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Abstract
There has been a lot of recent interest in designing
neural network models to estimate a distribution
from a set of examples. We introduce a simple
modification for autoencoder neural networks that
yields powerful generative models. Our method
masks the autoencoder’s parameters to respect
autoregressive constraints: each input is recon-
structed only from previous inputs in a given or-
dering. Constrained this way, the autoencoder
outputs can be interpreted as a set of conditional
probabilities, and their product, the full joint prob-
ability. We can also train a single network that
can decompose the joint probability in multiple
different orderings. Our simple framework can be
applied to multiple architectures, including deep
ones. Vectorized implementations, such as on
GPUs, are simple and fast. Experiments demon-
strate that this approach is competitive with state-
of-the-art tractable distribution estimators. At test
time, the method is significantly faster and scales
better than other autoregressive estimators.

1. Introduction
Distribution estimation is the task of estimating a joint distri-
bution p(x) from a set of examples {x(t)}Tt=1, which is by
definition a general problem. Many tasks in machine learn-
ing can be formulated as learning only specific properties of
a joint distribution. Thus a good distribution estimator can
be used in many scenarios, including classification (Schmah
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et al., 2009), denoising or missing input imputation (Poon
& Domingos, 2011; Dinh et al., 2014), data (e.g. speech)
synthesis (Uria et al., 2015) and many others. The very
nature of distribution estimation also makes it a particular
challenge for machine learning. In essence, the curse of
dimensionality has a distinct impact because, as the number
of dimensions of the input space of x grows, the volume of
space in which the model must provide a good answer for
p(x) exponentially increases.

Fortunately, recent research has made substantial progress
on this task. Specifically, learning algorithms for a vari-
ety of neural network models have been proposed (Bengio
& Bengio, 2000; Larochelle & Murray, 2011; Gregor &
LeCun, 2011; Uria et al., 2013; 2014; Kingma & Welling,
2014; Rezende et al., 2014; Bengio et al., 2014; Gregor
et al., 2014; Goodfellow et al., 2014; Dinh et al., 2014).
These algorithms are showing great potential in scaling to
high-dimensional distribution estimation problems. In this
work, we focus our attention on autoregressive models (Sec-
tion 3). Computing p(x) exactly for a test example x is
tractable with these models. However, the computational
cost of this operation is still larger than typical neural net-
work predictions for a D-dimensional input. For previous
deep autoregressive models, evaluating p(x) costs O(D)
times more than a simple neural network point predictor.

This paper’s contribution is to describe and explore a simple
way of adapting autoencoder neural networks that makes
them competitive tractable distribution estimators that are
faster than existing alternatives. We show how to mask the
weighted connections of a standard autoencoder to convert it
into a distribution estimator. The key is to use masks that are
designed in such a way that the output is autoregressive for a
given ordering of the inputs, i.e. that each input dimension is
reconstructed solely from the dimensions preceding it in the
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ordering. The resulting Masked Autoencoder Distribution
Estimator (MADE) preserves the efficiency of a single pass
through a regular autoencoder. Implementation on a GPU is
straightforward, making the method scalable.

The single hidden layer version of MADE corresponds to the
previously proposed autoregressive neural network of Ben-
gio & Bengio (2000). Here, we go further by exploring
deep variants of the model. We also explore training MADE
to work simultaneously with multiple orderings of the in-
put observations and hidden layer connectivity structures.
We test these extensions across a range of binary datasets
with hundreds of dimensions, and compare its statistical
performance and scaling to comparable methods.

2. Autoencoders
A brief description of the basic autoencoder, on which this
work builds upon, is required to clearly grasp what follows.
In this paper, we assume that we are given a training set of
examples {x(t)}Tt=1. We concentrate on the case of binary
observations, where for every D-dimensional input x, each
input dimension xd belongs in {0, 1}. The motivation is
to learn hidden representations of the inputs that reveal the
statistical structure of the distribution that generated them.

