
Journal of Machine Learning Research 14 (2013) 333-350 Submitted 11/11; Revised 6/12, 11/12; Published 2/13

A Framework for Evaluating Approximation Methods for Gaussian

Process Regression

Krzysztof Chalupka∗ KJCHALUP@CALTECH.EDU

Computation and Neural Systems

California Institute of Technology

1200 E. California Boulevard

Pasadena, CA 91125, USA

Christopher K. I. Williams C.K.I.WILLIAMS@ED.AC.UK

Iain Murray I.MURRAY@ED.AC.UK

School of Informatics

University of Edinburgh

10 Crichton St

Edinburgh EH8 9AB, UK

Editor: Neil Lawrence

Abstract

Gaussian process (GP) predictors are an important component of many Bayesian approaches to

machine learning. However, even a straightforward implementation of Gaussian process regression

(GPR) requires O(n2) space and O(n3) time for a data set of n examples. Several approximation

methods have been proposed, but there is a lack of understanding of the relative merits of the

different approximations, and in what situations they are most useful. We recommend assessing

the quality of the predictions obtained as a function of the compute time taken, and comparing

to standard baselines (e.g., Subset of Data and FITC). We empirically investigate four different

approximation algorithms on four different prediction problems, and make our code available to

encourage future comparisons.
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1. Introduction

Gaussian process (GP) predictors are widely used in non-parametric Bayesian approaches to super-

vised learning problems (Rasmussen and Williams, 2006). They can also be used as components

for other tasks including unsupervised learning (Lawrence, 2004), and dependent processes for a

variety of applications (e.g., Sudderth and Jordan 2009; Adams et al. 2010). The basic model on

which these are based is Gaussian process regression (GPR), for which a standard implementation

requires O(n2) space and O(n3) time for a data set of n examples (e.g., Rasmussen and Williams,

2006, Chapter 2). Several approximation methods have now been proposed, as detailed below. Typ-

ically the approximation methods are compared to the basic GPR algorithm. However, as there are

now a range of different approximations, the user is faced with the problem of understanding their

relative merits, and in what situations they are most useful.

∗. This research was carried out when KC was a student at the University of Edinburgh.
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Most approximation algorithms have a tunable complexity parameter, which we denote as m.

Our key recommendation is to study the quality of the predictions obtained as a function of the com-

pute time taken as m is varied, as times can be compared across different methods. New approxima-

tion methods should be compared against current baselines like Subset of Data and FITC (described

in Sections 2.1–2.2). The time decomposes into that needed for training the predictor (including

setting hyperparameters), and test time; the user needs to understand which will dominate in their

application. We illustrate this process by studying four different approximation algorithms on four

different prediction problems. We have published our code in order to encourage comparisons of

other methods against these baselines.

The structure of the paper is as follows: In Section 2 we outline the complexity of the full

GP algorithm and various approximations, and give some specific details needed to apply them

in practice. Section 3 outlines issues that should be considered when selecting or developing a

GP approximation algorithm. Section 4 describes the experimental setup for comparisons, and the

results of these experiments. We conclude with future directions and a discussion.

2. Approximation Algorithms for Gaussian Process Regression (GPR)

A regression task has a training set D ={xi,yi}
n
i=1 with D-dimensional inputs xi and scalar outputs

yi. Assuming that the outputs are noisy observations of a latent function f at values fi = f (xi), the

goal is to compute a predictive distribution over the latent function value f∗ at a test location x∗.

Assuming a Gaussian process prior over functions f with zero mean, and covariance or kernel

function k(·, ·), and Gaussian observations, yi = fi + εi where εi ∼ N (0,σ2), gives Gaussian pre-

dictions p( f∗ |x∗,D)=N ( f ∗,V[ f∗]), with predictive mean and variance (see, e.g., Rasmussen and

Williams, 2006, Section 2.2):

f ∗ = k⊤(x∗)(K +σ2I)−1y
def
= k⊤(x∗)α, (1)

V[ f∗] = k(x∗,x∗)−k⊤(x∗)(K +σ2I)−1k(x∗), (2)

where K is the n×n matrix with Ki j = k(xi,x j), k(x∗) is the n×1 column vector with the ith entry

being k(x∗,xi), y is the column vector of the n target values, and α= (K +σ2I)−1y.

The log marginal likelihood of the GPR model is also available in closed form:

L = log p(y|X) =− 1
2

y⊤(K +σ2
nI)−1y− 1

2
log |K +σ2I|− n

2
log2π. (3)

Typically L is viewed as a function of a set of parameters θ that specify the kernel. Below we assume

that θ is set by numerically maximizing L with a routine like conjugate gradients. Computation of

L and the gradient ∇θL can be carried out in O(n3). Optimizing L is a maximum-likelihood type II

or ML-II procedure for θ; alternatively one might sample over p(θ|D) using, for example, MCMC.

