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ABSTRACT
Accurate and fast data stream mining is critical and fundamental

to many tasks, including time series database handling, big data

management and machine learning. Different heavy-based detec-

tion tasks, such as heavy hitter, heavy changer, persistent item

and significant item detection, have drawn much attention from

both the industry and academia. Unfortunately, due to the grow-

ing data stream speeds and limited memory (L1 cache) available

for real-time processing, existing schemes face challenges in si-

multaneously achieving high detection accuracy, high memory

efficiency, and fast update throughput, as we reveal. To tackle

this conundrum, we propose a versatile and elegant sketch frame-

work named Tight-Sketch, which supports a spectrum of heavy-

based detection tasks. Considering that most items are cold (non-

heavy/persistent/significant) in practice, we employ different evic-

tion treatments for different types of items to discard these poten-

tially cold ones as soon as possible, and offer more protection to

those that are hot (heavy/persistent/significant). In addition, we

propose an eviction method that follows a stochastic decay strategy,

enabling Tight-Sketch to only bear small one-sided errors (no over-
estimation). We present a theoretical analysis of the error bounds

and conduct extensive experiments on diverse detection tasks to

demonstrate that Tight-Sketch significantly outperforms existing

methods in terms of accuracy and update speed. Lastly, we accel-

erate Tight-Sketch’s update throughput by up to 36% with Single

Instruction Multiple Data (SIMD) instructions.
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1 INTRODUCTION
In recent years, massive data transmission has become ubiquitous

in social networks [1], financial services [2], and many other areas.

Such data streams convey valuable information that can be useful

to a range of applications, including business intelligence, anomaly

detection [3, 4], recommendation systems [5], etc. One important

objectives in stream mining is the identification of heavy items,

which spans heavy hitter detection [6–9], heavy changer detection

[10–12], persistent item lookup [13–15], and significant item lookup

[16, 17]. Heavy hitters indicate items with large size or frequency.

Heavy changers refers to items whose frequency changes dramati-

cally in two contiguous time windows. Persistent items represent
items which appear in multiple different timewindows, while signif-
icant items are those that have both high frequency and persistence.

Real-time detection of any of these is challenging, as high speeds

and large volumes preclude recording information pertaining to

each item in the detection process [18]. To overcome this obstacle,

approximate stream mining leveraging probabilistic data structures

such as sketches has attracted much interest [6, 7, 19, 20, 22, 23].

Limitations of Existing Approaches: Even though many

sketch-based approaches have been introduced for distinct detec-

tion tasks, ultra-fast data streammining poses significant challenges

to existing algorithms. In particular, (i) many sketches [25, 26] are

non-invertible, meaning that they need to check every item in a

stream to retrieve all hot ones, which yields considerable mem-

ory access overhead and low throughput. Most existing invertible

sketches either track hot items with additional data structures (e.g.,

heaps) or involve further non-trivial processes (e.g., coding and

decoding [15]), resulting in redundant memory access and high

computational cost. To boost processing speed, a sketch’s update

and query process should be straightforward and ideally only ac-

cess CPU caches when handling high-speed data streams [19]. CPU

cache memory is divided into three levels: L1, L2 and L3, among

which the L1 cache is the fastest, but of size restricted to between

8KB and 64KB in general [27, 28], forcing sketches to be compact

enough. Sketches with small sizes bring benefits in many practical

scenarios, e.g., to compress gradients and accelerate the training

process in distributed machine learning [29–31].

(ii)Moreover, items that appear in data streams usually follow

highly skewed distributions [32, 33], meaning that most appear

infrequently and only a few items exhibit high frequency (or per-

sistence). Unfortunately, most existing sketch-based approaches

https://doi.org/10.1145/3583780.3615080
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treat all items indiscriminately and make replacement decisions

only based on item size (or persistence), resulting in the incorrect

replacement of hot items by abundant cold ones. This problem is

exacerbated under L1 cache memory constraints, as hash collisions

are more severe, which further compromises detection accuracy.

(iii) Another common issue faced by existing sketches is two-

sided estimation errors, i.e., both overestimation and underestima-

tion of item values [6, 34]. Overestimation is particularly detrimental

and brings non-negligible performance degradation in many cases

[29]. Consider two typical scenarios where overestimation has a

negative impact: (1) in detecting DDoS attacks, overestimating the

malicious traffic volume can cause benign traffic to be wrongly

identified as abnormal, resulting in its blocking and thus service

disruptions for legitimate users, with reputation damage conse-

quence and revenue loss [35]; (2) in distributed machine learning,

optimization approaches such as stochastic gradient descent (SGD)

[36] move towards minima by following steps in the opposite direc-

tion of gradients. However, if the scale of the steps is high, this can

hamper convergence. Compared to sketches with overestimation,

underestimating gradients might slow down the convergence rate,

without harming the learning process [29].

Contributions: To tackle these shortcomings, we propose a new

sketch framework named Tight-Sketch, which achieves high detec-

tion accuracy, memory efficiency and processing speed, even under

tight memory size (L1 cache). Tight-Sketch can be deployed for

many heavy-based detection tasks, including heavy hitter detection,

heavy changer detection, persistent item lookup, significant item

lookup, etc. Tight-Sketch encompasses three key techniques in its

operation: (i) we attempt to evict an item tracked in a bucket with a

probabilistic decay policy, when hash collisions happen during the

update process. Precisely, we decrease bucket counters by one with

a probability, when a new item arrives; if a bucket’s counter reaches

zero, the item recorded is discarded, and the newly arrived one will

be stored. This way, we ensure Tight-Sketch only owns one-sided

estimation errors, i.e., only bounded underestimation error, leading
to high precision; (ii) considering the highly-skewed distributions

of items in data streams, we employ different eviction treatments for
different item types. For potentially cold items with small counter

values, we adopt a higher eviction probability than for hot items,

to evict the former quickly, leaving more space for the latter over

time; and (iii) to avoid erroneously replacing hot items with cold

ones, we introduces a new metric, sustained arrival strength, that
delivers more protection for hot items based on multidimensional

characteristics. This builds on the observation that most cold items

are short-lived and arrive in a bursty manner [37–40]. By incor-

porating the arrival strength feature into the eviction probability,

Tight-Sketch effectively circumvents the effortless ejection of hot

items by cold ones, significantly improving detection accuracy.

We conduct extensive experiments to demonstrate that Tight-

Sketch outperforms state-of-the-art approaches for different detec-

tion tasks in terms of accuracy and processing speed. For instance,

the average F1 score for heavy hitter detection under extremely

tight memories (16KB) is close to 1, up to 24× higher than that

of existing methods. Furthermore, Tight-Sketch does not rely on

pointers and additional data structures and abandons redundant

hash operations once an item finds an available bucket during the

update process, attaining higher update throughput than current

solutions. Lastly, to accelerate Tight-Sketch’s processing speed, we

exploit SIMD instructions and parallelize the update process, which

increases the update throughput by up to 36%.

