accuracy and
F1 score metrics, which are based on True Positives (TP), False Positives (FP), True Negatives (TN)
and False Negatives (FN): 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 +𝑇𝑁 )/(𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 ), and 𝐹1 = 2× (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×
𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙), where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =𝑇𝑃/(𝑇𝑃 +𝐹𝑃) and 𝑟𝑒𝑐𝑎𝑙𝑙 =𝑇𝑃/(𝑇𝑃 +𝐹𝑁 ). Accuracy
indicates the proportion of samples correctly classified, and F1 score computes the harmonic mean
between precision and recall. The former represents how likely an algorithm would give true
alarms, and the latter indicates how sensitive an algorithm is towards positive samples.

We use also use another three metrics to evaluate Amoeba, namely Attack Success Rate (ASR), i.e.,
the percentage of adversarial samples beingmisclassified,𝑑𝑎𝑡𝑎 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑝𝑎𝑑𝑑𝑖𝑛𝑔/(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑎𝑦𝑙𝑜𝑎𝑑
+𝑝𝑎𝑑𝑑𝑖𝑛𝑔) and 𝑡𝑖𝑚𝑒 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑑𝑒𝑙𝑎𝑦𝑠/(𝑑𝑒𝑙𝑎𝑦𝑠 + 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒), in which total trans-
mission time is the time difference between the last and first packet in a flow.

5.4 Data Collection & Training Procedure
We collect two real-world datasets to evaluate our approach. Specifically, we set up a Tor client on
a campus machine running Ubuntu 22.04, and a Tor bridge on a Google Cloud E2 instance running
Ubuntu 22.04. TCP segmentation offload is disabled on both machines. The same setup is employed
for a V2Ray client and V2Ray proxy server. We consider the censor sits between the Tor (or V2Ray)
client and the first relay node (or V2Ray server) and distinguishes sensitive flows. To collect a
realistic Tor dataset for evaluation, we crawl the landing pages of Alexa top 25,000 websites with
and without Tor network respectively (Tor Dataset). We use tshark to group packets into TCP
flows and extract packet sizes and associated timestamps, where backward packet (server-to-client)
sizes are represented with negative numbers to preserve the transmission direction. The same
operation is repeated with and without the V2Ray tunnel, named V2Ray Dataset. Different from
the Tor Dataset, we utilize tshark to group packets into TLS flows, and extract TLS record sizes
and timestamps. For this dataset, we consider the censor conducts deep packet inspection up to the
TLS layer and extracts features from TLS flows instead of TCP flows. The maximal TLS record is 16
KB, i.e., Amoeba is required to explore a much larger action space.
Each dataset is separated into a clf_train_set (40%), an attack_train _set (40%), a validation_set

(10%) and a test_set (10%). We use the clf_train_set to train censoring classifiers, which are then
evaluated on the test_set. After that, each trained censoring classifier is deployed in the Environment
in Figure 3 to generate rewards. We use the attack_train_set to train Amoeba instead of using
clf_train_set, because the attacker may have no access to the dataset owned by the censor in practice.
The validation_set is utilized to tune the hyperparameters of Amoeba. After training, Amoeba and
the benchmark algorithms are evaluated on the test_set against the trained censoring classifiers. To
facilitate the reproducibility of our results, we make available our data collection configurations,
datasets and source code at https://github.com/Mobile-Intelligence-Lab/Amoeba.
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Dataset
Attack None C&W NIDSGAN BAP Amoeba

Threat Model None white-box white-box white-box black-box
Censoring

Alg. F1 Accu-
racy

ASR
(%)

DO
(%)

TO
(%)

ASR
(%)

DO
(%)

TO
(%)

ASR
(%)

DO
(%)

TO
(%)

ASR
(%)

DO
(%)

TO
(%)

Tor

SDAE 0.99 0.99 88.34 21.60 0.00 30.75 20.00 4.25 84.72 22.95 21.21 89.0 64.8 8.72
DF 0.99 0.99 97.88 26.68 23.94 94.13 31.8 7.28 89.46 35.95 12.49 87.5 59.0 7.79

LSTM 0.99 0.99 90.49 86.64 8.37 97.88 19.09 3.54 93.86 38.88 18.65 98.2 58.1 6.26
DT 1.00 1.00

N/A N/A N/A
96.5 39.0 5.69

RF 1.00 1.00 92.0 39.1 3.73
CUMUL 0.99 0.99 93.0 44.5 6.55

V2ray

SDAE 0.99 0.99 99.54 25.24 24.88 26.04 22.99 20.23 79.92 26.76 5.99 93.8 43.2 5.49
DF 0.99 0.99 84.33 49.31 49.89 95.44 22.9 9.17 62.57 25.13 0.00 96.8 46.1 7.45

LSTM 0.99 0.99 96.61 16.10 2.51 93.32 38.44 15.23 91.56 16.98 29.78 89.2 7.73 1.46
DT 1.00 1.00

N/A N/A N/A
97.2 40.2 8.44

RF 1.00 1.00 99.4 53.97 8.30
CUMUL 0.99 0.99 96.4 51.6 10.48

Table 1. Performance of different classifiers in detecting Tor flows without attack; performance of Amoeba in
crafting adversarial flows. For comparison, we also show the Attack Success Rate (ASR) of CW, NIDSGAN,
and BAP attacks under different threat models (DO – data overhead; TO – time overhead). The estimated
values reported represent the maximal perturbation allowed for data and timing features respectively.

