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Probabilistic Robotics
Key idea:

Explicit representation of uncertainty using the
calculus of probability theory

e Perception state estimation
e Action = utility optimization



Axioms of Probability Theory

Pr(A) or P(A) denotes probability that proposition A
IS true.

° O<Pr(A)=<1
o Pr(True)=1 Pr(False)=0
o Pr(AvB)=Pr(A)+Pr(B)—Pr(AAB)



A Closer Look at Axiom 3

Pr(AvB)=Pr(A)+Pr(B)—Pr(AAB)

True
A ANB B




Using the Axioms

Pr(Av-A) Pr(A)+Pr(—-A)-Pr(An-A)

Pr(True) Pr(A)+Pr(—A)—Pr(False)
1 Pr(A)+Pr(-A)-0

Pr(-A) 1-Pr(A)



Discrete Random Variables

X denotes a random variable.
X can take on a countable number of values in:

{X{r Xop vy X

P(X=x), or P(x,), is the probability that the random
variable X takes on value X..

P(.) is called probability mass function.

E.g. P(Room)=(0.7,0.20.08,0.02)



Continuous Random Variables

e X takes on values in the continuum.

® p(X=x), or p(x), is a probability density function.
b
Pr(x€(a,b))=[ p(x)dx
a

px) }
e E.g.




Joint and Conditional Probability

e P(X=xand Y=y) = P(x,y)

e If X and Y are independent then:
P(x, y) = P(x) P(y)

® P(x | y)is the probability of x given y:

P(x | y) = P(x,y)/ P(y)
P(x,y) = P(x|y)P(y)

e If X and Y are independent then:
P(x |y) = P(x)



Law of Total Probability, Marginals

Discrete case Continuous case
2 Px)=1 [ p(x) =1
P(X)=Y P(xy) p(x)=[ plxy)dy

P(x)=Y P(Xy)P(y) p(x)=] p(xy)p(y)dy



Bayes Formula

P(xy) = P(Xy)P(y) = P(y|x)P(x)

P(y|x) P(x) _likelihood- prior

Pixly) = P(y) avidence
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Normalization

® Denominator of Bayes rule is a “"normalizer”.

P(x|y) « P(y|x)P(x)
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Conditioning

e | aw of total probability:

P(x)=[ P(x2)dz
P(x)=[ P(X2)P(z)dz
P(x| y)=[ P(x{y2) P(2y) &z
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Bayes Rule with Background
Knowledge

® Bayes rule can take into account background
knowledge:

P(yYxz) P(X z)

P(x Py 2)

%)=

e Essential condition on background knowledge.
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Conditional Independence

e X and Y conditionally independent given Z:

P(x,ylz) = P(x|z)P(y|2)

equivalent to:

P(x|z) = P(Xzy)
P(ylz) = P(y|zx)
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Conditional Independence Example

® Two coins; one fair, one biased (always shows heads).

® Pick coin at random and toss twice.

® Define three events:
o X = Heads on first throw.
o Y = Heads on second throw.
o Z = first (fair) coin was selected.

e Compute the following:
o P(X|Z), P(Y[2), P(X, Y|Z), P(X), P(Y), P(X, Y).



Formal Definitions (Section 2.3, PR)

e State: all aspects of robot and environment that can impact
the future (x or s).

e Static and dynamic state; complete state. Discrete and
continuous state.

® Pose: position + orientation.

e Markov assumption: past and future data independent given
current state.

® Environment interaction:

e Sensor measurements (z or 0). Increase knowledge.
e Control actions (u or a). Increase uncertainty.

¢ Belief (or belief/information state) bel(x,) = p(x,|z,., u,..)
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Simple Example of State Estimation

® Suppose a robot obtains measurement z

e What is P(open|z)?

»
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Causal vs. Diagnostic Reasoning

® P(open|z) is diagnostic.

o P(zlopen)ﬁ&% ]
count frequencies?

e Often causal knowledge is easier to obtain.

e Bayes rule allows us to use causal knowledge:

P (2 open) P ( open)
P(Zz)

P (open| z)=
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Example

° P(zlopen) = 0.6  P(z|—open) = 0.3
* P(open) = P(—open) = 0.5

Measurement z raises probability that the door is open.
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Combining Evidence

® Suppose robot obtains another observation z,.
® How can we integrate this new information?

® How can we estimate the result of a series of
measurements/observations?