2 PROBLEM DEFINITION AND BACKGROUND
2.1 Heavy Item Detection
2.1.1 Definition: Heavy items include heavy hitters and heavy

changers. Let 𝑆 (𝑒) denote the frequency or size of item 𝑒 , 𝑆 represent

the frequency or total size of all items. Given a pre-defined threshold

𝜖 , if 𝑆 (𝑒) ≥ 𝜖𝑆 , we consider item 𝑒 to be a heavy hitter. Suppose

we split the data stream into two equal-sized windows (𝑊1 and𝑊2)

and use 𝐷 (𝑒), 𝐷 to respectively denote the absolute change of item

𝑒 and all items in two adjacent periods. If 𝐷 (𝑒) ≥ 𝜖𝐷 , we treat item

𝑒 as a heavy changer.

2.1.2 Related Work: Existing work for heavy item detection can

be divided into two categories: counter-based and sketch-based.

Counter-based algorithms leverage hash tables to record the in-

formation (explicit key and value) of heavy items. (Unbiased) Space-

Saving [41, 42] employ a data structure named Stream-Summary

to track heavy items. When the data structure is full and a newly-

arrived item is not tracked, Space-Saving will discard the item with

the lowest frequency. Unbiased Space-Saving substitutes the least

frequent item based on variance minimization to attain unbiased

estimation. RAP [34] expels the item with the smallest value via a

probability computed by the frequency, when there is no space for

newly arrived items. The replacement strategy of these methods

is based solely on the estimated frequency, which cannot provide

enough protection for heavy items under tight memory settings,

resulting in modest detection accuracy. In addition, the update pro-

cess of counter-based methods mainly relies on pointers, and many

pointer operations for insertion significantly reduce update speeds.

Sketch-based algorithms harness a compact data structure to

record the accumulated information of all items, attaining high up-

date speeds and a small memory footprint by sacrificing a certain

level of accuracy. Count-min Sketch [25] uses a two-dimensional

array with 𝑟 rows; each row has 𝑏 buckets for tracking items hashed

to these buckets [26]. When a new item arrives, Count-min Sketch

hashes this item into 𝑟 different buckets, and then the correspond-

ing counter in each bucket is increased by one (or the item’s size).

Finally, the smallest value among 𝑟 -hashed rows is regarded as the

estimated size. Count-min Sketch is non-invertible, which means

it involves considerable memory access operations that harm up-

date speeds. It also has a significant overestimation issue under

tight memories, leading to many non-heavy items being incorrectly

recognized as heavy. Count-min Sketch Heap [26] introduces an

additional heap to track heavy items. However, access to this slows

the update speed. To improve detection accuracy and throughput,

MV-Sketch [6] adopts the majority vote algorithm to track heavy

items. HeavyKeeper [7] evicts items from the sketch by obeying

an exponential decay strategy. Elastic Sketch [22] partitions the

sketch into a heavy and a light part, to record the information of

heavy and non-heavy items, respectively. CocoSketch [44] employs

stochastic variance minimization to support arbitrary partial key

queries. However, these methods mainly replace items only based

on their frequency, which cannot protect heavy items adequately,

leading to many heavy items being replaced by non-heavy ones.
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2.2 Persistent Item Detection
2.2.1 Definition: Given a stream divided into 𝑁 consecutive and

non-overlapping time windows, the persistence of an item 𝑒 is the

number of discrete windows in which item 𝑒 appears, denoted as

𝑃 (𝑒). With a user-defined 𝜂, if 𝑃 (𝑒) ≥ 𝜂𝑁 , item 𝑒 is persistent.

2.2.2 Related Work: Existing solutions for persistent item detec-

tion can be divided into sample-, coding-, and sketch-based.

Sample-based methods such as Small-Space [14] record per-

sistent items with a probability and track them into a hash table.

Chen et al. introduce adaptive sampling to track persistent items

without knowing the monitoring time horizon [48]. Even though

such approaches seek to alleviate memory usage via sampling, they

still track many non-persistent items, leading to poor memory ef-

ficiency. Moreover, the sample rate is configured according to the

memory budget, and small values amplify detection errors when

the memory is tight. To address this inefficiency, coding-based
methods, like PIE [15], leverage Raptor codes to encode each item

and store the code instead of the item ID. However, every item

needs to be encoded in each window, which wastes resources for

processing large volumes of non-persistent items. Also, encoding

and decoding are additional operations that increase processing

times and harm update speeds. Sketch-based methods such as

On-Off Sketch [13] adopt a flag bit to increase the persistence peri-

odically, and propose to separate persistent/non-persistent items.

Unfortunately, the naïve partitioning causes persistent items to

be mistakenly expelled by non-persistent ones, yielding inferior

detection accuracy when memory size is limited.

2.3 Significant Item Detection
2.3.1 Definition: Suppose a data stream is partitioned into𝑁 equal-

sized timewindows. The significance𝐺 (𝑒) of an item 𝑒 is a weighted

sum of two metrics, the frequency 𝑆 (𝑒) and persistence 𝑃 (𝑒), and
is computed as 𝐺 (𝑒) = 𝛼𝑆 (𝑒) + 𝛽𝑃 (𝑒), where 𝛼 and 𝛽 are user-

defined [16, 17]. Given a threshold 𝐺 , an item 𝑒 is considered to be

a significant item if 𝐺 (𝑒) ≥ 𝐺 .

2.3.2 Related Work: Long-Tail Clock (LTC) [16] leverages two

essential techniques, Long-tail Restoring and an adapted CLOCK

algorithm, for significant item lookup. Long-tail Restoring exploits

the long-tail distribution feature of real datasets to mitigate the

overestimation, and the adapted CLOCK algorithm periodically

increases each item’s persistence. Nonetheless, the complicated

processing makes it hard for LTC to match high-speed data streams.

2.4 Summary
Limitations of Prior Art: Existing schemes for different detection

tasks struggle to concurrently maintain high accuracy, high memory
efficiency and fast update speed under limited memory size. To fur-

ther illustrate the inefficiencies of current methods, we take three

state-of-the-art approaches as examples: MV-Sketch [6] for heavy

hitter detection, and On-Off Sketch [13] and WavingSketch [20]

for persistent item lookup. We vary the memory size from 16KB

to 256KB [46] to count the number of hot items being mistakenly

substituted by cold ones during the update process, followed by

evaluating their detection accuracy. We conduct these tests using

a CAIDA 2016 [56] trace with 0.64M items and set the thresholds

𝜖 and 𝜂 for heavy hitter detection and persistent item lookup as
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Figure 1: Wrong replacement events and detection accuracy
with state-of-the-art sketches, under different memory sizes.

