Machine Learning

K-means Clustering

Kia Nazarpour

1/24



Context

1. Often times we need to analyse data for which we do not have their labels.
2. How can we find any structure in a collection of unlabelled data?

3. Clustering is an established category of methods for organising objects into
groups whose members are similar in some way.
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Learning Outcomes

1. Understand the key motivations behind clustering and its challenges.
2. Implement the K-means algorithm.
3. Solve the maths of the K-means algorithm.
4. Analyse when/how/why the simple K-means method can fail.
5. Understand the notion of hard and soft clustering, introducing briefly the
notion of mixture models.
References:

1. Bishop, Pattern Recognition and Machine Learning,
Springer, 2008. (Section 9.1)

2. Hastie et al., The Elements of Statistical Learning,
Springer, 2017. (Section 14.3.6)
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Problem Statement

Aim: Identify clusters of data points in a multi-dimensional space.
® Suppose we have data set {x1,Xa, -+ ,Xx} as N observations of a

d-dimensional variable x.
® Qur goal is to partition data set into a known number of clusters, say K.
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Problem Statement
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% :' % .
° o® O LV ok ®
oo %° 'Y '?'
o

Y ) X
®e%,

We can formalise the idea by introducing d-dimensional vectors piycqy ... k3 to
represent each cluster.

The vectors 1.3 are shown by X.
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Problem Formulation

Specific goal: Given a K, find an assignment of data points to clusters and the
set of vectors {p} to represent these cluster.

The assignment rule (r,, = 1 if x,, is in cluster k) and all ps are unknown.

Ideally, we want the points in each cluster to be close to each other and far from
points in other clusters.
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Problem Formulation

Specific goal: Given a K, find an assignment of data points to clusters and the
set of vectors {p} to represent these cluster.

The assignment rule (r,, = 1 if x,, is in cluster k) and all ps are unknown.

Ideally, we want the points in each cluster to be close to each other and far from
points in other clusters.

A proposal: Minimise the distortion function, i.e., the sum of the squared
distances of each data point to its closest vector puy.

N K
J= ) rulxe — ml?

n=1 k=1
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K-means Solution

A proposal: Minimise the distortion function, i.e., the sum of the squared
distances of each data point to its closest vector .

N K
=3 ruellxn — g

n=1 k=1

Given K, randomly select pj—1.... x
Minimise J with respect to r,;, keeping the ;. fixed.
Minimise J with respect to p;, keeping the r,,; fixed.

sl

Repeat steps 2 (Expectation) and 3 (Maximisation) steps until convergence,
that is, AJ < e.
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K-means Solution

N K
T=3"" vl —

n=1 k=1

Step 2: Minimise J with respect to r,;, keeping the u, fixed.
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K-means Solution

N K
J = ernkan — ])?

n=1 k=1

Step 2: Minimise J with respect to r,;, keeping the u, fixed.

J is a linear function of r,;. Also terms with n are independent.
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K-means Solution

N K
J = ernkan - Mk:||2

n=1 k=1

Step 2: Minimise J with respect to r,;, keeping the u, fixed.
J is a linear function of r,;. Also terms with n are independent.

Simply, r,,, = 1 for the closest cluster k, i.e. whichever k that gives the smallest
value of ||x,, — p|*.

1 if k= arg min; [|x, — p]|?
T'nk = .
0 otherwise.
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K-means Solution

N K
J= > rulxe — ml?

n=1 k=1

Step 3: Minimise J with respect to py, keeping the r,,; fixed.
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K-means Solution

N K
J = ernkan — ])?

n=1 k=1

Step 3: Minimise J with respect to py, keeping the r,,; fixed.

J is a quadratic function of u; and can be minimised by setting its derivative

. . 0J
with respect to p to zero, that is — = 0.
Kk
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K-means Solution

N K
J = ernkan — ])?

n=1 k=1

Step 3: Minimise J with respect to py, keeping the r,,; fixed.

J is a quadratic function of u; and can be minimised by setting its derivative

: . 0J
with respect to p to zero, that is — = 0.

Kk
0 S Y el — el
= n= = = e X (—1) X 2(x, — =0
S e D X (1) 20— )
N N
n=1 n=1
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K-means Solution

N K
J = ernkan — ])?

n=1 k=1

Step 3: Minimise J with respect to py, keeping the r,,; fixed.

J is a quadratic function of u; and can be minimised by setting its derivative

: . 0J
with respect to p to zero, that is — = 0.

Kk
0T Sy Yo rarllxn — el
= n= = = e X (—1) X 2(x, — =0
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K-means: An example

Bishop Figure 9.1
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K-means: An example
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Bishop Figure 9.2
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K-means for Image Segmentation and Compression

Original Image

Bishop Figure 9.3
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Original Data
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How to choose K7?
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There are several methods for choosing K, including [but not limited to], using
domain expertise, elbow and silhouette methods, and gap statistics™.

*Tibshirani et al. J. R. Statist. Soc. B. (2001) 63:411-423.
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How to initialise p;

The K-means algorithm is sensitive to the initialisation of ;.
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How to initialise p;

The K-means algorithm is sensitive to the initialisation of .
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Methods of initialisation:
1. Random initialisation (the above case can happen!)
2. Often times, pys are initialised to a subset of data (Forgy initialisation).
3. Repeat clustering for various initial and select the best set of s
4. K-means++ (Arthur and Vassilvitskii, 2007)
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Hard assignment vs. Soft assignment

Original Data Hard assignment Soft assignment
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Gaussian Mixture Model
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K-means: Summary

1. A simple unsupervised method that enables clustering of data
. Poses no great computational complexity

3. Too crude to assume a cluster can be represented with a single point
and a simple distance metric

4. Hard boundaries!

. How to generalise it to models that can cluster data of various types and shapes!
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