Equations 1–3 form the basis of GPR prediction.

We identify three computational phases in carrying out GPR:

hyperparameter learning: The hyperparameters are learned, by for example maximizing the log

marginal likelihood. This is often the most computationally expensive phase.

training: Given the hyperparameters, all computations that do not involve test inputs are per-

formed, such as computing α above, and/or computing the Cholesky decomposition of K +
σ2

nI. This phase was called “precomputation” by Quiñonero-Candela et al. (2007, Section 9.6).
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Method Storage Training Mean Variance

Full O(n2) O(n3) O(n) O(n2)
SoD O(m2) O(m3) O(m) O(m2)
FITC O(mn) O(m2n) O(m) O(m2)
Local O(mn) O(m2n) O(m) O(m2)

Table 1: A comparison of the space and time complexity of the Full, SoD, FITC and Local meth-

ods, ignoring the time taken to select the m subset/inducing points/clusters from the n

datapoints. Training: the time required for preliminary computations before the test point

x∗ is known, for each hyperparameter setting considered. Mean (resp. variance): the time

needed to compute the predictive mean (variance) at test point x∗.

testing: Only the computations involving the test inputs are carried out, those which could not

have been done previously. This phase may be significant if there is a very large test set, or if

deploying a trained model on a machine with limited resources.

Table 1 lists the computational complexity of training and testing full GPR as a function of n.

Evaluating the marginal likelihood L and its gradient takes more operations than ‘training’ (i.e.,

computing the parts of (1) and (2) that do not depend on x∗), but has the same scaling with n.

Hyperparameter learning involves evaluating L for all values of the hyperparameters θ that are

searched over, and so is more expensive than training for fixed hyperparameters.

These complexities can be reduced in special cases, for example, for stationary covariance func-

tions and grid designs, as may be found, for example, in geoscience problems. In this case the

eigenvectors of K are the Fourier basis, and matrix inversions etc can be computed analytically.

See, for example, Wikle et al. (2001), Paciorek (2007) and Fritz et al. (2009) for more details.

Common methods for approximate GPR include Subset of Data (SoD), where data points are

simply thrown away; inducing point methods (Quiñonero-Candela and Rasmussen, 2005), where

K is approximated by a low-rank plus diagonal form; Local methods where nearby data is used to

make predictions in a given region of space; and fast matrix-vector multiplication (MVM) methods,

which can be used with iterative methods to speed up the solution of linear systems. We discuss

these in turn, so as to give coverage to the wide variety methods that have been proposed. We use the

Fully Independent Training Conditional (FITC) method as it is recommended over other inducing

point methods by Quiñonero-Candela et al. (2007), and the Improved Fast Gauss Transform (IFGT)

of Yang et al. (2005) as a representative of fast MVM methods.

2.1 Subset of Data

The simplest way of dealing with large amounts of data is simply to ignore some or most of it. The

‘Subset of Data (SoD) approximation’ simply applies the full GP prediction method to a subset of

size m < n. Therefore the computational complexities of SoD result from replacing n with m in

the expressions for the full method (Table 1). Despite the ‘obvious’ nature of SoD, most papers on

approximate GP methods only compare to a GP applied to the full data set of size n.

To complete the description of the SoD method we must also specify how the subset is selected.

We consider two of the possible alternatives: 1) Selecting m points randomly costs O(m) if we need

335



CHALUPKA, WILLIAMS AND MURRAY

not look at the other points. 2) We select m cluster centres from a Farthest Point Clustering (FPC,

Gonzales 1985) of the data set; using the algorithm proposed by Gonzales this has computational

complexity of O(mn). In theory, FPC can be sped up to O(n logm) using suitable data structures

(Feder and Greene, 1988), although in practice the original algorithm can be faster for machine

learning problems of moderate dimensionality. FPC has a random aspect as the first point can

be chosen randomly. Our SoD implementation is based on gp.m in the MATLAB gpml toolbox:

http://www.gaussianprocess.org/gpml/code/matlab/doc/.

Rather than selecting the subset randomly, it is also possible to make a more informed choice.

For example Lawrence et al. (2003) came up with a fast selection scheme (the “informative vec-

tor machine”) that takes only O(m2n). Keerthi and Chu (2006) also proposed a matching pursuit

approach which has similar asymptotic complexity, although the associated constant is larger.

2.2 Inducing Point Methods: FITC

A number of GP approximation algorithms use alternative kernel matrices based on inducing points,

u, in the D-dimensional input space (Quiñonero-Candela and Rasmussen, 2005). Here we restrict

the m inducing points to be a subset of the training inputs. The Subset of Regressors (SoR) kernel

function is given by kSoR(xi,x j) = k(xi,u)K
−1
uu k(u,x j), and the Fully Independent Training Condi-

tional (FITC) method uses

kFITC(xi,x j) = kSoR(xi,x j)+δi j[k(xi,x j)− kSoR(xi,x j)].