0.0005 and 0.5, respectively. Figure 1(a) demonstrates that when the

memory size is tight (≤64KB), the number of wrong replacement

events increases significantly. This indicates that current methods

are ineffective in protecting hot items, when using fast L1 cache

memories (which typically range between 8KB and 64KB [27]). The

impact of memory size on detection accuracy is illustrated in Fig-

ure 1(b), which shows that MV-Sketch’s F1 score is 5.4× lower when
the memory size is 16KB compared to when it is 256KB.

Motivation: Our analysis indicates that current methods per-

form poorly when the memory size is limited. The main reason

is that under these conditions many hot items are mistakenly re-

placed by cold ones due to frequent hash collisions, resulting in

low detection accuracy. In order to address this issue, we introduce

a new sketch-based approach that uses more data stream features

to better protect hot items from being replaced by cold ones, while

maintaining fast update speeds.

3 TIGHT-SKETCH DESIGN
In this section, we first conduct a data analysis and reveal the two

primary design rules behind Tight-Sketch, then introduce the data

structure it employs and basic operations (update and query).

3.1 Design Rules
Rule 1: The distribution of items in real data streams is highly

skewed, indicating that most are small and only a tiny fraction

are large [32, 33, 50, 51]. We employ four datasets, CAIDA 2015,

2016, 2018, and 2019, to confirm this feature. Each trace consists of

0.45M, 0.64M, 1.29M, and 1.53M items. We divide traces into five

parts, according to the frequency and persistence of items. Note that

other number of partitions could be also used. As shown in Figure

2(a), we find that most items have a frequency of no more than 10,

and only a tiny portion of items possess a frequency greater than

40. Similarly, we divide each trace into 1,600 time windows [13],

and find that around 92% of items have a persistence of less than

10, while only 2.5% have a persistence greater than 40 on average

(Figure 2(b)). These results reveal that most items are cold and only

appear a few times. Therefore, it is appropriate to discard these

cold items as soon as possible, to leave memory space for hot ones.

Rule 2: The transmission of large amounts of items is often

characterized by repeating patterns of active and inactive transmis-

sion, as already observed widely in practice [32, 37, 50, 52, 53]. In

particular, unlike massive amounts of short-lived cold items with

small frequencies and long inactive periods, the active periods for

hot items are much longer, indicating that their arrival is more

sustained than that of cold ones [37]. To verify this property, we

utilize MV-Sketch [6] and WavingSketch [20] to observe the sus-

tained arrival strength of items tracked in each bucket. We set the
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Figure 2: Item frequency and persistence distributions in
different real-world datasets.

memory size to 64KB and divide the CAIDA 2015 and 2016 traces

into 1,600 time windows [13]. When a new item arrives, its arrival

strength is increased by one if it has already been tracked in the

hashed bucket. Otherwise, the arrival strength of the item stored

in the hashed bucket is reduced by 1, with a minimum value of 0.

Figure 3 illustrates that the sustained arrival strength of hot items

is significantly higher than that of cold items. Therefore, sustained

arrival strength is a valuable metric for identifying hot items and

can be employed in various detection tasks.
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Heavy Items (C2016)
Non-heavy Items (C2015)
Non-heavy Items (C2016)
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(b) Persistent item detection.
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Figure 3: Sustained arrival strength of hot and cold items.
Summary: Based on the above analysis, we find that hot items

primarily have a higher frequency/persistence and a stronger sus-

tained arrival strength than cold items. Thus, our Tight-Sketch

harnesses these features to evict cold items as soon as possible

and provide more protection for hot items, thereby significantly

improving detection accuracy even under limited memory budgets.

3.2 Data Structure
There mainly exist two types of data structures in current sketches:

flat [26] and hierarchical [45]. Instead of the sophisticated hier-

archical structure with multiple layers, we choose the classic flat

structure for Tight-Sketch, as it bears faster processing speed and

it is easier to deploy in practice. As illustrated in Figure 4, Tight-

Sketch’s data structure consists of 𝑟 rows, each containing𝑏 buckets.

Each row is associated with a different pairwise-independent hash

function, denoted as ℎ1, ℎ2, · · · , ℎ𝑟 . 𝐵(𝑖, 𝑗) represents a bucket in
the 𝑖-th row and 𝑗-th column, where 1 ≤ 𝑖 ≤ 𝑟 and 1 ≤ 𝑗 ≤ 𝑏.

The bucket 𝐵(𝑖, 𝑗) has three fields: 𝐵(𝑖, 𝑗) .𝑘 , which stores the key

of the candidate item; 𝐵(𝑖, 𝑗) .𝑐 , which maintains a statistic of the

candidate item, such as its frequency, persistence, or significance;

and 𝐵(𝑖, 𝑗) .𝑎, which represents the item’s arrival strength.

b buckets

r rows
k c a B(i,j)

 B(i,j).k: item key

 B(i,j).c: item value counter

 B(i,j).a: arrival strength counter

 B(i,j)

Figure 4: Tight-Sketch’s data structure.

3.3 Update and Query
Tight-Sketch supports two basic operations, update and query.
Specifically, update is essential for inserting a newly arrived item

into a bucket probabilistically. Query is for returning the hot items

whose value is greater than a predefined threshold.

3.3.1 Update. The update process for each incoming item 𝑒 is

outlined in Algorithm 1, which consists of two stages. The first

stage (Lines 2-10) involves determining whether the incoming item

has already been recorded or if there is an empty bucket to store

it. If not, the second stage (Lines 11-22) involves replacing the

item currently tracked in a bucket with the incoming item using a

probabilistic decay method.

Stage I. Upon the arrival of a new item 𝑒 , Tight-Sketch first maps

this item to a bucket with the hash functionℎ1 in the first row. If the

bucket 𝐵(1, ℎ1 (𝑒.𝑘)) is empty or has been occupied by item 𝑒 , the

key field of the mapped bucket will be set as 𝑒.𝑘 , and both counters

will increase by 1. However, if a different item already occupies the

bucket, it indicates that item 𝑒 was unable to be stored in the first

row, and a hash collision has occurred. In this case, Tight-Sketch

will iteratively check the remaining rows using the hash functions

ℎ2, · · · , ℎ𝑟 to locate an available bucket for item 𝑒 . Once an available

bucket is found, the hash operation terminates (Lines 2-7).

Compared to existing methods that hash an item across all rows,

e.g., MV-Sketch [6] and HeavyKeeper [7], Tight-Sketch avoids re-

dundant hashing operations and conserves memory usage, allowing

more space to track hot items. Suppose hash collisions happen in all

rows, indicating that item 𝑒 cannot find an available bucket. In that

case, Tight-Sketch will evaluate the bucket with the smallest value

counter to determine if item 𝑒 can be successfully stored by replac-

ing the item currently therein (Lines 8-10). Also, the occurrence of

hash collisions during the mapping process is an indication that

the item recorded does not have a sustained presence. As a result,

the sustained arrival strength counter for the hashed bucket can be

decremented by 1 (Line 11). This decrease in the arrival strength

counter allows for the potential eviction of the item in favor of

incoming items with a more sustained presence –recall that hot
items tend to have stronger sustained arrival strength.