An autoencoder attempts to learn a feed-forward, hidden
representation h(x) of its input x such that, from it, we can
obtain a reconstruction x̂ which is as close as possible to x.
Specifically, we have

h(x) = g(b + Wx) (1)
x̂ = sigm(c + Vh(x)) , (2)

where W and V are matrices, b and c are vectors, g is a non-
linear activation function and sigm(a) = 1/(1 + exp(−a)).
Thus, W represents the connections from the input to the
hidden layer, and V represents the connections from the
hidden to the output layer.

To train the autoencoder, we must first specify a training
loss function. For binary observations, a natural choice is
the cross-entropy loss:

`(x) =

D∑

d=1

−xd log x̂d − (1−xd) log(1−x̂d) . (3)

By treating x̂d as the model’s probability that xd is 1, the
cross-entropy can be understood as taking the form of a
negative log-likelihood function. Training the autoencoder
corresponds to optimizing the parameters {W,V,b, c} to
reduce the average loss on the training examples, usually
with (mini-batch) stochastic gradient descent.

One advantage of the autoencoder paradigm is its flexibility.
In particular, it is straightforward to obtain a deep autoen-
coder by inserting more hidden layers between the input

and output layers. Its main disadvantage is that the repre-
sentation it learns can be trivial. For instance, if the hidden
layer is at least as large as the input, hidden units can each
learn to “copy” a single input dimension, so as to recon-
struct all inputs perfectly at the output layer. One obvious
consequence of this observation is that the loss function
of Equation 3 isn’t in fact a proper log-likelihood func-
tion. Indeed, since perfect reconstruction could be achieved,
the implied data ‘distribution’ q(x)=

∏
d x̂

xd

d (1−x̂d)1−xd

could be learned to be 1 for any x and thus not be properly
normalized (

∑
x q(x) 6=1).

3. Distribution Estimation as Autoregression
An interesting question is what property we could impose
on the autoencoder, such that its output can be used to obtain
valid probabilities. Specifically, we’d like to be able to write
p(x) in such a way that it could be computed based on the
output of a properly corrected autoencoder.

First, we can use the fact that, for any distribution, the prob-
ability product rule implies that we can always decompose
it into the product of its nested conditionals

p(x) =

D∏

d=1

p(xd |x<d), (4)

where x<d = [x1, . . . , xd−1]>.

By defining p(xd = 1 |x<d) = x̂d, and thus p(xd =
0 |x<d) = 1−x̂d, the loss of Equation 3 becomes a valid
negative log-likelihood:

− log p(x) =

D∑

d=1

− log p(xd |x<d)

=

D∑

d=1

−xd log p(xd =1 |x<d)

− (1−xd) log p(xd =0 |x<d)

= `(x) .

(5)

This connection provides a way to define autoencoders
that can be used for distribution estimation. Each output
x̂d = p(xd |x<d) must be a function taking as input x<d

only and outputting the probability of observing value xd
at the dth dimension. In particular, the autoencoder forms
a proper distribution if each output unit x̂d only depends
on the previous input units x<d, and not the other units
x≥d = [xd, . . . , xD]>.

We refer to this property as the autoregressive property,
because computing the negative log-likelihood (5) is equiv-
alent to sequentially predicting (regressing) each dimension
of input x.
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4. Masked Autoencoders
The question now is how to modify the autoencoder so as
to satisfy the autoregressive property. Since output x̂d must
depend only on the preceding inputs x<d, it means that
there must be no computational path between output unit
x̂d and any of the input units xd, . . . , xD. In other words,
for each of these paths, at least one connection (in matrix
W or V) must be 0.

A convenient way of zeroing connections is to elementwise-
multiply each matrix by a binary mask matrix, whose entries
that are set to 0 correspond to the connections we wish to
remove. For a single hidden layer autoencoder, we write

h(x) = g(b + (W �MW)x) (6)
x̂ = sigm(c + (V �MV)h(x)) (7)

where MW and MV are the masks for W and V respec-
tively. It is thus left to the masks MW and MV to satisfy
the autoregressive property.