5.5 Evaluation
5.5.1 How does Amoeba perform compared to benchmark algorithms? Table 1 presents the
performance of each classifier detecting Tor and V2Ray traffic respectively, as well as the efficacy
of adversarial attacks targeting these classifiers. In the absence of adversarial manipulations,
the selected classifiers yield almost perfect accuracy and F1 scores (third column) as expected
on the test_set, since both anti-censorship systems generate unique statistical patterns during
communications. For example, when observed on the TCP layer, Tor traffic mostly consists of
packets of (multiples of) 536 bytes, which is the size of an encapsulated onion cell, giving ML
classifiers high confidence to detect. V2Ray’s TLS-tunneled flows can be differentiated from HTTPS
flows, because for HTTPS, once the TLS connection is established, the inner communications are all
HTTP requests/responses; while for TLS-tunneled flows, the inner communications may involve a
TLS handshake between browser and web server. This TLS-in-TLS pattern would not be witnessed
in normal browsing traffic without a tunnel, which gives ML classifiers opportunities to learn the
discrepancies based on the statistical features.

On the other hand, the selected white-box adversarial attacks are effective in generating adver-
sarial features of network flows. It is not surprising that the CW attack can reach ∼92%ASR on
average with ∼37% data and ∼18% time overhead (fourth column). This attack explores misleading
perturbations by leveraging the weights and gradients of the censoring classifiers, and iteratively
optimizes an adversarial sample for each input (network flow). However, the practicality of CW
is questionable in the networking domain, since it requires 1) a complete flow as input; and 2)
multiple rounds of queries to the censoring classifiers until a legitimate adversarial flow is found.
NIDSGAN and BAP overcome the second issue by training a neural network to generate per-

turbations for arbitrary inputs in advance, and in the deployment stage adversarial flows can be
generated in one go. NIDSGAN has however limited flexibility, since the length of adversarial flows
must be equal to the length of input flows. If the censoring classifiers are able to learn directional
features from sensitive flows, simply adding perturbations to each packet without inserting new
packets would not change directional features, potentially leading to the failure of NIDSGAN. BAP
utilizes a dedicated NN to learn at which positions in a flow if new packets should be inserted,
as an approach to disturb directional features. Based on the results in Table 1, we remark that
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NIDSGAN and BAP have their own merits, but can also be unstable when confronting different NN
architectures. Since both methods generate perturbations for an entire flow, it would be difficult to
learn how the changes of a small number of packets in a flow would impact the final classification
results. In contrast, Amoeba is designed to observe the classification result upon every new packet
in an adversarial flow, which provides fine-grained information to infer the decision boundary of
classifiers.

Table 1 reveals that our proposed Amoeba reaches ∼94% ASR on average against multiple
types of classifiers, being capable of exploring the decision boundary of a classifier even if they
are not NN-based (and thus offer no gradient information which is required by existing attacks),
including DT, RF and SVM/CUMUL. Compared with white-box methods, Amoeba follows a much
stricter threat model where feature engineering and model architecture are invisible, and
it is also more stable against different classifiers. The data overhead of the adversarial flows
are in a similar range, between 43.2–64.8%, except for adversarial samples against DT/RF on Tor
Dataset (where it is lower, yet a comparison with gradient-based methods infeasible) and those
for LSTM on the V2Ray Dataset. The time overhead of adversarial flows is consistently <10.5%.
Appendix A.5 offers an analysis of the actions taken to attack different classifiers.

5.5.2 Is Amoeba sensitive to changes in the network environment? A shared observation
on the results with both datasets is that adversarial flows possess greater data overhead than time
overhead. The reason is that censoring classifiers leverage more on packet features than on timing
features to make decisions. We visualize important features used by DT and RF in Figure 4, where
the x-axis lists top 50 important features in descending order, and the y-axis shows the number of
packet and timing features respectively. Observe that packet features in general are overwhelmingly
more important than timing features. Practically, network flows may suffer different degree of
congestion depending on route and time, while packet/record sizes in a flow are purely determined
by the client and the server, thus more reliable for the censoring classifiers. As a result, Amoeba
makes more efforts to reshape sizes than timings.

