Partially Observable Markov
Decision Processes*

Prof. Mohan Sridharan
Chair in Robot Systems

University of Edinburgh, UK
https://homepages.inf.ed.ac.uk/msridhar/
m.sridharan@ed.ac.uk

*Revised original slides that accompany the book by Thrun, Burgard and Fox.

https://homepages.inf.ed.ac.uk/msridhar/
mailto:m.sridharan@ed.ac.uk

POMDPs

State is not observable - agent has to make decisions based on
belief state which is a posterior distribution over states.

Let b be the belief of the agent about the state under consideration.

POMDPs compute a value function over belief space:
V,(b) =y max \r(b.u)+ [V (0") p(b' | u.b)db |
7,.(b) = arg max{r(b,u) + j V. (b")p(b'|u,b)db' }

V,(x) =y max {r(x,u) + j Vo (x")p(x'| u, x)dx' }

Problems

= Belief is a probability distribution — each value in a POMDP is a
function of an entire probability distribution!

= Probability distributions are continuous.
= Huge complexity of belief spaces.

= For finite worlds with finite state, action, and observation spaces
and finite horizons, we can effectively represent the value
functions by piecewise linear functions.

An Illustrative Example

measurements | state x, action u, state X, measurements

0.8

0.8

2

-100 100

‘ payoff ‘

The Parameters of the Example

= The actions u, and u, are terminal actions.

= The action u, is a sensing action that potentially leads to a state
transition.

= The horizon is finite and y=1.
r(x,u)=-100, r(x,,u)=100
r(x,u,)=100, r(x,,u,)=-50
r(x,u)=-1 r(x,u)=-1
p(x, | x,u)=02 p(x,|x,u,)=038
p(x, | x,,u,)=0.8 p(x,|x,,u,)=0.2
p(z, |x)=0.7 p(z,]x,)=0.3
p(z1x,)=03 p(z,|x,)=0.7

p=b(x), p,=b(x,), p,=1-p,
Policy 7 : [0, 1] > u

Payoff in POMDPs

= In MDPs, the payoff (or return) depends on the state of
the system.

= In POMDPs, the true state is not known.

= Iherefore, we compute the expected payoff by
integrating over all states:

r(b,u) = Ez[r(z,u)]
/r(a:,u)p(ac) dx

p1 r(x1,u) + po r(zo, u)

Payoffs in Our Example (1)

s If we are certain that we are in state X, and execute action u,
we receive reward of -100.

= If we definitely know that we are in x, and execute u, the
reward is +100.

s In between it is the linear combination of the extreme values
weighted by the probabilities:

r(b,u1) = —100 p1 + 100 p»
= —100p; + 100 (1 —py)

r(b, u2) 100 p1 — 50 (1 —p1)

T(ba U3) = —1

Payoffs in Our Example (2)

100

50

-50¢

-100

100y

50r

r(b,u1)

0.2

r(b, uz)

0.4

0.6

0.8

=50

-100

-50

0.2

0.4

0.6

0.8

-100

r(b, uo)

100

%% 02 04 06 08 1

V1 (b) = mazyr(b,u)

100
50¢

0;

0 02 04 06 08 1

The Resulting Policy for T=1

= Given we have a finite POMDP with T=1, we would use
V. (b) to determine the optimal policy.

= In our example, the optimal policy for T=1 is:

(

uy if p1 <
Wl(b) = K

~NWw ~NWw

\ uo if p1 >
= Ihis is the upper thick graph in the diagram.

Piecewise Linearity, Convexity

= The resulting value function ¥ (p) is the maximum of the
three functions at each point:

V1(b)

max r(b,u)

—100p; +100 (1 —p3)

— max{ 100 pq 50(11?1)}
—1

= It is piecewise linear and convex.

10

Pruning

= Carefully consider V (b) - only the first two components
contribute.

= The third component can be pruned away from V (b):

_ —100p; +100 (1 —pq)
bl = max{ 100p; 50 (1 - p1)

11

Increasing the Time Horizon

s Assume the robot can make an observation
before deciding on an action.

10

D0}

—-100
0

dZ Oh- Ob d8 1
V,(b)

Increasing the Time Horizon

= Assume the robot can make an observation before deciding
on an action.

= Suppose the robot perceives z, for which:
p(z, | x,)=0.7 and p(z | x,)=0.3.

D Gi?/en the observation z, we update the belief using Bayes
rule:

2) = p(z, | x)p(x,) _ 0.7 p,
1 p(z) p(z)

p,=pkx

,_030-p)
T p(@)
p(z,)=07p, +03(1-p,)=04p, +0.3

13

Value Function

4

P, =P

1_

0.8f

0.6f

0.4f

0.2t

, after sensing z,

0.2

0.4

0.6

0.8

100y

S0}

-100
0

10

S0r

-50¢

0.2

0.4

0.6

0.8

‘
’
—_

-100
0

Increasing the Time Horizon

= Coming back to our assumption that robot can make an
observation before deciding on an action.