Stage II. Tight-Sketch employs a finer grained approach to item

eviction than many recent schemes that often expel items indis-

criminately [14, 26, 41]. Given that in practice most items are cold,

Tight-Sketch prioritizes the eviction of these items to conserve

more space for hot ones. To achieve this, Tight-Sketch employs

a threshold value 𝑀 , which is usually set to a small value (e.g.,

𝑀 = 10). If the value counter of a hashed bucket is less than 𝑀 ,

the counter is decreased with a higher rate of
1

𝐵 (𝑝,𝑞) .𝑐+1 (Lines

12-13). In contrast, if the value counter is greater than or equal to

𝑀 , the counter is decreased with a more conservative probability

1

𝐵 (𝑝,𝑞) .𝑐×𝐵 (𝑝,𝑞) .𝑎+1 that considers both the item’s value and arrival

strength (Lines 14-15). Hot items with high frequency and sustained

arrival strength will quickly exceed the threshold 𝑀 and will be

harder to evict. We verify empirically that this process delivers bet-

ter guarding of hot items than other probabilistic eviction strategies,

such as probabilistic decay without considering the arrival strength.

If the value counter is successfully decreased to 0, an incoming item

𝑒 can replace the incumbent item in the bucket and set the value

counter to 1 (Lines 16-19). Otherwise, Tight-Sketch will discard the

incoming item (Lines 21-22).
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Algorithm 1: Tight-Sketch’s Update Procedure
Input: a newly incoming item 𝑒 , hash function associated with

each row ℎ1, ..., ℎ𝑟 ,𝑚𝑖𝑛← +∞
1 Initialization: Each bucket’s counters and item key are initialized

to 0 and 𝑛𝑢𝑙𝑙 , respectively.

// Stage I: locating an available bucket
2 for 𝑖 = 1 to 𝑟 do
3 if 𝐵 (𝑖, ℎ𝑖 (𝑒 ) ) .𝑘 == 𝑛𝑢𝑙𝑙 | | 𝐵 (𝑖, ℎ𝑖 (𝑒 ) ) .𝑘 == 𝑒.𝑘 then
4 𝐵 (𝑖, ℎ𝑖 (𝑒 ) ) .𝑘 ← 𝑒.𝑘 ;

5 𝐵 (𝑖, ℎ𝑖 (𝑒 ) ) .𝑐 ← 𝐵 (𝑖, ℎ𝑖 (𝑒 ) ) .𝑐 + 1;
6 𝐵 (𝑖, ℎ𝑖 (𝑒 ) ) .𝑎 ← 𝐵 (𝑖, ℎ𝑖 (𝑒 ) ) .𝑎 + 1;
7 return;
8 else if 𝐵 (𝑖, ℎ𝑖 (𝑒 ) ) .𝑐 <𝑚𝑖𝑛 then
9 𝑚𝑖𝑛 ← 𝐵 (𝑖, ℎ𝑖 (𝑒 ) ) .𝑐 ;

10 𝑝 ← 𝑖; 𝑞 ← ℎ𝑖 (𝑒.𝑘 ) ;
11 𝐵 (𝑖, ℎ𝑖 (𝑒 ) ) .𝑎 ←𝑚𝑎𝑥 (𝐵 (𝑖, ℎ𝑖 (𝑒 ) ) .𝑎 − 1, 0) ;

// Stage II: probabilistic decay
12 if 𝐵 (𝑝,𝑞) .𝑐 < 𝑀 then
13 if random(0, 1) < 1

𝐵 (𝑝,𝑞) .𝑐+1 then
14 𝐵 (𝑝,𝑞) .𝑐 = 𝐵 (𝑝,𝑞) .𝑐 − 1

15 else if random(0, 1) < 1

𝐵 (𝑝,𝑞) .𝑐×𝐵 (𝑝,𝑞) .𝑎+1 then
16 𝐵 (𝑝,𝑞) .𝑐 = 𝐵 (𝑝,𝑞) .𝑐 − 1

17 if 𝐵 (𝑝,𝑞) .𝑐 == 0 then
18 𝐵 (𝑝,𝑞) .𝑘 ← 𝑒.𝑘 ;

19 𝐵 (𝑝,𝑞) .𝑐 ← 𝐵 (𝑝,𝑞) .𝑐 + 1;
20 return;
21 else
22 Discard the incoming item 𝑒 ;

23 return;

3.3.2 Query. Unlike non-invertible approaches that require the
examination of every item in the stream to return all hot items,

Tight-Sketch only requires a scan of each bucket to determinewhich

items are hot. Specifically, Tight-Sketch checks the value counter

of each bucket to see if it is above a predefined threshold. If so, the

item stored in that bucket is reported as hot.

3.4 Utilizing Tight-Sketch for Various Tasks
We apply Tight-Sketch to four different detection tasks: heavy hitter

detection, heavy changer detection, persistent item lookup, and

significant item lookup.

3.4.1 Heavy Hitter Detection. Since Tight-Sketch can be directly

deployed for heavy hitter detection, the data structure, update and

query operations are consistent with Sections 3.2 and 3.3.

3.4.2 Heavy Changer Detection. For each time window, we con-

struct a Tight-Sketch to track the frequency of items and compare

changes in their frequency in adjacent windows, to find heavy

changers. When an incoming item 𝑒 arrives, we insert it into Tight-

Sketch based on its period. The insertion process is the same as in

Section 3.3. Suppose the frequency of item 𝑒 in the first and second

time windows is 𝑆1 (𝑒) and 𝑆2 (𝑒). If the variation |𝑆1 (𝑒) − 𝑆2 (𝑒) | is
greater than the threshold 𝜖𝐷 , item 𝑒 is reported as a heavy changer.

3.4.3 Persistent Item Lookup. Each item’s persistence only increases

by 1 in a time window, no matter how many times it arrives. To

eliminate duplicates, Tight-Sketch includes a flag field (true or false)
in its data structure [13]. A 𝑡𝑟𝑢𝑒 flag value indicates that a bucket

has not been accessed in the current time window and is set to 𝑓 𝑎𝑙𝑠𝑒

after access. At the beginning of each time window, the algorithm

first checks the flag in each bucket. If the flag is 𝑡𝑟𝑢𝑒 , indicating

the recorded item does not appear in the last window, the arrival

strength of that item will be decreased by 1. Then, all flag fields

are reset to 𝑡𝑟𝑢𝑒 . To optimize memory usage, the algorithm uses

the highest bit of the arrival strength counter to store the flag field,

instead of adding a separate field to the data structure. This allows

Tight-Sketch to efficiently track and update the status of items

while minimizing memory usage.

