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Motivation

• Robot perception not the ultimate goal:
• Choose right sequence of actions to achieve goal.

• Planning/control applications:
• Navigation, Surveillance, Monitoring, Collaboration etc.
• Ground, air, sea, underground!

• Action selection non-trivial in real-world problems:
• State non-observable.
• Action non-deterministic.
• Require dynamic performance.
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Problem Classes

• Deterministic vs. stochastic actions.
• Classical approaches assume known action outcomes. 

Actions typically non-deterministic. Can only predict 
likelihoods of outcomes.

• Full vs. partial observability.
• State of the system completely observable – never 

happens in real-world applications.
• Build representation of the world by performing actions 

and observing outcomes.

• Current and anticipated uncertainty.
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Deterministic, Fully Observable



Stochastic, Fully Observable

• No noise in Motion models.

• Noisy motion models.

5



6

Stochastic, Partially Observable
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Markov Decision Process (MDP)
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Markov Decision Process (MDP)

• Given:
• States:

• Actions: 

• Transition probabilities:

• Reward / payoff function: 

• Wanted:
• Policy    that maximizes future expected reward.
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Policies

• Policy (general case): 
• All past data mapped to control commands.

• Policy (fully observable case): 
• State mapped to control commands.
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Rewards

• Expected cumulative payoff:

• Maximize sum of future payoffs!
• Discount factor               : future reward is worth less!

• T=1: greedy policy. Discount does not matter as long as         !

• 1<T<∞: finite horizon case, typically no discount.

• T=∞: infinite-horizon case, finite reward if         :
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Optimal Policies

• Expected cumulative payoff of policy:

• Optimal policy:

• 1-step optimal policy:

• Value function of 1-step optimal policy:



Value Functions

• Value function for specific policy (Bellman equation for     )

12



13

Optimal Value Functions

• Optimal policy:

• Bellman optimality equations.

• Necessary and sufficient condition for optimal policy.



14

Value Iteration – Discrete Case

• For all x do

• EndFor

• Repeat until convergence
• For all x do

• EndFor
• EndRepeat

• Action choice:
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Value Iteration

• For all x do

• EndFor

• Repeat until convergence
• For all x do

• EndFor
• EndRepeat

• Action choice:
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Value Iteration for Motion Planning
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Value Function and Policy Iteration

• Often the optimal policy has been reached long 
before the value function has converged. 

• Policy iteration calculates a new policy based on 
the current value function and then calculates a 
new value function based on this policy.

• This process often converges faster to the optimal 
policy.



Value-Iteration Game ☺

• Move from start state (color1) to end state (color2).
• Maximize reward.

• Four actions.
• Twelve colors.

• Exploration and exploitation.
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Value Iteration

• Explore first and then exploit!

• One-step look ahead values?

• N-step look ahead?

• Optimal policy?
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Value Iteration – A few steps…
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Value Iteration – A few steps…
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Value Iteration – A few steps…
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Value Iteration – A few steps…
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More Information

• Chapters 3-4 of Reinforcement Learning textbook by 
Sutton and Barto (second edition).

http://incompleteideas.net/book/the-book-2nd.html
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