In a more extreme setting where not only network congestion exists but packets are also dropped
due to overwhelming volume of traffic in the network, packet retransmission would be needed
to tackle data loss. To evaluate the impact of different packet drop rates on the performance of
Amoeba, we additionally collect Tor Datasets multiple times where we enforce packet drop rates
for bi-directional traffic between 0% and 10%. The same data preprocessing/split convention is
followed. We train Amoeba against DF on the attack_train_sets collected under different packet
drop rates and then evaluate it on different test_sets. The results are shown in Table 6, in which
the numbers on the first column represent the packet drop rates under which the training sets are
collected, and those on the first row indicate the packet drop rates under which the test sets are
collected. The ASR [%] of Amoeba trained and tested under the same environment are shown on
the diagonal of the table in bold, and the rest of the numbers indicate the performance difference in
% when cross-evaluating Amoeba in different environments.
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Train/Test
Pkt Drop Rate 0% 2.5% 5% 7.5% 10%

0% 87.5 -8.2 -8.1 -6.4 -7.4
2.5% -0 88.8 -0 -0.2 -0
5% -2.0 -1.6 94.2 -1.2 -1.2
7.5% +0.8 -1.8 -1.4 94.2 -0.4
10% -1.2 +0.6 -1.2 -0.8 92.0

Fig. 6. The ASR [%] of Amoeba trained and tested under the
same environment are shown on the diagonal of the table in
bold, and the rest of the numbers indicate the performance
difference in % when cross-evaluating Amoeba in different
environments.

Amoeba trained with data experiencing
2.5%–10% packet drop rates exhibits partic-
ularly robust performancewhen perturbing
network flows collected from other envi-
ronments (2nd to 5th rows). However, if the
training set does not incorporate retrans-
mitted packets, it would be more difficult
for Amoeba to perturb network flows col-
lected with non-zero packet drop rates (1st
row). This is not surprising since the dataset
collected with 0% drop rate is less heteroge-
neous than that with non-zero drop rates.

This set of results reveals that network environment is an important factor when collecting network
flows, and if the dataset can reflect the heterogeneity of the network, then Amoeba is less sensitive
to changes in the network environment.

5.5.3 What is the cost of using Amoeba and can that be reduced? Effectiveness against
CUMUL/DT/RF aside (where the benchmarks considered don’t work), Amoeba’s ASR is higher
than or on par with that of white-box attacks at the cost of a) higher data overhead, and b) 2 to
10 times more interactions with the censoring classifiers (see Fig. 7). The reason is two-fold: 1)
Amoeba is a black-box algorithm and therefore requires more queries by nature; 2) Given a flow 𝑆 ,
Amoeba is designed to interact with the classifier at least |𝑆 | times and observe associated rewards,
whereas BAP only needs to interact once in a training epoch.
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Fig. 7. Convergence curves of NIDSGAN, BAP and Amoeba attacking three classifiers on Tor Dataset.

However, in practice it may not be always possible to perform countless queries to censoring
classifiers. We therefore attempt to reduce the number of interactions needed by randomly masking
the rewards when training Amoeba. In the vanilla version of the training algorithm, Amoeba expects
to receive a part of the reward 𝑟𝑎𝑑𝑣 for each subsequence of the generated flows, with 1 denoting
good and 0 for sensitive. We mask 𝑟𝑎𝑑𝑣 with a probability 𝑝𝑚𝑎𝑠𝑘 from 0% to 90% during training,
and the masked 𝑟𝑎𝑑𝑣 is considered to be 0.5 instead, representing unknown feedback. Amoeba is
trained with 300,000 timesteps, and the actual number of queries would be 300, 000 × (1 − 𝑝𝑚𝑎𝑠𝑘 ).
Each experiment is repeated 5 times and Fig. 8 plots the average ASR under each mask rate, with
the shaded area representing the ±𝑠𝑡𝑑 of the results. Amoeba would experience larger variance
during training when the reward is randomly masked regardless of the type of censoring classifiers
applied. In particular, as the reward mask rate increases from 0% to 90%, the ASR against DF, SDAE,
LSTM and CUMUL drops by 16.5% on average, whereas the ASRs against DT and RF only drops by
7% on average. This is because tree-based models utilize flow features for classification [2], and the
absence of the reward for a specific adversarial packet is of lesser consequence, provided that the
generated packets adhere to the learned adversarial patterns in the feature space. On the contrary,
other models using the flow representation in Section 3 as inputs can be sensitive to the alterations
to each individual packet. Lack of accurate rewards at each timestep would challenge Amoeba in
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Fig. 8. Impact of reward mask rate on Amoeba’s ASR. The reward mask rate is controlled to increase from 0%
to 90% and the actual number of queries are in the brackets.

learning a reliable approach to generate adversarial flows (see Fig. 9). However, Amoeba is still
robust even if the rewards are highly noisy, considering that the number of queries can be reduce
by 10× to 30,000 and the average ASR sustained is 79%.
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Fig. 9. Convergence curves of Amoeba attacking three classifiers under different reward mask rates, namely
0%, 50% and 90%. The legend represents the mask rate and the number of queries performed at the end of
training. * denotes estimated value given that rewards are randomly dropped. Note that the x-axis represents
timesteps instead of the number of queries (for orange and purple curves), because at the timesteps when the
rewards are dropped, essentially no query is performed.
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by Amoeba against each model on the y-axis and tested on other models on
the x-axis. Color of each cell represents ASR. The left heatmap is obtained
on the Tor Dataset and the right one on the V2Ray Dataset.