To impose the autoregressive property we first assign each
unit in the hidden layer an integer m between 1 and D−1
inclusively. The kth hidden unit’s number m(k) gives the
maximum number of input units to which it can be con-
nected. We disallow m(k)=D since this hidden unit would
depend on all inputs and could not be used in modelling
any of the conditionals p(xd |x<d). Similarly, we exclude
m(k)=0, as it would create constant hidden units.

The constraints on the maximum number of inputs to each
hidden unit are encoded in the matrix masking the connec-
tions between the input and hidden units:

MW
k,d = 1m(k)≥d =

{
1 if m(k) ≥ d
0 otherwise, (8)

for d∈{1, . . . , D} and k ∈{1, . . . ,K}. Overall, we need
to encode the constraint that the dth output unit is only
connected to x<d (and thus not to x≥d). Therefore the
output weights can only connect the dth output to hidden
units with m(k)<d, i.e. units that are connected to at most
d−1 input units. These constraints are encoded in the output
mask matrix:

MV
d,k = 1d>m(k) =

{
1 if d > m(k)
0 otherwise, (9)

again for d ∈ {1, . . . , D} and k ∈ {1, . . . ,K}. Notice that,
from this rule, no hidden units will be connected to the first
output unit x̂1, as desired.

From these mask constructions, we can easily demonstrate
that the corresponding masked autoencoder satisfies the au-
toregressive property. First, we note that, since the masks
MV and MW represent the network’s connectivity, their
matrix product MV,W = MVMW represents the connec-
tivity between the input and the output layer. Specifically,

MV,W
d′,d is the number of network paths between output unit

x̂d′ and input unit xd. Thus, to demonstrate the autoregres-
sive property, we need to show that MV,W is strictly lower
diagonal, i.e. MV,W

d′,d is 0 if d′ ≤ d. By definition of the
matrix product, we have:

MV,W
d′,d =

K∑

k=1

MV
d′,kM

W
k,d =

K∑

k=1

1d′>m(k)1m(k)≥d. (10)

If d′≤ d, then there are no values for m(k) such that it is
both strictly less than d′ and greater or equal to d. Thus
MV,W

d′,d is indeed 0.

Constructing the masks MV and MW only requires an as-
signment of the m(k) values to each hidden unit. One could
imagine trying to assign an (approximately) equal number
of units to each legal value of m(k). In our experiments, we
instead set m(k) by sampling from a uniform discrete dis-
tribution defined on integers from 1 to D−1, independently
for each of the K hidden units.

Previous work on autoregressive neural networks have also
found it advantageous to use direct connections between the
input and output layers (Bengio & Bengio, 2000). In this
context, the reconstruction becomes:

x̂ = sigm(c + (V �MV)h(x) + (A�MA)x) , (11)

where A is the parameter connection matrix and MA is its
mask matrix. To satisfy the autoregressive property, MA

simply needs to be a strictly lower diagonal matrix, filled
otherwise with ones. We used such direct connections in
our experiments as well.

4.1. Deep MADE

One advantage of the masked autoencoder framework de-
scribed in the previous section is that it naturally generalizes
to deep architectures. Indeed, as we’ll see, by assigning a
maximum number of connected inputs to all units across
the deep network, masks can be similarly constructed so as
to satisfy the autoregressive property.

For networks with L>1 hidden layers, we use superscripts
to index the layers. The first hidden layer matrix (previously
W) will be denoted W1, the second hidden layer matrix will
be W2, and so on. The number of hidden units (previously
K) in each hidden layer will be similarly indexed as Kl,
where l is the hidden layer index. We will also generalize
the notation for the maximum number of connected inputs
of the kth unit in the lth layer to ml(k).

