Machine Learning Introduction

Kia Nazarpour

https://homepages.inf.ed.ac.uk/htang2/mlg2024/

Based on Hao Tang's slides

Context: Image Processing

Context: Recommender systems

Context: Speech recognition

Context: Speech verification

Context: Robotic vacuum cleaner

Context: Autonomous driving

Context: Failures

Learning Outcomes

- 1. Define machine learning, identify its main types
- 2. Understand the core components of a machine learning systems
- 3. Learn about what we will do in this course

What is machine learning?

How would you write a program to recognise hand-written 2s?

We "produce" a programme that recognises a 2 using the examples of 2s.

What is machine learning?

Traditional Computing

Machine Learning

Example 1

In an experiment we measure force and acceleration. Do you see a pattern?

force (N)	acceleration (m/s^2)
0.02	0.358
0.04	0.490
0.06	0.313
0.08	0.247
0.10	0.282
0.12	0.606

Example 1 - Linear Regression

Let's plot the data to explore it.

Example 1 - Linear Regression

Let's plot the data to explore it.

Linear Regression in the Machine Learning Language

• Given N points $\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$,

sum of absolute errors
$$L = \sum_{i=1}^{N} |wx_i + b - y_i|. \tag{1}$$

- Find w and b that minimises L.
- Find a function f(x) = y = wx + b that minimises L.

Machine Learning Jargon

- The N points $\{(x_1, y_1), \dots, (x_N, y_N)\}$ constitute a data set.
- The value w and b are called parameters.
- The function L is called a **loss function**.
- ullet The act of finding w and b that minimizes L is called **training**.
- The x_1, x_2, \ldots, x_N are called (input) features.
- The y_1, y_2, \ldots, y_N are called (output) labels.
- Specifying the above gives us a **task**.

Generalisation

- A programme is correct if it produces the desired output on all input in the input domain.
- The fact that we use machine learning means that we do not have a good characterisation of the input. (If we do, we likely don't need machine learning.)
- Since the input domain is infinitely large, we only develop our programme on samples from the input domain.
- A programme **generalises** if it is developed with samples from the input domain but is able to produce the desired output on the entire input domain.

Our MLG Teaching Philosophy

We follow a fairly standard learning experience!

 $\begin{tabular}{ll} Motivate & & & \\ \hline Intuition & & & \\ \hline Maths & & & \\ \hline & & \\ \hline & & & \\ \hline & & \\ \hline$

You need:

- Calculus
- Linear Algebra and Probability
- python, numpy, matplotlib, and Jupiter notebook

Logistics

- Course website: https://homepages.inf.ed.ac.uk/htang2/mlg2024/
- Textbooks (See MLG Calendar)
 - 1. Bishop, Pattern Recognition and Machine Learning, 2006
 - 2. Deisenroth, Faisal, and Ong, Mathematics for Machine Learning, 2020
 - 3. Lindholm, Wahlström, Linsten, and Schön, Machine Learning A First Course for Engineers and Scientists, 2022
 - 4. Shalev-Schwartz and Ben-David, Understanding Machine Learning, 2014
- Exercises and notes
- We encourage you to review Informatics 2 Foundations of Data Science.