
Machine Learning
Neural Networks 3

Hao Tang

February 28, 2025

1 / 27



Commonly used neural architectures

• Feed-forward networks, fully-connected layers

– MLP
– ReLU networks

• Convolution neural networks

– LeNet, AlexNet, VGG, ResNet

• Recurrent neural networks

– RNN, GRU, LSTM

• Sequence-to-sequence models

• Transformers

2 / 27



Building blocks

• Affine transformation

• Nonlinearity (also known as activation functions)

• Normalization

• Convolution

• Pooling

• Skip connection

• Gating

• Attention

3 / 27



Affine transformation

• The operation

f (x) = Wx + b (1)

is called affine transformation, where W and b are trainable parameters.

• In pytorch, this is unfortunately called torch.nn.Linear.

4 / 27



Nonlinearity: Sigmoid function

• The operation

σ(x) =


1

1+exp(−x1)
1

1+exp(−x2)
...
1

1+exp(−xd )

 (2)

is called the sigmoid nonlinearity.

• The output range of sigmoid is [0, 1]d .

• This is unfortunately often written as σ(x) = 1
1+exp(−x) .

5 / 27



Nonlinearity: Sigmoid function

• The operation

σ(x) =


1

1+exp(−x1)
1

1+exp(−x2)
...
1

1+exp(−xd )

 (2)

is called the sigmoid nonlinearity.

• The output range of sigmoid is [0, 1]d .

• This is unfortunately often written as σ(x) = 1
1+exp(−x) .

5 / 27



Nonlinearity: Sigmoid function

• The operation

σ(x) =


1

1+exp(−x1)
1

1+exp(−x2)
...
1

1+exp(−xd )

 (2)

is called the sigmoid nonlinearity.

• The output range of sigmoid is [0, 1]d .

• This is unfortunately often written as σ(x) = 1
1+exp(−x) .

5 / 27



Nonlinearity: hyperbolic tangent

• The operation

f (x) =


tanh(x1)
tanh(x2)

...
tanh(xd)

 (3)

is called the hyperbolic tangent nonlinearity, where

tanh(x) =
ex − e−x

ex + e−x
. (4)

• The output range of sigmoid is [−1, 1]d .

• This is unfortunately often written as tanh(x).

6 / 27



Nonlinearity: hyperbolic tangent

• The operation

f (x) =


tanh(x1)
tanh(x2)

...
tanh(xd)

 (3)

is called the hyperbolic tangent nonlinearity, where

tanh(x) =
ex − e−x

ex + e−x
. (4)

• The output range of sigmoid is [−1, 1]d .

• This is unfortunately often written as tanh(x).

6 / 27



Nonlinearity: hyperbolic tangent

• The operation

f (x) =


tanh(x1)
tanh(x2)

...
tanh(xd)

 (3)

is called the hyperbolic tangent nonlinearity, where

tanh(x) =
ex − e−x

ex + e−x
. (4)

• The output range of sigmoid is [−1, 1]d .

• This is unfortunately often written as tanh(x).

6 / 27



Nonlinearity: Rectified linear units (ReLU)

• The operation

ReLU(x) =


max(0, x1)
max(0, x2)

...
max(0, xd)

 (5)

is called the rectified nonlinear unit (ReLU) (Nair and Hinton, 2010).

• The output range of sigmoid is Rd
≥0.

• This is unfortunately often written as ReLU(x) = max(0, x).

7 / 27



Nonlinearity: Rectified linear units (ReLU)

• The operation

ReLU(x) =


max(0, x1)
max(0, x2)

...
max(0, xd)

 (5)

is called the rectified nonlinear unit (ReLU) (Nair and Hinton, 2010).

• The output range of sigmoid is Rd
≥0.

• This is unfortunately often written as ReLU(x) = max(0, x).

7 / 27



Nonlinearity: Rectified linear units (ReLU)

• The operation

ReLU(x) =


max(0, x1)
max(0, x2)

...
max(0, xd)

 (5)

is called the rectified nonlinear unit (ReLU) (Nair and Hinton, 2010).

• The output range of sigmoid is Rd
≥0.

• This is unfortunately often written as ReLU(x) = max(0, x).

7 / 27



Feed-forward networks

• A neural network of the form

F (x) = Wℓ(· · ·σ(W2σ(W1x + b1) + b2)) + bℓ (6)

is called a multi-layer perceptron (MLP).

• A neural network of the form

F (x) = Wℓ(· · ·ReLU(W2ReLU(W1x + b1) + b2)) + bℓ (7)

is called a ReLU network.

• They are unfortunately often called feed-forward networks (FFNs).

• An affine transformationn with a nonlinearity is unfortunately often called a
fully-connected layer (FC layer).