We’ve already discussed how to define the first layer’s mask
matrix such that it ensures that its kth unit is connected to
at most m(k) (now m1(k)) inputs. To impose the same
property on the second hidden layer, we must simply make
sure that each unit k′ is only connected to first layer units
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Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2

, MV). In this example, the ordering of the input
is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the kth unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k′) inputs, i.e. the first layer units
such that m1(k) ≤ m2(k′).

One can generalize this rule to any layer l, as follows:

MWl

k′,k = 1ml(k′)≥ml−1(k) =

{
1 if ml(k′) ≥ ml−1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m0(d) = d (which is intuitive, since the dth input unit in-
deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

MV
d,k = 1d>mL(k) =

{
1 if d > mL(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l ∈ {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink′ m

l−1(k′).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a≥b for vectors, such that 1a≥b is a matrix
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Algorithm 1 Computation of p(x) and learning gradients
for MADE with order and connectivity sampling. D is the
size of the input, L the number of hidden layers and K the
number of hidden units.

Input: training observation vector x
Output: p(x) and gradients of − log p(x) on parameters

# Sampling ml vectors
m0 ← shuffle([1, . . . , D])
for l from 1 to L do

for k from 1 to Kl do
ml(k)← Uniform([mink′ m

l−1(k′), . . . , D−1])
end for

end for

# Constructing masks for each layer
for l from 1 to L do
MWl ← 1ml≥ml−1

end for
MV ← 1m0>mL

# Computing p(x)
h0(x)← x
for l from 1 to L do
hl(x)← g(bl + (Wl �MWl

)hl−1(x))
end for
x̂← sigm(c + (V �MV)hL(x))

p(x)← exp
(∑D

d=1 xd log x̂d + (1−xd) log(1−x̂d)
)

# Computing gradients of − log p(x)
tmp← x̂− x
δc← tmp
δV←

(
tmp hL(x)>

)
�MV

tmp← (tmp>(V �MV))>

for l from L to 1 do
tmp← tmp� g′(bl + (Wl �MWl

)hl−1(x))
δbl ← tmp

δWl ←
(
tmp hl−1(x)>

)
�MWl

tmp← (tmp>(Wl �MWl

))>

end for
return p(x), δb1, . . . , δbL, δW1, . . . , δWL, δc, δV

whose i, j element is 1ai≥bj , then the hidden layer masks
are simply MWl

= 1ml≥ml−1 .

By resampling the connectivity of hidden units for every
update, each hidden unit will have a constantly changing
number of incoming inputs during training. However, the
absence of a connection is indistinguishable from an instan-
tiated connection to a zero-valued unit, which could confuse
the neural network during training. In a similar situation,
Uria et al. (2014) informed each hidden unit which units

were providing input with binary indicator variables, con-
nected with additional learnable weights. We considered
applying a similar strategy, using companion weight matri-
ces Ul, that are also masked by MWl

but connected to a
constant one-valued vector:

hl(x) = g(bl + (Wl �MWl

)hl−1(x) + (Ul �MWl

)1)
(14)

An analogous parametrization of the output layer was also
employed. These connectivity conditioning weights were
only sometimes useful. In our experiments, we treated the
choice of using them as a hyperparameter.

Moreover, we’ve found in our experiments that sampling
masks for every example could sometimes over-regularize
MADE and provoke underfitting. To fix this issue, we also
considered sampling from only a finite list of masks. During
training, MADE cycles through this list, using one for every
update. At test time, we then average probabilities obtained
for all masks in the list.

Algorithm 1 details how p(x) is computed by MADE, as
well as how to obtain the gradient of `(x) for stochastic
gradient descent training. For simplicity, the pseudocode
assumes order-agnostic and connectivity-agnostic training,
doesn’t assume the use of conditioning weight matrices or
of direct input/output connections. Figure 1 also illustrates
an example of such a two-layer MADE network, along with
its ml(k) values and its masks.