Upon the arrival of a new item 𝑒 , Tight-Sketch first searches for

an available bucket with a flag value 𝑡𝑟𝑢𝑒 . If such a bucket is found,

the value counter and arrival strength counter are incremented by

1, and the flag field is set to 𝑓 𝑎𝑙𝑠𝑒 . If an available bucket is not iden-

tified, Tight-Sketch attempts to evict the incumbent item with the

smallest persistence counter across all rows. If the flag of the chosen

bucket is 𝑓 𝑎𝑙𝑠𝑒 , indicating that the incumbent item arrived in the

current time window, item 𝑒 is discarded, and the eviction process

is terminated. Otherwise, the replacement procedure is carried out

according to Algorithm 1 (Lines 12-22). The query operation for

retrieving persistent items is consistent with Section 3.3.

3.4.4 Significant Item Lookup. To identify significant items, Tight-

Sketch needs to track the frequency and persistence of each item.

To accomplish this, we modify the data structure in bucket 𝐵(𝑖, 𝑗)
to include the following fields: 𝑘 , which indicates the item identi-

fier; 𝑓 𝑐 , a value counter for item frequency; 𝑓 𝑎, a sustained arrival

strength counter for frequency; 𝑝𝑐 , a persistence counter; and 𝑝𝑎,

an arrival strength counter for persistence. We also use the highest

bit of 𝑝𝑎 to record the flag (true/false) for removing duplicates.

When an incoming item arrives, it will first search for an avail-

able bucket. If it fails, it will attempt to evict the tracked item

with minimal significance among all mapped buckets in each row.

Suppose the significance of the recorded item is smaller than the

threshold𝑀 . In that case, Tight-Sketch will decrease the value coun-

ters by 1 with a probability that only considers the frequency and

persistence values. Otherwise, Tight-Sketch will decay the value

counters considering the arrival strength. Since the persistence

value is no more than the frequency value, once the persistence

counter is decreased to 0, the newly arrived item can successfully

replace the tracked item in the bucket. After insertion, Tight-Sketch

scans each bucket to return items with significance higher than 𝐺 .

4 MATHEMATICAL ANALYSIS
In this section, we first prove that Tight-Sketch does not suffer

overestimation errors. We then derive an underestimation error

bound, using heavy hitter detection as a concrete example. Note that

persistent item lookup can also be seen as a special case of heavy

item detection, where the frequency of each item only increases by

one within a given time window. Therefore, the analysis presented

can be easily extended to hold for persistent item lookup as well.

4.1 No Overestimation Error
Theorem 4.1. For an item 𝑒 , let 𝑆𝑡 (𝑒) and 𝑆𝑡 (𝑒) respectively denote

the real frequency and estimated frequency at any given time 𝑡 . We
have 𝑆𝑡 (𝑒) ≤ 𝑆𝑡 (𝑒).

Proof. The proof is available in [21].

□

4.2 Underestimation Error Bound
Theorem 4.2. For a heavy item 𝑒 , we assume that it will suc-

cessfully enter the mapped bucket once it arrives and remain there
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until the detection task ends. Given a small positive number 𝜎 and

a heavy item 𝑒 with frequency 𝑆 (𝑒), Pr
{
𝑆 (𝑒) − ˆ𝑆 (𝑒) ≥ ⌈𝜎𝑁 ⌉

}
≤

𝛿
𝜎𝑁
[ln(𝑆 (𝑒)) + 𝐿] holds, where 𝛿 is the faction of non-heavy items

among all items, 𝐿 denotes the Euler-Mascheroni constant, 𝑁 is the
number of all entries for all items.

Proof. When an item different from 𝑒 arrives and is mapped

into the same bucket 𝐵(𝑖, 𝑗) as 𝑒 , the value counter of this bucket is
either reduced by 1 or left unchanged. Let 𝑄𝑖 . 𝑗 denote how many

times items that differ from 𝑒 hashed into the same bucket, we attain

𝑆 (𝑒) −𝑄𝑖 . 𝑗 ≤ 𝐵(𝑖, 𝑗) .𝑐 ≤ 𝑆 (𝑒). We utilize a random variable 𝑅𝑖, 𝑗,𝑥
to denote whether the value counter of bucket 𝐵(𝑖, 𝑗) decreases by
1 when the 𝑥-th item arrives, where 1 ≤ 𝑥 ≤ 𝑄𝑖 . 𝑗 . Thus, 𝐵(𝑖, 𝑗).𝑐 =
𝑆 (𝑒)−∑𝑄𝑖,𝑗

𝑥=1
𝑅𝑖, 𝑗,𝑥 . According to the Markov inequality, with a small

positive number 𝜎 , we attain

Pr {𝐵 (𝑖, 𝑗) .𝑐 ≤ 𝑆 (𝑒) − 𝜎𝑁 } = Pr

𝑆 (𝑒) −
𝑄𝑖,𝑗∑︁
𝑥=1

𝑅𝑖, 𝑗,𝑥 ≤ 𝑆 (𝑒) − 𝜎𝑁


= Pr


𝑄𝑖,𝑗∑︁
𝑥=1

𝑅𝑖, 𝑗,𝑥 ≥ 𝜎𝑁

 ≤ E

𝑄𝑖,𝑗∑︁
𝑥=1

𝑅𝑖, 𝑗,𝑥


1

𝜎𝑁
.

Assume all entries follow a uniform distribution, with each arriving

item having an equal probability to decay the tracked item’s counter,

E


𝑄𝑖,𝑗∑︁
𝑥=1

𝑅𝑖, 𝑗,𝑥

 = E
[
𝑄𝑖, 𝑗𝑅𝑖, 𝑗,𝑥

]
=

𝑆 (𝑒 )∑︁
𝑄𝑖,𝑗=1

𝑝 (𝑄𝑖, 𝑗 )
[
𝑄𝑖, 𝑗E(𝑅𝑖, 𝑗,𝑥 |𝑄𝑖, 𝑗 )

]
.

We use 𝜓 to denote the value of the value counter of bucket

𝐵(𝑖, 𝑗) when the detection task ends. Since the frequency of heavy

items is much greater than the threshold𝑀 and the stronger arrival

strength causes the heavy items to exceed𝑀 quickly, the decay of

the value counter in the bucket holding heavy items is mainly based

on item frequency and arrival strength. As we assume that a heavy

item can successfully enter the bucket, the reduction operation will

only occur if the incoming item is a non-heavy one. Therefore,

E(𝑅𝑖, 𝑗,𝑥 |𝜓 ) =
𝜓∑︁
𝑐=1

𝛿

𝜓

1

(𝑐 × 𝑎) + 1 ,

where 𝑐 and 𝑎 represent the value counter and sustained arrival

strength counter of bucket 𝐵(𝑖, 𝑗), and 𝛿 is the ratio of non-heavy

items in all items.

