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Eye-balling samples

Sometimes samples are pleasing to look at:

(if you’re into geometrical combinatorics)

Figure by Propp and Wilson. Source: MacKay textbook.

Sanity check probabilistic modeling assumptions:

Data samples MoB samples RBM samples



The need for integrals

P (y∗ |x∗,D) =

∫
dθ P (y∗, θ |x∗,D)

=

∫
dθ P (y∗ |θ, ���D)P (θ |

�
�
��x∗,D)

y

x∗

P (y∗ |x∗,D)



A statistical problem

What is the average height of the GSS2011 lecturers?
Method: measure their heights, add them up and divide by N≈25.

What is the average height f of people p in California C?

Ep∈C[f(p)] ≡ 1

|C|
∑
p∈C

f(p), “intractable”?

≈ 1

S

S∑
s=1

f
(
p(s)
)
, for random survey of S people {p(s)} ∈ C

Surveying works for large and notionally infinite populations.



Simple Monte Carlo

Statistical sampling can be applied to any expectation:

In general:∫
f(x)P (x) dx ≈ 1

S

S∑
s=1

f(x(s)), x(s) ∼ P (x)

Example: making predictions

p(x|D) =

∫
P (x|θ,D)P (θ|D) dθ

≈ 1

S

S∑
s=1

P (x|θ(s),D), θ(s) ∼ P (θ|D)

More examples: E-step statistics in EM, Boltzmann machine learning



Properties of Monte Carlo

Estimator:

∫
f(x) P (x) dx ≈ f̂ ≡ 1

S

S∑
s=1

f(x(s)), x(s) ∼ P (x)

Estimator is unbiased:

EP ({x(s)})

[
f̂
]

=
1

S

S∑
s=1

EP (x) [f(x)] = EP (x) [f(x)]

Variance shrinks ∝ 1/S:

varP ({x(s)})

[
f̂
]

=
1

S2

S∑
s=1

varP (x) [f(x)] = varP (x) [f(x)] /S

“Error bars” shrink like
√
S



Aside: don’t always sample!

“Monte Carlo is an extremely bad method;
it should be used only when all alternative
methods are worse.”

— Alan Sokal, 1996



A dumb approximation of π

P (x, y) =

{
1 0<x<1 and 0<y<1

0 otherwise

π = 4

∫∫
I
(
(x2 + y2) < 1

)
P (x, y) dx dy

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)

ans = 3.3333

octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)

ans = 3.1418



Alternatives to Monte Carlo

There are other methods of numerical integration!

Example: (nice) 1D integrals are easy:

octave:1> 4 * quadl(@(x) sqrt(1-x.^2), 0, 1, tolerance)

Gives π to 6 dp’s in 108 evaluations, machine precision in 2598.

(NB Matlab’s quadl fails at tolerance=0, but Octave works.)

In higher dimensions sometimes determinstic approximations work:

Variational Bayes, EP, INLA, . . .



Reminder

Want to sample to approximate expectations:∫
f(x)P (x) dx ≈ 1

S

S∑
s=1

f(x(s)), x(s) ∼ P (x)

How do we get the samples?



Sampling simple distributions

Use library routines for
univariate distributions
(and some other special cases)

This book (free online) explains how

some of them work

http://cg.scs.carleton.ca/~luc/rnbookindex.html



Sampling discrete values

u ∼ Uniform[0, 1]

u=0.4 ⇒ x=b

There are more efficient ways for large numbers of values and samples. See Devroye book.