5. Related Work
There has been a lot of recent work on exploring the use
of feed-forward, autoencoder-like neural networks as prob-
abilistic generative models. Part of the motivation behind
this research is to test the common assumption that the
use of models with probabilistic latent variables and in-
tractable partition functions (such as the restricted Boltz-
mann machine (Salakhutdinov & Murray, 2008)), is a nec-
essary evil in designing powerful generative models for
high-dimensional data.

The work on the neural autoregressive distribution estimator
or NADE (Larochelle & Murray, 2011) has illustrated that
feed-forward architectures can in fact be used to form state-
of-the-art and even tractable distribution estimators.

Recently, a deep extension of NADE was proposed, improv-
ing even further the state-of-the-art in distribution estima-
tion (Uria et al., 2014). This work introduced a randomized
training procedure, which (like MADE) has nearly the same
cost per iteration as a standard autoencoder. Unfortunately,
deep NADE models still require D feed-forward passes
through the network to evaluate the probability p(x) of a
D-dimensional test vector. The computation of the first
hidden layer’s activations can be shared across these passes,
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Table 1. Complexity of the different models in Table 6, to compute
an exact test negative log-likelihood. R is the number of orderings
used, D is the input size, and K is the hidden layer size (assuming
equally sized hidden layers).

Model ONLL

RBM 25 CD steps O(min(2DK, D2K))
DARN O(2KD)
NADE (fixed order) O(DK)
EoNADE 1hl, R ord. O(RDK)
EoNADE 2hl, R ord. O(RDK2)

MADE 1hl, 1 ord. O(DK+D2)
MADE 2hl, 1 ord. O(DK+K2+D2)
MADE 1hl, R ord. O(R(DK+D2))
MADE 2hl, R ord. O(R(DK+K2+D2))

although is slower in practice than evaluating a single pass
in a standard autoencoder. In deep networks with K hidden
units per layer, it costs O(DK2) to evaluate a test vector.

Deep AutoRegressive Networks (DARN, Gregor et al.,
2014), also provide probabilistic models with roughly the
same training costs as standard autoencoders. DARN’s la-
tent representation consist of binary, stochastic hidden units.
While simulating from these models is fast, evaluation of
exact test probabilities requires summing over all config-
urations of the latent representation, which is exponential
in computation. Monte Carlo approximation is thus recom-
mended.

The main advantage of MADE is that evaluating proba-
bilities retains the efficiency of autoencoders, with minor
additional cost for simple masking operations. Table 1 lists
the computational complexity for exact computation of prob-
abilities for various models. DARN and RBMs are expo-
nential in dimensionality of the hiddens or data, whereas
NADE and MADE are polynomial. MADE only requires
one pass through the autoencoder rather than the D passes
required by NADE. In practice, we also observe that the
single-layer MADE is an order of magnitude faster than a
one-layer NADE, for the same hidden layer size, despite
NADE sharing computation to get the same asymptotic
scaling. NADE’s computations cannot be vectorized as
efficiently. The deep versions of MADE also have better
scaling than NADE at test time. The training costs for
MADE, DARN, and deep NADE will all be similar.

Before the work on NADE, Bengio & Bengio (2000) pro-
posed a neural network architecture that corresponds to the
special case of a single hidden layer MADE model, without
randomization of input ordering and connectivity. A contri-
bution of our work is to go beyond this special case, explor-
ing deep variants and order/connectivity-agnostic training.

Table 2. Number of input dimensions and numbers of examples in
the train, validation, and test splits.

Name # Inputs Train Valid. Test

Adult 123 5000 1414 26147
Connect4 126 16000 4000 47557
DNA 180 1400 600 1186
Mushrooms 112 2000 500 5624
NIPS-0-12 500 400 100 1240
OCR-letters 128 32152 10000 10000
RCV1 150 40000 10000 150000
Web 300 14000 3188 32561

An interesting interpretation of the autoregressive mask sam-
pling is as a structured form of dropout regularization (Sri-
vastava et al., 2014). Specifically, it bears similarity with
the masking in dropconnect networks (Wan et al., 2013).
The exception is that the masks generated here must guar-
anty the autoregressive property of the autoencoder, while
in Wan et al. (2013), each element in the mask is generated
independently.