FITC approximates the matrix K as a rank-m plus diagonal matrix. An attractive property of FITC,

not shared by all approximations, is that it corresponds to exact inference for a GP with the given

kFITC kernel (Quiñonero-Candela et al., 2007). Other inducing point approximations (e.g., SoR,

deterministic training conditionals) have similar complexity but Quiñonero-Candela et al. (2007)

recommend FITC over them. Since then there have been further developments (Titsias, 2009;

Lázaro-Gredilla et al., 2010), which would also be interesting to compare.

To make predictions with FITC, and to evaluate its marginal likelihood, simply substitute kFITC

for the original kernel in Equations 1–3. This substitution gives a mean predictor of the form

f ∗ = ∑m
i=1 βik(x∗,xi), where i = 1, . . . ,m indexes the selected subset of training points, and the βs

are obtained by solving a linear system. Snelson (2007, pp 60-62) showed that in the limit of zero

noise FITC reduces to SoD.

We again choose a set of inducing points of size m from the training inputs either randomly or

using FPC, and use the FITC implementation from the gpml toolbox.

It is possible to “mix and match” the SoD and FITC methods, adapting the hyperparameters

to optimize the SoD approximation to the marginal likelihood, then using the FITC algorithm to

make predictions using the same data subset and the SoD-trained hyperparameters. We refer to this

procedure as the Hybrid method.1 We expect that saving time on the hyperparameter learning phase,

O(m3) instead of O(m2n), will come at the cost of reducing the predictive performance of FITC for

a given m.

2.3 Local GPR

The basic idea here is of divide-and-conquer, although without any guarantees of correctness. We

divide the n training points into k = ⌈ n
m
⌉ clusters each of size m, and run GPR in each cluster,

1. We thank one of the anonymous reviewers for suggesting this method.
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ignoring the training data outside of the given cluster. At test time we assign a test input x∗ to

the closest cluster. This method has been discussed by Snelson and Ghahramani (2007). The hard

cluster boundaries can lead to ugly discontinuities in the predictions, which are unacceptable if a

smooth surface is required, for example in some physical simulations.

One important issue is how the clustering is done. We found that FPC tended to produce clusters

of very unequal size, which limited the speedups obtained by Local GPR. Thus we devised a method

we call Recursive Projection Clustering (RPC), which works as follows. We start off with all the

data in one cluster C. Choose two data points at random from C, draw a line through these points

and calculate the orthogonal projection of all points from C onto the line. Split C into two equal-

sized subsets CL and CR depending on whether points are to the left or right of the median. Now

repeat recursively in each cluster until the cluster size is no larger than m. In our implementation

we make use of MATLAB’s sort function to find the median value, taking time O(n logn) for n

datapoints, although it is possible to reduce median finding to O(n) (Blum et al., 1973). Thus

overall the complexity of RPC is O(ns logn), where s = ⌈log2(n/m)⌉. A test point x∗ is assigned to

the appropriate cluster by descending the tree of splits constructed by RPC.

Another issue concerns hyperparameter learning. L is approximated by the sum of terms like

Equation 3 over all clusters. Hyperparameters can either be tied across all clusters (“joint” training),

or unique to each cluster (“separate” training). Joint training is likely to be useful for small m. We

implemented Local GPR using the gpml toolbox with small modifications to sum gradients for joint

training.

2.4 Iterative Methods and IFGT Matrix-Vector Multiplies

The Conjugate Gradients (CG) method (e.g., Golub and Van Loan 1996) can be used at training time

to solve the linear system (K +σ2I)α= y. Indeed, all GPR computations can be based on iterative

methods (Gibbs, 1997). CG and several other iterative methods (e.g., Li et al. 2007; Liberty et al.

2007) for solving linear systems require the ability to multiply a matrix of kernel values with an

arbitrary vector.

Standard dense matrix-vector multiplication (MVM) costs O(n2). It has been argued (e.g., Gibbs

1997; Li et al. 2007) that iterative methods alone provide a cost saving if terminated after k ≪ n

matrix-vector multiplies. Papers often do not state how CG was terminated (e.g., Shen et al., 2006;

Freitas et al., 2006), although some are explicit about using a small fixed number of iterations

based on preliminary runs (e.g., Gray, 2004). Ad-hoc termination rules, or those using the ‘relative

residual’ (Golub and Van Loan, 1996) (see Section 4.1) do not necessarily give the best trade-off

between time and test-error. In Section 4.1 we examine the progression of test error throughout

training, to see what error/time trade-offs might be achieved by different termination rules.

