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Topics

Optimal solution / minimiser
Convex functions and strictly convex functions
Optimality condition

Positive semi-definite and positive definite matrix
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® For mean-squared error

we know that

is the solution of V,, L = 0.

® How do we know w™ is the optimal point?
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® For log loss

N

NLL =) "log (1 + eXP(—YiWT¢(Xi))> (3)

i=1

we cannot even solve V,, L = 0.
® How do we find the optimal solution?

® Could we find an approximate solution?

427



Convex optimisation
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Optimisation

® Suppose f : R — R.

® The goal is solve

min f(x). (4)
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® |t means min f(x) < f(y) for any y.

X
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Optimisation

Suppose f : RY — R.
The goal is solve

min f(x).

X

It means min f(x) < f(y) for any y.

X

We want to find x* such that f(x*) = min f(x).

X

The point x* is called the optimal solution or the minimiser of f.
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Optimisation

Suppose f : RY — R.
The goal is solve

min f(x). (4)

X

It means min f(x) < f(y) for any y.

X

We want to find x* such that f(x*) = min f(x).

X

The point x* is called the optimal solution or the minimiser of f.

There might not be a minimiser or there might have many, not just one. (In most
case, we are content with finding one.)
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Global vs local minimum / optimal
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Convex functions

A function f is convex if
flax 4+ (1 —a)y) < af(x) + (1 — a)f(y), (5)

forevery x, y,and 0 < a < 1.
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ax + (1 —a)y
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ax + (1 —a)y
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af(x) + (1 — a)f(y)
VI

flax+ (1 —a)y)
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Properties of convex functions

If f is convex, then
fy) = f(x) + Vi(x) " (y — x), (6)

for any x and y.

10/27



Properties of convex functions

If f is convex, then
f(y) = f(x) + VF(x)" (y —x), (6)
for any x and y.

Proof:  considering a dimension

F(1—a)x +ay) < (1 —a)f(x) + af(y) (7)
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Properties of convex functions

If f is convex, then
f(y) = f(x) + VF(x)" (y —x),
for any x and y.

Proof:  considering a dimension

f((1—a)x+ay) <(1-a)f(x)+af(y)

af(y) = f(x + aly = x)) = (1 - a)f(x)
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Properties of convex functions

If f is convex, then
f(y) = f(x) + VF(x)" (y —x),
for any x and y.

Proof:  considering a dimension

f((1—a)x+ay) <(1-a)f(x)+af(y)
af(y) = f(x +a(y —x)) — (1 — a)f(x)

Fly) > Flx) + f(x+ a(y ;x)) — f(x)
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Properties of convex functions

If f is convex, then
f(y) = f(x) + VF(x)" (y —x),
for any x and y.

Proof:  considering a dimension

f((1—a)x+ay) <(1-a)f(x)+af(y)
af(y) = f(x +a(y —x)) — (1 — a)f(x)

f(x+aly = x)) = f(x)

f(y) > f(x)+ Flc+ hf),_ f(X)(ny) where h = a(y — x)

fy) > f(x)+
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Properties of convex functions

If f is convex, then
f(y) = f(x) + VF(x)" (y —x), (6)
for any x and y.

Proof:  considering a dimension

(1= a)x+ay) < (1 - a)f () +af(y) )
0 (y) > Flx+aly =) = (1= @) (x) Q

fly) > Flx) + A=) 27 ©)

) 2 £00 + ORIy e h—a(y ) (10

FV) 2 F)+ )y —x)  h—=0 (11)
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Properties of convex functions (cont)

X0
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Properties of convex functions (cont)

f(Xg + h)

X0 X0+ h
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Properties of convex functions (cont)

f(Xg + h)

f(Xo) —+ f/(Xo)h

X0 X0+ h
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Supporting hyperplanes
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Supporting hyperplanes
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® |s the mean-squared error
L= <[ Xw—yl} (12)

convex in w?

® The definition itself is not always easy to use for checking convexity.
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A sufficient condition: Second derivative

® Suppose f(x) is twice differentiable for any x.

® f(x) is convex iff the Hessian H = V2f(x) is positive semi definite for any x.
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e A matrix H is positive semi definite if x" Hx > 0 for any x.
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Convexity of squared distance

® The squared distance £(s) = (s — s’)? is convex in s.
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Convexity of squared distance

® The squared distance £(s) = (s — s’)? is convex in s.