Since a heavy item generally carries much more data than all

other items that are hashed to the same bucket [6], we obtain

E(𝑅𝑖, 𝑗,𝑥 |𝑄𝑖, 𝑗 ) =
𝑆 (𝑒 )−1∑︁

𝜓=𝑆 (𝑒 )−𝑄𝑖,𝑗

𝑝 (𝜓 )
𝜓∑︁
𝑐=1

𝛿

𝜓

1

(𝑐 × 𝑎) + 1

≤
𝑆 (𝑒 )−1∑︁

𝜓=𝑆 (𝑒 )−𝑄𝑖,𝑗

𝑝 (𝜓 )
𝜓∑︁
𝑐=1

𝛿

𝑆 (𝑒) −𝑄𝑖, 𝑗

1

𝑐

≤
𝑆 (𝑒 )−1∑︁

𝜓=𝑆 (𝑒 )−𝑄𝑖,𝑗

𝑝 (𝜓 )
𝑆 (𝑒 )∑︁
𝑐=1

𝛿

𝑆 (𝑒) −𝑄𝑖, 𝑗

1

𝑐
=

𝛿

𝑆 (𝑒) −𝑄𝑖, 𝑗

𝑆 (𝑒 )∑︁
𝑐=1

1

𝑐
.

Since 𝑒 is a heavy item, it owns a large value and thus 𝑝 (𝑄𝑖, 𝑗 )
obeys a Possion distribution with mean

𝑁
𝑏
𝑝 (𝑄𝑖, 𝑗 ) = 𝑁

𝑏
𝑒−

𝑁
𝑏
𝑄𝑖,𝑗

,

where 𝑏 is the number of buckets in each row. Then we get

E


𝑄𝑖,𝑗∑︁
𝑥=1

𝑅𝑖, 𝑗,𝑥

 ≤
𝑆 (𝑒 )−1∑︁
𝑄𝑖,𝑗=1

𝑝 (𝑄𝑖, 𝑗 ) ©­«𝑄𝑖, 𝑗
𝛿

𝑆 (𝑒) −𝑄𝑖, 𝑗

𝑆 (𝑒 )∑︁
𝑐=1

1

𝑐

ª®¬
=

𝑆 (𝑒 )−1∑︁
𝑄𝑖,𝑗=1

𝑁

𝑏
𝑒−

𝑁
𝑏
𝑄𝑖,𝑗 ©­«𝑄𝑖, 𝑗

𝛿

𝑆 (𝑒) −𝑄𝑖, 𝑗

𝑆 (𝑒 )∑︁
𝑐=1

1

𝑐

ª®¬
=

𝑆 (𝑒 )∑︁
𝑐=1

1

𝑐


𝑆 (𝑒 )
2∑︁

𝑄𝑖,𝑗=1

𝑁

𝑏
𝑒−

𝑁
𝑏
𝑄𝑖,𝑗

(
𝑄𝑖, 𝑗

𝛿

𝑆 (𝑒) −𝑄𝑖, 𝑗

)

+
𝑆 (𝑒 )−1∑︁

𝑄𝑖,𝑗=
𝑆 (𝑒 )
2
+1

𝑁

𝑏
𝑒−

𝑁
𝑏
𝑄𝑖,𝑗

(
𝑄𝑖, 𝑗

𝛿

𝑆 (𝑒) −𝑄𝑖, 𝑗

)
≤

𝑆 (𝑒 )∑︁
𝑐=1

1

𝑐


𝑆 (𝑒 )
2∑︁

𝑄𝑖,𝑗=1

𝛿𝑁

𝑏
𝑒−

𝑁
𝑏
𝑄𝑖,𝑗 +

𝑆 (𝑒 )−1∑︁
𝑄𝑖,𝑗=

𝑆 (𝑒 )
2

𝛿𝑁

𝑏
𝑒−

𝑁
𝑏

𝑆 (𝑒 )
2 𝑄𝑖, 𝑗

1

𝑆 (𝑒) −𝑄𝑖, 𝑗


≤

𝑆 (𝑒 )∑︁
𝑐=1

1

𝑐

𝛿 +
𝑆 (𝑒 )−1∑︁

𝑄𝑖,𝑗=
𝑆 (𝑒 )
2

𝛿𝑁

𝑏
𝑒−

𝑁
𝑏

𝑆 (𝑒 )
2 (𝑆 (𝑒) − 1) 1

𝑆 (𝑒) − (𝑆 (𝑒) − 1)


≤

𝑆 (𝑒 )∑︁
𝑐=1

1

𝑐

𝛿 +
𝑆 (𝑒 )−1∑︁

𝑄𝑖,𝑗=
𝑆 (𝑒 )
2

𝛿𝑁

𝑏
𝑒−

𝑁
𝑏

𝑆 (𝑒 )
2 𝑆 (𝑒)


≤

𝑆 (𝑒 )∑︁
𝑐=1

1

𝑐

[
𝛿 + 𝑆 (𝑒) 𝛿𝑁

𝑏

𝑆 (𝑒)
2

𝑒−
𝑁
𝑏

𝑆 (𝑒 )
2

]
≤

𝑆 (𝑒 )∑︁
𝑐=1

𝛿

𝑐
.

Generally, 𝑆 (𝑒) is a large number. Thus,

∑𝑆 (𝑒 )
𝑐=1

𝛿
𝑐 can be approxi-

mated as 𝛿 [ln(𝑆 (𝑒)) + 𝐿], where 𝐿 denotes the Euler-Mascheroni

constant [49]. Finally, we get the underestimation error bound as

Pr

{
𝑆 (𝑒) − ˆ𝑆 (𝑒) ≥ ⌈𝜎𝑁 ⌉

}
≤ Pr {𝐵 (𝑖, 𝑗) .𝑐 ≤ 𝑆 (𝑒) − 𝜎𝑁 }

≤
E

[
𝑄𝑖,𝑗∑
𝑥=1

𝑅𝑖, 𝑗,𝑥

]
𝜎𝑁

≤ 𝛿

𝜎𝑁
[ln(𝑆 (𝑒)) + 𝐿] .

□5 EVALUATION
To evaluate the performance of Tight-Sketch, we implement it as

well as existing schemes in C++. We conduct experiments on a

computer with 16GB DRAM memory, and an Intel(R) Core(TM)

i5-1135G7 @ 2.40GHz CPU. Each core owns a 48KB L1 data cache

and a 1,280KB L2 cache. All cores share a 8,192KB L3 cache.