= If the robot perceives z,
p(z, | x,)=0.7 and p(z | x,)= 03

= We update the belief V(b | z,) using Bayes rule to obtain:

o 0.7 p 0.3 (1=pp))
100 - Sy 7100 - =55

Vl(b|21) = Mmax « >
\ p(z1) p(z1))

1 —70p1 +30(1—p1)
p(z1) max{ 70p; —15(1 —p1) }

15

Expected Value after Measuring

= Since we do not know what the next measurement
will be, we have to compute the expected belief:

Vi(b)=E.[Vi(b| 2)]= ZP(Zi)Vl(b [Z)

=i)V(p(z |x1>p1]

= pr(z;)
2Pz 1 x)p)

16

Expected Value after Measuring

= Since we do not know what the next measurement will
be, we have to compute the expected belief:

Vi(b) = E.[Vi(b] 2)]
>
= > p(z) Vi(b| %)
=1

—70p; +30 (1 —p1)
= MmMaX
{ 70p1 —15(1—p1)

—30p; +70 (1 —p1) }

MaxXx
U { 30 p; —35 (1 - p1)

17

Resulting Value Function

= [The four possible combinations yield the following
function which then can be simplified and pruned:

(—70p; +30(1—-p1) —30p1 +70(1—p1)
—70p; +30(1—-p1;) +30p; —35(1—p7)
+70p; —15(1—p1) —30p;y +70(1—p1)
| +70p; —-15(1—-p1) +30p; —-35(1—p1) |

V1(b)

max <

(—100p; +100 (1 — p1)
= maxK +40p; +55(1—p1)
| +100p; —50 (1 —p1)

"

Value Function

4

P, =P

1_

0.8f

0.6f

0.4f

0.2t

, after sensing z,

0.2

0.4

0.6

0.8

100y

S0}

-100
0

10

S0r

-50¢

0.2

0.4

0.6

0.8

‘
’
—_

-100
0

Value Function

o p(z,) V,(blz,)
S0
O:Z‘f‘:"“'““:\‘::""'""""""""

-50¢ : e

~19% 02 04 06 08 1

100
p(z,) V,(blz,)
S i e S

—50/‘ :

-100

o
o
N
S|
»
o
o
o
(o]
—

0.12 0.14 0.I6 0.18 1
V1(b)
= p(z,) V,(blz,) + p(z,) V,(blz,)

20

State Transitions (Prediction)

= When the agent selects u, its state potentially changes.

= When computing the value function, we have to take
these potential state changes into account.

p.=E.|p(x, | x,u3)]
2
— Zp(xi | xi9u3) Pi
i=1

=02p, +0.8(1- p,)
=0.8—-0.6p,

21

State Transitions (Prediction)

0.8

0.6}

0.4}

0.2}

p, after action u,

0.2 0.4 0.6 0.8 1

p, =0.8—0.6p,

22

Value Function after executing u,

= Taking the state transitions into account:

(—70p; +30(1—p1) —30p;
—70p; +30(1—p1) +30pg
+70p; —-15(1—-p1) —-30p
| +70p1 —15(1 —p1) +30pg

(—100p; 4100 (1 —pq) }

V1(b) max «

= max{ +40py +55(1—p1)
| +100p; —50(1—p1)

~ 60 p1 —60(1—p1)
Vi(bluz) = maxq 52p; +43 (1 -p1)
—20p; +70 (1 —pq)

+70 (1 —p1) |
—35 (1 —p1)
+70 (1 —p1)
—35 (1 _pl) J

~

23

Value Function after executing «,

0.8

0.67

0.41

0.2r

\

P, =P

) after action u,

0.2

0.4

0.6

0.8

100

50

NS

100;
' V1(b | u3)
50}
O.
50
~100 ' ' - - '
02 04 06 0.8 1 24

Value Function for T=2

= laking into account that the agent can either
directly perform u, or u, or first u, and then u,
or u,, we obtain (after pruning).

(—100p; 4100 (1 —p1)
Vo(b) = max{ 100p7y —50(1—pq)
51p; +42(1—-p1) |

~

Graphical Representation of V (b)

100 u, optimal u, optimal

50

outcome of
measurement
is important

26

Deep Horizons and Pruning

= We have now completed a full backup in belief

S
T
T

Dace.
Nis process can be applied recursively.
ne value functions for T=10 and T=20:

100

80

60F

40¢

20f

27

Deep Horizons and Pruning

100y

50

-100
0

100y

0.2

0.4

0.6

0.8

100y

100y

50

100

50

100

508~~~

-100
0

28

Why Pruning is Essential

= Each update adds additional linear components to 7.
= Each measurement squares number of linear components.

= Unpruned value function for T=20 has more than 10°47.864
linear functions.

= At T=30 we have 10°%1.012,337 |inear functions.

= [The pruned value functions at T=20, in comparison,
contains only 12 linear components.

= The combinatorial explosion of linear components in the
value function is the major reason why POMDPs are
impractical for most applications.

29

POMDP Summary

= POMDPs compute the optimal action in partially
observable, stochastic domains.

= For finite horizon problems, the resulting value
functions are piecewise linear and convex.

= In each iteration the number of linear
constraints grows exponentially.

= POMDPs so far have only been applied
successfully to very small state spaces with
small numbers of possible observations and
actions.

30

POMDP Approximations

Point-based value iteration.

QMDPs.

AMDPs.

MC-POMDP.

31

Point-based Value Iteration
= Maintains a set of example beliefs.

= Only considers constraints that maximize value
function for at least one of the examples.

32

Point-based Value Iteration

Value functions for T=30

Exact value function PBVI

33

QMDPs

= QMDPs only consider state uncertainty in the
first step.

= After that, the world becomes fully observable!

= Planning only marginally less efficient than
MDPs, but performance significantly better!

34

Monte Carlo POMDPs

= Represent beliefs by samples.

= Estimate value function on sample sets.

s Simulate control and observation transitions
between beliefs.

35

Summary

= POMDPs ideal for modeling systems with partially
observable state and non-deterministic actions.

= Exponential state space explosion is a problem!

= Methods exist to make the problem more tractable — not
good enough for real-world robot problems.

= Possible solutions:
« Impose hierarchy by exploiting inherent structure.
= Speed up POMDP solution techniques.

36

