Gaussian Filters*

Bayes Filter Implementations

Prof. Mohan Sridharan
Chair in Robot Systems

University of Edinburgh, UK
https://homepages.inf.ed.ac.uk/msridhar/
m.sridharan@ed.ac.uk

*Revised original slides that accompany the book: PR by Thrun, Burgard and Fox.


https://homepages.inf.ed.ac.uk/msridhar/
mailto:m.sridharan@ed.ac.uk

Bayes Filter Reminder

® Prediction:

fp ‘Ut t1 t—l)dXt—l

® Correction:

bel(x.)=1 p(z} x,) bel(x,



Gaussians (1D and ND)
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Properties of Gaussians
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Multivariate Gaussians

(x ~N () ) = Y ~N(Au+BASAT)
Y=AX+B
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e We stay in the “"Gaussian world” as long as we start with
Gaussians and perform linear transformations.



Discrete Kalman Filter

Estimates the state x of a discrete-time controlled
process that is governed by the linear stochastic
difference equation:

X, =A X,_ 1B U+,

with a measurement:

zZ.=C X, 10,



Components of a Kalman Filter

A Matrix (nxn) that describes how the state evolves
s from -1 to ¢+ without controls or noise.

B Matrix (nxl) that describes how the control «, changes
t the state from ¢/ to +.

C Matrix (kxn) that describes how to map the state x to
t an observation z.

£ Random variables representing the process and
{  measurement noise that are assumed to be
independent and normally distributed with covariance

5t R and Q, respectively.



Kalman Filter Updates in 1D
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Kalman Filter Control Updates
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Kalman Filter Measurement Updates
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Linear Gaussian system: Initialize

e Initial belief is normally distributed:

bel (Xo) =N (Xo;Ho,2 o)
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Kalman Filter Algorithm

Algorithm Kalman_filter( u, ,, Z, ., U, z,):

Prediction:
e =As e B Uy
2,=A2 t—lAtT R,

Correction:
K= ztCtT( CtthtT'FQt)_l
n=0+K (z,—C.a,)
Zt=(I—KtCt)Zt
Return u, X,
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The Prediction-Correction Cycle
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The Prediction-Correction Cycle
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The Prediction-Correction Cycle

/m
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Kalman Filter Summary

Highly efficient: Polynomial in measurement dimensionality k
and state dimensionality n:

O(k2'376 + nZ)
Optimal for linear Gaussian systems!

Limiting assumptions:
e Observations are linear functions of state. State transition are linear.
e Unimodal beliefs.

Most robotics systems are nonlinear and beliefs are
multimodall!
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Extended Kalman Filter (EKF)

® Most realistic robotic problems involve nonlinear
functions.

e EKF supports such non-linear functions; relaxes linearity
assumption.

X= 9(UpX_;)

® However, beliefs are no longer Gaussian ®
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Linearity Assumption Revisited
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Non-linear Function
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Linearization in EKF

® Sequence of steps for linearization in EKF.
e Compute tangent to function g() at mean.
e (Consider the tangent as the linearized approximation of g().
® Project p(x) through linear approximation.

e Compute mean and covariance of y. This defines the
Gaussian approximation of the underlying non-linear
transformation.
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EKF Linearization (1)
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EKF Linearization (2)
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EKF Linearization (3)
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Why Linearize?

® Remember limiting assumptions of KF:

e Observations are linear functions of state. State transition are linear.
e Unimodal beliefs.

e Assumptions do not hold in practice.

® Relax linearity assumption. However, makes beliefs
non-Gaussian ®

e EKF computes Gaussian approximation of true belief through
linearization of non-linear functions g() and h().

® Achieve linearization through (first-order) Taylor expansion
(Section 3.3.2, PR).
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EKF Linearization: First Order
Taylor Series Expansion

® Prediction:
oglu,u,_
9 (U, X_1)= G Up 1 )+

g, Xe—1)= 9 U M1 )4G ¢ (X1 — i1 )

e Correction:
. oh(L) _
h(Xt)zh(ut)T (Xt_ut)
t

h(x.)=h([)+H ¢ (X—[i;)

® Derivation of EKF (Section 3.3.4, PR).
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EKF Algorithm

Extended_Kalman_filter(y = _, u, z,):
Prediction:

L=g(u,u,_,) — k=AM 1B,
2.=G.2, G| +R. — LFASA R
Correction:

Lvall < 1 -1

Ke=SH (HZH+Q) = K=2Ce (G2, C Q)
u=u+K (z,—h(L)) -— I“lt=l“lt+Kt(Zt_Ctl“lt)
5=(1-K,H,)Z, — ==Kz,
Return p, X, Ht=ah(ﬂt) Gt=6 g(u.,,_;)

0 X;
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Localization

“Using sensory information to locate the robot
in its environment is the most fundamental
problem to providing a mobile robot with
autonomous capabilities.” [Cox 91]

® Given
e Map of the environment.
e Sequence of sensor measurements.

® Wanted

o Estimate of the robot’s position.

® Problem classes
e Position tracking.
e Global localization.
e Kidnapped robot problem (recovery).

28



Landmark-based Localization
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EKF Summary

Highly efficient: Polynomial in measurement
dimensionality k and state dimensionality n:

O(k2'376 + n2)
Not optimal!
Can diverge if nonlinearities are large!

Works surprisingly well even when all assumptions
are violated!
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Unscented Kalman Filter

® Stochastic linearization through unscented transform.

® Extract sigma-points from Gaussian.

e Mean and symmetric points along main axes of covariance.
e N-dim Gaussian => 2N+1 sigma points.

e Two weights for each sigma point, one each to compute
mean and covariance.

® Encode additional knowledge about underlying distribution.

® Project sigma points through g().
e Compute mean and covariance of projected points.
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Unscented Transform

Sigma points Weights

K= W=, WA (1-cP+B)
x“]=ui(m} wgg=wgl=

2(n+A)

Pass sigma points through nonlinear function:
yl=g(¥")

Recover mean and covariance:

2n 2n
N WA

for i=1,...

,2N
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Linearization via Unscented
Transform
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UKF Sigma-Point Estimate (2)
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UKF Sigma-Point Estimate (3)
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Prediction Quality
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UKF Summary

Highly efficient: Same complexity as EKF, with a
constant factor slower in typical practical
applications

Better linearization than EKF: Accurate in first two
terms of Taylor expansion (EKF only first term)

Derivative-free: No Jacobians needed ©

Still not optimal!
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Hypothesis
Tracking
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Localization With MHT

How to represent belief for multiple hypotheses?

Each hypothesis is tracked by a Kalman filter.

Additional problems:

e Data association: Which observation corresponds to which
hypothesis?

® Hypothesis management: When to add / delete hypotheses?

Lot of work on target tracking, motion correspondence etc.
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Summary

Gaussian filters.

Kalman filter: linearity assumption.

® Robot systems non-linear.

e Works well in practice.

Extended Kalman filters: linearization.

e Tangent at the mean.

Unscented Kalman filters: better linearization.

e Sigma control points.

Information filter: dual of KF, uses canonical
parameterization (Section 3.5, PR).
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