Px|z,.z ) =7
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Recursive Bayesian Updating

X, 4. Z.
P(XlZL...,Zn)= n| 1 Xl 1 4n—1)
nlzl, Z(n—1))
Use Markov assumption: z_is independent of z ,...,z__, if x known.
P(anx)P(Xlzl,""4n—1))
P(xlz...,2) =
P(anzl,""4n 1)
=1 P(z]|x) P(X z,.. %n )
=m.n [1 PExP

I=1...n
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Example: Second Measurement

* P(z,|open) = 0.5 P(z |~open) = 0.6
* P(open|z )=2/3

_ Pz open) P(open| 2)

PAPNZ221) = Bz open) Plopen] 2,)+P (2] —open) P(~operl 2,
12
_ 23 S _
s r e R
23753

z, lowers the probability that the door is open.
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Actions

e Often the world is dynamic since:

e actions carried out by the robot,
e actions carried out by other agents,
e or just the world changes over the passage of time.

e How can we incorporate such actions?
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Typical Actions

® The robot turns its wheels to move.

® Robot uses its manipulator to grasp an object
® Plants grow over time ... ®

e Actions are never carried out with certainty.

® In contrast to measurements, actions generally
Increase uncertainty.
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Modeling Actions

® To incorporate the outcome of an action u into
the current “belief”, we use the conditional pdf:

P(x|u,x’)

® This term specifies the pdf that executing u
changes the state from x”’ to x.
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Example: Closing the door

-
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State Transitions

P(x|u,x’) for u = “close door”:

0.9

0.1 open & l
0

If the door is open, the action “close door” succeeds
in 90% of the cases.
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Integrating the Outcome of Actions

Continuous
case:

P(x{u)=[ P(x|ux)P(x)dX

Discrete case:

P(xju)=>) P(xjux)P(X)
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Example: The Resulting Belief

P(dosedlu) = > P(dosad|ux )P(X)
= P (dosad| u,open)P (open)
+P ( dosad|u,dosed )P (closad )
95 1,3 15

= 108718 16

P(openju) = > P(open|ux )P (X)
= P(open u,opan)P (open)
+P (open|u,dosed )P (dosed )
-1>503_1
108 1 8 16

= 1-P(dosed|u)
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Another Example: Four Rooms

® Four rooms arranged in a square; four actions
(up, down, left, right). Simple transition
probabilities:

P(x|u,x’) = 0.8/0.2 for valid actions
= 0 otherwise

e How do we compute updated probabilities given
u=up has been executed?
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Bayes Filters: Framework

® Given:
e Stream of observations z and action data u:
d=4,,z ...,U,z}
e Sensor model P(z|x).
e Action model P(x|u,x’).
e Prior probability of the system state P(x).

® Wanted:

e Estimate of the state X of a dynamical system.
e The posterior of the state is also called Belief:

Bd (x,)=P (x|uy,z ...,u,,z)
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Markov Assumption

P(Z]| Xo.4:2Zy.1: Uy ) = PLZ] X, )
POX Xy 110210 Un¢) = POX X g0 Up)

Underlying Assumptions:

e Static world.

® Independent noise.

® Perfect model, no approximation errors.
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z = observation
Bayes Filters e 2 State

x = state
Bel(xt)‘ (X|uy2; ... U 2)

Bayes =nP(z|x,u,z, ....u) P(x|u,z, ...,u)

Markov =1 P(Zt Xt) P(Xt|u1,Zl, ..,Ut)

Total prob. — nP(Zt‘ Xt) f P(thullzll "'IutIXt_l)

P(X,_1|Up,Z, ... Up) QX
Markov = [’7 P f P t'Xl'—l) P(Xt— ul'Zl' '"'Uf) dX—l
Markov = [’)P IP Ut'Xl'— )P(X u,,zZ Z )Cb(

t=1171""17 "1 t—1

= nP(z]x) [ P(x]u.x,_,) Bd(x,_,) d

-1 (=

| o
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Bayes Filter Algorithm

1 Algorithm Bayes_ filter(Bd(X._1).u.z ):
2 For aII Xt do

3 f pUx| X, )BE (X, ;)dx,_,
4. Bel xt =N p zt|xt _el(xt

5. End for Bd(x,)

6 Return

Two key steps: prediction and correction.
Also known as control update and measurement update.

Bd(x,) = n P(z|x.) [ P(xJu.x,_,) Ba(x_,) d

t—1
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Bayes Filters are Familiar!

Bd(x,)=n P(z|x.) f P(x|u.x_;) Bd(x, ;) dx._,

Kalman filters.
Particle filters.

Hidden Markov models.
Dynamic Bayesian networks.
Partially Observable Markov Decision Processes.
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Summary

e Bayes rule allows us to compute probabilities that
are hard to assess otherwise.

e Under the Markov assumption, recursive Bayesian
updating can be used to efficiently combine
evidence.

® Bayes filters are a probabilistic tool for estimating
the state of dynamic systems.
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