6. Experiments
To test the performance of our model we considered
two different benchmarks: a suite of UCI binary
datasets, and the binarized MNIST dataset. The code to
reproduce the experiments of this paper is available at
https://github.com/mgermain/MADE/releases/tag/ICML2015.
The results reported here are the average negative log-
likelihood on the test set of each respective dataset. All
experiments were made using stochastic gradient descent
(SGD) with mini-batches of size 100 and a lookahead of 30
for early stopping.

6.1. UCI evaluation suite

We use the binary UCI evaluation suite that was first put
together in Larochelle & Murray (2011). It’s a collection
of 7 relatively small datasets from the University of Califor-
nia, Irvine machine learning repository and the OCR-letters
dataset from the Stanford AI Lab. Table 2 gives an overview
of the scale of those datasets and the way they were split.

The experiments were run with networks of 500 units per
hidden layer, using the adadelta learning update (Zeiler,
2012) with a decay of 0.95. The other hyperparameters
were varied as Table 3 indicates. We note as # of masks the
number of different masks through which MADE cycles
during training. In the no limit case, masks are sampled
on the fly and never explicitly reused unless re-sampled by
chance. In this situation, at validation and test time, 300 and
1000 sampled masks are used for averaging probabilities.
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Table 3. UCI Grid Search

Hyperparameter Values tried

# Hidden Layer 1, 2
Activation function ReLU, Softplus
Adadelta epsilon 10−5, 10−7, 10−9

Conditioning Weights True, False
# of orderings 1, 8, 16, 32, No Limit

The results are reported in Table 4. We see that MADE is
among the best performing models on half of the datasets
and is competitive otherwise. To reduce clutter, we have not
reported standard deviations, which were fairly small and
consistent across models. However, for completeness we
report standard deviations in a separate table in the supple-
mentary materials.

An analysis of the hyperparameters selected for each dataset
reveals no clear winner. However, we do see from Table 4
that when the mask sampling helps, it helps quite a bit and
when it does not, the impact is negligible on all but OCR-
letters. Another interesting note is that the conditioning
weights had almost no influence except on NIPS-0-12 where
it helped.

6.2. Binarized MNIST evaluation

The version of MNIST we used is the one binarized by
Salakhutdinov & Murray (2008). MNIST is a set of 70,000
hand written digits of 28×28 pixels. We use the same split
as in Larochelle & Murray (2011), consisting of 50,000 for
the training set, 10,000 for the validation set and 10,000 for
the test set.

Experiments were run using the adagrad learning up-
date (Duchi et al., 2010), with an epsilon of 10−6. Since
MADE is much more efficient than NADE, we considered
varying the hidden layer size from 500 to 8000 units. Seeing
that increasing the number of units tended to always help,
we used 8000. Even with such a large hidden layer, our
GPU implementation of MADE was quite efficient. Using
a single mask, one training epoch requires about 14 and 44
seconds, for one hidden layer and two hidden layer MADE
respectively. Using 32 sampled masks, training time in-
creases to 33 and 100 respectively. These timings are all
less than our GPU implementation of the 500 hidden units
NADE model, which requires about 130 seconds per epoch.
These timings were obtained on a K20 NVIDIA GPU.

Building on what we learned on the UCI experiments, we
set the activation function to be ReLU and the conditioning
weights were not used. The hyperparameters that were
varied are in Table 5.