Iterative methods are not used routinely for dense linear system solving, they are usually only

recommended when the cost of MVMs is reduced by exploiting sparsity or other matrix structure.

Whether iterative methods can provide a speedup for GPR or not, fast MVM methods will certainly

be required to scale to huge data sets. Firstly, while other methods can be made linear in the size of

the data set size (O(m2n), see Table 1), a standard MVM costs O(n2). Most importantly, explicitly

constructing the K matrix uses O(n2) memory, which sets a hard ceiling on data set size. Storing

the kernel elements on disk, or reproducing the kernel computations on the fly, is prohibitively

expensive. Fast MVM methods potentially reduce the storage required, as well as the computation

time of the standard dense implementation.
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We have previously demonstrated some negative results concerning speeding up MVMs (Mur-

ray, 2009): 1) if the kernel matrix were approximately sparse (i.e., many entries near zero) it would

be possible to speed up MVMs using sparse matrix techniques, but in the hyperparameter regimes

identified in practice this does not usually occur; 2) the piecewise constant approximations used by

simple kd-tree approximations to GPR (Shen et al., 2006; Gray, 2004; Freitas et al., 2006) cannot

safely provide meaningful speedups.

The Improved Fast Gauss Transform (IFGT) is a MVM method that can be applied when using

a squared-exponential kernel. The IFGT is based on a truncated multivariate Taylor series around a

number of cluster centres. It has been applied to kernel machines in a number of publications, for

example, Yang et al. (2005); Morariu et al. (2009). Our experiments use the IFGT implementation

from the Figtree C++ package with MATLAB wrappers available from http://www.umiacs.umd.

edu/˜morariu/figtree/. This software provides automatic choices for a number of parameters

within IFGT. The time complexity of IFGT depends on a number of factors as described in Morariu

et al. (2009), and we focus below on empirical results.

There are open problems with making iterative methods and fast MVMs for GPR work rou-

tinely. Firstly, unlike standard dense linear algebra routines, the number of operations depends on

the hyperparameter settings. Sometimes the programs can take a very long time, or even crash due

to numerical problems. Methods to diagnose and handle these situations automatically are required.

Secondly, iterative methods for GPR are usually only applied to mean prediction, Equation 1; find-

ing variances V[ f∗] would require solving a new linear system for each k(x∗). In principle, an

iterative method could approximately factorize (K +σ2I) for variance prediction. To our knowl-

edge, no one has demonstrated the use of such a method for GPR with good scaling in practice.

2.5 Comparing the Approximation Methods

Above we have reviewed the SoD, FITC, Hybrid, Local and Iterative MVM methods for speeding up

GP regression for large n. The space and time complexities for the SoD, FITC, and Local methods

are given in Table 1; as explained above there are open problems with making iterative methods and

fast MVMs work routinely for GPR, see also Sections 4.1 and 4.2.

Comparing FITC to SoD, we note that the mean predictor contains the same basis functions as

the SoD predictor, but that the coefficients are (in general) different as FITC has “absorbed” the

effect of the remaining n−m datapoints. Hence for fixed m we might expect FITC to obtain better

results. Comparing Local to SoD, we might expect that using training points lying nearer to the test

point would help, so that for fixed m Local would beat SoD. However, both FITC and Local have

O(m2n) training times (although the associated constants may differ), compared to O(m3) for SoD.

So if equal training time was allowed, a larger m could be afforded for SoD than the others. This is

the key to the comparisons in Section 4.3 below. The Hybrid method has the same hyperparameter

learning time as SoD by definition, but the training phase will take longer than SoD with the same

m, because of the need for a final O(m2n) phase of FITC training, as compared to the O(m3) for

SoD. However, as per the argument above, we would expect the FITC predictions to be superior to

the SoD ones, even if the hyperparameters have not been optimized explicitly for FITC prediction;

this is explored experimentally in Section 4.3.

At test time Table 1 shows that the SoD, FITC, Hybrid and Local approximations are O(m)
for mean prediction, and O(m2) for predictive variances. This means that the method which has

obtained the best “m-size” predictor will win on test-time performance.

338



EVALUATING APPROXIMATION METHODS FOR GPR

3. A Basis for Comparing Approximations

For fixed hyperparameters, comparing an approximate method to the full GPR is relatively straight-

forward: we can evaluate the predictive error made by the approximate method, and compare that

against the “gold standard” of full GPR. The ‘best’ method could be the approximation with best

predictions for a given computational cost, or alternatively the smallest computational cost for a

given predictive performance. However, there are still some options, for example, different perfor-

mance criteria to choose from (mean squared error, mean predictive log likelihood). Also there are

different possible relevant computational costs (hyperparameter learning, training, testing) and def-

initions of cost itself (CPU time, ‘flops’ or other operation counts). It should also be borne in mind

that any error measure compresses the predictive mean and variance functions into a single num-

ber; for low-dimensional problems visualizing these functions can illustrate the differences between

approximations (e.g., Quiñonero-Candela et al., 2007, Figure 9.4).