5.5.4 Are adversarial sam-
ples transferable? Here
we investigate whether ad-
versarial flows generated
by Amoeba against one
classifier can also deceive
other models without re-
training. To this end, we
store all the adversarial
samples obtained from each
model and feed them to the
rest of the classifiers for
both datasets. We plot suc-
cess rates as a heat map in
Figure 10, where we find
that adversarial flows targeting similar architectures are transferable with high success
rate, such as SDAE and DF, and DT and RF, meaning that these pairs of classifiers are likely to
learn a similar decision boundary.

The adversarial samples targeting LSTM on the V2Ray Dataset are exceptional with only 7.73%
data overhead on average. It is likely that Amoeba uncovers a unique and efficient strategy to attack
sequential models on this dataset, but cannot be easily generalized to other censoring classifiers.
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Fig. 11. The distribution (upper) and box-plot (bot-
tom) of the inter-packet delays between every two
consecutive packets in the same network direction.

Censoring
Classifier

Data
Overhead [%]

Time
Overhead [%]

SDAE 71.22 50.02
DF 76.37 63.07

LSTM 67.99 43.44
CUMUL 63.22 50.71

DT 64.53 59.68
RF 60.58 38.02

Table 2. Average data overhead and time overhead
by embedding tunneled flows into pre-stored adver-
sarial profiles on Tor Dataset.

5.5.5 How is the quality of adversarial flows? When attacking NN-based classifiers, the
architecture and the weights are invisible to Amoeba, but our algorithm can still explore the
decision boundary effectively and find qualified adversarial flows. Fig. 5 plots the ECDF of the
classification scores with respect to adversarial flows against different NN-based classifiers on both
datasets, where the majority of the scores are close to 1 (benign) rather than 0.5. This means that
during training, Amoeba does not choose actions randomly in the action space, but can understand
where the decision boundary lies in the black box and generates adversarial flows just as
innocuous traffic, from the perspective of ML-based classifiers.

5.6 Discussion
5.6.1 Feasibility of deployment. Having demonstrated the efficacy of Amoeba, here we discuss
the feasibility of deploying our solution in practice. Integrating the algorithm in the transport layer
and morphing each packet at line speed is the most ideal way of usage. We run a single-step action
inference on a NVIDIA K80 GPU for 10 times and obtain an average inference time of 0.370 ± 0.001
ms, which despite small, may be considered non-negligible in the sequence generation process.

To better understand this, Fig. 11 shows the density and the box plot of the inter-packet delays
between every two consecutive packets in the same network direction in our dataset, where 67.5%
of the inter-packet delays are less than 0.37 ms. The time needed for inference would challenge
the deployment of the algorithm in an online manner. However, it is still possible to utilize it once
Amoeba is well-trained against a censoring classifier. Specifically, we can generate a number of
adversarial flow profiles, which only consist of packet sizes and inter-packet delays without real
payloads. The profiles would be saved in a database and synchronized with both client and server
proxies. During communications, both parties embed actual payload into flows exactly as the flow
profiles instruct. If one end has no payload in the buffer but the profile indicates a packet should
be sent, then a packet with dummy payload would be transmitted to align with the pre-generated
adversarial flow. Although this approach may further increase data overhead, since the flow profiles
are not generated based on the current states, it ensures that ML-supported censorship can be
successfully circumvented. To illustrate the overhead involved, we store all the adversarial flows
(profiles) in the training set of the Tor Dataset that successfully circumvent each classifier, and
embed tunneled flows in the test set into the pre-stored, adversarial profiles, as described above.
Table 2 lists the data and time overhead against each censoring classifier respectively. Note that the
increase in time overhead is much larger than that in data overhead, by comparing columns 1 and
2 in Table 2, since it is common to use multiple adversarial profiles to transmit a single tunneled
flow, resulting in extra TCP handshakes to establish connections. More engineering efforts, such
as matching optimal adversarial flow profiles with IP addresses, can be explored for better user
experience. To fully achieve online deployment of Amoeba, technical advances, such as designing
dedicated hardware that embeds NICs with computational processors [61, 62], are needed.
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5.6.2 Interactions with Censorship Systems. Training Amoeba requires hardware advance to
accelerate the computation of forward passes. Besides, the training algorithm engages in frequent
interactions with the censoring model until a policy is discovered, and in this process, Amoeba
may fail to generate adversarial flows, resulting in the blocking of IP addresses or port numbers.
Therefore, we assume that attackers can manage a multitude of IP addresses on both sides of the
firewall to cope with prompt responses from the censor, as captured by our adversarial model
outlined in Section 2. In a practical scenario, censors tend to block the destination IP addresses or
specific port numbers [22, 55], but hardly take actions on the source IP. This makes sense since
the host initiating connections is often behind NAT, and blocking the source IP would prevent a
large group of users from accessing the Internet. On the other hand, Amoeba would require more
IP addresses outside the firewall. Tools such as MassBrowser [33] provide a peer-to-peer tunneling
approach to circumvent censorship, facilitated by numerous volunteers establishing proxies in
unrestricted regions, and a similar design may be utilized to train Amoeba.