The results are reported in Table 6, alongside other results

Table 5. Binarized MNIST Grid Search

Hyperparameter Values tried

# Hidden Layer 1, 2
Learning Rate 0.1, 0.05, 0.01, 0.005
# of masks 1, 2, 4, 8, 16, 32, 64

0 10 20 30 40 50 60 70
# Masks used during training

93.0

93.5

94.0

94.5

95.0

95.5

96.0

96.5

97.0

N
LL

Test error

Figure 2. Impact of the number of masks used with a single hidden
layer, 500 hidden units network, on binarized MNIST.

taken from the literature. Again, despite its tractability,
MADE is competitive with other models. Of note is the
fact that the best MADE model outperforms the single layer
NADE network, which was otherwise the best model among
those requiring only a single feed-forward pass to compute
log probabilities.

In these experiments, we clearly observed the over-
regularization phenomenon from using too many masks.
When more than four orderings were used, the deeper vari-
ant of MADE always yielded better results. For the two
layer model, adding masks during training helped up to 64,
at which point the negative log-likelihood started to increase.
We observed a similar pattern for the single layer model, but
in this case the dip was around 8 masks. Figure 2 illustrates
this behaviour more precisely for a single layer MADE with
500 hidden units, trained by only varying the number of
masks used and the size of the mini-batches (83, 100, 128).

We randomly sampled 100 digits from our best performing
model from Table 6 and compared them with their nearest
neighbor in the training set (Figure 3), to ensure that the
generated samples are not simple memorization. Each row
of digits uses a different mask that was seen at training time
by the network.
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Table 4. Negative log-likelihood test results of different models on multiple datasets. The best result as well as any other result with an
overlapping confidence interval is shown in bold. Note that since the variance of DARN was not available, we considered it to be zero.

Model Adult Connect4 DNA Mushrooms NIPS-0-12 OCR-letters RCV1 Web

MoBernoullis 20.44 23.41 98.19 14.46 290.02 40.56 47.59 30.16
RBM 16.26 22.66 96.74 15.15 277.37 43.05 48.88 29.38
FVSBN 13.17 12.39 83.64 10.27 276.88 39.30 49.84 29.35
NADE (fixed order) 13.19 11.99 84.81 9.81 273.08 27.22 46.66 28.39
EoNADE 1hl (16 ord.) 13.19 12.58 82.31 9.69 272.39 27.32 46.12 27.87
DARN 13.19 11.91 81.04 9.55 274.68 ≈28.17 ≈46.10 ≈28.83

MADE 13.12 11.90 83.63 9.68 280.25 28.34 47.10 28.53
MADE mask sampling 13.13 11.90 79.66 9.69 277.28 30.04 46.74 28.25

Figure 3. Left: Samples from a 2 hidden layer MADE. Right: Nearest neighbour in binarized MNIST.

Table 6. Negative log-likelihood test results of different models on
the binarized MNIST dataset.

Model − log p

RBM (500 h, 25 CD steps) ≈ 86.34

In
tr

ac
ta

bl
e

DBM 2hl ≈ 84.62
DBN 2hl ≈ 84.55
DARN nh=500 ≈ 84.71
DARN nh=500, adaNoise ≈ 84.13

MoBernoullis K=10 168.95

Tr
ac

ta
bl

e

MoBernoullis K=500 137.64
NADE 1hl (fixed order) 88.33
EoNADE 1hl (128 orderings) 87.71
EoNADE 2hl (128 orderings) 85.10

MADE 1hl (1 mask) 88.40
MADE 2hl (1 mask) 89.59
MADE 1hl (32 masks) 88.04
MADE 2hl (32 masks) 86.64

7. Conclusion
We proposed MADE, a simple modification of autoencoders
allowing them to be used as distribution estimators. MADE
demonstrates that it is possible to get direct, cheap estimates
of high-dimensional joint probabilities, from a single pass
through an autoencoder. Like standard autoencoders, our ex-
tension is easy to vectorize and implement on GPUs. MADE
can evaluate high-dimensional probably distributions with
better scaling than before, while maintaining state-of-the-art
statistical performance.
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