It is rare that the appropriate hyperparameters are known for a given problem, unless it is a syn-

thetic problem drawn from a GP. For real-world data we are faced with two alternatives: (i) compare

approximate methods using the same set of hyperparameters as obtained by full GPR, or (ii) allow

the approximate methods freedom to determine their own hyperparameters, for example, by using

approximate marginal likelihoods consistent with the approximations. Below we follow the sec-

ond approach as it is more realistic, although it does complicate comparisons by changing both the

approximation method and the hyperparameters.

In terms of computational cost we use the CPU time in seconds, based on MATLAB implemen-

tations of the algorithms (except for the IFGT where the Figtree C++ code is used with MATLAB

wrappers). The core GPR calculations are well suited to efficient implementation in MATLAB. Our

SoD, FITC, Hybrid and Local GP implementations are all derived from the standard gpml toolbox

of Rasmussen and Nickisch.

Before making empirical comparisons on particular data sets, we identify aspects of regression

problems, models and approximations that affect the appropriateness of using a particular method:

The nature of the underlying problem: We usually standardize the inputs to have zero mean and

unit variance on each dimension. Then clearly we would expect to require more datapoints to pin

down accurately a higher frequency (more “wiggly”) function than a lower frequency one.

For multivariate input spaces there will also be issues of dimensionality, either wrt the intrinsic

dimensionality of x (for example if the data lies on a manifold of lower dimensionality) or the

apparent dimensionality. Note that if there are irrelevant inputs these can potentially be detected by

a kernel equipped with “Automatic Relevance Determination” (ARD) (Neal, 1996; Rasmussen and

Williams, 2006, p. 106).

Another factor is the noise level on the data. An eigenanalysis of the problem (see, e.g., Ras-

mussen and Williams 2006, Section 2.6) shows that it is more difficult to discover low-amplitude

components in the underlying function if there is high noise. It is relatively easy to get an upper

bound on the noise level by computing the variance of the y’s around a given x location (or an

average of such calculations), particularly if the lengthscale of variation of function is much larger

than inter-datapoint distances (i.e., high sampling density); this provides a useful sanity check on

the noise level returned during hyperparameter optimization.

The choice of kernel function: Selecting an appropriate family of kernel functions is an impor-

tant part of modelling a particular problem. For example, poor results can be obtained when using

an isotropic kernel on a problem where there are irrelevant input dimensions, while an ARD param-
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eterization would be a better choice. Some approximation methods (e.g., the IFGT) have only been

derived for particular kernel functions. For simplicity of comparison we consider only the SE-ARD

kernel (Rasmussen and Williams, 2006, p. 106), as that is the kernel most widely used in practice.

The practical usability of a method: Finally, some more mundane issues contribute significantly

to the usability of a method, such as: (a) Is the method numerically robust? If there are problems

it should be clear how to diagnose and deal with them. (b) Is it clear how to set tweak parameters,

for example, termination criteria? Difficulties with these issues do not just make it difficult to

make fair comparisons, but reflect real difficulties with using the methods. (c) Does the method

work efficiently for a wide range of hyperparameter settings? If not, hyperparameter searching

must be performed much more carefully and one has to ask if the method will work well on good

hyperparameter settings.

4. Experiments

Data sets: We use four data sets for comparison. The first two are synthetic data sets, SYNTH2

and SYNTH8, with D = 2 and D = 8 input dimensions. The inputs were drawn from a N(0, I)
Gaussian, and the function was drawn from a GP with zero mean and isotropic SE kernel with

unit lengthscale. There are 30,543 training points and 30,544 test points in each data set.2 The

noise variance is 10−6 for SYNTH2, and 10−3 for SYNTH8. The CHEM data set is derived from

physical simulations relating to electron energies in molecules (Malshe et al., 2007).3 The input

dimensionality is 15, and the data is split into 31,535 training cases and 31,536 test cases. Additional

results on this data set have been reported by Manzhos and Carrington Jr. (2008). The SARCOS data

set concerns the inverse kinematics of a robot arm, and is used, for example, in Rasmussen and

Williams (2006, Section 2.5). It has 21 input dimensions, 44,484 training cases and 4,449 test

cases (the split used by Rasmussen and Williams 2006). The SARCOS data set is already publicly

available from http://www.gaussianprocess.org. All four data sets are included in the code

and data tarfile associated with this paper.

Error measures: We measured the accuracy of the methods’ predictions on the test sets using the

Standardized Mean Squared Error (SMSE), and Mean Standardized Log Loss (MSLL), as defined

in (Rasmussen and Williams, 2006, Section 2.5). The SMSE is the mean squared error normalized

by the MSE of the dumb predictor that always predicts the mean of the training set. The MSLL is

obtained by averaging − log p(y∗|D,x∗) over the test set and subtracting the same score for a trivial

model which always predicts the mean and variance of the training set. Notice that MSLL involves

the predictive variances while SMSE does not.