Sampling from densities

How to convert samples from a Uniform[0,1] generator:

p(y)

h(y)

y0

1

Figure from PRML, Bishop (2006)

h(y) =
∫ y
−∞ p(y

′) dy′

u ∼ Uniform[0,1]

Sample, y(u) = h−1(u)

Although we can’t always compute and invert h(y)



Sampling from densities

Draw points uniformly under the curve:

P (x)

xx(2) x(3) x(1) x(4)

Probability mass to left of point ∼ Uniform[0,1]



Rejection sampling

Sampling from π(x) using tractable q(x):

Figure credit: Ryan P. Adams



Importance sampling

Throwing away samples seems wasteful

Instead rewrite the integral as an expectation under Q:∫
f(x)P (x) dx =

∫
f(x)

P (x)

Q(x)
Q(x) dx, (Q(x) > 0 if P (x) > 0)

≈ 1

S

S∑
s=1

f(x(s))
P (x(s))

Q(x(s))
, x(s) ∼ Q(x)

This is just simple Monte Carlo again, so it is unbiased.

Importance sampling applies when the integral is not an expectation.

Divide and multiply any integrand by a convenient distribution.



Importance sampling (2)

Previous slide assumed we could evaluate P (x) = P̃ (x)/ZP∫
f(x)P (x) dx ≈ ZQZP

1

S

S∑
s=1

f(x(s))
P̃ (x(s))

Q̃(x(s))︸ ︷︷ ︸
r̃(s)

, x(s) ∼ Q(x)

≈
�
�
�
�
��1

S

S∑
s=1

f(x(s))
r̃(s)

�
�
��1
S

∑
s′ r̃

(s′)
≡

S∑
s=1

f(x(s))w(s)

This estimator is consistent but biased

Exercise: Prove that ZP/ZQ ≈ 1
S

∑
s r̃

(s)



Summary so far

• Sums and integrals, often expectations, occur frequently in statistics

• Monte Carlo approximates expectations with a sample average

• Rejection sampling draws samples from complex distributions

• Importance sampling applies Monte Carlo to ‘any’ sum/integral

Next: Why are we not done? MCMC, Metropolis–Hastings and Gibbs



Reminder

Need to sample large, non-standard distributions:

P (x |D) ≈ 1

S

S∑
s=1

P (x |θ), θ ∼ P (θ |D)

When there are nuisance parameters:

P (θ |D) =

∫
dα P (θ, α |D)

θ, α ∼ P (θ, α |D) ∝ P (α)P (θ |α)P (D|θ)

and discard α’s



Application to large problems

Rejection & importance sampling scale badly with dimensionality

Example:

P (x) = N (0, I), Q(x) = N (0, σ2I)

Rejection sampling:

Requires σ ≥ 1. Fraction of proposals accepted = σ−D

Importance sampling:

Var[P (x)/Q(x)] =
(

σ2

2−1/σ2

)D/2
− 1

Infinite / undefined variance if σ ≤ 1/
√

2



Importance sampling weights

w =0.00548 w =1.59e-08 w =9.65e-06 w =0.371 w =0.103

w =1.01e-08 w =0.111 w =1.92e-09 w =0.0126 w =1.1e-51



Metropolis algorithm

• Perturb parameters: Q(θ′; θ), e.g. N (θ, σ2)

• Accept with probability min

(
1,
P̃ (θ′|D)

P̃ (θ|D)

)
• Otherwise keep old parameters

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

This subfigure from PRML, Bishop (2006)Detail: Metropolis, as stated, requires Q(θ′; θ) = Q(θ; θ′)



Markov chain Monte Carlo

Construct a biased random walk that explores target dist P ?(x)

Markov steps, xt ∼ T (xt←xt−1)

MCMC gives approximate, correlated samples from P ?(x)



Transition operators
Discrete example

P ? =

3/5
1/5
1/5

 T =

2/3 1/2 1/2
1/6 0 1/2
1/6 1/2 0

 Tij = T (xi←xj)

P ? is an invariant distribution of T because TP ?=P ?, i.e.∑
x

T (x′←x)P ?(x) = P ?(x′)

Also P ? is the equilibrium distribution of T :

To machine precision: T 100
1

0
0

 =
3/5

1/5
1/5

 = P ?