25 =2>0 (14)
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Convexity of the /, norm

® Show that f(x) = ||x||3 = x " x is convex in x.
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Convexity of the /, norm

® Show that f(x) = ||x||3 = x " x is convex in x.

Ox;0x; N Ox?

1

2 2
A R (15)
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Affine transform preserves convexity

® If f is convex, then g(x) = f(Ax + b) is also convex.
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Affine transform preserves convexity

® If f is convex, then g(x) = f(Ax + b) is also convex.

glax+ (1 —a)y) = f(a(Ax + b) + (1 — a)(Ay + b)) (16)
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Affine transform preserves convexity

® If f is convex, then g(x) = f(Ax + b) is also convex.

glax+ (1 —a)y) = f(a(Ax + b) + (1 — a)(Ay + b)) (16)

< af(Ax +b) + (L — a)f(Ay + b) = ag(x) + (1 — a)g(y) (17)
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Non-negative weighted sum of convex functions

® |f fi,...,fr are convex, then f = B1f; + - -+ + Bkfk is also convex when
/817 <o 76k Z 0
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Non-negative weighted sum of convex functions

® |f fi,...,fr are convex, then f = B1f; + - -+ + Bkfk is also convex when
/817 <o 76k Z 0

flax+ (1 —a)y) = frifi(ax + (1 —a)y) + - + Befu(ax + (1 — a)y)
< Brah(x) + fi(l = @) f(y) + - + Brafi(x) + Bi(1 — a)fi(y)
= a(Bih(x) + -+ Befk(x)) + (1 — a)(Brfily) + - + Brfk(y))

=af(x)+ (1 —a)f(y)
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Convexity of MSE

® The mean-squared error is

N

1
L= 5> (whx =) = |1 Xw - y[3. (22)
i=1

® \We know that the squared distance is convex.

® Use the affine transform and non-negative weighted sum to obtain the
mean-squared error.
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Optimality condition

If f is convex and
Vi(x*)=0 (23)

at x*, then x* is the minimiser of f.
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Optimality condition

If f is convex and
Vi(x*)=0
at x*, then x* is the minimiser of f.

Proof: Suppose Vf(x*) = 0. For any x,

F(x) > F(x*) + VA(x")T(x — x*) = £(x?).

(23)

(24)
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Optimal solution of MSE

® The mean-squared error is

(w'o(xi) = yi)? = [|Xw — y|3. (25)

”MZ

® The solution to VL =0is w* = (X" X)X Ty.

® Because L is convex in w, w* is a minimiser of L.
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Convexity of log loss in logistic regression

® The log loss in the binary case is

N
L= Z log (1 + exp(—y,-wa,-)> . (26)

i=1
® We just need to show /(s) = log(1 + exp(—s)) is convex in s.

® Use affine transform and non-negative weighted sum to obtain the log loss.
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ol —exp(—s) 1

s 1+exp(—s) 1+exp(—s) 1 (27)
8725 _ 1 exp(—s) 1 1
0s2  1+exp(—s)1+exp(—s) 1+ exp(—s) (1 T exp(—5)> >0 (28)
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Strictly convex functions

A function f is strictly convex if
flax+ (1 —a)y) < af(x) + (1 — a)f(y), (29)

forevery x #y,and 0 < a < 1.
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Properties of strictly convex functions

e |f f is strictly convex, then
f(x) > fy) + Vi(y) (x - y), (30)

for any x # y.
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Properties of strictly convex functions

e |f f is strictly convex, then
f(x) > fy) + VF(y) ' (x - y).
for any x # y.
e A matrix H is positive definite if x" Hx > 0 for any x # 0.

® |f the Hessian of f is positive definite, then f is strictly convex.
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Uniqueness of minimisers for strictly convex functions

A strictly convex function f has a unique minimiser.
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Uniqueness of minimisers for strictly convex functions

A strictly convex function f has a unique minimiser.

Proof: Suppose x* is a minimiser of f, i.e., Vf(x*) = 0. Since f is strictly convex,

f(x) > fy) + Vi(y) (x — ) (31)

for any x # y. In particular, if we let y = x*
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Quizzes

® Show the convexity for the following functions.
o f(x)=x?

f(x) = |x|P forp>1

f(x) = exp(ax)

f(x) = xlog x
f(x,y) = log(e* + &)
® Find the condition(s) under which the following function f(x) is convex in x.

f(x)=x"Ax+b'x+c

e Consider a function f(x) = %

e Find the first and second derivatives.
e Discuss the convexity of the function.
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