Each experiment was carried out on a 3.47 GHz core with at least 10 GB available memory,

except for Section 4.1 which used 3 GHz cores with 12 GB memory. Approximate log marginal

likelihoods were optimized wrt θ using Carl Rasmussen’s minimize.m routine from the gpml tool-

box, using a maximum of 100 iterations. The code and data used to run the experiments is available

from http://homepages.inf.ed.ac.uk/ckiw/code/gpr_approx.html .

In Section 4.1 we provide results investigating the efficacy of iterative methods for GPR. In

Section 4.2 we investigate the utility of IFGT to speed up MVMs. Section 4.3 compares the SoD,

FITC and Local approximations on the four data sets, and Section 4.4 compares predictions made

with the learned hyperparameters and the generative hyperparameters on the synthetic data sets.

2. We thank Carl Rasmussen for providing these data sets.

3. We thank Prof. Lionel Raff of Oklahoma State University and colleagues for permission to distribute this data.
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Figure 1: Experiments with 16,384 training points. Legend abbreviations: CG: conjugate gradients;

DD: ‘domain decomposition’ with 16 randomly chosen clusters; CG-init: CG initialized

with one iteration of DD (CG’s starting point of zero is not responsible for bad early

behaviour); DD-RPC: clusters were chosen with recursive projection clustering (Sec-

tion 2.3). The horizontal lines give test performance for SoD with 4,096, 8,192 and

16,384 training points. Crosses on these lines also show the time taken.

4.1 Results for Iterative Methods

Most attempts to use iterative methods for Gaussian processes have used conjugate gradient (CG)

methods (Gibbs, 1997; Gray, 2004; Shen et al., 2006; Freitas et al., 2006). However, Li et al.

(2007) introduced a method, which they called Domain Decomposition (DD), that over 50 iterations

appeared to converge faster than CG. We have compared CG and DD for training a GP mean

predictor based on 16,384 points from the SARCOS data, with the same fixed hyperparameters used

by Rasmussen and Williams (2006).

Figure 1a) plots the ‘relative residual’, ‖(K+σ2I)αt −y‖/‖y‖, the convergence diagnostic used

by Li et al. (2007, Figure 2), against iteration number for both their method and CG, where αt is

the approximation to α obtained at iteration t. We reproduce the result that CG gives higher and

fluctuating residuals for early iterations. However, by running the simulation for longer, and plotting

on a log scale, we see that CG converges, according to this measure, much faster at later iterations.

Figure 1a) is not directly useful for choosing between the methods however, because we do not

know how many iterations are required for a competitive test-error.

Figure 1b) instead plots test-set SMSE, and adds reference lines for the SMSEs obtained by

subsets with 4,096, 8,192 and 16,384 training points. We now see that 50 iterations are insufficient

for meaningful convergence on this problem. Figure 1c) plots the SMSE against computer time

taken on our machine.4 SoD performs better than the iterative methods.

These results depend on the data set and hyperparameters. Figure 1d) shows the test-set SMSE

progression against time for 16,384 points from SYNTH8 using the true hyperparameters. Here CG

takes a similar time to direct Cholesky solving. However, there is now a part of the error-time plot

where the DD approach has better SMSEs at smaller times than either CG or SoD.

The timing results are heavily implementation and architecture dependent. For example, the

results reported so far were run on a single 3 GHz core. On our machines, the iterative methods

scale less well when deployed on multiple CPU cores. Increasing the number of cores to four (using

4. The time per iteration was measured on a separate run that was not slowed down by storing the intermediate results

required for these plots.
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Figure 2: Plot of time vs lengthscale using IFGT for matrix-vector multiplication (MVM) on the

four data sets. The Auto method was introduced in Raykar and Duraiswami (2007) as a

way to speed up IFGT in some regimes.

MATLAB, which uses Intel’s MKL), the time to perform a 16384×16384 Cholesky decomposition

decreased by a factor of 3.1, whereas a matrix vector multiply improved by only a factor of 1.7.

4.2 Results for IFGT

We focus here on whether the IFGT provides fast MVMs for the data sets in our comparison. We

used the isotropic squared-exponential kernel (which has one lengthscale parameter shared over all

dimensions). For each of the four data sets we randomly chose 5000 datapoints to construct a kernel

matrix, and a 5000-element random vector (with elements sampled from U [0,1]). Figure 2 shows

the MVM time as a function of lengthscale. For SYNTH2 and SYNTH8 the known lengthscale is 1.