8 / 27



Feed-forward networks

• A neural network of the form

F (x) = Wℓ(· · ·σ(W2σ(W1x + b1) + b2)) + bℓ (6)

is called a multi-layer perceptron (MLP).

• A neural network of the form

F (x) = Wℓ(· · ·ReLU(W2ReLU(W1x + b1) + b2)) + bℓ (7)

is called a ReLU network.

• They are unfortunately often called feed-forward networks (FFNs).

• An affine transformationn with a nonlinearity is unfortunately often called a
fully-connected layer (FC layer).

8 / 27



Normalization: Batch normalization

• Standardization (i.e., z normalization) of the input to the network typically brings
optimization benefits.

• Batch normalization (Ioffe and Szegedy, 2015) is defined as

f (x) =
x − µ√

σ2
where µ =

1

B

B∑
i=1

xi , σ2 =
1

B

B∑
i=1

x2i − µ2 (8)

where xi is the i-th sample in a batch of size B.

9 / 27



Normalization: Batch normalization

• Standardization (i.e., z normalization) of the input to the network typically brings
optimization benefits.

• Batch normalization (Ioffe and Szegedy, 2015) is defined as

f (x) =
x − µ√

σ2
where µ =

1

B

B∑
i=1

xi , σ2 =
1

B

B∑
i=1

x2i − µ2 (8)

where xi is the i-th sample in a batch of size B.

9 / 27



Normalization: Layer normalization

• Layer normalization (Ba et al., 2016) is defined as

f (x) =


[x]1−µ√

σ2

[x]2−µ√
σ2

...
[x]d−µ√

σ2

 where µ =
1

d

d∑
i=1

[x ]i , σ2 =
1

d

d∑
i=1

[x ]2i − µ2 (9)

where [x ]i is the i-th coordinate of the vector x .

10 / 27



Convolution

• The 1D convolution of x and w is defined as

yt =
d∑

i=1

xiwt−i , (10)

where w is the learnable parameter (often called a filter).

• The 1D cross correlation of x and w is defined as

yt =
d∑

i=1

xiwt+i . (11)

11 / 27



Convolution

• The 1D convolution of x and w is defined as

yt =
d∑

i=1

xiwt−i , (10)

where w is the learnable parameter (often called a filter).

• The 1D cross correlation of x and w is defined as

yt =
d∑

i=1

xiwt+i . (11)

11 / 27



Convolution

(Dumoulin and Visin, 2018)

12 / 27



Convolution

• Cross correlation is linear in w , and it can be implemented with an linear
transformation.

• In pytorch, convolution (e.g., torch.nn.Conv1d) is unfortunately implemented
with as cross correlation and with affine transformation.

13 / 27



Convolution

• Cross correlation is linear in w , and it can be implemented with an linear
transformation.

• In pytorch, convolution (e.g., torch.nn.Conv1d) is unfortunately implemented
with as cross correlation and with affine transformation.

13 / 27



Pooling

• Max pooling

yt = max
i=1,...,d

xt+i . (12)

• Mean pooling

yt =
1

d

d∑
i=1

xt+i . (13)

• Pooling is useful for learning whether there exists something.

14 / 27



Convolutional neural networks (CNNs)

• A convolutional neural network is a stack of convolutions and ReLUs.

• Depending on the task, there might also be max pooling.

15 / 27



Convolutional neural networks (CNNs)

(Krizhevsky et al., 2012)

16 / 27



Skip connections

• A skip connection (He et al., 2016) is of the form

f (x) = x + T (x) (14)

for some other transformation T .

• Due to the form,

∂f

∂x
= 1d +

∂T

∂x
, (15)

where 1d is a d-dimensional all-one vector. There is always some gradient after
adding the skip connection.

• Since T (x) = f (x)− x , the transformation T whatever there is other than the
identity x . A skip connection is also called a residual connection.

17 / 27



Skip connections

• A skip connection (He et al., 2016) is of the form

f (x) = x + T (x) (14)

for some other transformation T .

• Due to the form,

∂f

∂x
= 1d +

∂T

∂x
, (15)

where 1d is a d-dimensional all-one vector. There is always some gradient after
adding the skip connection.

• Since T (x) = f (x)− x , the transformation T whatever there is other than the
identity x . A skip connection is also called a residual connection.

17 / 27



Skip connections

• A skip connection (He et al., 2016) is of the form

f (x) = x + T (x) (14)

for some other transformation T .

• Due to the form,

∂f

∂x
= 1d +

∂T

∂x
, (15)

where 1d is a d-dimensional all-one vector. There is always some gradient after
adding the skip connection.

• Since T (x) = f (x)− x , the transformation T whatever there is other than the
identity x . A skip connection is also called a residual connection.