Datasets:We employ three datasets for evaluation: (i) CAIDA

[56], which contains anonymized IP trace streams collected from

CAIDA. We pick two traces from 2015 and 2018, with 0.52M and

0.77M items, respectively; (ii) MAWI [57], which presents traffic

traces collected by MAWI in Japan. We select a trace with 2.75M

items from 2020; (iii) Campus [58], a dataset consisting of campus

network traffic collected over 10 days in 2016. We randomly pick a

trace that contains 0.87M items for evaluation. For these traces, we

regard source-destination pairs as item keys (8 bytes).

Methodology: For heavy item detection, we compare Tight-

Sketch (Tight) with MV-Sketch (MV) [6], CocoSketch (Coco) [44],
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Figure 5: Heavy hitter detection with different approaches, as a function of memory size (CAIDA 2015).
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Figure 6: Heavy hitter detection with different approaches, as a function of memory size (CAIDA 2018).
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Figure 7: Heavy hitter detection with different approaches, as a function of memory size (MAWI).
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Figure 8: Heavy hitter detection with different approaches, as a function of memory size (Campus).

Elastic [22], RAP [34], USS [42], UnivMon (Univ) [59], CMHeap

(CMH) [26], CountHeap (CH) [25] and Space-Saving (SS) [41]. For

MV-Sketch, we configure the number of rows as 4 [6]. For RAP, we

set the number of arrays as 2. The parameter settings of the rest of

the schemes are consistent with [44]. In addition, for a comprehen-

sive assessment, we also compare Tight-Sketch with the advanced

probability-based methods HeavyKeeper [7], UA-Sketch [55], and

PRECISION [61]. For persistent item lookup, we divide each trace

into 1,600 time windows [13] and select two off-the-shelf bench-

marks, On-Off Sketch (On-Off) [13] and WavingSketch (Waving)

[20]. The number of cells for On-Off Sketch and WavingSketch is

16 [20]. For significant item lookup, we compare Tight-Sketch with

the state-of-the-art approach LTC [16], using its default settings.

For Tight-Sketch, we set the number of rows 𝑟 as 4 [6, 60] and

alter 𝑏 based on memory budgets. We default to select the threshold

that keeps the hot items around 100 for each detection task [46].

An analysis on configuring the parameter𝑀 can be found in [21].

Metrics: We use the following five performance metrics. (i) Re-

call: fraction of true reported items over all true items; (ii) Pre-

cision: fraction of true reported items over all reported items;

(iii) F1 score:
2×𝑟𝑒𝑐𝑎𝑙𝑙×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ; (iv) Average Relative Error (ARE):

1

|Φ |
∑
𝑒∈Φ

��𝑆 (𝑒 )−𝑆 (𝑒 ) ��
𝑆 (𝑒 ) , which evaluates the error rate of the esti-

mated value; (v) Update throughput: the update speed of the algo-

rithm, in millions of operations per second (Mops).

5.1 Performance on Heavy Hitter Detection
We vary the memory size from 16KB to 256KB [46] and compare the

performance of Tight-Sketch with existing approaches on heavy

hitter detection. Figures 5–8 detail this across different datasets.
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Precision (Figures 5(a)–8(a)): We find that the precision of

Tight-Sketch is always 1, outperforming existing approaches even

under limited memory size (16KB). Specifically, Tight-Sketch ame-

liorates the precision by 4%-356%, 12%-506%, 12%-1106%, and 2%-

518% on average under these datasets, respectively. The superiority

of Tight-Sketch stems from its finer update operations, which avoid

overestimation errors and effectively circumvent the effortless evic-

tion of heavy items by non-heavy ones.

Recall (Figures 5(b)–8(b)): Tight-Sketch maintains its optimal-

ity in terms of recall on different traces, with an improvement of up

to 85% across the CAIDA 2015 trace, 106% across the CAIDA 2018

trace, 209% across the MAWI trace, and 110% across the Campus

trace. During the update process, Tight-Sketch effectively alleviates

the interference of non-heavy items on heavy items with the help

of stream characteristics (the heavy-tail feature helps to evict cold

items with high probability; the arrival strength provides more

protection to hot items). In addition, abandoning hash operations

in time saves memory usage, leaving more space for Tight-Sketch

to record heavy items and thus guaranteeing a high recall.

F1 score (Figures 5(c)–8(c)): Compared with current methods,

Tight-Sketch attains the highest F1 score under different memory

budgets. Even with 16KB of memory, the F1 score reaches around

1, enhancing the detection accuracy by 39%-6879%, 70%-1489%,

56%-2450%, and 21%-1500%, respectively, across different datasets.

ARE (Figures 5(d)–8(d)):We find that Tight-Sketch also obtains

the lowest estimation error as compared to existing approaches.

For instance, under the CAIDA 2015 trace, the ARE of Tight-Sketch

is 23× and 72× smaller than that of RAP and Elastic on average,

which demonstrates the effectiveness of Tight-Sketch.

Deep Dive: (i) We investigate the reasons behind Tight-Sketch’s

significant performance improvements by counting the number

of incorrect replacement events during the update process. As ob-

served in Table 1, Tight-Sketch efficiently mitigates the occurrence

of mistakenly substituted heavy items by non-heavy ones, leading

to high detection accuracy. Compared with MV-Sketch, when the

memory size is 16KB, the number of wrong replacement events by

Tight-Sketch is 2525× smaller. (ii) In addition to RAP and Coco-

Sketch, which conduct admission operations based on probability,

a series of advanced works also follow probabilistic replacement,

namely HeavyKeeper [7], UA-Sketch [55], and PRECISION [61]. We

also evaluate the performance of these methods under the CAIDA

2018 dataset. The results confirm that Tight-Sketch outperforms

state-of-the-art probability-based sketch techniques. Specifically,

when using a memory size of 16KB, Tight-Sketch, HeavyKeeper,

UA-Sketch, and PRECISION achieve F1 scores of 0.99, 0.11, 0.86,

and 0.21, respectively, verifying the outstanding performance of

Tight-Sketch. Besides, unlike these methods which are exclusively

designed for heavy item detection, Tight-Sketch also owns more

versatility and can be deployed for various detection tasks. (iii)

Although both schemes use the probability decay strategy to evict

items stored in buckets, Tight-Sketch and HeavyGuardian [47]

differ significantly. Firstly, HeavyGuardian uses exponential de-

cay to decrease the value counter based solely on the item infor-

mation, such as the item frequency. However, when cold items

arrive in a bursty manner in a short period of time, they can in-

crease the counter value quickly, making it difficult to evict them

from the bucket. In contrast, for Tight-Sketch, the low sustained

arrival strength of cold items accelerates their eviction, which miti-

gates the interference of cold items with hot ones, guaranteeing a

high detection accuracy even under limited memory size. Secondly,

HeavyGuardian uses an auxiliary list to record potential hot items,

while Tight-Sketch avoids maintaining additional data structures,

reducing the memory overhead. We conducted experiments using

the CAIDA 2015 and MAWI traces to compare the performance of

HeavyGuardian and Tight-Sketch in detecting heavy items with

memory sizes ranging from 16KB to 256KB. The results reveal that,

on average, Tight-Sketch outperforms HeavyGuardian by 7.69%

and 36.79% in terms of F1 score for the two traces, respectively, con-

firming the superiority of Tight-Sketch. (iv) The above experiments

involve detecting heavy items by considering their frequency. In

addition, we evaluate the performance of Tight-Sketch in identi-

fying heavy items based on their size. The experimental results

demonstrate that despite tight memory constraints (16KB), Tight-

Sketch still achieves an F1 score of around 1 across various datasets,

indicating its excellent lookup accuracy (figure omitted due to space

limitations).