For the two other problems, and indeed many standardized regression problems, lengthscales of ≈1

(the width of the input distribution) are also appropriate. Figure 2 shows that useful MVM speedups

over a direct implementation are only obtained for SYNTH2. The result on SARCOS is consistent

with Raykar and Duraiswami (2007)’s result that IFGT does not accelerate GPR on this data set.

4.3 Comparison of SoD, FITC, Hybrid and Local GPR

All of the experiments below used the squared exponential kernel with ARD parameterization (Ras-

mussen and Williams, 2006, p. 106). The test times given below include computation of the predic-

tive variances.

SoD was run with m ascending in powers of 2 from 32,64 . . . up to 4096. FITC was run with m

ranging from 8 to 512 in powers of two; this is smaller than for SoD as FITC is much more memory

intensive. Local was run with m ranging from 16 to 2048 in powers of two. For all experiments the

selection of the subset/inducing points/clusters has a random aspect, and we performed five runs.

In Figure 3 we plot the test set SMSE against hyperparameter training time (left column), and

test time (right column) for the four methods on the four data sets. Figure 4 shows similar plots

for the test set MSLL. When there are further choices to be made (e.g., subset selection methods,

joint/separate estimation of hyperparameters), we generally present the best results obtained by the

method; these choices are detailed at the end of this section for each data set individually. Further

details including tables of learned hyperparameters are provided by Chalupka (2011), although the

experiments were re-run for this paper, so there are some differences between the two.
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The empirical times deviate from theory (Table 1) most for the Local method for small m. There

is overhead due to the creation of many small matrices in MATLAB, so that (for example) m = 32 is

always slower (on our four data sets) than m = 64 and m = 128. This effect has been demonstrated

explicitly by Chalupka (2011, Figure 4.1), and accounts for the bending back observed in the plots

for Local. (The effect is present with all four data sets, but can be difficult to see in some of the

plots.)

Looking at the hyperparameter training plots (left column), it is noticeable that SoD and FITC

reduce monotonically with increasing time, and that SoD outperforms FITC on all data sets (i.e., for

the same amount of time, the SoD performance is better). On the test time plots (right column) the

pattern between SoD and FITC is reversed, with FITC being superior. These results are consistent

with theoretical scalings (Table 1): at training time FITC has worse scaling, at test time its scaling

is the same,5 and it turns out that its more sophisticated approximation does give better results.

Comparing Hybrid to SoD for hyperparameter learning, we note a general improvement in

performance for very similar time; this is because the additional cost of one FITC training step at the

end is small relative to the time taken to optimize the hyperparameters using the SoD approximation

of the marginal likelihood. At test time the Hybrid results are inferior to FITC for the same m as

expected, but the faster hyperparameter learning time means that larger subset sizes can be used

with Hybrid.

For Local, the most noticeable pattern is that the run time does not change monotonically with

m. We also note that for small m the other methods can make faster approximations than Local

can for any value of m. For Local there is a general trend for larger m to produce better results,

although on SARCOS the error actually increases with m, and for SYNTH2 the SMSE error rises for

m = 1024, 2048. However, Local often gives better performance than the other methods in the time

regimes where it operates.

We now comment on the specific data sets:

SYNTH2: This function was fairly easy to learn and all methods were able to obtain good per-

formance (with SMSE close to the noise level of 10−6) for sufficiently large m. For SoD and FITC,

it turned out that FPC gave significantly better results than random subset selection. FPC distributes

the inducing points in a more regular fashion in the space, instead of having multiple close by in

regions of high density. For Local, the joint estimation of hyperparameters was found to be signif-

icantly better than separate; this result makes sense as the target function is actually drawn from

a single GP. For FITC and Hybrid the plots are cut off at m = 128 and m = 256 respectively, as

numerical instabilities in the gpml FITC code for larger m values gave larger errors.

SYNTH8: This function was difficult for all methods to learn, notice the slow decrease in error

as a function of time. The SMSE obtained is far above the noise level of 10−3. Both SoD and FITC

did slightly better when selecting the inducing points randomly. For the Local method, again joint

estimation of hyperparameters was found to be superior, as for SYNTH2. For both SYNTH2 and

SYNTH8 we note that the lengthscales learned by the FITC approximation did not converge to the

true values even for the largest m, while convergence was observed for SoD and Local; full details

are available (Chalupka, 2011, Appendix 1).

5. In fact, careful comparison of the test time plots show that FITC takes longer than SoD; this constant-factor per-

formance difference is due to an implementation detail in gpml, which represents the FITC and SoD predictors

differently, although they could be manipulated into the same form.
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CHEM: Both SoD and FITC did slightly better when selecting the inducing points randomly.

Local with joint and separate hyperparameter training gave similar results. We report results on the

joint method, for consistency with the other data sets.

SARCOS: For SoD and FITC, FPC gave very slightly better results than random. Local with

joint hyperparameter training did better than separate training.