Another critical issue when interacting with censorship systems is that observing rewards is not
always straightforward, as the censor would not inform the classification results, but the attackers
have to infer decisions instead. Although time-consuming, one viable strategy involves iteratively
establishing connections and incrementally generating new packets in each connection. At the
point when a connection cannot be built due to IP/port blocking, the attacker discerns that the
preceding connection triggered an alarm. Otherwise, the rewards can be perceived as 1 (benign).
This method is effective against a censorship system that promptly responds to unwanted traffic.
For example, it was observed that HTTPS connections with ESNI would be blocked by the Great
Firewall within 1 second after the censor observes a TLS Client Hello [6]. A more common scenario
may be that the rewards are only observable at a certain timestep (after observing the first 𝑛
packets [54], after a flow terminates [2], or for client-to-server packets only [59]) rather than upon
every adversarial packet being generated. This rationale motivated the experiments conducted in
Section 5.5.3, demonstrating that observing only 1/10 of the rewards can still facilitate the progress
of Amoeba, albeit with a reduced ASR. The censor, on the other hand, may collect adversarial
flows generated by Amoeba, to enrich the dataset of sensitive connections and train the censoring
classifier repeatedly. This would nullify the old policy learned by Amoeba and re-training would
become necessary. Whether iteratively training the censoring classifier and Amoeba would reach
any equilibrium or one model would outperform the other alternatively is yet to be determined.
This problem may align with the SeqGAN framework [63], but has not been explored in network
traffic generation, which makes it a potential direction for future research.

5.6.3 Ethical Implications. Although in this work all the data is collected in a controlled envi-
ronment without real users attempting to evade censorship, certain ethical implications are to be
considered, in the sense that the proposed algorithm involves interactions with a censorship system,
which may be illegal in restricted regions and may endanger users/attackers. However, given the
black-box nature of censorship, interacting with the system is essentially the only way to understand
how it works, which is also the methodology followed by prior studies [6, 7, 13, 16, 57, 59].

6 RELATEDWORK
Censorship techniques. Internet censorship is carried out in a number of countries in the world,
including China, Iran, Russia and India, to block unwanted communications/services.
IP filtering and DNS poisoning is the most straightforward method to prevent users from

establishing connections. For example, both DNS resolution and TCP connections to Google
Services fail in China, as Google is on the Great Firewall (GFW)’s blacklist [22]. Besides, DPI can
inspect application-layer contents for protocol identification. Tor clients use a unique cipher suite
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during TLS handshakes, which allows the GFW to narrow down the suspected targets of Tor
connections [16]. Active probing involves sending carefully crafted probes to suspicious servers
to determine whether they support forbidden protocols, which works against Tor, Shadowsocks,
Lantern and obfuscated SSH [5, 16]. In recent years, ML algorithms (Decision Tree-based, SVM,
etc.) were adopted to detect sensitive network flows. [2, 54]. ML-supported censorship may appear
similar to WF [24, 34, 35, 38, 45, 46], with the difference that the former targets forbidden network
protocols and the latter identifies specific websites. Existing traffic analysis models for WF can be
easily adopted for network censorship as our results indicate.
Censorship circumvention approaches. SkypeMorph [30] changes the packet distribution
of Tor’s traffic to look like connections initiated by Skype. ScrambleSuit [58] and obfs4 [60]
add random padding to each packet to eliminate the fingerprints of fixed-size onion cells in
Tor. Tunneling tools embed covert messages into cover protocols, e.g. Meek [15] tunnels Tor
traffic over HTTPS connections. V2ray [52] supports a range of tunnels including HTTP, TLS and
Shadowsocks. DeltaShaper [4] transforms covert data into images and transfers them in Skype
videocalls. Unfortunately, the aforementioned tools may be vulnerable to ML classifiers [2, 23, 54].
Protozoa [3] hijacks the WebRTC stack in Chromium and transmits hidden messages through
real-time video streaming apps. Geneva [7] and SymTCP [56] design automated algorithms to
discover the vulnerabilities of stateful DPI system implemented by censors. CDN browsing [65] hosts
different web resources on the same set of IP addresses, and provide fake SNI in TLS handshakes
to misguide censors. Decoy routing [32] leverages ‘friendly’ Internet autonomous systems which
forward messages to the covert destinations. However, these systems are non-standard compliant.
Adversarial attacks against ML classifiers. The majority of adversarial attacks are confined to
computer vision and very few apply to the networking domain. For example, Fast Gradient Sign
Method (FGSM) [19] is an effective white-box attack that finds adversarial examples through the
gradients of making a wrong prediction. Square attack [1] considers the victim classifier to be a
black box and randomly adds perturbations to a small patch of the image, until an adversarial
example is found. Another strategy of conducting black-box attacks involves a two-stage approach:
1) substituting model training; 2) adversarial sample crafting, which does not directly infer the
decision boundary of ML classifiers, but leverages the transferability of samples obtained from
the substitute model [21, 36, 50]. However, as evidenced by our results in Section 5.5.4, adversarial
flows are not always transferable if the true architecture is distinct from the substitute model.