17 / 27



ResNet

• A ResNet (He et al., 2016) is a regular CNN with skip connections every several
layers.

(He et al., 2016)

18 / 27



ResNet

• A ResNet (He et al., 2016) is a regular CNN with skip connections every several
layers.

(He et al., 2016)

18 / 27



Gating

• The sigmoid activation can also be used as a gating function.

• The output of the sigmoid can be thought of as the probability of the gate being
open.

• For example, the gated linear unit (Dauphin et al., 2017) is defined as

f (x) = αT (x) where α = σ(Wx + b) (16)

for some other transformation T .

• We can also have a softer skip connection

f (x) = (1− α)x + αT (x) where α = σ(Wx + b) (17)

for some other transformation T .

19 / 27



Gating

• The sigmoid activation can also be used as a gating function.

• The output of the sigmoid can be thought of as the probability of the gate being
open.

• For example, the gated linear unit (Dauphin et al., 2017) is defined as

f (x) = αT (x) where α = σ(Wx + b) (16)

for some other transformation T .

• We can also have a softer skip connection

f (x) = (1− α)x + αT (x) where α = σ(Wx + b) (17)

for some other transformation T .

19 / 27



Gating

• The sigmoid activation can also be used as a gating function.

• The output of the sigmoid can be thought of as the probability of the gate being
open.

• For example, the gated linear unit (Dauphin et al., 2017) is defined as

f (x) = αT (x) where α = σ(Wx + b) (16)

for some other transformation T .

• We can also have a softer skip connection

f (x) = (1− α)x + αT (x) where α = σ(Wx + b) (17)

for some other transformation T .

19 / 27



Recurrent neural networks (RNNs)

• Some data, e.g., text and speech,
comes in varying lengths.

• The input is a sequence x1, . . . , xT and
the output is a sequence y1, . . . , yT .

• An Elman network (Elman, 1990) has
the form

ht = σ(Vht−1 + Uxt + b1) (18)

yt = Wht + b2 (19)

y1 y2 · · · yT

h1 h2 · · · hT

x1 x2 · · · xT

20 / 27



Recurrent neural networks (RNNs)

• Some data, e.g., text and speech,
comes in varying lengths.

• The input is a sequence x1, . . . , xT and
the output is a sequence y1, . . . , yT .

• An Elman network (Elman, 1990) has
the form

ht = σ(Vht−1 + Uxt + b1) (18)

yt = Wht + b2 (19)

y1 y2 · · · yT

h1 h2 · · · hT

x1 x2 · · · xT

20 / 27



Recurrent neural networks (RNNs)

• Some data, e.g., text and speech,
comes in varying lengths.

• The input is a sequence x1, . . . , xT and
the output is a sequence y1, . . . , yT .

• An Elman network (Elman, 1990) has
the form

ht = σ(Vht−1 + Uxt + b1) (18)

yt = Wht + b2 (19)

y1 y2 · · · yT

h1 h2 · · · hT

x1 x2 · · · xT

20 / 27



Recurrent neural networks (RNNs)

• The recurrence is gated in long
short-term memory networks (LSTMs)
(Hochreiter and Schmidhuber, 1997).

– input gate (red dot)
– forget gate (blue dot)
– output gate (green dot)

y1 y2 · · · yT

h1 h2 · · · hT

c1 c2 · · · cT

x1 x2 · · · xT

21 / 27



Attention mechanism

• Given a query q, keys k1, . . . , kT , and values v1, . . . , vT , the attention mechanism
(Bahdanau et al., 2015) is defined as

f (q, k1, . . . , kT , v1, . . . , vT ) =
T∑
i=1

exp(k⊤i q)∑T
j=1 exp(k

⊤
j q)

vi (20)

= softmax(qK⊤)V ,

(21)

where

K =


— k1 —
— k2 —

...
— kT —

 V =


— v1 —
— v2 —

...
— vT —

 . (22)

22 / 27



Attention mechanism

• Given a query q, keys k1, . . . , kT , and values v1, . . . , vT , the attention mechanism
(Bahdanau et al., 2015) is defined as

f (q, k1, . . . , kT , v1, . . . , vT ) =
T∑
i=1

exp(k⊤i q)∑T
j=1 exp(k

⊤
j q)

vi (20)

= softmax(qK⊤)V , (21)

where

K =


— k1 —
— k2 —

...
— kT —

 V =


— v1 —
— v2 —

...
— vT —

 . (22)

22 / 27



Attention mechanism

• The term softmax(qK ) is sometimes called the attention weights.

q

k1 k2 . . . kT

v1 v2 . . . vT

23 / 27



Attention mechanism

• The term softmax(qK ) is sometimes called the attention weights.

q

k1 k2 . . . kT

v1 v2 . . . vT

23 / 27



Attention mechanism

• The term softmax(qK ) is sometimes called the attention weights.

q

k1 k2 . . . kT

v1 v2 . . . vT

23 / 27



Attention mechanism

• The term softmax(qK ) is sometimes called the attention weights.

q

k1 k2 . . . kT

v1 v2 . . . vT

23 / 27



Sequence-to-sequence model

• The input is a sequence x1, . . . , xT and the output is a sequence y1, . . . , yT .

