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Context
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1. Often times we need to analyse data for which we do not have their labels.
2. How can we find any structure in a collection of unlabelled data?
3. Clustering is an established category of methods for organising objects into

groups whose members are similar in some way.



Learning Outcomes
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1. Understand the key motivations behind clustering and its challenges.
2. Implement the K-means algorithm.
3. Solve the maths of the K-means algorithm.
4. Analyse when/how/why the simple K-means method can fail.
5. Understand the notion of hard and soft clustering, introducing briefly the

notion of mixture models.

References:
1. Bishop, Pattern Recognition and Machine Learning,

Springer, 2008. (Section 9.1)
2. Hastie et al., The Elements of Statistical Learning,

Springer, 2017. (Section 14.3.6)



Problem Statement
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Aim: Identify clusters of data points in a multi-dimensional space.

• Suppose we have data set {x1,x2, · · · ,xN} as N observations of a
d-dimensional variable x.

• Our goal is to partition data set into a known number of clusters, say K.
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K = 3



Problem Statement
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We can formalise the idea by introducing d-dimensional vectors µk∈{1,··· ,K} to
represent each cluster.

The vectors µ1:3 are shown by X.



Problem Formulation
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Specific goal: Given a K, find an assignment of data points to clusters and the
set of vectors {µk} to represent these cluster.

The assignment rule (rnk = 1 if xn is in cluster k) and all µks are unknown.

Ideally, we want the points in each cluster to be close to each other and far from
points in other clusters.
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Specific goal: Given a K, find an assignment of data points to clusters and the
set of vectors {µk} to represent these cluster.

The assignment rule (rnk = 1 if xn is in cluster k) and all µks are unknown.

Ideally, we want the points in each cluster to be close to each other and far from
points in other clusters.

A proposal: Minimise the distortion function, i.e., the sum of the squared
distances of each data point to its closest vector µk.

J =
N∑

n=1

K∑
k=1

rnk∥xn − µk∥2



K-means Solution
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A proposal: Minimise the distortion function, i.e., the sum of the squared
distances of each data point to its closest vector µk.

J =
N∑

n=1

K∑
k=1

rnk∥xn − µk∥2

1. Given K, randomly select µk=1,··· ,K

2. Minimise J with respect to rnk, keeping the µk fixed.
3. Minimise J with respect to µk, keeping the rnk fixed.
4. Repeat steps 2 (Expectation) and 3 (Maximisation) steps until convergence,

that is, ∆J < ϵ.



K-means Solution
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J =
N∑

n=1

K∑
k=1

rnk∥xn − µk∥2

Step 2: Minimise J with respect to rnk, keeping the µk fixed.



K-means Solution
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J =
N∑

n=1

K∑
k=1

rnk∥xn − µk∥2

Step 2: Minimise J with respect to rnk, keeping the µk fixed.

J is a linear function of rnk. Also terms with n are independent.



K-means Solution
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J =
N∑

n=1

K∑
k=1

rnk∥xn − µk∥2

Step 2: Minimise J with respect to rnk, keeping the µk fixed.

J is a linear function of rnk. Also terms with n are independent.

Simply, rnk = 1 for the closest cluster k, i.e. whichever k that gives the smallest
value of ∥xn − µk∥2.

rnk =

{
1 if k = arg minj ∥xn − µj∥2

0 otherwise.



K-means Solution
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J =
N∑

n=1

K∑
k=1

rnk∥xn − µk∥2

Step 3: Minimise J with respect to µk, keeping the rnk fixed.



K-means Solution
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J =
N∑

n=1

K∑
k=1

rnk∥xn − µk∥2

Step 3: Minimise J with respect to µk, keeping the rnk fixed.

J is a quadratic function of µk and can be minimised by setting its derivative

with respect to µk to zero, that is
δJ

δµk

= 0.



K-means Solution
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J =
N∑

n=1

K∑
k=1

rnk∥xn − µk∥2

Step 3: Minimise J with respect to µk, keeping the rnk fixed.

J is a quadratic function of µk and can be minimised by setting its derivative

with respect to µk to zero, that is
δJ

δµk

= 0.

δJ

δµk

=
δ
∑N

n=1

∑K
k=1 rnk∥xn − µk∥2

δµk

=
N∑

n=1

rnk × (−1)× 2(xn − µk) = 0

=
N∑

n=1

rnkxn −
N∑

n=1

rnkµk = 0



K-means Solution
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J =
N∑

n=1

K∑
k=1

rnk∥xn − µk∥2

Step 3: Minimise J with respect to µk, keeping the rnk fixed.

J is a quadratic function of µk and can be minimised by setting its derivative

with respect to µk to zero, that is
δJ

δµk

= 0.

δJ

δµk

=
δ
∑N

n=1

∑K
k=1 rnk∥xn − µk∥2

δµk

=
N∑

n=1

rnk × (−1)× 2(xn − µk) = 0

=
N∑

n=1

rnkxn −
N∑

n=1

rnkµk = 0 → µk =

∑
n rnkxn∑
n rnk



K-means: An example
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Bishop Figure 9.1



K-means: An example
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Bishop Figure 9.2



K-means for Image Segmentation and Compression
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Original Image K = 2 K = 3 K = 10

Bishop Figure 9.3



How to choose K?
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Original Data K
?
= 4 K

?
= 2

There are several methods for choosing K, including [but not limited to], using
domain expertise, elbow and silhouette methods, and gap statistics∗.

∗Tibshirani et al. J. R. Statist. Soc. B. (2001) 63:411-423.



How to initialise µk
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The K-means algorithm is sensitive to the initialisation of µk.



How to initialise µk
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The K-means algorithm is sensitive to the initialisation of µk.

Methods of initialisation:
1. Random initialisation (the above case can happen!)
2. Often times, µks are initialised to a subset of data (Forgy initialisation).
3. Repeat clustering for various initial and select the best set of µks
4. K-means++ (Arthur and Vassilvitskii, 2007)



Hard assignment vs. Soft assignment
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Original Data Hard assignment Soft assignment

Gaussian Mixture Model



K-means: Summary
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1. A simple unsupervised method that enables clustering of data
2. Poses no great computational complexity
3. Too crude to assume a cluster can be represented with a single point

and a simple distance metric
4. Hard boundaries!
5. How to generalise it to models that can cluster data of various types and shapes!