Recent research attempts to use ML to obfuscate traffic features. GAN showed ability to generate
network flow features that are indistinguishable by ML classifiers [27, 42]. However, only manipu-
lating at feature level is impractical, since mapping features back to a legitimate flow is challenging.
iPET [43] and NIDSGAN [64] proposes GAN-based methods to generate perturbations on network
traffic directly as an attempt for deceiving ML classifiers. Apart from adding perturbations to
existing packets, BAP [31] learns the optimal position in a flow where to insert dummy packets,
disturbing directional features.

7 CONCLUSIONS
In this paper we introduced Amoeba, an original black-box attack based on adversarial reinforce-
ment learning for circumventing ML-based network traffic censoring classifiers. We demonstrated
empirically that Amoeba can shape user flows of arbitrary length over both Tor and V2ray into se-
quences of packets that have on average 94% success rates in subverting a broad range of classifiers,
and performs stably in different network environments. Amoeba can be trained with considerably
noisy rewards and adversarial samples are transferable across similar architectures, proving its
robustness and practicality compared with existing attacks. Finally, we provided guidance on how
to deploy our solution on real-world systems.
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A APPENDIX
A.1 Actor & Critic Optimization
We adopt a few optimization tricks in training our agent, including (1) surrogate objective function
[41]; (2) reparameterization trick, and (3) parallel rollout[41]:
(1) Surrogate Objective: Directly optimizing Eq. 3 using a sampled trajectory through multiple
steps of gradient ascent may lead to overwhelmingly large, and sometimes worse policy updates.
Trust Region Policy Optimization (TRPO) [39] and Proximal Policy Optimization (PPO) [41] propose
to use a surrogate objective function which theoretically guarantees policy improvement over
stochastic gradient ascent:

max
𝜃
E𝑡

[
𝜋𝜃 (𝑎𝑡 | 𝑠𝑡 )
𝜋𝜃old (𝑎𝑡 | 𝑠𝑡 )

𝐴(𝑠𝑡 , 𝑎𝑡 )
]
,

in which 𝜃𝑜𝑙𝑑 represents the parameters of an older version of the actor network in stochastic
optimization. The surrogate objective function intuitively encourages the actions with positive
advantages 𝐴(𝑎𝑡 , 𝑠𝑡 ) > 0 and discourages the opposite. We follow the PPO design to clip the
ratio 𝐼𝑡 (𝜃 ) = 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 )
(avoiding excessive update steps), and add an entropy term to encourage

exploration in the action space in the final version of the objective function:
max
𝜃
E𝑡 [min 𝐼𝑡 (𝜃 )𝐴(𝑠𝑡 , 𝑎𝑎),𝑐𝑙𝑖𝑝 (𝐼𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴(𝑠𝑡 , 𝑎𝑎))]

+ 𝐻𝑎𝑡∼𝜋𝜃 (𝑎𝑡 )
(5)

(2) Reparametrization trick: 𝜋𝜃 (·) should approximate the distribution of actions given states
but a simple MLP network only generates deterministic outputs. To overcome this issue, we assume
that all the actions are sampled from a Gaussian distribution, and make 𝜋𝜃 generate the mean and
the standard deviation of actions given states 𝑎𝑡 , 𝜎 = 𝜋𝜃 (𝑠𝑡 ), as shown in Figure 3. An action then
can be sampled by:

𝑎𝑡 = 𝑎𝑡 + 𝜖𝜎, 𝜖 ∼ N(0, 1).
The trick ensures the actor network is differentiable, as well as generating probabilistic outputs
during training.
(3) Parallel Rollout: In order to speed up model convergence, PPO [41] proposes to train the agent
with parallel environments (𝑁 in total) where trajectories would be sampled from each environment
independently with a fixed timestep 𝑇 , resulting in 𝑁 ×𝑇 observations each time (Algorithm 1 line
4). The advantage at every timestep is estimated via generalized advantage estimation [40]:

𝐴𝑡 ≈
∞∑︁
𝑙=0
(𝛾𝜆)𝑙 [𝑟𝑡+𝑙 + 𝛾𝑉 (𝑠𝑡+𝑙+1) −𝑉 (𝑠𝑡+𝑙 )],

in which 𝛾 is the discount factor and 𝜆 balances the bias and the variance of advantage estimation.
We set 𝛾 = 0.99 and 𝜆 = 0.95. If one trajectory terminates before step 𝑇 , the environment starts
to generate a new one until reaching 𝑇 steps and if the trajectory does not terminate after 𝑇 , the
advantage can still be estimated by 𝐴𝑇 ≈ 𝑟𝑇 + 𝛾𝑉 (𝑇 + 1) −𝑉 (𝑇 ). 𝑁 ×𝑇 observations along with
the actions, the returns and the estimated advantages are then even split into 𝐾 mini-batches for
stochastic optimization (Alg. 1 line 11-13). The full training algorithm is detailed in Algorithm 1.