• A sequence-to-sequence model (or seq2seq) (Sutskever et al., 2014) is a loop

qi = update(qi−1, yi−1, x1, . . . , xT ) (23)

yi = f (qi ) (24)

• A seq2seq is often equipped with an attention mechanism and the loop becomes

qi = update(qi−1, yi−1) (25)

zi = attend(qi , h1, . . . , hT , h1, . . . , hT ) (26)

yi = f (zi ) (27)

where h1, . . . , hT = encode(x1, . . . , xT ).

• The loop is often refer to as the decoder, and seq2seq is unfortunately often called
a encoder-decoder model.

24 / 27



Sequence-to-sequence model

• The input is a sequence x1, . . . , xT and the output is a sequence y1, . . . , yT .

• A sequence-to-sequence model (or seq2seq) (Sutskever et al., 2014) is a loop

qi = update(qi−1, yi−1, x1, . . . , xT ) (23)

yi = f (qi ) (24)

• A seq2seq is often equipped with an attention mechanism and the loop becomes

qi = update(qi−1, yi−1) (25)

zi = attend(qi , h1, . . . , hT , h1, . . . , hT ) (26)

yi = f (zi ) (27)

where h1, . . . , hT = encode(x1, . . . , xT ).

• The loop is often refer to as the decoder, and seq2seq is unfortunately often called
a encoder-decoder model.

24 / 27



Sequence-to-sequence model

• The input is a sequence x1, . . . , xT and the output is a sequence y1, . . . , yT .

• A sequence-to-sequence model (or seq2seq) (Sutskever et al., 2014) is a loop

qi = update(qi−1, yi−1, x1, . . . , xT ) (23)

yi = f (qi ) (24)

• A seq2seq is often equipped with an attention mechanism and the loop becomes

qi = update(qi−1, yi−1) (25)

zi = attend(qi , h1, . . . , hT , h1, . . . , hT ) (26)

yi = f (zi ) (27)

where h1, . . . , hT = encode(x1, . . . , xT ).

• The loop is often refer to as the decoder, and seq2seq is unfortunately often called
a encoder-decoder model.

24 / 27



Sequence-to-sequence model

• The input is a sequence x1, . . . , xT and the output is a sequence y1, . . . , yT .

• A sequence-to-sequence model (or seq2seq) (Sutskever et al., 2014) is a loop

qi = update(qi−1, yi−1, x1, . . . , xT ) (23)

yi = f (qi ) (24)

• A seq2seq is often equipped with an attention mechanism and the loop becomes

qi = update(qi−1, yi−1) (25)

zi = attend(qi , h1, . . . , hT , h1, . . . , hT ) (26)

yi = f (zi ) (27)

where h1, . . . , hT = encode(x1, . . . , xT ).

• The loop is often refer to as the decoder, and seq2seq is unfortunately often called
a encoder-decoder model.

24 / 27



Self-attention

• When applying attention on

qt = W1xt + b1 (28)

kt = W2xt + b2 (29)

vt = W3xt + b3 (30)

we are using the transformation of the input to attend to itself; hence the name
self-attention (Vaswani et al., 2017).

• To contrast with self-attention, regular attention is often called cross attention.

25 / 27



Transformer

• A Transformer block is defined as

FC(FC(H)) + H (31)

where H = attend(W1X ,W2X ,W3X ) + X .

• A Transformer (Vaswani et al., 2017) is a seq2seq where both the encoder and the
decoder consist of a sequence of Transformer blocks.

26 / 27



Transformer

• A Transformer block is defined as

FC(FC(H)) + H (31)

where H = attend(W1X ,W2X ,W3X ) + X .

• A Transformer (Vaswani et al., 2017) is a seq2seq where both the encoder and the
decoder consist of a sequence of Transformer blocks.

26 / 27



Questions to think about

• If a simple MLP is already an universal approximator, why do we need
convolution, recurrence, and attention?

• Even though some layers have intuitions attached, after training, are they learning
what is intended?

• If we want to solve a new problem, how do we know what layer types to use?

• If there are differences among different layers, why are people using Transformers
more than other model architectures these days?

• Are there things that are easy to learn for one layer type but hard to learn for
another?

27 / 27