4.4 Comparison with Prediction using the Generative Hyperparameters

For the SYNTH2 and SYNTH8 data sets it is possible to compare the results with learned hyperpa-

rameters against those obtained with hyperparameters fixed to the true generative values. We refer

to these as the learned and fixed hyperparameter settings.

For the SoD and Local methods there is good agreement between the learned and fixed settings,

although for SoD the learned setting generally performs worse on both SMSE and MSLL for small

m, as would be expected given the small data sizes. The learned and fixed settings are noticeably

different for SoD for m ≤ 128 on SYNTH2, and m ≤ 512 on SYNTH8.

For FITC there is also good agreement between the learned and fixed settings, although on

SYNTH8 we observed that the learned model slightly outperformed the fixed model by around 0.05

nats for MSLL, and by up to 0.05 for SMSE. This may suggest that for FITC the hyperparameters

that produce optimal performance may not be the generative ones.

5. Future Directions

We have seen that Local GPR can sometimes make better predictions than the other methods for

some ranges of available computer time. However, our implementation suffers from unusual scaling

behaviour at small m due to the book-keeping overhead required to keep track of thousands of

small matrices. More careful, lower-level programming than our MATLAB code might reduce these

problems.

It is possible to combine the SoD with other methods. As a data set’s size tends to infinity, SoD

(with random selection) will always beat the other approximations that we have considered, as SoD

is the only method with no n-dependence (Table 1). Of course the other approximate methods, such

as FITC, could also be run on a subset. Investigating how to simultaneously choose the data set size

to consider, n, and the control parameter of an approximation, m, has received no attention in the

literature to our knowledge.

Some methods will have more choices than a single control parameter m. For example, Snelson

and Ghahramani (2006) optimized the locations of the m inducing points, potentially improving

test-time performance at the expense of a longer training time. A potential future area of research is

working out how to intelligently balance the computer time spent on selecting and moving inducing

points, while performing hyperparameter training, and choosing a subset size. Developing methods

that work well in a wide variety of contexts without tweaking might be challenging, but success

could be measured using the framework of this paper.

6. Conclusions

We have advocated the comparison of GPR approximation methods on the basis of prediction qual-

ity obtained vs compute time. We have explored the times required for the hyperparameter learning,

training and testing phases, and also addressed other factors that are relevant for comparing approx-
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Figure 3: SMSE (log scale) as a function of time (log scale) for the four data sets. Left: hyperpa-

rameter training time. Right: test time per test point (including variance computations,

despite not being needed to report SMSE). Points give the result for each run; lines

connect the means of the 5 runs at each m.
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Figure 4: MSLL as a function of time (log scale) for the four data sets. Left: hyperparameter

training time. Right: test time per test point. Points give the result for each run; lines

connect the means of the 5 runs at each m.

346



EVALUATING APPROXIMATION METHODS FOR GPR

imations. We believe that future evaluations of GP approximations should consider these factors

(Section 3), and compare error-time curves with standard approximations such as SoD and FITC.

To this end we have made our data and code available to facilitate comparisons. Most papers that

have proposed GP approximations have not compared to SoD, and on trying the methods it is often

difficult to get appreciably below SoD’s error-time curve for the learning phase. Yet these methods

are often more difficult to run and more limited in applicability than SoD.

On the data sets we considered, SoD and Hybrid dominate FITC in terms of hyperparameter

learning. However, FITC (for as long as we ran it) gave better accuracy for a given test time. SoD,

Hybrid and FITC behaved monotonically with subset/inducing-set size m, making m a useful con-

trol parameter. The Local method produces more varied results, but can provide a win for some

problems and cluster sizes. Comparison of the iterative methods, CG and DD, to SoD revealed that

they should not be run for a small fixed number of iterations, and that performance can be compa-

rable with simpler, more stable approaches. Faster MVM methods might make iterative methods

more compelling, although the IFGT method only provided a speedup on the SYNTH2 problem out

of our data sets. Assuming that hyperparameter learning is the dominant factor in computation time,

the results presented above point to the very simple Subset of Data method (or the Hybrid variant)

as being the leading contender. We hope this will act as a rallying cry to those working on GP

approximations to beat this “dumb” method. This can be addressed both by empirical evaluations

(as presented here), and by theoretical work.

Many approximate methods require choosing subsets of partitions of the data. Although farthest

point clustering (FPC) improved SoD and FITC on the low-dimensional (easiest) problem, simple

random subset selection worked similarly or better on all other data sets. Random selection also

has better scaling (no n-dependence) for the largest-scale problems. The choice of partitioning

scheme was important for Local regression: Our preliminary experiments showed that performance

was severely hampered by many small clusters produced by FPC; we recommend our recursive

partitioning scheme (RPC).
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