A.2 StateEncoder
As mentioned in Section 4.1, the state at timestep 𝑡 is the history of the observations and the
actions, meaning that the length of the state would vary as 𝑡 increases. However, if the agent is
built with non-recurrent neural networks, such as MLP or CNN, it requires inputs of fixed size.
To overcome this problem, we design StateEncoder, a two-layer, pre-trained GRU that encodes an
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arbitrary long network flow to a fixed-size hidden representation. As shown in Figure 12, to ensure
that StateEncoder E can properly encode network flows without nontrivial information loss, we
train E as the encoder part of a Seq2Seq Autoencoder, in which StateDecoder D shares the same
architecture with E. Consider a network flow 𝑆 = [𝑠1, ..., 𝑠𝑇 ] with 𝑇 packets. E aims to map 𝑆 as an
representation in the 𝐻 -dimensional hyperspace, 𝑟𝑆 = E(𝑆) ∈ R𝐻 , and D aims to reconstruct the
flow from the hidden representation, 𝑆 = D(𝑟𝑆 ) ∈ R𝑇×2. We train the Seq2Seq Autoencoder with a
Mean Squared Error (MSE) loss function, i.e.,

𝐿(𝑆, 𝑆) = 1
𝑇

𝑇∑︁
𝑡=1
(𝑠𝑡 − 𝑠𝑡 )2,

by the Adam algorithm [25]. The only connection between E and D is the hidden representations.
Therefore, E has to encode the input as intact as possible, to ensure thatD can properly reconstruct.
Since the StateEncoder is designed to encode heterogeneous network flows effectively, it should
be fed with as many distinct flow as possible during training, with a view to acquiring strong
generalization abilities. To this end, we create a synthetic, normalized dataset with maximal
variability in both packet sizes and time delays, where each packet size 𝑝𝑖 and inter-packet delay 𝜙𝑖
in the flows are created via:

𝑝𝑖 ∼ U(−1, 1); 𝜙𝑖 ∼ U(0, 1), 𝑖 ∈ [1,𝑇 ],

with 𝜙1 = 0. We assume that all the packet sizes and delays are 0-1 normalized in this dataset. 𝑝𝑖
is sampled fromU(−1, 1) because the flow is bidirectional. We create a training set with 12,000
flows and a test set with 3,000 flows. Since a reward is given at each timestep in an episode, the
StateEncoder must be able to encode a sequence with a arbitrary length. Thus, the sequence length
of each mini-batch during training is randomly sampled from [1,𝑇 ] to avoid that StateEncoder can
only encode fixed-size flows. The complete training algorithm is detailed in Algorithm 2. After
training, we only preserve E to encode states for the adversarial actor and critic.

A.3 Performance of StateEncoder

Algorithm 2 The training algorithm for StateEncoder
1: Inputs:

𝑑𝑎𝑡𝑎𝑠𝑒𝑡 := {𝑆1, ..., 𝑆𝑛}; 𝑆𝑖 := [𝑠𝑖,1, ..., 𝑠𝑖,𝑇 ]
2: Initialisation:

Denote E(·) a two-layer GRU StateEncoder and
D(·) as the decoder with the same architecture.
E and D initialized via Xavier initialization [18].

3: while model has not converged do
4: for 𝑆𝑖 sampled from 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do
5: 𝑆𝑖 ← 𝑆𝑖 [: 𝑡], 𝑡 ∼ U(1,𝑇 )
6: 𝑆𝑖 ← D(E(𝑆𝑖 ))
7: L ← 𝑀𝐴𝐸 (𝑆𝑖 , 𝑆𝑖 )
8: E,D ← 𝐴𝑑𝑎𝑚(L, E,D)
9: end for
10: end while
11: return E

The performance of our StateEncoder
impacts the adversarial actor in terms
of understanding and interpreting the
actual state at each timestep. There
is no simple method to evaluate Sta-
teEncoder alone, since the hidden rep-
resentations are in high-dimensional
space and information loss during en-
coding is intractable. Nevertheless,
we can obtain an upper bound of the
information loss by examining the
Noromalized Mean Absolute Errors
(NMAE) of the Seq2Seq model (con-
sisting of StateEncoder and StateDe-
coder):

NMAE(𝑆, 𝑆) = 1
𝑇 × 𝑁

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

|𝑠𝑛𝑡 − 𝑠𝑛𝑡 |
𝑠𝑛𝑡

.
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Fig. 12. StateEncoder and associated decoder for
sequence-to-sequence training. During training, State-
Encoder maps an arbitrary long network flow to a
fixed-size hidden representation, which is passed to
StateDecoder for reconstruction.
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Fig. 13. Normalized reconstruction errors (with
error bars) of StateEncoder + StateDecoder.

𝑠𝑛𝑡 is the packet 𝑡 in flow 𝑛 and 𝑠𝑛𝑡 the reconstructed packet. We show the NMAE of the Seq2Seq
model composed by StateEncoder and StateDecoder in Figure 13, which helps us understand to
what extent the encoded hidden representations can sustain the information of the original flows.
It can be seen that the NMAE of flow reconstruction would increase as the flow length increases,
although this is not obvious when the flows have less than 40 packets and the average NMAE in
[1, 40] is around 9%. When the flow length is longer than 40, the NMAE gradually increases from
9% to 19% with an outlier of 28.95% when the flow length equals 48. An intuitive explanation of the
NMAE in our case is that, for example, when a flow has 60 packets, each packet size 𝑝 is encoded as
a value between 𝑝 ± 0.19𝑝 in the hidden representation. Although not perfect, these experiments
demonstrate that this level of precision is actually adequate for Amoeba to learn an effective policy.
Note that 90.5% of Tor flows in the dataset have less than 60 packets. To ensure that long flows can
be encoded properly in practice, an engineering solution is splitting long flows before a pre-set
threshold or using deeper networks to encode flows.

