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POMDPs

■ State is not observable – agent has to make decisions based on 
belief state which is a posterior distribution over states.

■ Let b be the belief of the agent about the state under consideration.

■ POMDPs compute a value function over belief space:
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Problems

■ Belief is a probability distribution – each value in a POMDP is a 
function of an entire probability distribution!

■ Probability distributions are continuous.

■ Huge complexity of belief spaces.

■ For finite worlds with finite state, action, and observation spaces 
and finite horizons, we can effectively represent the value 
functions by piecewise linear functions. 
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An Illustrative Example

4

measurements action u3 state x2

payoff

measurements

actions u1, u2

payoff

state x1



The Parameters of the Example

■ The actions u1 and u2 are terminal actions.
■ The action u3 is a sensing action that potentially leads to a state 

transition.
■ The horizon is finite and γ=1.

5



Payoff in POMDPs

■ In MDPs, the payoff (or return) depends on the state of 
the system.

■ In POMDPs, the true state is not known.

■ Therefore, we compute the expected payoff by 
integrating over all states: 
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Payoffs in Our Example (1)

■ If we are certain that we are in state x1 and execute action u1 
we receive reward of -100.

■ If we definitely know that we are in x2 and execute u1 the 
reward is +100.

■ In between it is the linear combination of the extreme values 
weighted by the probabilities:

7



Payoffs in Our Example (2)
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The Resulting Policy for T=1

■ Given we have a finite POMDP with T=1, we would use 
V1(b) to determine the optimal policy.

■ In our example, the optimal policy for T=1 is:

■ This is the upper thick graph in the diagram.
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Piecewise Linearity, Convexity

■ The resulting value function V1(b) is the maximum of the 
three functions at each point:

■ It is piecewise linear and convex.
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Pruning

■ Carefully consider V1(b) – only the first two components 
contribute. 

■ The third component can be pruned away from V1(b):

11



Increasing the Time Horizon

■ Assume the robot can make an observation 
before deciding on an action.  
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Increasing the Time Horizon

■ Assume the robot can make an observation before deciding 
on an action.  

■ Suppose the robot perceives z1 for which:

p(z1 | x1)=0.7 and p(z1| x2)=0.3. 

■ Given the observation z1 we update the belief using Bayes 
rule: 
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Value Function
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Increasing the Time Horizon

■ Coming back to our assumption that robot can make an 
observation before deciding on an action.

■ If the robot perceives z1: p(z1 | x1)=0.7 and p(z1| x2)=0.3. 

■ We update the belief V1(b |  z1) using Bayes rule to obtain:
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Expected Value after Measuring

■ Since we do not know what the next measurement 
will be, we have to compute the expected belief:
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Expected Value after Measuring

■ Since we do not know what the next measurement will 
be, we have to compute the expected belief:
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Resulting Value Function

■ The four possible combinations yield the following 
function which then can be simplified and pruned:
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Value Function
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Value Function
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b’(b|z1)

p(z1) V1(b|z1)

p(z2) V1(b|z2)

= p(z1) V1(b|z1) + p(z2) V1(b|z2)



State Transitions (Prediction)

■ When the agent selects u3 its state potentially changes. 

■ When computing the value function, we have to take 
these potential state changes into account.
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State Transitions (Prediction)
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Value Function after executing u3

■ Taking the state transitions into account:
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Value Function after executing u3
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Value Function for T=2

■ Taking into account that the agent can either 
directly perform u1 or u2 or first u3 and then u1 
or u2, we obtain (after pruning).
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Graphical Representation of V2(b)
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Deep Horizons and Pruning

■ We have now completed a full backup in belief 
space.

■ This process can be applied recursively. 
■ The value functions for T=10 and T=20:
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Deep Horizons and Pruning
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Why Pruning is Essential

■ Each update adds additional linear components to V.
■ Each measurement squares number of linear components. 

■ Unpruned value function for T=20 has more than 10547,864 
linear functions.  

■ At T=30 we have 10561,012,337 linear functions.

■ The pruned value functions at T=20, in comparison, 
contains only 12 linear components.

■ The combinatorial explosion of linear components in the 
value function is the major reason why POMDPs are 
impractical for most applications.
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POMDP Summary

■ POMDPs compute the optimal action in partially 
observable, stochastic domains.

■ For finite horizon problems, the resulting value 
functions are piecewise linear and convex. 

■ In each iteration the number of linear 
constraints grows exponentially.

■ POMDPs so far have only been applied 
successfully to very small state spaces with 
small numbers of possible observations and 
actions. 
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POMDP Approximations

■ Point-based value iteration.

■ QMDPs.

■ AMDPs.

■ MC-POMDP.
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Point-based Value Iteration

■ Maintains a set of example beliefs.

■ Only considers constraints that maximize value 
function for at least one of the examples.
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Point-based Value Iteration

Exact value function                        PBVI

Value functions for T=30
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QMDPs

■ QMDPs only consider state uncertainty in the 
first step.

■ After that, the world becomes fully observable!

■ Planning only marginally less efficient than 
MDPs, but performance significantly better!
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Monte Carlo POMDPs

■ Represent beliefs by samples.

■ Estimate value function on sample sets.

■ Simulate control and observation transitions 
between beliefs.



Summary

■ POMDPs ideal for modeling systems with partially 
observable state and non-deterministic actions.

■ Exponential state space explosion is a problem!

■ Methods exist to make the problem more tractable – not 
good enough for real-world robot problems.

■ Possible solutions:
■ Impose hierarchy by exploiting inherent structure.
■ Speed up POMDP solution techniques.
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