Ergodicity requires: TK(x′←x)>0 for all x′ : P ?(x′) > 0, for some K



Reverse operators

If T leaves P ?(x) stationary, we can define a reverse operator

R(x←x′) ∝ T (x′←x)P ?(x) =
T (x′←x)P ?(x)∑
x T (x′←x)P ?(x)

=
T (x′←x)P ?(x)

P ?(x′)
.

A necessary (and sufficient) condition: there exists R such that:

T (x′←x)P ?(x) = R(x←x′)P ?(x′), ∀x, x′

If R = T , operator satisfies detailed balance (not necessary)



Balance condition
→x→x′ and →x′→x are equally probable:

T (x′← x)P ?(x) = R(x← x′)P ?(x′)

Implies that P ?(x) is left invariant:∑
x

T (x′←x)P ?(x) = P ?(x′)
���

���
���

���
���:1∑

x

R(x←x′)

Enforcing the condition is easy: it only involves isolated pairs



Metropolis algorithm

• Perturb parameters: Q(θ′; θ), e.g. N (θ, σ2)

• Accept with probability min

(
1,
P̃ (θ′|D)

P̃ (θ|D)

)
• Otherwise keep old parameters
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This subfigure from PRML, Bishop (2006)Detail: Metropolis, as stated, requires Q(θ′; θ) = Q(θ; θ′)



Metropolis–Hastings

Transition operator

• Propose a move from the current state Q(x′;x), e.g. N (x, σ2)

• Accept with probability min
(

1, P (x′)Q(x;x′)
P (x)Q(x′;x)

)
• Otherwise next state in chain is a copy of current state

Notes

• Can use P̃ ∝ P (x); normalizer cancels in acceptance ratio

• Satisfies detailed balance (shown below)

• Q must be chosen so chain is ergodic

P (x) · T (x
′←x) = P (x) ·Q(x

′
; x)min

(
1,

P (x′)Q(x; x′)
P (x)Q(x′; x)

)
= min

(
P (x)Q(x

′
; x), P (x

′
)Q(x; x

′
)
)

= P (x
′
)·Q(x; x

′
)min

(
1,

P (x)Q(x′; x)
P (x′)Q(x; x′)

)
= P (x

′
)·T (x←x

′
)



Matlab/Octave code for demo
function samples = dumb_metropolis(init, log_ptilde, iters, sigma)

D = numel(init);

samples = zeros(D, iters);

state = init;

Lp_state = log_ptilde(state);

for ss = 1:iters

% Propose

prop = state + sigma*randn(size(state));

Lp_prop = log_ptilde(prop);

if log(rand) < (Lp_prop - Lp_state)

% Accept

state = prop;

Lp_state = Lp_prop;

end

samples(:, ss) = state(:);

end



Step-size demo

Explore N (0, 1) with different step sizes σ

sigma = @(s) plot(dumb_metropolis(0, @(x) -0.5*x*x, 1e3, s));

sigma(0.1)
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sigma(1)
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sigma(100)
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Gibbs sampling

A method with no rejections:

– Initialize x to some value

– Pick each variable in turn or randomly

and resample P (xi|xj 6=i)

z1

z2
L

l

Figure from PRML, Bishop (2006)

Proof of validity: a) check detailed balance for component update.

b) Metropolis–Hastings ‘proposals’ P (xi|xj 6=i)⇒ accept with prob. 1

Apply a series of these operators. Don’t need to check acceptance.



Gibbs sampling

Alternative explanation:

Chain is currently at x

At equilibrium can assume x ∼ P (x)

Consistent with xj 6=i ∼ P (xj 6=i), xi ∼ P (xi |xj 6=i)

Pretend xi was never sampled and do it again.

This view may be useful later for non-parametric applications



Summary so far

• We need approximate methods to solve sums/integrals

• Monte Carlo does not explicitly depend on dimension,

although simple methods work only in low dimensions

• Markov chain Monte Carlo (MCMC) can make local moves.

By assuming less, it’s more applicable to higher dimensions

• simple computations ⇒ “easy” to implement

(harder to diagnose).


