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Subgradients for absolute values
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Subgradients for absolute values

f(x) = Ix] 9 1x]

A

\
x

-1

{-1} ifx<0
8x{ [-1,1] ifx=0

{+1} ifx>0
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Subgradient

® A subgradient at x is a vector g that satisfies
fy) = F(x)+ & (y - x) (1)
for any y, and the set of subgradients at x is denoted as Of(x).
® Obviously, Vf(x) € 0f(x), if Vf(x) exists.

® Convergence theorems can be ported to subgradient descent.
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Hinge loss
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Hinge loss (cont)

® The hinge loss is defined as  (y: the raw output of classifier)
lhinge(9, ) = max(0, 1-Jy) (2)
for a linear classifier
Chinge(w; X, y) = max(0, 1—yw ' x). (3)

® Just like the absolute value, the hinge loss is continuous and convex, but it is not
differentiable.

S 0 if yw'x > 1 (4)
W “hinge = —yx ifywlx<1

® When yw ' x = 1, we can pick and choose any vector that supports the loss
function from below as the subgradient. In fact, 0 and —yx both work.
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Constrained optimisation
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Setting up a barrier
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An example optimisation-problem with constraints

® The problem

min x2
X

st.  —25<x<-05 (5)

is an example of a constrained optimisation problem.
® The inequality —2.5 < x < —0.5 is called a constraint.

® Solutions that satisfy the constraints are called feasible solutions.
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Setting up a barrier

® The problem

2

min X
s.t. —25<x<-05 (6)
is equivalent to
min x* + V_(x) (7)
where
0 if-25<x<-05
Vo(x) = { . (8)
oo otherwise
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An example optimisation-problem with constraints

® The problem
min L(w)
s.t. (w3 <1 (9)

is an example of a constrained optimisation problem.
® The inequality ||wl[3 < 1 is called a constraint.

® Solutions that satisfy the constraints are called feasible solutions.
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Setting up a barrier

® \We can write the optimisation problem as

min L(w) + V_(|w]3 - 1), (10)
where
0 ifs<o0
V_(s) = - . 11
() {oo if s>0 (11)

® This does not change anything; both problems are equally hard (or easy) to solve.
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Soften the constraints

® \We can approximate
min  L(w)+ V_(|w]3-1) (12)
with
min - L(w)+ (w3 - 1), (13)

for some A > 0.

® Note that A\s < V_(s) for all s.
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Soften the constraints (cont)

1.0
— V_(s)
— As

0.8 1

0.6 1

0.4 4

0.2 1

0.0

-0.2 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

S

14/33



Lagrangian

In general, if you have a optimisation problem

min f(x)

X

s.t. h(x) <0

the Lagrangian is defined as

for A > 0.

The value X is called the Lagrange multiplier.
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Solving the Lagrangian

® Solve g(A) = min[f(x) + Ah(x)] for a particular A.
X
e Find \ such that min[f(x) + Ah(x)] gives a feasible solution.
X
e Suppose X = argmin[f(x) + Ah(x)] and x* = argmin f(x).
x x:h(x)<0

F(%) + AR(X) < F(x*) + Mh(x*) < f(x¥) (16)
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Solving the Lagrangian (cont)

e We want (&) = f(%) + Ah(%) leading to f(%) < f(x*), so that we can conclude
f(x) = f(x*).
* If we want Mh(&) = 0, then either A = 0 or h(X) = 0.

— When )\ = 0, the minimiser of f is a feasible solution already.

— When h(%X) = 0, the minimiser of f is not necessarily a feasible solution, and we are
on the edge of a constraint.
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Example 1 - training of a word unigram model

Row, row, row your boat, gently down the stream
Merrily, merrily, merrily, merrily, life is but a dream
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Example 1 - training of a word unigram model
Row, row, row your boat, gently down the stream
Merrily, merrily, merrily, merrily, life is but a dream

® There are 18 words.

® Intuitively,

p(row) = 18 p(merrily) = % p(is) = 1—18 (17)
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Example 1 - training of a word unigram model (cont)

There are 13 unique words.

We refer to the set of unique words V' = {row, your, boat, gently, down, the,
stream, merrily, life, is, but, a, dream} as the vocabulary.

We assign each word v a probability 5, .

The probability of a word is

(18)
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Example 1 - training of a word unigram model (cont)
We assume that each word is independent of others.
This assumption is obviously wrong, but can go really far.

The likelihood of 3 given the data is

N N
Ty=uw;
log p(wa, ..., wn) = log [ [ p(wi) = log [T T 8"
i=1

i=lveV

Since [ is a probability vector, we have the assumption

Zﬁvzl

veV

(20)
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Example 1 - training of a word unigram model (cont)

® \We arrive at the optimisation problem

N
mﬁin - Z Z ﬂv:w,- |0g ﬁv

i=1veV

st. > By=1 (21)

veV

® |ts Lagrangian is

N
F:—ZZ]lvzwilOgﬁv‘F)\(Zﬁv_l)- (22)

i=1veV veV
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Example 1 - training of a word unigram model (cont)

® Solving the optimality condition gives

N
1
}: w——A=0 = :75 T, 23
aﬂk i—1 v o A ‘ )
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Example 1 - training of a word unigram model (cont)

N N
S A=Y e =1 = A=Y Yl =N (28)

veVv veVv i=1 veV i=1

N

Z{\Ll Tg=w, 1

f—mleo_Lshy -
Svev izt Lumw, N
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Example 2 - finding the best projection line/hyperplane
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Projection of a vector

Projection of u onto/from v

>V
T T
u'v u'v
lull2cos6 = lull2 = (26)
lull2lvii2 vl
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Example 2 - finding the best projection line/hyperplane (cont)

® The projection of x onto w is H;ﬁ‘;
® |f we have N data points {xi,...,xn}, then the sum of the (squared) projection is
EN: ('X W') wvx X (27)
w2 wiw

i=1

® The sum of squared projection can be seen as the spread of the data.
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Maximal projection
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Maximal projection (cont)

® We want to find the maximum direction to project.

® The optimisation problem is

w!' X T Xw
max ————.

2
ax — (28)
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Maximal projection (cont)

® The problem is scale invariant.

aw) X T X(aw w' XT Xw
( (3w)—'—(avf/) ): wiw (29)

® The problem is equivalent to

maxw ' X Xw st ||wll3 = 1. (30)

w
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Maximal projection (cont)

® The Lagrangian is
F=w'X"Xw+ A1 - ||w|3).

® Finding the optimal solution gives

oF

= (XTX+XTX)w—22w =0 = X' Xw = )\w.

ow

® |t turns out that \ is an eigenvalue, and w an eigenvector of X ' X.
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Maximal projection (cont)

® Plugging the solution back to the objective,

TxTX A T
w w_Aww (33)
w'lw wlw

® Since the goal is to find the maximal projection, this is now equivalent to finding
the largest eigenvalue of X T X.
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Maximal projection (cont)

® The term

w' X T Xw

wlw (34)

is called the Rayleigh quotient.
® The optimal w is called the first principal component.

® We will learn more about this when we talk about principal component analysis.
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Quizzes

e Consider a set of two-dimensional data {x,-},l-vzl, where x; = (xj1,X;2) . Explain
the difference between the best projection line (defined in the slides) and linear
regression line from x; to xa (or from from x» to x7).
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