Hyperparameter Search Space Value
optimizer Adam, SGD, RMSProp Adam

learning rate [0.0001, 0.01] 0.0005
𝜆𝑠𝑝𝑙𝑖𝑡 [0.01, 0.1] 0.05
𝜆𝑡𝑖𝑚𝑒 [0.1, 2] 0.2

𝜆𝑑𝑎𝑡𝑎 for Tor [0.1, 5] 0.2
𝜆𝑑𝑎𝑡𝑎 for V2ray [0.1, 5] 2
Actor/Critic
layer number [2, 5] 4

Actor/Critic
layer dim [32, 1024] 256→ 64→ 32

→output
StateEncoder
architecture [GRU, LSTM] GRU

StateEncoder dim [256, 1024] 512
StateEncoder layer [1, 4] 2

Table 3. Hyperparameter selection for Amoeba.

A.4 Hyperparameter Selection
Amoeba is a complex model with a range of hyperparameters and it would be difficult to conduct
exhaustive search in the full hyperparameter space. To select hyperparameters for Amoeba, We
first choose the search space by our experience and build the model in a block-by-block fashion.
StateEncoder requires pretraining and therefore the associated hyperparameters are decided initially,
followed by the architecture of actor and critic. 𝜆𝑑𝑎𝑡𝑎 , 𝜆𝑡𝑖𝑚𝑒 and 𝜆𝑠𝑝𝑙𝑖𝑡 plays an important role in the

Proc. ACM Netw., Vol. 1, CoNEXT3, Article 9. Publication date: December 2023.



Amoeba: Circumventing ML-supported Network Censorship via Adversarial Reinforcement Learning 9:25

reward function and largely determines the final ASR and overhead rates. We notice that Amoeba
is not sensitive to 𝜆𝑡𝑖𝑚𝑒 but the results may vary greatly given different 𝜆𝑑𝑎𝑡𝑎 . Since Tor Dataset
and V2ray Dataset have different largest transmission units (TCP segement and TLS record), the
optimal 𝜆𝑑𝑎𝑡𝑎 are 0.2 and 2 respectively. 𝜆𝑠𝑝𝑙𝑖𝑡 determines how frequently the packet should be
truncated. Our experimental results indicate that when 𝜆𝑠𝑝𝑙𝑖𝑡 > 0.1, Amoeba would tend not to
truncate packets at all. If directional features need to be disturbed, 𝜆𝑠𝑝𝑙𝑖𝑡 should be set smaller than
0.1. We set 𝜆𝑠𝑝𝑙𝑖𝑡 = 0.05 eventually so that packet truncation would occur but is not so frequently
that exceeds the capability of StateEncoder. We choose the set of hyperparameters in Table 3 which
is good enough to provide high ASR and acceptable overhead rates, but there may exist better
selections.

A.5 Action Analysis
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Fig. 14. Histograms of the actions taken per flow (2000 flows in total) to generate adversarial samples against
each classifier on Tor Dataset.

The time overhead of adversarial flows generated by Amoeba is consistently and significantly
lower than the data overhead, as shown in Table 1. Here, we scrutinize the actions selected by
Amoeba more closely, namely, truncation, padding, and adding delay. Fig. 14 presents histograms
of the number of actions taken per flow (2000 flows in total) to craft adversarial samples against
each classifier on the Tor Dataset. The average length of the tunneled flows prior to obfuscation
is 24.5 packets. It is obvious that when generating adversarial flows, adding delay is the least
favored action, irrespective of the backend censoring classifiers, yielding less than 8 instances of
added delays for the majority of the adversarial flows. In comparison, truncation is commonly
employed, especially when attacking LSTM, DT, RF and CUMUL. Its usage is roughly twice as
often as the number of padding instances, which effectively alters the directional features in the
original, sensitive traffic.

Proc. ACM Netw., Vol. 1, CoNEXT3, Article 9. Publication date: December 2023.


	Abstract
	1 Introduction
	2 Adversarial Models
	3 Problem Formulation
	4 Amoeba Design
	4.1 RL Primer
	4.2 Environment
	4.3 Adversarial Actor & Critic
	4.4 Optimization

	5 Experiments
	5.1 Censoring Classifiers
	5.2 Adversarial Attack Benchmarks
	5.3 Evaluation Metrics
	5.4 Data Collection & Training Procedure
	5.5 Evaluation
	5.6 Discussion

	6 Related Work
	7 Conclusions
	References
	A Appendix
	A.1 Actor & Critic Optimization
	A.2 StateEncoder
	A.3 Performance of StateEncoder
	A.4 Hyperparameter Selection
	A.5 Action Analysis