Table 1: # of incorrect replacement events (CAIDA 2015).

Memory (KB) 16 32 64 128 256

Tight-Sketch 64 34 15 6 6
MV-Sketch 161,659 41,690 5,949 957 220

5.2 Performance on Other Detection Tasks
Heavy Changer Detection (Figures 9(a),(b)): The results of our
analysis show that the F1 score of Tight-Sketch is on average 31%

higher than the most competitive approach, Elastic, when applied

to the CAIDA 2015 dataset. While the MAWI trace exhibits less

skewness, the performance of the considered benchmarks is sig-

nificantly diminished in comparison to the CAIDA trace. However,

Tight-Sketch still maintains its high detection performance in this

scenario, demonstrating its robustness and effectiveness.

Persistent ItemDetection (Figures 9(c),(d)):Tight-Sketch demon-

strates superior performance in persistent item lookup, in com-

parison to existing methods, with a 25% improvement and 5163%

enhancement over On-Off Sketch on the CAIDA 2015 and MAWI

traces, respectively.

Significant Item Detection (Figure 9(e)):We set the threshold

values𝛼 and 𝛽 to 1. Our results reveal that Tight-Sketch consistently

achieves the highest detection accuracy, even when the available

memory size is restricted. With a memory size of 16KB, the F1 score

of Tight-Sketch is 178% higher than that of the state-of-the-art LTC.

5.3 Impact of Different Thresholds
We sought to identify the top 100 hot items from high-speed streams

in the above experiments. Here, we examine the impact of vary-

ing thresholds on the performance of different methods. To do so,

we fix the memory size at 32KB and vary the 𝜖 and 𝜂 threshold

values for heavy hitter detection and persistent item lookup, re-

spectively, in the range of 0.0002-0.001 and 0.3-0.7. As shown in

Figure 10, Tight-Sketch is superior across a range of thresholds. In

the case of heavy hitter detection, when 𝜖 is set to 0.0002, Tight-

Sketch outperforms Elastic by 66%. For persistent item lookup, we

observe that the performance of On-Off Sketch and WavingSketch
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Figure 9: F1 score for other tasks across different traces (the legend of heavy changer detection is the same as that in Figure 5).

decreases as 𝜂 increases. This is due to the fact that the number of

persistent items decreases with increasing thresholds, and the rough

replacement strategies of On-Off Sketch andWavingSketch result in

many persistent items being incorrectly replaced by non-persistent

ones, leading to low detection accuracy. In contrast, Tight-Sketch

achieves the highest detection performance, with a 349% improve-

ment over On-Off Sketchwhen𝜂 is set to 0.7. These results highlight

the robustness of Tight-Sketch under a range of thresholds.
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Figure 10: Detection accuracy under different thresholds
(memory size: 32KB, CAIDA 2018).

5.4 Update Throughput and Query Time
5.4.1 Update Speed. We leverage heavy hitter detection as an ex-

ample to investigate the update speed of Tight-Sketch. Figure 11

compares the update throughput of various algorithms under dif-

ferent memory sizes, revealing that Tight-Sketch yields the highest

update speed, which is 17% and 15% higher than that of MV-Sketch

on the CAIDA 2015 and 2018 traces, respectively. This can be at-

tributed to Tight-Sketch’s simple update rule and the elimination

of unnecessary hash operations in time. We further assess Tight-

Sketch’s update throughput on other detection tasks and find that

it consistently outperforms the considered benchmarks.
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Figure 11: Update Throughput (Mops) with different schemes
across the CAIDA traces (legend as in Figure 5).

5.4.2 Query Time. Here, we utilize the CAIDA 2015 trace to evalu-

ate the query time of Tight-Sketch for heavy hitter detection. Table

2 presents the query time of different algorithms, with our findings

demonstrating that Tight-Sketch achieves the lowest query time

among the tested algorithms. This can be attributed to the invert-

ibility of Tight-Sketch and the fact that it doesn’t require extra

hash operations during the query process, resulting in a shorter

query times than with existing schemes. Conversely, MV-Sketch

required additional hash operations during querying, leading to

longer query times. We observe a similar trend in the results for

other detection tasks, such as persistent item lookup.

Table 2: Query time for heavy item detection (Memory: 32KB)

Scheme Tight MV Elastic USS

Query Time (ms) 29.073 161.481 105.069 655.831

5.4.3 Optimization with SIMD Instructions. During the update pro-
cess, Tight-Sketch must sequentially check the buckets in each row

to locate one available for an incoming item. In the worst case,

Tight-Sketch must check all rows, which slows the update speed.

To further increase performance, we employ SIMD instructions

and process sequential operations in parallel. As an incoming item

arrives, we first utilize the primitive MurmurHash3_x64_128 to ob-

tain the hash value based on the item key. Then, we divide the hash

value into 𝑟 parts, where 𝑟 is the number of rows in the Tight-Sketch

data structure. Next, we obtain the bucket positions in each row and

track them into a register array and use _mm256_cmpeq_epi64 to
compare the newly arrived item’s key with items recorded in 𝑟 rows

in parallel. With this method, Tight-Sketch with SIMD instructions

can quickly locate an available bucket for a newly arrived item in a

single step. Table 3 compares the update speed of Tight-Sketch with

and without SIMD instructions, revealing up to 36% improvements.

Table 3: Tight-Sketch’s update throughput (Mops) with SIMD.

Memory Size (KB) 16 32 64 128 256

Tight-SIMD 24.2 24.3 24.6 24.8 25.4
Tight-Sketch 17.8 18.1 18.5 19 19.4

6 CONCLUSIONS
This paper presents Tight-Sketch, a novel sketch that achieves

high detection accuracy even with limited memory budgets while

maintaining fast update speeds. Specifically, Tight-Sketch follows

a probabilistic decay strategy to cautiously substitute incumbent

items tracked in buckets based on multidimensional features. We

apply Tight-Sketch on different heavy-based detection tasks and

conduct extensive experiments with diverse datasets to confirm

its superiority. Our results show that Tight-Sketch dramatically

outperforms existing approaches in all scenarios. We further opti-

mize Tight-Sketch with SIMD instructions, thereby enhancing its

update throughput and enabling our solution to match very fast

data streams.
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